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Abstract

Users are not often aware of privacy risks and disclose information in online

social networks. They do not consider the audience that will have access to it

or the risk that the information continues to spread and may reach an unex-

pected audience. Moreover, not all users have the same perception of risk. To

overcome these issues, we propose a Privacy Risk Score (PRS) that: (1) esti-

mates the reachability of an user’s sharing action based on the distance between

the user and the potential audience; (2) is described in levels to adjust to the

risk perception of individuals; (3) does not require the explicit interaction of

individuals since it considers information flows; and (4) can be approximated

by centrality metrics for scenarios where there is no access to data about infor-

mation flows. In this case, if there is access to the network structure, the results

show that global metrics such as closeness have a high degree of correlation

with PRS. Otherwise, local and social centrality metrics based on ego-networks

provide a suitable approximation to PRS. The results in real social networks

confirm that local and social centrality metrics based on degree perform well in

estimating the privacy risk of users.

Keywords: Privacy, Social Networks, Information Sharing

1. Introduction

The popularity of mobile devices and applications that are related to online

social networking has changed the way we communicate. People now share

their opinions, ideas, photos, etc. in online social networks (OSN) [1, 2]. When
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sharing information, users are not often aware of who will or will not have5

access to what they have just published. This uncertainty creates a risk in

the privacy of the user, which in some cases may have negative consequences

if the scope of the publication reaches people who were not in the original

audience. Applications related to OSN offer the possibility to configure options

that are related to the privacy profile of users. However, this is often a tedious10

task and is usually focused on protecting the information related to the user

profile and not to the privacy of the user’s publications [3, 4, 5]. Some works

try to address these issues with the automation of privacy settings [6, 7, 8, 9].

However, these proposals usually require an initial intervention by the user and

do not solve the problem of increasing privacy awareness. Other approaches deal15

with the improvement of the awareness of users regarding the misalignment of

users’ expected audience with the actual audience [10, 11, 12]. However, these

approaches do not deal with the problem that a publication might produce if

the expected audience performs sharing actions among their contacts. Assuming

this scenario, there is still a potential privacy risk that should be considered.20

The topological location of a user in a network is one of the main factors

that influences the scope that a certain sharing action can reach [13]. The

scope of a sharing action can be seen as the effect of a diffusion process. In the

area of Complex Networks, spreading processes such as epidemics or informa-

tion diffusion have been analyzed [14, 15, 16, 17]. Several works have studied25

spreading dynamics and influential or relevant individuals in these processes

based on structural properties [18, 19, 20, 21, 22]. From the point of view of de-

termining the privacy risk associated to a user’s sharing action, it is interesting

to determine if there are influential users in the path that information follows

who increase the privacy risk score if they perform a re-sharing action. Influen-30

tial users can initiate and conduct the dissemination of a sharing action more

efficiently than “normal” users. Therefore, influential users in networks are nor-

mally more responsible for large cascades of information diffusion and contribute

to increasing the privacy risk. Traditionally, centrality metrics such as degree

[23], pagerank [20], k-core [24, 18], closeness [25], or betweenness [26, 27, 28, 29]35
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have been used to detect these relevant users in networks [30, 21, 31].

Not all users have the same perception of risk [32, 33, 34]. On one hand,

there are some users who are more comfortable with the possibility that their

information can be seen by others and are even interested in achieving that

effect. On the other hand, there are users that have greater privacy concerns40

and prefer not to disclose information that could be seen by users beyond their

direct friends [35]. Depending on the users’ concerns, different levels of risk

perception should be considered.

In this article, we propose a Privacy Risk Score (PRS) for measuring the

privacy in social networks, which provides the following major contributions:45

• The privacy is oriented to the reachability of a user-sharing action instead

of being focused on the misalignment of the users’ expected audience with

the actual audience.

• The measure provided is not only global, but it is also adjustable to the

risk perception of each individual.50

• The PRS does not require the user to provide information explicitly since

it takes into account the paths that the publications follow in the social

network.

• We provide an estimation of this measure for those scenarios in which in-

formation related to flow paths is not available. This estimation is based55

on an analysis of the relationship between global, local, and social central-

ity metrics and the proposed measure.

The rest of the paper is structured as follows. Section 2 presents previous

approaches that are related to privacy score metrics. Section 3 exposes the

privacy risks in social networks with an example of scenario and proposes a60

solution. Section 4 describes the concept of friendship level and presents the

PRS. Section 5 describes a set of global, local, and social centrality metrics to

estimate the PRS. Section 6, presents a set of experiments that were performed
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to evaluate the suitability of centrality metrics to estimate the PRS in synthetic

and real network topologies. Finally, Section 7 presents conclusions.65

2. Related work

In the literature, there are works that try to tackle the problem of improving

the awareness of the effect of communicative actions from different perspectives.

Table 1 provides an overview of relevant contributions in this area, which are

classified according to the dimensions of focus.70

There are approaches that provide wizards to facilitate the management

of privacy profile settings. Liu et al. [3] propose a mathematical model to

estimate both the sensitivity and the visibility of information items. The model

computes the privacy score as a combination of the partial privacy scores of

each one of the user’s profile items. The privacy score considers the privacy75

settings of users with respect to their profile items as well as their positions.

A similar approach is presented by Nepali et al. [4]. They propose a social

network model, SONET, for privacy monitoring and ranking. The authors

consider a privacy risk indicator that is used to describe an entity’s privacy

exposure factor based on the known attributes (the sensitivity and visibility80

of the attribute). Shehab et al. [5] present a privacy policy recommendation

approach that is based on the idea that nearby users should have similar labels

(permissions). The approach requires users to label a small set of their friends.

These labels are propagated over the social network to provide users with privacy

policy recommendations. Fang et al. [6] present a privacy wizard that considers85

previous labelling processes of friends as the input for their classifier. The

wizard then infers labels for the other remaining friends. Vidyalakshmi et al.

