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ABSTRACT 26 

 The effect of two hydrophobic treatments on the hydrophilic nature of halloysite 27 

nanotubes (HNT) was studied in this research work: a silanization with (3-glycidyloxypropyl) 28 

trimethoxysilane (GLYMO) and a surface treatment with a natural aromatic compound, i.e. 29 

caffeic acid (CA). In addition, the effect of 3 wt% of unmodified HNT, silanized HNT (HNTSIL) 30 

and caffeic acid-modified HNT (HNTCA) on mechanical, thermal and morphological properties 31 

of a binary blend of poly(3-hydroxybutyrate) (PHB) and poly(-caprolactone) (PCL) with a 32 

weight ratio of 75/25, respectively was evaluated. These blends and their corresponding 33 

composites with HNT were partially compatibilized by reactive extrusion with dicumyl peroxide 34 

(DCP) and further processed by injection molding. The effectiveness of the surface treatments on 35 

HNT was followed by Fourier transformed infrared spectroscopy (FTIT), thermogravimetric 36 

analysis (TGA), field emission scanning electron microscopy (FESEM) and contact angle 37 

measurements. The obtained results suggested a clear hydrophobizing effect of both surface 38 

treatments on HNT but the hydrophobic nature the caffeic acid treatment can provide to HNT is 39 

greater than silanization. FESEM study on HNT-loaded PHB/PCL blends showed increased 40 

compatibility between modified-HNT and the polymeric matrix, as well as a better particle 41 

dispersion. In particular, 3 wt% HNTCA lead to an increase in tensile strength and elongation at 42 

break of 11.4% and 74%, respectively, with regard to composites with unmodified HNT. In 43 

addition, thermal analysis, evaluated by differential scanning calorimetry (DSC) and 44 

thermogravimetric analysis (TGA), revealed a decrease in the melt peak temperature of 6.5ºC for 45 

composites with 3 wt% HNTCA as well a delay in the onset degradation temperature, thus leading 46 

to a broader processing window which enhances PHB processing by conventional techniques.  47 

 48 

Keywords: Poly(3-hydroxybutyrate); poly(-caprolactone); dicumyl peroxide; halloysite 49 

nanotubes; silane; caffeic acid. 50 
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1. INTRODUCTION 52 

 In the last years, important advances in the field of biodegradable polymers have been 53 

observed. Nevertheless, some of these polymers still show important drawbacks that restrict their 54 

wide use in industry. Poly(3-hydroxybutyrate) (PHB) is one of the most promising biopolyesters 55 

obtained from bacterial fermentation but it has to face an important challenge related to its 56 

fragility (due to its high crystallinity) and its extremely narrow processing window, since its 57 

thermal degradation is slightly higher than its melt process (Zhang and Thomas, 2010). These 58 

drawbacks, together with an still high price compared to commodity plastics are responsible for 59 

a very restricted industrial use (Godbole et al., 2003). To overcome or minimize these drawbacks, 60 

several approaches have been addressed in the last years with the main aim of increasing its 61 

thermo-mechanical performance. It is worthy to note the interesting results obtained by using 62 

natural-derived plasticizers such as epoxidized linseed oil (Garcia‐Garcia et al., 2016), epoxidized 63 

soybean oil (Choi and Park, 2004) or maleinized linseed oil (Garcia‐Garcia et al., 2017), among 64 

others. Another apporach has been physical blending with a wide variety of biodegradable 65 

polymers such as poly(lactic acid) (PLA) (Zhang and Thomas, 2011), poly(butylene succinate) 66 

(PBS) (Ma et al., 2012), poly(-caprolactone) (Gassner and Owen, 1994; Lovera et al., 2007) or 67 

poly(vinyl alcohol) (Azuma et al., 1992; Olkhov et al., 2003). Finally, the use of nanoparticles 68 

has been revealed as an interesting alternative to plasticizing and/or blending. It has been reported 69 

the positive effect of TiO2 nanoparticles (Iulianelli et al., 2018), ZnO nanoparticles (Díez-Pascual 70 

and Díez-Vicente, 2014) or cellulose nanowiskers (S de O Patrício et al., 2013) on mechanical, 71 

thermal and barrier properties of PHB-based composites. 72 

 In our previous works, it was reported the positive effect of a binary blend of PHB and 73 

PCL with a weight ratio of 75/25 respectively, on overall thermal and mechanical ductile 74 

properties. Nevertheless, it was concluded that these two polyesters showed a highly restricted 75 

miscibility, leading to phase separation due to the poor interactions among PHB-PCL interface 76 

and this restricts the improvements PCL can provide (Garcia-Garcia et al., 2016). To overcome 77 

this, 1 phr dicumyl peroxide (DCP) was successfully used to promote reactive extrusion during 78 

blending, thus leading to a remarkable increase in ductile properties. In particular, the obtained 79 
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elongation at break was increased by 231% with regard to the uncompatibilized PHB/PCL blend. 80 

Regarding the impact properties, the impact-absorbed energy (Charpy test) was improved by 91% 81 

thus giving clear evidences of the compatibilizing effect DCP provides, without compromising 82 

other mechanical resistant properties (Garcia-Garcia et al., 2017b). 83 

 The interest on ternary blends containing two polymers and one nanofiller is increasing 84 

due to the positive effect of nanoparticles on overall properties of blends. These nanoparticles 85 

provide a structural reinforcing role together with potential compatibilization. When two 86 

immiscible polymers are mixed together, there are not any interactions between the molecular 87 

segments of both polymers, which gives high surface tension between these polymers. This 88 

phenomenon is responsible for a poor dispersion of each polymer on the other, thus leading to 89 

phase separation with the typical drop-like structure (Taguet et al., 2014). Several authors have 90 

reported that the addition of small amounts of different nanofillers gives reduced surface tension 91 

between the two polymers thus lading to coalescence inhibition and a remarkable decrease in the 92 

particle size of the dispersed phase. This contributes to improved interface adhesion and gives 93 

improved compatibility to blends (Chen et al., 2015; Hemmati et al., 2014; Mofokeng and Luyt, 94 

