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TokenTLB+CUP: A Token-Based Page
Classification with Cooperative Usage Prediction

Albert Esteve, Alberto Ros, Antonio Robles, and Marı́a E. Gómez

Abstract—Discerning the private or shared condition of the data accessed by the applications is an increasingly decisive approach to
achieving efficiency and scalability in multi- and many-core systems. Since most memory accesses in both sequential and parallel
applications are either private (accessed only by one core) or read-only (not written) data, devoting the full cost of coherence to every
memory access results in sub-optimal performance and limits the scalability and efficiency of the multiprocessor.
This paper introduces TokenTLB, a TLB-based page classification approach based on exchange and count of tokens. Token counting
on TLBs is a natural and efficient way for classifying memory pages, and it does not require the use of complex and undesirable
persistent requests or arbitration. In addition, classification is extended with Cooperative Usage Predictor (CUP), a token-based
system-wide page usage predictor retrieved through TLB cooperation, in order to perform a classification unaffected by TLB size.
Through cycle-accurate simulation we observed that TokenTLB spends 43.6% of cycles as private per page on average, and CUP
further increases the time spent as private by 22.0%. CUP avoids 4 out of 5 TLB invalidations when compared to state-of-the-art
predictors, thus proving far better prediction accuracy and making usage prediction an attractive mechanism for the first time.

Index Terms—Data classification; Token counting; TLB; Private-shared; Read-only data; TLB Usage Predictor

F

1 INTRODUCTION

FUTURE chip multiprocessors (CMPs) will implement
increasingly deeper cache structures while supporting

a shared memory model. In addition, they will require more
scalable and efficient coherence protocols as the number of
processing cores rapidly grows. These new challenges for
future multi- and many-core systems make discerning the
private (i.e., accessed by only one thread) or shared (i.e.,
simultaneously accessed by two or more threads) nature of
accessed data an increasingly appealing approach to achieve
scalability, given the wide range of optimizations that they
can enable [1], [2], [3], [4], [5].

The observation behind these proposals is that most
referenced data both for sequential and parallel workloads
are private. Hence, detecting private data to a larger extent is
key for the performance optimizations of multi- and many-
cores. This detection can be carried out either at compile
time or at run time by the data classification mechanism.

Data classification at compile time is conservative while
at run time it entails some trade-offs among area, per-
formance, and accuracy (Section 2.1). TLB-snooping ap-
proaches [6], [7] are seemingly the best data classification
systems in terms of cost and area. Furthermore, they ac-
celerate address translation resolution through TLB-to-TLB
transfers [8]. However, these transfers flood the network
with responses after every broadcast TLB miss, many of
them being multiple replicated messages with the page
translation, thus critically increasing network consumption.
Even though TLB misses are infrequent (only 2% of the
TLB accesses result in a miss in our experiments), TLB
traffic does not scale to larger systems. In addition, TLB-
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(a) TLB miss rate evolution
depending on TLB size.
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(b) TLB classification accu-
racy depending on TLB size.

Fig. 1: TLB size analysis overview.

snooping does not perform an immediate reclassification
from shared to private when a page translation is left in
a single TLB, but the reclassification is deferred until the
page is evicted from all system TLBs and re-accessed, thus
penalizing classification accuracy.

Moreover, as long as the sharing condition of a page
in a TLB-based classification mechanism is determined by
the existence of the page translation in the system TLBs, its
precision is strongly dependent on TLB size. The disadvan-
tage of this dependence is shown in Figure 1.1 For smaller
TLBs, TLB miss ratio is considerably greater (Figure 1a). As
expected, TLB hit ratio is improved as the number of entries
in the last-level TLB is progressively increased from 256 to
4096. However, page translations remain longer on larger
TLBs, even though pages may not be accessed anymore.
Consequently, the percentage of private pages detected is
reduced as TLB size is increased (Figure 1b). An unlimited-
size, full-associative TLB structure would never miss twice
on the same page translation lookup, but the private data
detected would decrease to figures similar to a non-adaptive

1. All results are obtained using the simulation environment de-
scribed in Section 6.
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approach (e.g., OS-based classification [3]). Ideally, the shar-
ing condition of a page should be settled by the concurrence
of accesses to that page (i.e., concurrent page live times).
In this way, TLB-based classification would accomplish a
precise classification of private pages, be independent on
the TLB size, and not hurt TLB hit ratio.