[7] present a framework for calculating a privacy score metric considering users’

personal attitude towards privacy and communication information. Bilogrevic et

al. [8] propose an information-sharing system that decides (semi-)automatically90

whether to share information with others. They consider a vector that encodes

whether or not the information is shared based on user decisions, and then a
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logistic classifier makes the remaining decisions. These approaches require user

intervention and assume that users are privacy aware of the consequences of

their decisions. They are focused on a local view of the social network and do95

not evaluate other collateral effects such as information diffusion processes.

Some approaches focus on providing information about which people have or

may have received information that was not addressed to them initially. These

works help them to increase their privacy risk awareness and better define their

social groups more carefully. Calikli et al. [10] propose an adaptive architecture100

that provides sharing recommendations to users as well as assisting them to re-

configure the users’ groups. Their proposal is based on social contexts and

conflicts. This approach depends on the provision of accurate user’s social

contexts and conflict rules. Kafali et al. [11] provide an approach that is based

on model checking that checks whether certain properties hold. The system uses105

as input privacy agreements of the users, user relations, the content they upload

as well as some inference rules. The system specifies whether the property of

interest can or cannot be violated in a given social network. Mester et. al [12]

developed a platform where agents interact to reach a consensus on a post to

be published. The agent is aware of the user’s privacy concerns, expectations,110

and the user’s friends. When a user is about to post new content, the agent

reasons on behalf of the user to decide which other users would be affected by

the post and contacts those users’ agents. However, the privacy concerns of a

user should be predefined. Yang et al. [36] present a privacy metric of user i

sharing information with a neighbor j as a trade-off between user i’s concerns115

and incentives of sharing information with j. They present privacy risk as an

individual metric, without considering other potential users that might re-share

information.

From our point of view, privacy risk does not only concern the problem that

information might reach people who were initially not expected to receive it.120

Assuming that people who received the information are part of the target au-

dience, it must also be taken into account that there is still a problem if one

user of this intended audience re-shares the information. Then, the original user
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Type of information
User

intervention

Privacy risk

estimation
profile

items

actions

audience reachability

Liu et al. [3] X X

Nepali et al. [4] X X

Shehab et al. [5] X

Fang et al. [6] X X

Vidyalakshmi et al. [7] X X

Bilogrevic et al. [8] X X

Calikli et al. [10] X

Kafali et al. [11] X X

Mester et al. [12] X

Yang et al. [36] X

Our work X X

Table 1: Overview of approaches related to privacy in social networks. We considered three

main features: (i) the type of information considered to evaluate the user’s privacy risk (i.e.,

the user’s profile items or actions). In the case that the approach considers actions, the goal

can be to determine if the information shared was received by the intended audience or to

estimate the reachability of the information; (ii) if the approach requires user intervention as

input for the privacy risk estimation; and (iii) if the approach provides a privacy risk metric

to the user.

loses control over the scope of the information. For this reason, it is important

to consider the privacy problem from a network perspective instead of individ-125

uals alone. The audience that is allowed see the information that a user pub-

lishes is influenced by the structure of the social network. Network models that

mimic the patterns of connection in real networks (i.e., Erdös-Rényi [37, 38, 39],

Barabási-Albert [40, 41], and Watts-Strogatz [42, 43]) facilitate the analysis of

the implications of those patterns [44]. Small-world, Scale-free, and Random130

models are very common structures in social networks. The Small-world model

is characterized by the transitivity in strong social ties and the ability of weak

ties to reach across clusters. The Scale-free model exhibits a power-law degree

distribution where there is a small set of vertices with a degree that greatly

exceeds the average. The random model assigns equal probability to all graphs135

with exactly the same number of edges.
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In this paper, we deal with this problem with the proposal of a Privacy Risk

Score (PRS) that is focused on the risk of potential re-sharing actions from the

expected and unexpected audience that might receive the message. The main

contributions of this work are the following: (i) the proposed PRS metric con-140

siders the paths that information follows as a result of sharing actions without

the user’s intervention; (ii) the calculation of the PRS metric for different users’

risk perceptions; (iii) we provide and evaluate a set of centrality metrics to es-

timate PRS values in scenarios where there is a lack of a global view of the

network and/or data about the users’ sharing activity.145

3. Privacy risk scenario

Privacy risk not only concerns the problem that information might reach

people who were initially not expected to receive it, but it also involves the

problem of losing control over the scope of the information. In Figure 1, we

describe this privacy risk problem in online social networks.150

The social network is structured into nine communities (see Figure 1a).

Nodes represent users and the node color corresponds to a community. Gray

nodes represent isolated users (i.e., they do not belong to any community). In

Figure 1b, the user represented by the node encircled in red shares a message on

his/her wall. The user determines the audience depending on his/her selected155

privacy policy (e.g., friends). Therefore, only their friends can see the message

(see Figure 1c, nodes encircled in green). If a node encircled in green performs

a sharing action, the message could reach other communities causing a privacy

problem.

The Privacy Risk Score metric proposed in this paper deals with this problem160

by providing information about the potential privacy risk of an action. The PRS

aims to increase the users’ awareness about the reachability of their publications

in the social network even though they have restricted the visibility of their

publications. Figure 2 shows the workflow phases for calculating the PRS. First,

the activity in the social network is monitorized (specifically, the path followed165
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(a) A social network structured into com-

munities.

(b) Sharing action initiated by the node

encircled in red.

(c) Potential audience in level 2.

Figure 1: Example of a potential privacy risk in online social networks.

by user messages). This information is used to establish the reachability of the

actions performed by each user and to calculate the PRS value. Then, when a

user is going to post a message, the PRS values analyzed until that moment are

shown to the user. The PRS of a user would provide him/her with an estimation

of the visibility of an action at different levels of friendship or in general. By170

taking into account their privacy risk perception and their PRS, users could

make better decisions about sharing or not sharing a message on their walls.
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Monitor	and	collect
message paths

Update information
about the visibility of	
actions performed by
each user

Calculate the Privacy
Risk Score	(PRS)	of	
each user

Activity in	the
social	network

Figure 2: Flow chart of the phases for calculating the PRS in a social network.