2015; Urquijo et al., 2017; Vrsaljko et al., 2015; Wu et al., 2011). 95 

 One of the most promising nanofillers in the last decade are halloysite nanotubes (HNT). 96 

These nanotubes are natural aluminosilicates with the molecular formula of Al2Si2O5(OH)4·nH2O 97 

(Lvov et al., 2008). HNT offer a hollow tubular structure composed of multiple layers of hollow 98 

cylinders with an elevated aspect ratio. An interesting feature of HNT is the different chemical 99 

structure of the outer surfaces with regard to the inner areas. The external (outer) surface is 100 

composed of siloxane (Si–O–Si) while the inner layers are composed of aluminol groups (Al–101 

OH) (Jafarzadeh et al., 2015; Yuan et al., 2008). Furthermore, typical HNT show an inner 102 

diameter of 15 nm which allows using HNT as carriers for selective loads, thus allowing their use 103 

for controlled delivery systems (Kurczewska et al., 2018; Torres et al., 2017). All these features, 104 

together with a relatively low price make HNT high attractive as a functional additive in 105 

polymeric systems. Pal et al. (2014), studied the effect of the addition of 1 wt% unmodified 106 

halloysite and silanized halloysite with N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane on 107 
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overall properties of an immiscible blend between poly(oxymethylene) (POM) and 108 

poly(propylene) (PP). They reported an improvement on compatibilization and a slight increase 109 

in the thermal degradation onset. Nevertheless, one of the main drawbacks of a widespread use 110 

of HNT is their extremely high hydrophilicity, due to the presence of a huge number of hydroxyl 111 

groups which contributes to aggregate formation. This hydrophilicity contributes to poor 112 

dispersion with the subsequent negative effect on overall properties (Krishnaiah et al., 2017). To 113 

minimize these effects, during the last years, several research works have been focused on 114 

reducing the hydrophilicity of HNT, mainly by silanization surface treatments (Carli et al., 2014; 115 

Liu et al., 2008; Raman et al., 2013).  116 

 This work focuses on the use of a novel surface treatment with caffeic acid (CA). Caffeic 117 

acid is plant-derived aromatic compound which shows interesting properties such as antioxidant, 118 

anticancer, anti-inflammatory, antiviral activity, among others (Baykal et al., 2015). CA is used 119 

in this work with two main purposes. On one hand, its potential as surfactant material is studied 120 

with the aim of reducing hydrophilic properties of HNT and, on the other hand, its antioxidant 121 

potential to delay thermal degradation is addressed. A common silanization process with (3-122 

glycidyloxypropyl) trimethoxysilane (GLYMO) is also carried out to compare the effects on the 123 

hydrophilic properties of HNT. Moreover, the effect of 3 wt% unmodified and modified (silanized 124 

and caffeic acid-modified) HNT on overall properties of a binary blend composed of PHB and 125 

PCL with a weight ratio of 75:25, respectively, partially compatibilized by reactive extrusion with 126 

dicumyl peroxide (DCP), is studied. 127 

 128 

2. EXPERIMENTAL 129 

2.1. Materials 130 

 Poly(3-hydroxybutyrate) (PHB) pellets commercial grade P304 were supplied by Biomer 131 

(Krailling, Germany). Poly(caprolactone) (PCL) (CAPA 6500, Mw = 50,000 Da) was provided 132 

by Perstorp Holding AB (Malmö, Sweden). Dicumyl peroxide (DCP) (98% purity), halloysite 133 

nanotubes (HNT), caffeic acid and the silane used for surface treatment of HNT ((3-134 

glycidyloxypropyl) trimethoxysilane - GLYMO) were supplied from Sigma Aldrich (Madrid, 135 
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Spain) and used without further purification. Acetic acid (99.7% CH3COOH) was used as a mild 136 

acid to increase the lumen size in HNT. This was supplied by PanReac Applichem (Barcelona, 137 

Spain).  138 

 139 

2.2. Silanization of HNT 140 

 Functionalization of HNT with silanes was carried out following the procedure described 141 

by Krishnaiah et al. (2017). Approx. 6 g silane (GLYMO) was dissolved in 250 mL ethanol (96%) 142 

and the solution was mechanically stirred for 15 min at 60ºC to hydrolyze alcoxy groups. 143 

Subsequently, acetic acid was added drop by drop until reaching a pH value around 5 and then, 144 

25 g HNT were added while maintaining mechanical stirring at 60ºC for two additional hours. 145 

HNT were obtained by filtration and were washed with ethanol. Finally, silanized HNT were 146 

dried at 70ºC for 8 h with the aim of removing the residual moisture. 147 

 148 

2.3. Acid treatment of HNT and caffeic acid loading. 149 

 Prior to load caffeic acid into HNT, the lumen diameter was selectively etched with acetic 150 

acid following the procedure described by Garcia-Garcia et al. (2017a) To this, HNT were 151 

previously dried at 100ºC for 8 h. Then 5 g dried HNT were poured into a 500 mL flask with an 152 

acetic acid solution in distilled water with a concentration of 1 mol L−1. The solution was 153 

maintained with mechanical stirring for 72 h at 50ºC. After this treatment, chemically modified 154 

HNT were collected by centrifugation and washed with distilled water until a neutral pH was 155 

obtained. Finally, acid-treated HNT were dried at 50ºC for 24 h. After this surface treatment to 156 

increase the loading capacity, HNT were loaded with caffeic acid following the procedure 157 

described by Hendessi et al. (2016). A summary of this procedure is as follows: caffeic acid was 158 

dissolved in ethanol (96%) until saturation. Then, 5 g of HNT were poured to the solution. The 159 

suspension was sonicated for 5 min using an amplitude of 33% in an ultrasonic homogenizer 160 