Usage Prediction (UP) [6], [7] has been proposed seeking
for this ideal classification. A usage predictor for TLBs pre-
dicts when a page is going to continue being accessed from a
given core. This allows invalidating translation entries when
(i) the local predictor indicates that the corresponding page
is not going to be accessed in the near future, and (ii) other
TLB requests the page translation. This way, opportunity
for private data detection is improved, and classification is
decoupled from TLB size.

This work is based on two main observations. First,
unlike Token coherence [9], [10], [11], employing tokens
for classification purposes in TLBs does not require issuing
persistent requests nor complex arbitration mechanisms.
Persistent requests are a special type of request meant to
solve races occasionally caused when several cores want to
write data at the same time (Section 2.3). These requests
are a source of complexity for the coherence protocol, being
one of the main causes why Token coherence has not been
implemented in commodity systems. However, token-based
classification avoids these races by only aiming at classifying
data. When two or more TLBs race for accessing a page,
tokens are naturally distributed among the TLBs, detecting
the page as shared.

Second, invalidations caused by the aforementioned Us-
age Predictor do not necessarily lead to higher detection of
private pages. In fact, many TLB entry invalidations just re-
duce the number of sharers, indiscriminately increasing TLB
miss rate, without the certainty of improving the amount of
private data (Section 3). Hence, UP is applied blindly, with-
out considering how the classification status will evolve,
despite being supposedly at its service. Moreover, a non-
accurate prediction would prematurely invalidate TLB en-
tries, which could dramatically increase the amount of TLB
misses when the page is reaccessed, ultimately hurting sys-
tem performance. These overheads discouraged the use of
prediction mechanisms despite improving the private data
detection rate.

Our proposal. This paper extends our previously pub-
lished TokenTLB mechanism [12] with a novel Cooperative
Usage Prediction (CUP) approach. TokenTLB prevents most
classification overheads of previously proposed TLB-based
approaches with a mechanism based on exchanging tokens
among TLBs (Section 4). TokenTLB achieves a high private
detection rate, ultimately improving system performance.
Particularly, TokenTLB main contributions are:

• TokenTLB proposes a new classification concept
based on counting and exchanging tokens, allowing
to naturally and immediately detect data transitions
to private (full-adaptivity).

• TokenTLB reduces network consumption compared
to previous TLB-based proposals. Only TLBs holding
extra tokens provide them along with the page trans-
lation, which leads to around one response per TLB
miss.

• TokenTLB extends the classification taxonomy by
detecting write accesses to pages, thus classifying
also read-only data.

Cooperative Usage Predictor (CUP) is a mechanism that
exploits TLB cooperation (i.e., TLBs willingly working to-
gether for a common purpose or benefit) in order to perform
a system-wide page usage prediction (Section 5). This way,
CUP improves previous prediction mechanisms [6], [7] by
not invalidating TLB entries for pages that will remain
shared after a reclassification attempt. Specifically, CUP
contributes to:

1) Perform a system-wide page usage prediction, in-
stead of a per-core prediction, that allows an eager
discovery of reclassification opportunities.

2) Eliminate most aimlessly invalidated TLB entries,
as invalidation is postponed until it may expressly
serve a better data classification, avoiding perfor-
mance degradation and making TLB usage predic-
tion appealing for the first time.

CUP is implemented with a new set of usage tokens,
which combined with the set employed in TokenTLB results
in a novel and elegant token-based classification and usage
prediction schemes.