4. Privacy Risk Score (PRS)

To define how our proposed PRS metric works, first we are going to explain

some important concepts. We assume that there is a social network G that

consists of N nodes, where every node ai ∈ {a1, ..., an} represents an agent (i.e.,

a user of the social network). Agents are connected through links that represent

friendship relationships and correspond to the edges E ⊆ N × N of G. We

assume that friendship links are bidirectional, and, therefore, the social network

is undirected. We define the adjacency matrix A to represent these links. Given

two agents ai and aj , if there is a link between these agents, we represent this

as Aai,aj
= 1 and Aai,aj

= 0 if there is not a link. Considering an agent ai, we

define a level L as the subset of agents whose shortest distance to ai is l:

Lai
(l) ⊆ N, ∀aj ∈ Lai

(l) : d(ai, aj) = l ∧ @d′(ai, aj) < d(ai, aj)

We define the Privacy Risk Score (PRS) for an agent ai that performs a

message diffusion action (i.e., publishes a message m on its wall, comments on175

an existing post, shares a post, etc.) as an indicator of the potential risk of this
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message to be diffused over the social network (i.e., potential visibility). The

higher the PRS value, the higher the threat to agent ai’s privacy.

4.1. Calculation of the PRS metric

In a social network G, there is a set of paths that messages follow more180

frequently than others [45, 46]. If an agent is in these paths and performs a

diffusion action, it has a higher privacy risk than another agent that is out

of these paths. Therefore, an agent’s position in the network is relevant to the

privacy risk. Furthermore, not all users have the same view of risk when sharing

information. As an example, some users may consider that sharing information185

with friends of friends might be risky, while others may consider that the true

risk is at the next level of friendship. Therefore, the estimation of the PRS for

an agent ai should be provided in friendship levels in order to deal with different

levels of risk perception.

In addition, according to the information diffusion model SIR (Suscepti-190

ble, Infected, and Removed) [19], the time instant in which a diffusion action

of a message is performed is also important for measuring the privacy risk.

This model states that the privacy risk related to the diffusion of a message is

higher during the initial stages than when the message has already been diffused

through the social network. In other words, the diffusion risk of a message is195

higher when an agent diffuses a new message since no other agents have viewed it

yet. Therefore, the calculation of the PRS also includes the stage of the message

in which an agent ai interacts as a diffusion action. To represent this, we define

T = {1, 2, . . . , n} as the stages of the message, which are the product of the

diffusion process of the message. This variable is represented for each message200

and indicates the number of steps from its creation. The value of the variable T

(and also of the variable L) is limited by the network diameter. Therefore, if its

value is not too high, the network diameter is a good approximation of T and

L. For the sake of simplicity, we assume that an agent can carry out a single

message diffusion action (i.e., re-share a message, comment on a message, etc.),205

allowing other agents to see this message at that time instant.
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Considering the above two factors (friendship level and risk of initial stages),

we define a T ×N reachability matrix γi associated to each agent ai to represent

the number of messages that an agent ai has diffused in a certain stage t and

have been seen by other agents. The rows of this matrix represent the diffusion210

actions that ai carries out over messages in the same stage, while columns

represent the agents of the social network. We use γit,aj
to refer to the entry in

the tth row and ajth column of γi. This value represents the number of messages

diffused by ai in stage t that were seen by aj . Note that the aith column of

each row t (γit,ai
) represents the messages diffused by ai in stage t that were215

seen by ai (i.e., all of the messages published by ai in t).

Given a stage t and a set of agents of level l, we define p(ai, t, l) as the

average number of agents of this level that saw a message published by ai in

stage t:

p(ai, t, l) =

∑
aj∈Lai

(l)

γit,aj

γit,ai

(1)

Taking into account the above value, we estimate the PRS for an agent ai

at level l as the percentage of agents of that level that potentially see a message

published by ai at any stage. This can be calculated as:

PRS(ai, l) =
1

T

T∑
t=1

(
p(ai, t, l)

|Lai(l)|

)
(2)

In a general view, by taking into account the whole population of the social

network G, we can estimate a general value of PRS for an agent ai as the per-

centage of agents of the social network that potentially see a message published

by ai at any stage. This can be calculated by combining Equations 1 and 2:

PRS(ai) =
1

T

T∑
t=1


∑
aj∈N

γit,aj

γit,ai
· |N |

 (3)

Figure 3 shows a scenario where the privacy risk score is calculated for agent

a1 in a social network. This scenario represents an example of a social network

with interactions between agents. We assume that all of the agents in G have the
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privacy policy that only their direct friends can see their walls. As indicated in220

the definition above, the maximum value for parameters T and L cannot exceed

the network diameter. Therefore, for this example of PRS calculation, we use

the value 3 for parameters T and L.

– PRS metric of agent a1:

p(a1, t = 1, l = 1) = 4/2 = 2
p(a1, t = 1, l = 2) = 5/2
p(a1, t = 1, l = 3) = 1/2

PRS(a1, l = 1) = 1/3 ⇤ 2/2 = 1/3
PRS(a1, l = 2) = 1/3 ⇤ (5/2)/5 = 1/6
PRS(a1, l = 3) = 1/3 ⇤ (1/2)/1 = 1/6

PRS(a1) = 1/3 ⇤ 10/(2 ⇤ 9) = 5/27

a3

a5

a4

a6a1

a2

a9

a7

a8

level 1 level 2 level 3

…

(1) (4) (2)

(2)

(2)

(2)

(3)

(1) (4)

(2)

(3)

(2)

t=3
t=2

11 1t=1
a4a3 a6a1 a9a5 a8a7a2�1

t=3
11 11 1t=2 11

t=1
a4a3 a6a1 a9a5 a8a7a2�3

t=3
t=2

11 11 1 111t=1
a4a3 a6a1 a9a5 a8a7a2�1

1 11t=3
t=2
t=1

a4a3 a6a1 a9a5 a8a7a2�8

t=3
11 11 1t=2 111

t=1
a4a3 a6a1 a9a5 a8a7a2�3

t=3
t=2

11 11 11 111t=1
a4a3 a6a1 a9a5 a8a7a2�1

t=3
t=2

12 12 11 112t=1
a4a3 a6a1 a9a5 a8a7a2�1

(2)

(1) (3) (4)

Figure 3: Example of social network activity and the PRS calculation process. The activities

carried out on the social network are as follows (in this example, all agents share information

with their friends): (1) agent a1 publishes/shares a message m1 on its wall; (2) agent a3 shares

the message m1; (3) agent a8 shares the message m1; and (4) agent a1 publishes/shares a

new message m2.
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The message diffusion actions performed in this scenario are the following.