Sonoplus HD 2200 from Bandelin (Berlin, Germany). After this, the mixture was subjected to 161 

vacuum (1 mbar) for 30 min to remove the trapped air inside HNT; then the vacuum was broken 162 

and the suspension remained at atmospheric pressure for 10 min to allow caffeic acid molecules 163 
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to enter into the HNT lumen. The cycle was repeated 3 times to improve the loading efficiency. 164 

Finally, caffeic acid loaded HNT was separated by centrifugation at 4000 rpm for 5 min and 165 

washed with ethanol to remove the caffeic acid excess. Caffeic acid-loaded HNT were dried at 166 

40ºC for 24 h.  167 

 168 

2.4. Manufacturing of PHB/PCL blends with different HNT loads 169 

 PHB and HNT were dried in a vacuum oven at 70ºC for 8 hours while PCL was dried at 170 

40ºC overnight to remove residual moisture before use. The appropriate amounts of PHB, PCL, 171 

DCP and 3 wt% unmodified HNT, silanized HNT (HNTSIL) and caffeic acid-treated HNT 172 

(HNTCA) were pre-mixed mechanically in a zipper bag prior to compounding. The compositions 173 

of PHB/PCL/DCP/HNT blends are listed in Table 1. All the samples were melt-blended in a co-174 

rotating twin-screw extruder from DUPRA S.L. (Alicante, Spain) with a screw diameter of 25 175 

mm and a length (L) to diameter (D) ratio, i.e. L/D, of 24. The screw speed was set to 40 rpm to 176 

allow reactive extrusion and the temperature profile of the extrusion barrel was set to 165ºC 177 

(hopper), 170ºC, 175ºC and 180ºC (extrusion die). The obtained compounds were cooled down 178 

to room temperature, pelletized and subsequently processed by injection moulding in a Meteor 179 

270/75 from Mateu & Solé (Barcelona, Spain) to obtain standard samples for further 180 

characterization. The temperature profile for the injection process was set to 165ºC, 165ºC, 170ºC, 181 

175ºC and 180ºC from feeding zone to the injection nozzle. The cavity filling and cooling times 182 

were set to 1 and 30 s, respectively. Prior to characterization, standard samples were stored at 183 

room conditions (23 ± 1°C and 50% HR) for 21 days with the main aim of stabilizing mechanical 184 

properties of the obtained blends since PHB undergoes physical aging due to crystallization with 185 

time. Previous results have reported that mechanical properties tend to stabilize after the above-186 

mentioned aging time (Kurusu et al., 2014). 187 

 188 

 189 

 190 

 191 
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Coding PHB (wt%) PCL (wt%) HNT (wt%) DCP (phr) 

PHB/PCL/DCP 75 25 0 1 

3-HNT 72.75 24.25 3 1 

3-HNTSIL 72.75 24.25 3 1 

3-HNTCA 72.75 24.25 3 1 

Table 1. Composition and labelling of binary PHB/PCL compatibilized by reactive extrusion 192 

with DCP and reinforced with unmodified and modified HNT. 193 

 194 

2.5. Characterization techniques 195 

2.5.1. Fourier Transformed Infrared Spectroscopy (FTIR) 196 

 The effect of the different treatments on the chemical structure of HNT was studied by 197 

Fourier transformed infrared spectroscopy in a FTIR spectrometer Spectrum BX from Perkin-198 

Elmer (Madrid, Spain). HNT were subjected to 20 scans between 4000 and 400 cm−1 with a 199 

resolution of 16 cm−1. Prior to sample characterization, 1.2 mg of each type of HNT were 200 

mechanically mixed with KBr until homogenization, and subsequently pressed to obtain the 201 

corresponding cylindrical discs (120 mg). 202 

 203 

2.5.2. Field emission scanning electron microscopy and energy dispersive X-ray analysis 204 

(FESEM-EDS) 205 

 The effect of the different surface treatments on HNT, as well as the morphology of 206 

fractured blends from impact tests was studied in a field emission scanning electron microscope 207 

(FESEM) ZEISS model ULTRA 55 (Eindhoven, The Netherlands), equipped with an energy 208 

dispersive spectrometer (EDS). Image acquisition was carried out at an accelerating voltage of 209 

5 kV. Prior to be observed fractured surfaces of samples were coated with a thin layer of platinum 210 

in a high vacuum sputter coater EM MED20 from Leica Microsystem (Milton Keynes, United 211 

Kingdom). 212 

 213 

 214 
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2.5.3. Dynamic contact angle measurements 215 

 The effect of the surface treatments of HNT on their wetting properties was analysed by 216 

optical goniometry in an Easy Drop Standard KRÜSS goniometer (KRÜSS GmbH, Hamburg, 217 

Germany), model FM140 (110/220 V, 50/60 Hz). 218 

 219 

2.5.4. Mechanical properties 220 

 Tensile and flexural properties of PHB/PCL blends loaded with HNT were obtained using 221 

a universal test machine Ibertest ELIB 30 from SAE Ibertest (Madrid, Spain) according to ISO 222 

527 and ISO 178 respectively. Both tests were carried out with a 5 kN load cell and a crosshead 223 

speed of 5 mm min−1. Moreover, for a more accurate determination of the Young's modulus, an 224 

axial extensometer IB/MFQ-R2 from Ibertest (Madrid, Spain) coupled to the universal test 225 

machine was used. All specimens were tested at room temperature (23 ± 1 °C) and at least five 226 

samples for each material were analysed for each mechanical test and averaged values of the main 227 

mechanical parameters were calculated.  228 

 229 

2.5.5. Thermal properties 230 

 The effect of loading HNT on thermal properties of the partially compatibilized PHB/PCL 231 

blend was studied by differential scanning calorimetry (DSC) in a DSC 821 calorimeter from 232 