Results. Through full-system cycle-accurate simulations
(Section 6) we show that with TokenTLB 43.6% of the
time data pages are private, on average. TokenTLB+CUP
increases the time the pages are private up to 65.6%, on
average. Additionally, CUP eliminates 4 out of 5 TLB en-
try invalidations compared to a non-cooperative predictor,
considerably reducing prediction overheads. As a conse-
quence, when applied to a private-shared optimization such
as coherence deactivation [3], TokenTLB reduces dynamic
consumption by 27.3% over the baseline, while CUP im-
proves execution time by 8.8% over previous prediction
mechanisms, and further reduces the energy consumption
by 4.7% over TokenTLB and 8.0% over a state-of-the-art
usage prediction (Section 7).

2 BACKGROUND

2.1 Data Classification
Data classification can be applied to a wide range of opti-
mizations. Specifically, Kim et al. [2] avoid broadcast mes-
sages in snoopy protocols when accessing private blocks,
thus leading to network traffic reductions. Li et al. [13] intro-
duce a small buffer structure close to the TLB namely partial
sharing buffer (PSB). When a page becomes shared it will
feasibly be found on the PSB upon a TLB miss, obtaining the
page translation with both lower latency and lesser storage
resources. Hardavellas et al. [1] and Kim et al. [14], [15] keep
private blocks on the local bank in distributed shared caches
in order to reduce the access latency. Ros and Kaxiras [5]
propose an efficient and simple cache coherence protocol by
implementing a write-back policy for private blocks and a
write-through policy for shared blocks. End-to-End SC [4]
allows instruction reordering and out-of-order commits of
private accesses from the write-buffers, since they do not
affect the consistency model enforced by the system.

Most classification approaches in the literature take ad-
vantage of currently existing OS structures (i.e., TLBs and
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page table) in order to perform runtime page classification
and store the page status, and therefore they do not require
additional hardware structures. The main problem of the
OS-based classification is that it does not perform an adap-
tive classification. When a page transitions from private to
shared it remains in that state for the rest of the execution
time (unless evicted from main memory). In applications
running for a long time, many pages may be considered
shared at some point along the execution, thus neglecting
the advantages of the classification.

Conversely, compiler-assisted approaches [14], [15] deal
with the difficulty of knowing at compile time (a) whether
a variable is going to be accessed or not, and (b) in which
cores the data will be scheduled and rescheduled. As a con-
sequence, compilers need to be conservative, as privacy can-
not be always guaranteed. Compiler-assisted mechanisms
are not compelled to perform an accurate classification.

Furthermore, directory-based approaches [16], [17], [18],
[19], [20] only reveal the data classification status accessing
the last-level cache (LLC) or directory structure where the
information is stored, therefore limiting its applicability to
optimizations where the a-priori knowledge of the status of
the accessed data is not required.

Finally, approaches based on the properties of program-
ming languages [21], [22] combine compile-time informa-
tion with runtime OS-based classification to perform a very
accurate data classification. However, these proposals, are
not applicable to most existing codes.

2.2 TLB Coherence

The information cached in TLBs can become stalled, for
example, when a page is evicted from main memory. Tra-
ditionally, TLBs are kept coherent (historically named TLB
consistency) by performing a TLB shootdown when their
information becomes obsolete [23].

Several solutions have been proposed to reduce the cost
of TLB coherence, and many of them share similarities with
classic cache coherence solutions [24].

Snooping-based solutions: are based on broadcasting mes-
sages, which dramatically augment bandwidth require-
ments with core count. There is a lot of effort put in order to
reduce this penalty [2], [25].

Directory-based solutions: rely on a directory located in
the home node to track cached address translations. Unfor-
tunately, TLB directories add memory requirements and an
indirection to the critical path of a TLB miss. DiDi [26] is
an example of a directory-like solution for TLB coherence,
which introduces a small shared TLB directory designed to
reduce the impact of TLB shootdowns in large-scale CMP
systems by enabling lightweight TLB invalidation.