(1) Agent a1 publishes a message m1 on its wall. Therefore, agents a2 and a3225

can see the message. Since the interaction of agent a1 with the message m1 is in

its initial stage, stage t is 1. The information about the agents that can see m1

is stored in γ1. (2) Agent a3 then decides to share m1 on its wall. Agents a4,

a5, a6, a7, and a8 can see message m1. As in the previous case, the information

about the agents that can see message m1 is updated in γ3. The interaction of230

agent a3 with message m1 occurs after agent a1 shares it (i.e., the interaction

is produced in the next stage t = 2). Note that the values of γ1 are updated at

t = 1 because agent a1 interacts with the message in this stage, and in γ1 we

are measuring the reachability of the messages when agent a1 interacts with it.

(3) Agent a8 then shares m1 publishing it on its wall. Agents a3 and a9 can235

see it. Therefore, γ8 is updated at t = 3, and γ1 and γ3 are updated in their

corresponding t’s (i.e., t = 1 and t = 2). (4) Agent a1 then publishes a new

message m2 that agents a2 and a3 can see at stage t = 1. Then, γ1 is updated

at t = 1.

With the information stored in the γ matrix, the proposed PRS is calculated240

for each agent. In the scenario described in Figure 3, we show the values of

PRS for agent a1 at different levels (i.e., PRS(a1, l = 1), PRS(a1, l = 2), and

PRS(a1, l = 3)) and the general PRS value (i.e., PRS(a1)).

4.2. PRS metric in OSN

The integration of the PRS metric in OSN must be done as a service for users.245

This privacy service will help users to manage their sensitive and non-sensitive

information and aware its scope, improving their experiences in OSN. In Figure

4, we show a block diagram of OSN where the PRS metric was included as a

service in the OSN platform layer. The diagram is composed of a User layer,

OSN Platform layer, and Privacy Risk Module. The User layer manages users250

contacts, information related to the user (e.g., profile info, posts, comments,

etc.), and setting parameters to control who has access to the information when

a sharing action is carried out. The OSN Platform layer provides the whole
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Service
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Stages

User
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Management
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Figure 4: Block diagram of the integration of PRS metric as a service in OSN.

functionality of a OSN (e.g., management of users, messaging system, etc.).

The Privacy Risk module is included as a service of the OSN Platform layer.255

This service is responsible for the PRS metric calculation.

Figure 5 shows the workflow to estimate the PRS value of an individual

agent when he performs a message sharing action in the OSN. The process

starts when an agent ai sees a publication or when he creates content for a new

publication (mj). Then, this agent evaluates the risk of sharing/publishing mj260

considering its PRS value (PRS(ai)). If the value is greater than his individual

risk threshold (θai
), ai does not perform the action. Otherwise, ai shares mj ,

which in turn, could be seen by other agents. In this case, the matrix γi of ai

is updated as well as the matrices of other agents that previously participated

in the sharing process of mj .265

5. PRS and centrality metrics

Even though the PRS estimation provides accurate measurements of the

privacy risk associated to a diffusion action, this estimation requires a detailed

record of sharing activity in a social network. However, the management of this
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ai creates new
content for a
publication

ai views/receives
a publication

Start

PRS(ai) > ✓ai

PRS(ai) is calculated

ai shares mj ai does nothing

agents collection
view/receive mj

�i update

Reachability matrixes of all the
agents that participate in the flow

of mj are updated

Stop

post mj

no yes

Figure 5: Flowchart of the PRS calculation process.

information is not always feasible in large networks with high activity, and, in270

some scenarios, this knowledge is not even accessible. As a result, in certain

circumstances, we would require metrics that approximate PRS values in a

feasible way.

Influential users may play a critical role in paths that information follows.

If an influential user sees a publication and performs a sharing action, it is275
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more likely for the publication to reach more people. It is important to have a

reliable and efficient predictor of these nodes based on topological properties.

From the area of Complex Networks, there is no consensus on the best metric for

predicting this influence. Researchers have proposed several structural metrics

for identifying influential users [47]. According to the information they used,280

these metrics can be classified into three classes: global, local, and social [48].

Global metrics are based on structural properties that require a complete

view of the network structure to be computed. Among the global metrics,

we considered the following commonly used metrics: betweenness, closeness,

and pagerank. Betweenness metrics are based on assumptions about the paths

that information follows. Shortest-path betweenness assumes that information

is transmitted along the shortest paths. It is defined as the fraction of the

shortest paths between pairs of agents in a network that pass through the agent

of interest [27],

bet-spi =
∑

aj ,ak∈N

σ(aj , ak|ai)
σ(aj , ak)

, (4)

where σ(aj , ak) is the number of shortest (aj , ak)-paths, and σ(aj , ak|ai) is the

number of those paths passing through some node ai other than aj , ak.

Random-walk betweenness was proposed by Newman [49], and, instead of

considering the shortest paths, it considers the number of times a random walk

between each pair of agents passes through the agent of interest. Thus, random-

walk betweenness can be defined as follows,

bet-rwi =
∑

aj ,ak∈N

σr(aj , ak|ai)
σr(aj , ak)

, (5)

where σr(aj , ak) is the number of random (aj , ak)-paths, and σr(aj , ak|ai) is

the number of those random paths passing through some node ai other than285

aj , ak.