Mettler-Toledo (Schwerzenbach, Switzerland). Approximately, 6 mg of each material were 233 

placed into standard 40 mL aluminium crucibles and were subjected to a dynamic program under 234 

nitrogen atmosphere (flow rat 66 mL min-1) divided in three steps: a first heating cycle from −50ºC 235 

up to 180ºC. This was followed by an isothermal stage at 180ºC for 2 min. Then, a cooling stage 236 

down to −50ºC was applied and, finally, a second heating stage up to 300ºC was scheduled. The 237 

heating and cooling rates for the all the scans were set to 10ºC min−1. The melting temperature 238 

peak (Tm) and the degree of crystallinity (Xc) were obtained from the second heating cycle. The 239 

degree of crystallinity of PHB (Xc PHB) and PCL (Xc PCL) in each sample was determined using the 240 

following equation: 241 

 242 
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𝑋𝑐 (%) = 100 ×  [
∆𝐻𝑚

∆𝐻0∙𝑤
]  Equation 1 243 

 244 

Where ∆Hm stands for the thermodynamic melt enthalpy per gram of each polymer obtained from 245 

the second heating cycle, ∆H0 is the theoretical enthalpy corresponding to the melting of a 100% 246 

crystalline PHB (146 J g-1 (Arrieta et al., 2014)) or PCL (156.8 J g-1 (Simoes et al., 2009)), and w 247 

is the weight fraction of the corresponding polymer (PHB or PCL) in the blend. 248 

The thermal stability of unmodified and chemically modified HNT, as well as the 249 

PHB/PCL blends with HNT was studied by thermogravimetric analysis (TGA) in a TGA PT1000 250 

from Linseis Inc. (Selb, Germany). Approximately 12 mg of each sample were subjected to a 251 

dynamic heating program from 30ºC up to 700ºC at a heating rate of 10ºC/min under nitrogen 252 

atmosphere with a constant flow rate of 66 mL min−1. The onset degradation temperature (T0) was 253 

defined as the temperature at which a 5% mass loss occurs. In addition, the maximum degradation 254 

temperature (Tmax) for each stage was obtained as the corresponding peak of the first derivative 255 

(DTG). 256 

 257 

2.5.6. Dynamic mechanical thermal analysis (DMTA) 258 

 Dynamic-mechanical thermal analysis (DMTA) was performed in an oscillatory 259 

rheometer AR G2 by TA Instruments (New Castle, USA) working in shear/torsion mode. This 260 

rheometer is equipped with a special clap system for solid samples thus allowing evaluation of 261 

dynamical-mechanical properties as a function of temperature. Samples with a size of 40x10x4 262 

mm3 were subjected to a temperature sweep from −100ºC up to 100ºC at a constant heating rate 263 

of 2ºC/min, a frequency of 1 Hz and a maximum shear strain (γ) of 0.1%. The values of storage 264 

modulus, G’ and tan δ versus temperature were recorded for each sample. The glass transition 265 

temperature (Tg) was assumed as the peak maximum of the tan δ curve. 266 

 267 

 268 

 269 
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3. RESULTS AND DISCUSSION 270 

3.1. Effect of chemical modification of HNT 271 

 The spectrum of unmodified HNT (Fig. 1) shows characteristic peaks located at 3695, 272 

3624 and 912 cm−1 which are attributable to stretching of inner-surface Al−OH, the stretching of 273 

inner Al−OH and bending vibration of the inner Al−OH, respectively. The peaks located at 3450 274 

and 1650 cm−1 are directly related to O–H stretching and bending vibration of the adsorbed water, 275 

respectively. Peaks centred at 1118, 1036 and 538 cm−1 are ascribed to the apical Si–O stretching 276 

vibration, in-plane Si–O stretching vibrations and Si−O bending vibration, respectively. It can also 277 

be detected the presence of two peaks at 792 cm−1 and 754 cm−1 which can be assigned to the 278 

symmetric stretching of Si−O−Si and the perpendicular stretching of Si−O−Al, respectively 279 

(Hillier et al., 2016; Pasbakhsh et al., 2010; Sun et al., 2015; Wang et al., 2013). The spectrum of 280 

the silanized HNT (HNTSIL) (Fig. 1a) show a clear decrease in the absorbance of hydroxyl (–OH) 281 

groups in both internal and external layers related to peaks located at 3695, 3624 and 912 cm−1. 282 

This can be explained by taking into account that silanol (Si–OH) groups obtained after the 283 

hydrolysis of the alkoxy groups in GLYMO, can react with hydroxyl groups of aluminol (Al–284 

OH) in the inner layers of HNT as well as with the edges of the HNT and external surface defects 285 

on HNT. This decrease in the intensity of these peaks confirm the interaction of silane with HNT 286 

thus leading to formation of Al–O–Si bonds (Riza Erdogan et al., 2014). New absorption bands 287 

can be detected for the silanized HNT (HNTSIL). It is worthy to note the peaks located at 2930 288 

cm−1 and 2860 cm−1 which can be assigned to the asymmetric and symmetric stretching vibration 289 

of aliphatic –CH2; the peak located at 1480 cm−1 is related to the deformation vibration of –CH2 290 

and corroborate the effectiveness of the silane treatment (Carli et al., 2014; Sun et al., 2016). 291 

Finally, the absorbance of the peaks related to the adsorbed water on HNT, located at 3450 cm−1 292 

and 1650 cm−1 decreases after the silane treatment. This could be due to two overlapping 293 

phenomena: on one hand, this could be related to an increase in hydrophobicity after silanization, 294 

which restricts water adsorption. On the other hand, condensation reaction of silanol groups with 295 

aluminol groups leads to water generation that is removed after the drying process, thus 296 

contributing to a decrease on the overall amount of the adsorbed water between layers (Chow and 297 
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Neoh, 2009). With regard to caffeic acid modified HNT (HNTCA) (Fig. 1b) shows the typical 298 

peaks ascribed to unmodified HNT but new peaks can identified. These peaks are located at 1646, 299 

1622, 1452 and 1280 cm−1 and are related to C=C stretching, (-C=O) stretching of the -COOH 300 

group, the ring stretching and phenol (C-O) stretching from caffeic acid respectively (Williams et 301 

al., 2002). Furthermore, the peak related to the adsorbed water at 3450 cm−1 also decreases with 302 

regard to unmodified HNT, thus giving evidence of the hydrophobizing effect that caffeic acid 303 

can give on HNT. 304 

 305 

 306 

Fig. 1. FTIR spectra of unmodified HNT and, a) silanized HNT (HNTSIL) with GLYMO and b) 307 

caffeic acid-loaded HNT (HNTCA). 308 

 309 

 The effect of the different surface treatments on HNT was also followed by 310 

thermogravimetry (TGA) (Fig. 2). Unmodified HNT show two main mass loss steps. The first 311 

one is located in the temperature range comprised between 30 and 150ºC and is directly related 312 

to desorption of the water that is physically adsorbed onto HNT interlayers and surface and a 313 

second mass loss step located between 400–550ºC which is related to structural dehydroxylation 314 

of Al–OH groups of HNT (Garcia-Garcia et al., 2017a). After the silanization process, it is clearly 315 

distinguishable that the first mass loss step is smaller with regard to unmodified HNT. This is 316 

representative for the hydrophobizing properties the silane provides to HNT. Therefore, the 317 

amount of adsorbed water in the interlayer and surface is lower compared to unmodified HNT 318 
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(Carli et al., 2014). In addition, the overall mass loss on silanized HNT is slightly higher then 319 

unmodified HNT. This is due to thermal decomposition of organic compounds in GLYMO, 320 

grafted to HNT (Bischoff et al., 2015; Krishnaiah et al., 2017), thus giving evidence of the 321 

efficiency of the silanization process. With regard to the caffeic acid-loaded HNT, it can be also 322 

detected a decrease in the first mass loss step, thus indicating an increase in hydrophilic properties 323 

of HNT. The mass loss located in the 200–400ºC range is directly related to caffeic acid 324 

degradation. Caffeic acid decomposes in two main stages as reported in literature (Baykal et al., 325 

2015). Regarding the mass loss in the 200–400ºC range, which represents a weight percentage of 326 

28%, can be ascribed to removal of caffeic acid molecules chemically bonded to HNT or located 327 

into the lumen. Therefore, TGA analysis confirms the effectiveness of both silanized and caffeic 328 

acid-modified HNT. 329 

 330 

 331 

Fig. 2. a) TGA and b) DTGA of unmodified HNT and silanized HNT (HNTSIL) with GLYMO 332 

and caffeic acid-loaded HNT (HNTCA). 333 

 334 

Morphological analysis using FESEM shows that HNT tend to form aggregates due to 335 

their intrinsic hydrophilic nature due to hydroxyl groups (Fig. 3a and b). These aggregates can 336 

reach a size of 50 m, and this can negatively affect the overall performance of the PHB/PCL 337 

blend. After both silane and caffeic acid treatments, the hydrophobicity of HNT increases in a 338 

remarkable way due to the reaction of hydroxyl groups in HNT with GLYMO or caffeic acid 339 

which leads to formation of a thin hydrophobic layer that covers the external surface, Fig. 4. The 340 
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hydrophobic effect of the silanes on the HNT has been demonstrated by several authors. Guo et 341 

al. (2009) and Zhang et al. (2013) improved the HNT hydrophobicity with 3- 342 

(trimethoxysilyl)propyl methacrylate. The same effect was observed by Haroosh et al. (2013) and 343 

Krishnaiah et al. (2017) after the HNT treatment with 3-aminopropyltriethoxysilane. Liu et al. 344 

(2008), Albdiry and Yousif (2013) and Bischoff et al. (2015) also showed as the HNT treatment 345 

with γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane and triethoxy(octyl)/trimethyl 346 

(octadecyl) silane, respectively, improved its hydrophobicity. One of the effects of 347 

hydrophobization is a remarkable decrease in the aggregate size, which is more evident in HNT 348 

loaded with caffeic acid (Fig. 3e and f). Table 2 contains the chemical composition of unmodified 349 

and chemically modified HNT by EDS. Silane treatment gives an increase in Si content with 350 

regard to unmodified HNT. After loading caffeic acid, the carbon content increases while both Al 351 

and Si content decrease which confirms the formation of a thin hydrophobic layer. So that, 352 

FESEM reveals the usefulness of both silane and caffeic acid treatments as the aggregate size is 353 

remarkable reduced and this has a positive effect on particle dispersion, which, in turn, will be 354 

able to improve the overall performance of the PHB/PCL blend. 355 

 356 
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 357 

Fig. 3. FESEM images of a,b) unmodified HNT c,d) HNT modified with GLYMO silane 358 

(HNTSIL) and e,f) HNT modified/loaded with caffeic acid (HNTCA).  359 
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 360 

Fig. 4. a) Chemical structure of GLYMO, caffeic acid and HNT and schematic representation of 361 

the potential reaction of HNT with b) GLYMO and c) caffeic acid. 362 

 363 
 364 

Samples 

Element content (wt%) 

C O Al Si 

HNT 2.5±0.8 50.9±4.2 23.7±2.1 22.9±1.8 

HNTSIL 2.1±0.2 50.9±0.9 23.1±0.8 23.9±0.9  

HNTCA 6.4±1.4 50.6±1.3 21.6±1.0 21.3±1.2 

Table 2. Chemical composition of unmodified HNT, HNT modified with GLYMO silane 365 

(HNTSIL) and HNT modified/loaded with caffeic acid (HNTCA) obtained by EDS. 366 

 367 

The increase in hydrophobicity was also studied by dynamic contact angle measurements, 368 

which is extremely sensitive to chemical changes in the surface (Fig. 5). The initial contact angle 369 

value (0) for unmodified HNT is 120º but it quickly drops down to values around 0º (maximum 370 

hydrophilicity) after 15 s. This is a clear evidence of the hydrophilic nature of unmodified HNT. 371 

After both silane and caffeic acid treatments, hydrophobicity is remarkable improved. In both 372 
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cases, the water drop remains with the same contact angle with very slight changes with time. 373 