While betweenness centrality measures represent the degree to which an

agent is between pairs of other agents, closeness is just the inverse of the average

distance to other agents. Closeness is defined as the mean geodesic distance from
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the agent of interest to the rest of the reachable agents in the network,290

closenessi =
|N | − 1∑j=|N |−1

j=1 d(aj , ai)
, (6)

where d(aj , ai) is the shortest-path distance between aj and ai, and |N | is the

number of nodes in the network. This metric reflects the efficiency of an agent

distributing information to any agent in the network [25].

PageRank is based on the idea that an agent has a high rank if the sum

of the ranks of its neighbors are high. The ranks are calculated based on the295

structure of the links of the agent of interest. Then, pagerank centrality can be

defined as follows,

pageranki = α

j=|N |∑
j=1

Aaj ,ai

pagerankj

kj
+ β, (7)

where α and β are constants and kj is the degree of node j. This metric implies

a relatively low computational complexity and has been used to identify pivotal

individuals in social networks who lead to quick and wide spreading of useful300

items [20].

Global metrics can be suitable to estimate the risk of a sharing action in

the network since they capture the user’s relevance in the transmission of in-

formation and do not require data about information flows. The computation

of a global metric requires the analysis of structural properties that involve the305

consideration of the whole social network. However, in real-world scenarios,

these metrics are not always computationally affordable and information about

friendship relationships is not always accessible. Moreover, some social applica-

tions do not facilitate access to users’ information to third party applications;

therefore, it is not possible to infer the social network structure beyond the first310

level.

As an alternative, local and social metrics efficiently identify influential

agents when there is no global information about network structure and in-

formation diffusion [50]. These metrics are focused on the user’s ego networks.
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Ego networks consist of a focal agent (ego) and the agents to whom the ego is

directly connected to (these are called alters) plus the links [51]. Local metrics

such as degree and ego-betweenness only use information from the agent itself

to be computed. Degree is the simplest centrality measure and considers the

number of direct neighbors (alters) that the ego is directly connected to,

degreei =
∑

Ai(ai, aj). (8)

Ego-betweenness is an ego-centric method for approximating the between-

ness centrality [52]. This metric calculates the sum of the ego’s proportion

of times that the ego lies on the shortest path between each part of the al-

ters. Ego-betweenness is the sum of the reciprocal values A2
i (aj , ak) such that315

Ai(aj , ak) = 0. Thus, ego-betweenness can be defined as follows,

bet-egoi =
∑

Ai(ai,aj)=0,j>i

1

A2
i (ai, aj)

(9)

Social metrics use strictly local information and topological information

from an agent’s first and second level neighbors. Social degree and Social ego-

betweenness metrics consider the sum of the local centrality metrics of neighbors

in the first two levels. We have considered the following four social centrality320

metrics:

bet-egosumi
=

∑
aj∈Lai

(1)

bet-egoj (10)

degreesumi
=

∑
aj∈Lai

(1)

degreej (11)

bet-ego2sumi
=

∑
aj∈Lai

(2)

bet-egoj (12)

degree2sumi
=

∑
aj∈Lai

(2)

degreej (13)
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Centrality metrics provide mechanisms to estimate the relevance of users in

information transmission processes. Influential users play a key role in informa-

tion diffusion and therefore in the increase of the privacy risk if they perform a

re-sharing action. For this reason, considering global, local, and social centrality325

metrics might be appropriate to estimate the proposed PRS when there is no

data available about information flows. Global centrality metrics can be used if

the network structure is known. If there is no access to this information, local

and social centrality metrics based on ego-networks provide metrics to estimate

the relevance of users in information transmission processes.330

6. Experiments

In this section, we evaluate the relationship between PRS values of an agent

and its centrality in the social network. The social networks considered for

the experiments can be viewed in terms of the friendship relationships and

the activities carried out by agents. We analyze the relationship between the335

structural features of the friendship layer and the privacy risk resulting from the

diffusion actions. We perform a set of experiments in different synthetic and real

networks. For the experiments in synthetic networks we use a simulation tool

to reproduce information flows in the network, and the proposed PRS metric

to measure the individual risk of users. While in real networks, how there are340

already real information flows, we only measure the PRS values of users.

6.1. Simulation environment

We based our simulation environment on the Elgg engine1 (Figure 6). Elgg

is a popular open source engine to build a wide range of social environments.

For our purpose, we required to collect message tracing information and manage345

them in matricial structures in order to calculate the PRS metric. Therefore, we

needed to extend the functionalities of Elgg in order to fulfill our requirements.

Following the Elgg policy, we extended Social Network Services by means of

1https://elgg.org/
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plug-ins. First, we developed the Privacy Risk Module following the structure

shown in Figure 4, which is a plug-in for PRS calculation according to our350

requirements. This module was focused on two different purposes: for being

used in simulations and with real users.

Second, we developed the Simulation Tool, which is a plug-in for modelling

social networks and generating activity. The Simulation Tool was designed to

use the services of the OSN (properly supported by Elgg) such as the creation355

of users and relationships, message sending, and social interactions. Users are

represented as software agents that interact among them in the OSN. Agent-

based simulation is widely used in different areas [53]. The Simulation Tool is

composed of three main components: Input Parameters, Simulator Core and

Outputs. As Input Parameters, the simulation tool allows the definition of360

the number of simulations, the network model, and the customization of agent

behaviours (i.e., message diffusion actions, probabilities, deliberation process,
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Network 
Services

Elgg Platform Layer

User
Management

Messaging 
System

Content 
Management

Elgg core

Simulation 
Tool

Interactions 
System

Privacy Risk 
Module

Others
…

Plugins

Storage 
System

Elgg API

Database

Simulation Tool

Simulation Results

Simulator Core

Input Parameters

Agents’ Behaviors
Deliberations

Diffusion actions

Action probabilities

Privacy threshold

Privacy policies

Model Network 
Generator

small-world
scale-free

…

NetworkX library

#SimulationsGeneral Parameters
User Layer

Deliberation process

Contacts
Collections

acquaintances
…

Information
Types

profile info.
posts

comments
…

Settings

Privacy policies
private
friends
public

…

Privacy threshold

Figure 6: Block diagram of the integration of the Simulation Tool developed as a service in

the OSN.
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etc.). For modelling social network structures, we used the NetworkX2, which

is a widely tested and recommended library for research purposes in complex

networks [54, 55, 56]. The Simulator Core carries out the simulation according365

to the input parameters. Finally, Simulation Results (i.e., Privacy Risk Score

values of each agent) are stored for further analysis. These both plug-ins were

integrated into the existing Elgg engine. Since this engine is open source, these

plug-ins will be public available.