Specifically, silanized HNT show an initial contact angle (0) of 120º and drops down to a 374 

constant value of 100º that does not change with time. With regard to caffeic acid loaded HNT 375 

the hydrophobic behavior is still more accentuated. In fact, the initial contact angle at 0 s (0) is 376 

140º and decreases to a constant value of 120º, almost invariable with time.  377 

 378 

 379 

Fig. 5. Dynamic contact angle of water on a homogeneous layer of unmodified HNT, HNT with 380 

GLYMO silane (HNTSIL) and caffeic acid modified/loaded (HNTCA). 381 

 382 

3.2. Characterization of PHB/PCL nanocomposites with HNT 383 

3.2.1. Mechanical properties 384 

 Unloaded blend, shows a tensile strength of 22.2 MPa and an elastic modulus of 1324 385 

MPa (Fig. 6). Regarding ductile properties, the use of reactive extrusion with 1 phr dicumyl 386 

peroxide (DCP) allows a remarkable improvement on elongation at break up to values of 21.8% 387 

which are similar to other previous results (Garcia-Garcia et al., 2017b). After the addition of 3 388 
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wt% HNT the blend becomes more brittle and a decrease in tensile strength down to 17.5 MPa 389 

and a remarkable decrease in elongation at break down to 11.2%. The elastic modulus, in contrast, 390 

remains almost constant with values of about 1315 MPa. This increase in brittleness is due to the 391 

presence of HNT aggregates in the matrix and the poor dispersion, which leads to a lack of 392 

continuity. HNT aggregates contribute to stress concentration with the subsequent embrittlement 393 

effect. Moreover, the highly hydrophilic nature of HNT is not compatible with the highly 394 

hydrophobic PHB/PCL blend, which also contributes to poor particle dispersion and stress 395 

concentration phenomena. Both silane and caffeic acid treatments increase hydrophobicity with 396 

a positive effect on particle dispersion as the aggregate size decreases in a remarkable way. This 397 

also allows an increase in compatibility between PHB and PCL which, in turn, will give improved 398 

mechanical performance regarding unmodified HNT (Garcia‐Garcia et al., 2016). As it can be 399 

elucidated from the observation of Fig. 6a, PHB/PCL blend reinforced with 3 wt% of silanized 400 

and caffeic acid-loaded HNT show slightly increased tensile strength values of 19.8 MPa and 19.9 401 

MPa respectively. In addition to an increase in mechanical resistant properties, the elongation at 402 

break is remarkably improved up to values of 15.8% and 19.5% for blends treated with silane and 403 

caffeic acid respectively. It is worthy to note the percentage increase in elongation at break that 404 

both silane and caffeic acid give to the base PHB/PCL blend which are 41 and 74% respectively. 405 

In a parallel way, the rigidity is reduced. In particular, the Young’s modulus of the silanized and 406 

caffeic acid-loaded blend is 1282 MPa and 1224 MPa respectively. In general, it is possible to 407 

say that caffeic acid gives better properties to the base PHB/PCL blend with elongation at break 408 

values near the unreinforced blend values. This is mainly due to the hydrophobicity that caffeic 409 

acid provides to HNT which lead to smaller size aggregates and a better dispersion, all these 410 

having a positive effect on load transfer due to increased compatibility. 411 

 With regard to flexural properties, similar tendency can be observed (Fig. 6b). Addition 412 

of 3 wt% unmodified HNT leads to a decrease in the flexural strength of the PHB/PCL blend 413 

which changes from 39.3 MPa (unreinforced PHB/PCL blend) down to 32.4 MPa (PHB/PCL 414 

blend with 3 wt% unmodified HNT). The modulus is increased from 1151 MPa up to 1323 MPa 415 

(reinforced blend with unmodified HNT). Silanized HNT give better properties to the base 416 
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PHB/PCL blend with an increase in both the flexural strength and modulus up to 34.8 MPa and 417 

1338 MPa respectively. Flexural properties of PHB/PCL blends containing 3 wt% caffeic acid-418 

loaded HNT show similar flexural to composites with unmodified HNT but the flexural modulus 419 

is slightly lower, around 1196 MPa which indicates less rigidity. 420 

 421 

 422 

 423 

Fig. 6. a) Tensile properties and b) flexural properties of unreinforced PHB/PCL blend and 424 

PHB/PCL blend reinforced with 3 wt% of unmodified HNT, silanized HNT (HNTSIL) and 425 

caffeic acid-loaded HNT (HNTCA). 426 

 427 

3.2.2. Thermal properties 428 

 The main thermal parameters of the base PHB/PCL blend and their composites with HNT 429 

were obtained by DSC and TGA (Table 3). As PHB and PCL are immiscible, two melt points are 430 
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identified. The partially compatibilized PHB/PCL blend with reactive extrusion with DCP, shows 431 

two clear melt peak: one located at 54.4ºC which is attributed to the PCL rich phase and another 432 

one at 170.9ºC which is assigned to the PHB-rich phase. The effect of PCL is a slight decrease in 433 

both melt peak temperatures as reported in previous work, due to a slight increase in compatibility 434 

(Garcia-Garcia et al., 2017b). Addition of both unmodified and chemically-modified HNT does 435 

not affect in a remarkable way to the melt peak of the PCL-rich phase; nevertheless, the melt peak 436 

temperature corresponding to the PHB-rich phase decreases in a noticeable way. Regarding 437 

unmodified HNT, they provide a decrease in the characteristic melt peak of the PHB-rich phase 438 

of about 3ºC. This decrease is more evident for composites containing both silanized and caffeic 439 

acid-loaded HNT with characteristic peak values of 166.2ºC and 164.5ºC respectively. This 440 

decrease could be related with a better particle dispersion after the above mentioned treatments. 441 

Well dispersed HNT positively contribute to increase compatibility at the PHB/PCL interface 442 

which leads to a decrease in the peak temperature of neat PHB, and consequently, the PHB/PCL 443 

blend can be processed at lower temperatures. This feature is especially important for PHB-based 444 

blends as PHB shows poor thermal stability over its melt point. Caffeic acid-loaded HNT lead to 445 

a decrease in the melt peak of about 6.5ºC which expands the processing window of the blends, 446 

avoiding thermal degradation of PHB. The degree of crystallinity is also influenced by the 447 

presence of HNT (Table 3). The neat crystallinity of PCL is not highly affected after the addition 448 

of unmodified HNT and is maintained at levels of 26–28% for all blends with unmodified and 449 

chemically-modified HNT. Nevertheless, the effects of HNT on the overall crystallinity of the 450 

PHB-rich phase are more pronounced. As it can be outlined from Table 3, the PHB/PCL blend 451 

containing 3 wt% unmodified HNT slightly increase up to values around 50.7%. This could be 452 

due to the nucleant effect of HNT, despite this effect is restricted (Carli et al., 2011). Regarding 453 

PHB/PCL blends with chemically-modified HNT, it is worthy to note a remarkable decrease in 454 

the overall crystallinity down to values of 41.0% and 42.8% for silanized and caffeic acid-loaded 455 

HNT, respectively, due to a better particle dispersion over the matrix. 456 

 The thermal stability of PHB/PCL blends at high temperatures was studied by TGA 457 

(Table 3). These properties are the onset degradation temperature (T0), the maximum degradation 458 
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rate temperature for PCL (Tmax PCL) and the maximum degradation rate temperature for the PHB-459 

rich phase (Tmax PHB) and were obtained from the corresponding TGA and DTG curves. All the 460 

developed materials show two main degradation steps related to PHB and PCL degradation 461 

respectively, which is also representative for poor miscibility. The unreinforced PHB/PCL blend 462 

shows a T0 of 271.3ºC, a Tmax PHB of 288.4ºC and a Tmax PCL of 402.0ºC thus showing the 463 

exceptional thermal stability of PCL compared to PHB. As it can be observed, reactive extrusion 464 

with DCP improves the thermal stability of the PHB/PCL blend in a remarkable way due to an 465 

increase in miscibility (Garcia-Garcia et al., 2017b). Incorporation of HNT to the PHB/PCL blend 466 

does not affect in a remarkable extent to the thermal stability. Nevertheless, a slight increase (4ºC) 467 

in the onset degradation peak (T0) can be detected after the addition of 3 wt% unmodified HNT. 468 

This thermal stabilization effect is more pronounced by using chemically-modified HNT reaching 469 

T0 values of 277.8ºC and 276.4ºC for silanized and caffeic acid-loaded HNT, respectively. This 470 

slight increase can be due, as suggested by Du et al. (2006), to the fact that some volatile 471 

compounds generated in the initial degradation stages can be trapped inside the HNT lumen thus 472 

leading to a delay in the mass transfer with the subsequent increase in the thermal stability. 473 

Moreover, the better dispersion achieved with chemically-modified HNT results in higher 474 

randomness of lumen ends, thus leading to an increased effectiveness to trap some volatile 475 

degradation products. For this reason, PHB/PCL blend with chemically-modified HNT show 476 

improved thermal stability, measured through the T0 value. It is also worthy top note that caffeic 477 

acid-loaded HNT offer a slightly lower T0 compared to the silanized HNT. This could be due to 478 

the fact that the lumen in caffeic acid-loaded HNT is occupied by some caffeic acid molecules. 479 

With regard to the maximum degradation rate temperature of the PHB rich phase (Tmax PHB), 480 

changes are negligible after addition of HNT, whatever their treatment. Nevertheless, a slight 481 

decrease in the thermal stability of the PCL-rich phase (Tmax PCL) from 402ºC down to 395.3ºC 482 

and 395.8ºC for PHB/PCL blend with silanized and caffeic acid-loaded HNT, respectively, can 483 

be seen. This behaviour was reported by Çakman and Dilsiz (2016) and Terzopoulou et al. (2018). 484 
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 485 

Samples 

DSC Parameters TGA Parameters 

Tm PCL 

(ºC) 

∆Hm PCL 

(J g-1) 

Xc PCL 

(%) 

Tm PHB 

(ºC) 

∆Hm PHB 

(J g-1) 

Xc PHB 

(%) 

T0 

(ºC)[a] 

Tmax PHB 

(ºC) 

Tmax PCL 

(ºC) 

PHB/PCL/DCP 54.4 -44.7 28.5 170.9 -70.8 48.5 271.2 288.4 402.0 

3-HNT 53.7 -43.6 27.8 168.1 -74.0 50.7 275.0 288.3 401.6 

3-HNTSIL 53.4 -40.6 25.9 166.2 -59.9 41.0 277.8 288.1 395.3 

3-HNTAC 53.6 -41.4 26.4 164.5 -62.5 42.8 276.4 288.4 395.8 

[a] T0, calculated at 5% mass loss. 486 

Table 3. Thermal parameters of unreinforced PHB/PCL blend and PHB/PCL blend reinforced with 3 wt% of unmodified HNT, silanized HNT (HNTSIL) and 487 

caffeic acid-loaded HNT (HNTCA), obtained by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). 488 

 489 

 490 
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3.2.3. Dynamic mechanical thermal analysis (DMTA)  491 

 As it can be deduced, the storage modulus (G’) decreases with increasing temperature 492 

due to an increase in chain mobility with temperature (Fig. 7). In addition, two relaxation 493 

processes can be clearly identified, which is also representative for low miscibility between PHB 494 

and PCL. G’ increases after addition of HNT to the PHB/PCL base blend (Fig. 7a). This difference 495 

is much pronounced in the rubbery state which is located between the glass transition temperature 496 

of both polymers (−52.6ºC and 9.8ºC) (Garcia-Garcia et al., 2016). This increase in G’ is due to 497 

HNT since these nanoparticles provide a high level of mechanical restriction thus, reducing chain 498 

mobility and overall deformation ability, with the subsequent embrittlement. Unmodified and 499 

silanized HNT give the highest G’ values which is representative for poor interactions between 500 