6.2. Settings370

The experiments carried out using the simulation tool use synthetic networks

generated follow three classic models: Erdös-Rényi [37] (ER, random), Barabási-

Albert [40] (BA, scale-free), and Watts-Strogatz [42] (WS, small-world). The

networks are undirected, have 1000 agents with a diameter of 5, and an average

degree of about 12 (see Table 2). The number of simulations is 400 per each375

agent. In each simulation an agent is randomly selected and the simulation

starts if the agent decides to post a message. Figure 7 shows the deliberation

process of an agent during the simulation. Each agent decides whether or not

a message diffusion action is carried out (i.e., commenting on an existing post,

sharing a post, etc.) according to his probabilities of performing each action.380

If the agent decides to perform a diffusion action, then he selects the privacy

policy for this message. In case that the message was previously received by

this agent or if the agent decides not to carry out a message diffusion action,

then, the message is not diffused by this agent. Each simulation finishes when

there is not any message diffusion action in the OSN.385

Simulation parameters are shown in Table 3. The #Simulation parameter

allows to define the simulation rounds. Network topology parameter establishes

the underlying social network structure (i.e., scale-free, random, small-world).

Diffusion action parameter allows to define the permitted actions in the simula-

tion (i.e., posting a message, sharing a message, commenting a post and liking390

2https://networkx.github.io
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Random

network

Scale-free

network

Small-world

network

Nodes 1000 1000 1000

Edges 6464 5875 6000

Density 0.01292 0.01175 0.012

Maximum degree 32 117 21

Minimum degree 3 5 7

Average degree 12.93 11.75 12.00

Assortativity 0.00077 -0.07481 -0.02096

Triangles 631 1022 1963

Diameter 5 5 5

Table 2: Structural properties of synthetic networks.

Start

Message
received

Select 
action

first time?

Select audience 
(privacy policy)

message

action?

disclose
message

Stop
no

yes

no

yes

no
yes

Deliberation process for each agent in the simulation

Figure 7: Flowchart of the agent deliberation process.

#Simulations 400× 1000 (agents)

Network topology {scale-free, random, small-world}
Diffusion action {publish, share, comment, like}
Action probability uniform

Privacy threshold uniform

Privacy policy friends

Table 3: Simulation parameters.

a post). Action probability parameter establishes the probability of an agent to

perform an action. Privacy threshold parameter specifies the value from which

an agent considers that an action is risky for him. Privacy policy parameter

describes the audience of an agent action (i.e., friends).
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Regarding real networks, we used PHEME dataset3 that is based on the395

dynamics of the life cycle of social media rumours on Twitter [57]. The dataset

contains 330 conversational threads. We analyzed the PRS and centrality values

of the 330 users that initiated a thread through the publication of a message.

To evaluate the relationship between the PRS and structural centrality met-

rics in synthetic and real networks, we consider message stages from 1 to 4 and400

also relationship levels from 1 to 4. The reason for the number of relationship

levels is based on the analysis presented in [13] where it is reported that most

of the cascades in reality are small.

In the next subsections, calculations about agents’ PRS based on information

sharing activities are used to find a relation with centrality metrics. In this way,405

approximations using centrality metrics would allow us to calculate agent pri-

vacy risks in scenarios where there is no access to data about social interaction,

when there is no previous activity, or when new users join the network.

6.3. PRS and global centrality metrics

In this section, we analyze whether or not there is a correlation between410

agents’ PRS (i.e., dependent variable) and their global centrality (i.e., indepen-

dent variable) in synthetic networks. Real networks were not considered in these

experiments since the global structures of the rumor networks are not available.

We considered the global centrality metrics described in Section 4: random-

walk betweenness (bet-rw), shortest-path betweenness (bet-sp), closeness, and415

pagerank. The values of centrality properties are normalized in the range [0, 1].

We used analytical regressors to estimate the dependence relationship between

centrality metrics and PRS. We considered the R2 coefficient to determine how

close the data are to the fitted regression line. In this case, values close to 1

indicate that there is a high correlation between centrality and PRS values.420

Figure 8 displays the comparison between PRS and global centrality values.

3https://figshare.com/articles/PHEME_rumour_scheme_dataset_journalism_use_

case/2068650
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In 8, a centrality metric is analyzed in each row, and a network topology is

considered in each column. The x axis shows the values of the agents’ PRS

and the y axis shows the values of the agents’ centrality metrics. Colors rep-

resent the number of agents with certain values of PRS and centrality. The425

relationship between PRS and centrality metrics is also shown by the coefficient

of determination (R2). Due to the logarithmic behavior of the centrality metrics

(especially in the case of the scale-free network), a linear-log filter was applied

to all of the data.

First, the results reflect the variability of agents’ PRS depending on the430

type of network. The scale-free BA networks (see Figure 8 – first column) favor

higher values of PRS (close to 0.5). In contrast, in the small-world WS networks

(Figure 8 – third column), PRS does not reach 0.3. It can also be observed that

the type of network reflects the existence of different groups of agents based

on their privacy risk. As an example, in the scale-free BA networks there is a435

small group of agents with high values of PRS (i.e., values that range in the

interval [0.3, 0.5]), while the rest are distributed between 0.1 and 0.3. In the

random ER networks, there is a majority group with relatively high values (i.e.,

values between 0.25 and 0.4) and a minority with very low values of PRS. In

the small-world WS network, it can be observed that most of the agents have440

low PRS values (between 0.125 and 0.2) compared to other network topologies,

and there are two minorities: one with slightly lower PRS values and another

with slightly higher PRS values.

Second, there is a high correlation between global centrality metrics and the

PRS values (see Figure 8). The R2 value is around 0.9 in scale-free networks445

(Figure 8 – first column [bet-sp, pagerank]); 0.93 in random networks (Figure

8 – second column [closeness]); and 0.92 in small-world networks (Figure 8

– third column[closeness]). Thus, we can conclude that PRS values can be

approximated through global centrality metrics in scenarios without data about

information flows in the social network.450

Table 4 shows the relationship between PRS and global centrality metrics

for each level expressed as the R2 coefficient. Level 1 (i.e., direct neighbors) is
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Figure 8: Correlation between global centrality metrics and PRS for different social network

topologies.

not shown due to its irrelevance, since it corresponds to the agent that initiates

the activity (i.e., publishes a message). As can be seen from the results, the R2

coefficient generally decreases according to the depth of the target level, except455

for random ER network topology.
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Network type Level
R2 score

closeness pagerank bet-sp bet-rw

scale-free (BA)

2 0.82 0.79 0.75 0.66

3 0.38 0.29 0.43 0.32

4 0.82 0.25 0.40 0.18

random (ER)

2 0.93 0.90 0.88 0.83

3 0.80 0.74 0.77 0.74

4 0.95 0.82 0.84 0.78

small-world (WS)

2 0.93 0.73 0.87 0.78

3 0.96 0.74 0.86 0.77

4 0.78 0.49 0.59 0.50

Table 4: Evaluation of the relation between global centrality metrics and PRS by levels for

different social network topologies.

As the results show, the estimation of PRS using global centrality metrics

yields promising results. However, as we stated in the previous section, global

centrality metrics present several limitations: their calculation requires a knowl-

edge of the whole network structure, and they suffer from performance issues460

in large networks. Moreover, a recalculation is needed when the network struc-

ture changes (i.e., when a new agent joins/leaves the network or a relationship

is created/removed). Taking into account these challenges in calculating global

centrality metrics, we examine local and social centrality metrics in the following

subsection.465

6.4. PRS, local, and social centrality metrics

In this section, we evaluate the relationship between local and social cen-

trality and PRS values in synthetic and real social networks. First, we analyze

degree centrality and the ego-betweenness centrality [52] (i.e., a local approxi-

mation of the betweenness centrality metric). Second, we analyze social degree470

and social ego-betweenness centrality. These experiments have the same settings

considered in previous experiments (subsection 6.2).

Figure 9 shows the results of the linear-log regression analysis to determine

if there is a relationship between local centrality and PRS values. Although
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Figure 9: Correlation between local centrality metrics and PRS for different social network

topologies.

ego-betweenness and degree centrality metrics rely on local data, they provide475

values in scale-free and random network topologies that can be used to provide

a fitted approximation of the PRS. Based on agents’ privacy risk, both local

metrics detect the same groups of agents that were detected with global metrics.

The R2 values obtained with local centrality metrics in some cases improve the

results provided by global centrality metrics, or these results are at least as good480

as those provided by global metrics.

Nevertheless, there are some situations where the degree or ego-betweenness

centrality of an agent can be misleading for detecting privacy risk. For instance,

an agent ai can be highly connected to other agents with a low degree of con-

nection and ai has a high PRS value. However, the message diffusion actions485

that its neighbors may perform will not have a real risk impact on its privacy.

Therefore, it would be interesting to consider not only the local centrality met-

rics of an agent, but also the centrality values of its neighbors. Hence, in the

following experiments, we evaluate the relation between social degree and social
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Figure 10: Correlation between social centrality metrics (i.e., degreesum,degree2sum,

bet-egosum, and bet-ego2sum) and PRS for small-world WS network.

ego-betweenness metrics and PRS. Specifically, we examine four measures in490

the first and second level: bet-egosum, degreesum, bet-ego2sum, and degree2sum

(see Equation 10, 11, 12, and 13). We do not consider further distance since the

majority of diffusion cascades in reality are small [13].

Figure 10 shows the results achieved with social degree and social ego-

betweenness centrality metrics for the small-world WS network. The relation-495

ship between social centrality and PRS values in scale-free and random struc-

tures is not shown since the values obtained were similar to those obtained by

using previous centrality metrics. The correlation between centrality and PRS

values in the small-world WS network improves considerably for bet-ego2sum and

degree2sum, while there is not any improvement for bet-egosum and degreesum.500

The reason for this could be that the ability to disseminate information in

level 2 (i.e., direct neighbors of neighbors) has a great impact on the final

PRS. bet-ego2sum and degree2sum capture this effect better than bet-egosum

and degreesum.
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Network type Level

R2 score

local centralities social centralities

degree bet-ego degreesum bet-egosum degree2sum bet-ego2sum

scale-free (BA)

2 0.79 0.79 0.78 0.47 0.63 0.35

3 0.33 0.36 0.42 0.36 0.53 0.63

4 0.28 0.30 0.83 0.90 0.94 0.88

random (ER)

2 0.91 0.90 0.94 0.88 0.93 0.92

3 0.78 0.78 0.78 0.72 0.79 0.79

4 0.85 0.85 0.91 0.89 0.93 0.93

small-world (WS)

2 0.75 0.81 0.81 0.78 0.95 0.93

3 0.77 0.82 0.82 0.79 0.94 0.94

4 0.51 0.53 0.59 0.61 0.71 0.70

Table 5: Evaluation of the local and social centrality metrics correlation with PRS by levels

for different network topologies.

When analyzing the relationship between the local and social version of505

degree and ego-betweenness and the PRS values by levels (see Table 5), we detect

that local centrality metrics have a behavior similar to social centrality metrics.

In general, if we compare local centrality with social centrality metrics, we

find that the estimation of the PRS by levels improves for the three topologies,

especially for deep levels such as level 4. Finally, comparing both social and local510

centrality metrics, degree2sum obtains a slightly higher degree of correlation with

PRS by levels than the other centrality metrics.