HNT and the surrounding matrix. This lack of compatibility gives poor material cohesion and 501 

leads to fracture with low deformation. With regard to caffeic acid-loaded HNT, they contribute 502 

to lower the G’ values which is a clear evidence of somewhat interactions between HNT and the 503 

PHB/PCL blend. 504 

 The glass transition temperature (Tg) was obtained and analysed through the peak values 505 

of the damping factor (tan ) (Fig. 7b). Two clear peaks are observed for all samples which give 506 

evidence of immiscibility. After that addition of HNT the Tg of the PHB-rich phase is not highly 507 

affected and is maintained at values of 9–10ºC for all samples independently of the surface 508 

treatment on HNT. Nevertheless, the Tg of the PCL-rich phase is more affected by the presence 509 

of HNT, especially chemically-modified HNT. In fact, the initial Tg of the PCL-rich phase in 510 

unfilled PHB/PCL blend is −52.6 ºC and it still decreased down to values of −63.0ºC and −62.2ºC 511 

in blends with silanized and caffeic acid-loaded HNT, respectively. This is not the expected 512 

behaviour since HNT contribute to restricted chain mobility with the subsequent increase in Tg 513 

(Liu et al., 2013). This unexpected behaviour could be related to the plasticization effect of the 514 

surfactants in HNT (Zhao et al., 2013) together with an increase in the amorphous volume fraction 515 

due to the addition of the HNT (Pasbakhsh et al., 2010).  516 

 517 
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 518 

Fig. 7. Dynamic mechanical thermal analysis (DMTA) curves a) storage modulus, G’ and b) 519 

damping factor (tan ) of unreinforced PHB/PCL blend and PHB/PCL blend reinforced with 3 520 

wt% of unmodified HNT, silanized HNT (HNTSIL) and caffeic acid-loaded HNT (HNTCA). 521 

 522 
3.2.4. Surface Morphology study 523 

 FESEM images of the fractured surfaces from impact tests of PHB/PCL blend without 524 

and with HNT with different surface treatments show how all samples exhibit a homogeneous 525 

fracture surface without the typical phase separation (drop-like) structure in immiscible polymer 526 

blends (Fig. 8). It is important to remark that the base PHB/PCL formulation was obtained through 527 

reactive extrusion with DCP (Garcia-Garcia et al., 2017b). FESEM images also reveal presence 528 

of some HNT in the fracture surface. The sample with 3 wt% unmodified HNT shows lack of 529 

continuity due to presence of large size aggregates (Fig. 8c and d). This absence of continuity is 530 

produced by the lack of interactions between the highly hydrophilic HNT and the highly 531 

hydrophobic surround matrix. This is reflected in FESEM images by the presence of a small gap 532 

between the HNT aggregates and the surrounding matrix with a negative effect on overall 533 

mechanical properties as described previously. In fact, this lack of interaction is responsible for a 534 

stress concentration phenomenon which leads to reduced elongation due to poor material 535 

cohesion. This gap is not detectable for composites containing both silanized and caffeic acid-536 

loaded HNT due to the increase in hydrophobicity these two treatments provide to HNT which, 537 

in turn, positively contribute to particle dispersion and, subsequently, to improved mechanical 538 

properties (Fig. 8e-h). Surface treatments on HNT do not only provide better dispersion but also 539 
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small aggregate size which provide more cohesion to the material. The better dispersion of HNT 540 

can be observed through the elemental mapping of carbon, oxygen and silicon (Fig. 9). 541 

 542 

 543 

Fig. 8. FESEM images of impact-fractured surfaces of PHB/PCL blend partially compatibilized 544 

by reactive extrusion with dicumyl peroxide (DCP) and 3 wt% HNT: a,b) PHB/PCL/DCP, c,d) 545 

unmodified HNT, e,f) silanized (GLYMO) HNT (HNTSIL) and g,h) caffeic acid-loaded HNT 546 

(HNTCA). 547 
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 548 
 549 

Fig. 9. Elemental mapping of carbon, oxygen and silicon of impact-fractured surfaces of 550 

PHB/PCL blend partially compatibilized by reactive extrusion with dicumyl peroxide (DCP) 551 

and 3 wt% HNT: a) unmodified HNT, b) silanized (GLYMO) HNT (HNTSIL) and c) caffeic 552 

acid-loaded HNT (HNTCA). 553 

 554 

4. CONCLUSIONS 555 

 Unmodified and chemically-modified (silanized and caffeic acid-loaded) halloysite 556 

nanotubes (HNT) were successfully incorporated into PHB/PCL blends partially compatibilized 557 

by reactive extrusion with 1 phr dicumyl peroxide (DCP) and subsequent injection molding. Both 558 

silanization with 3-glycidyloxypropyl trimethoxysilane and caffeic acid treatment, led to 559 

increased hydrophobicity in HNT, which was particularly improved by the caffeic acid loading 560 

treatment. This increase in hydrophobicity had a positive effect on avoiding aggregate formation 561 

thus leading to a better particle dispersion as confirmed by FESEM-EDS. Mechanical 562 

characterization showed a remarkable increase in both mechanical resistant properties (tensile 563 

strength) and ductile properties (elongation at break) by using chemically-modified HNT 564 

compared to unmodified HNT. These results suggests the silanized and caffeic acid-loaded HNT 565 
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contribute to improve interactions with the polymer matrix since the high hydrophilic nature of 566 

unmodified HNT does not allow good particle dispersion. In addition, it is worthy to note that 567 

PHB-based materials are high sensitive to thermal degradation as PHB degrades quickly over its 568 

melt point. Both chemically-modified HNT lead to a decrease in the melt peak temperature of the 569 

PHB-rich phase (of about 5−6ºC) together with a delay of 5−6ºC in the onset degradation 570 

temperature. Therefore, the processing window is extended by 10ºC to 12ºC which is an important 571 

issue for PHB-based materials. As an overall conclusion, it is worthy to note the interesting 572 

properties that caffeic acid-loaded HNT can give to PHB/PCL blend in terms of mechanical 573 

properties and thermal behaviour. 574 

 575 
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