Figure 11 shows the results obtained in real networks. Most users have low

PRS values (i.e., values in the range [0,0.2]). Social and local ego-betweenness

are not suitable to distinguish between users with high or low PRS. The degree515

of correlation is lower than 0.5 (see Figure 11 – second column). However,

social and local degree centrality metrics provide better results. Degree and

degreesum show a high degree of correlation (i.e., 0.66 with degree and 0.82 with

degreesum). The results are close to those obtained in synthetic networks, where

degree2sum obtained a high degree of correlation with PRS.520

The experiments validate the use of centrality metrics to approximate PRS

values in scenarios where there is no information about the activity generated
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Figure 11: Correlation between local (bet-ego and degree) and social (degreesum and

degree2sum) centrality metrics in rumour social networks.

in the social network. In scenarios where there is information about network

structure, global metrics such as closeness show a high degree of correlation with

PRS and PRS in levels. In scenarios where there is only local knowledge, local525

and social centrality metrics based on ego-networks also provide good results.

Specifically, local centrality metrics provide results estimating PRS values that

are just as good as those obtained with global metrics or even better in some

topologies such as scale-free networks. Social centrality metrics have also been

evaluated and the metrics that consider centrality properties based on neighbors530

of neighbors (degree2sum and bet-ego2sum) obtain the best degree of correlation
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with PRS and PRS in levels. Finally, we have tested local and social centrality

metrics to estimate PRS values with real data from rumor networks. The results

show that degree and degreesum provide the best approximation to estimate the

privacy risk of an action.535

7. Conclusions

Most privacy approaches focus on mechanisms that semi-automatically facil-

itate the definition of privacy policies to define the audience that a user expects

is going to receive the information published. However, there is still an open

problem of making users aware of the extent of sharing information on the social540

network, even if such information reaches the audience previously defined. In

this paper, we have focused on solving this problem. A measure of the privacy

risk of a user-sharing action, PRS, has been proposed based on the scope of its

dissemination in the network with the following main contributions:

• The PRS is oriented to estimating the reachability of users’ sharing ac-545

tions instead of being focused on the misalignment of their users’ expected

audience with the actual audience.

• This measure is provided globally and in levels in order to be able to adjust

to the user’s perception of risk.

• The PRS takes into account the paths that the publications follow in the550

social network without the need for the user to have to provide information

explicitly.

• Centrality metrics have proven to be good estimators in establishing an

approximation of the PRS in those social networking environments whose

detailed record of the information sharing activity in the social network is555

not available.

As shown in Section 6, despite the topological properties of the network,

centrality metrics can evaluate the user’s relevance in information transmission
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processes. We have considered global metrics (i.e., betweenness, closeness, and

pagerank) for scenarios where a complete view of the network it is available, and560

local and social measures (i.e., degree, ego-betweenness) for scenarios where you

only have a local view of the structure of the network. To evaluate the relation-

ship between these measures of centrality and the proposed measure of PRS, we

have performed a set of experiments in different topologies of synthetic networks

and in real networks of rumors. The results showed that in scenarios where there565

is information about network structure, global metrics such as closeness show a

high degree of correlation with PRS and PRS in levels. In scenarios where there

is only local knowledge, local and social centrality metrics based on ego-networks

provide a suitable approximation to PRS and PRS in levels. The results in real

social networks confirm that local and social centrality metrics based on degree570

perform well in estimating a user’s privacy risk and could be integrated in social

network applications that offer limited information access.

As future work, we plan to validate the proposed privacy risk score through

experiments in real environments. These experiments will provide feedback

about the effect of the use of PRS on user behavior in social networks. We575

also plan to evaluate different methods (i.e., numeric values, text messages,

color gradient, etc.) to show PRS values in order to inform the user about

the risk of certain actions in the network. We will also evaluate the inclusion

of new parameters (i.e., tie-strength between users, user personality, type of

content posted, etc.) that may influence the privacy risk in order to obtain580

more accurate values.

8. Acknowledgements

This work is partially supported by the Spanish Government project TIN2014-

55206-R and FPI grant BES-2015-074498.

32



References585

[1] E. Del Val, M. Rebollo, V. Botti, Does the type of event influence how user

interactions evolve on Twitter?, PloS one 10(5) (2015) 1–32.

[2] D. Christin, Privacy in mobile participatory sensing: Current trends and

future challenges, Journal of Systems and Software 116 (2016) 57 – 68.

[3] K. Liu, E. Terzi, A framework for computing the privacy scores of users in590

online social networks, ACM Transactions on Knowledge Discovery from

Data (TKDD) 5 (1) (2010) 1–6.

[4] R. K. Nepali, Y. Wang, Sonet: A social network model for privacy monitor-

ing and ranking, in: Proc. of 33rd International Conference on Distributed

Computing Systems Workshops (ICDCSW), 2013, pp. 162–166.595

[5] M. Shehab, H. Touati, Semi-supervised policy recommendation for online

social networks, in: Proc. of IEEE/ACM International Conference on Ad-

vances in Social Networks Analysis and Mining (ASONAM), 2012, pp. 360–

367.

[6] L. Fang, K. LeFevre, Privacy wizards for social networking sites, in: Proc.600

of the WWW, ACM, 2010, pp. 351–360.

[7] B. Vidyalakshmi, R. K. Wong, C.-H. Chi, Privacy scoring of social network

users as a service, in: SCC, IEEE, 2015, pp. 218–225.

[8] I. Bilogrevic, K. Huguenin, B. Agir, M. Jadliwala, J.-P. Hubaux, Adaptive

information-sharing for privacy-aware mobile social networks, in: Proc. of605

the Ubicomp, 2013, pp. 657–666.

[9] Z. Sun, L. Han, W. Huang, X. Wang, X. Zeng, M. Wang, H. Yan, Recom-

mender systems based on social networks, Journal of Systems and Software

99 (2015) 109 – 119.

[10] G. Calikli, M. Law, A. K. Bandara, A. Russo, L. Dickens, B. A. Price,610

A. Stuart, M. Levine, B. Nuseibeh, Privacy dynamics: Learning privacy

33



norms for social software, in: Proc. of the 11th SEAMS, ACM, 2016, pp.

47–56.
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