2.3 Token Coherence

TokenB [10] was introduced by Martin et al., capturing
the best aspects of snooping and directory protocols: low
latency cache-to-cache misses and not reliance on totally
ordered interconnects. Token tenure [27] later proposed by
Raghavan et al., relying on a directory cache to track tokens.

Token protocols guarantee coherence safety through to-
ken counting: a processor can only write if it holds all tokens
in the system and can only read if it holds at least one token

for that block. However, as requests are sent to all processors
through broadcast requests, they may produce protocol
races when contending for a memory block, and thus fail
at resolving cache misses. In order to avoid starvation and
guarantee cache misses completion, Token protocol invokes
persistent requests after ten average miss times unsatisfied.

Persistent requests cause major problems, as they require
arbitrage, adding some inflexible latency overhead and re-
quiring extra non-scalable structures in the die. On the other
hand, using tokens for classification and distributing them
in the TLBs can avoid these major protocol races. When
disputing a page translation they will be simply classified
as shared.

3 PROBLEM OVERVIEW

3.1 TLB-Based Data Classification
TLB-based classification mechanisms rest on the presence of
a page translation on the system TLBs (i.e., private when
the translation is present in one TLB, and shared when
the translation is present on two or more TLBs), being
among the most accurate classification approaches. Specif-
ically, TLB-snooping classification [6], [7] was introduced to
perform a run-time adaptive classification that accounts
for temporarily-private pages and thread migration. TLB-
snooping classification relies on TLB-to-TLB communication
to inquire other cores’ TLBs in the system after TLB misses,
naturally discovering whether a page is currently private
or shared and possibly accelerating the page table walk
process.

However, TLB-to-TLB transfers generate replicated re-
sponses, possibly including the translation, from every core
in the system after every TLB miss. Frequently issuing
broadcast TLB requests and collecting responses limits its
scalability for large-scale systems, as the number of mes-
sages increases proportionally with the system size. Also,
even though TLB-based classification is adaptive (i.e., classi-
fication may transition to and from private), since page clas-
sification relies on TLB misses to update the classification
status, reclassification to private requires the page transla-
tion to be completely removed from all TLBs in the system to
occur. Only after finishing its global generation time2, a TLB
miss would find that no other TLB is sharing the page and
thus classification would become private again. This way,
the accuracy of the classification mechanism is restricted
by the generation time of the translation entries. Finally,
read-only detection is not explored, limiting the classification
scheme to the private-shared dichotomy.

3.2 TLB Usage Prediction
TLB-based classification rests on the presence of TLB entries
in order to discern the sharing status of a page, whereas
usage prediction allows translation entries to decay, thus
decoupling data classification from TLB size [6]. To do so,
page access prediction is performed per TLB entry through a
saturated counter, similar to Cache Decay [28]. This counter
is increased after a fixed period (namely predictor period)
and reset on every TLB access to that page. When the

2. The global generation time is defined as the time elapsed from the
first page allocation in a TLB until the eviction of the page from the last
TLB in the system [7].
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Fig. 2: Aimlessly invali-
dated TLB entries.
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Fig. 3: TLB misses consider-
ing its cause.

counter saturates, the page falls into disuse. Next, a disused
TLB entry is invalidated only when requested from the
network due to a TLB miss from another core. Consequently,
cores with invalidated TLB entries cease being accounted as
potential sharers, increasing the opportunities for private
data detection.

Again, reclassification to private is only achieved when,
upon a TLB miss, the new sharer founds that all the other
TLB entries have been evicted or have fallen into disuse. On
the contrary, with at least one of the other TLBs still using
the page, a TLB miss performs a system-wide invalidation of
other cores’ disused TLB entries, without actually improv-
ing the classification. These aimless invalidations are fre-
quent and seriously damage system performance. Figure 2
plots the amount of predictor-induced TLB invalidations
distinguishing between Failed (i.e., page status is kept as
shared) and Successful (i.e., the page either transitions to
or remains as private) invalidations. Nearly 90% of all
invalidated entries are aimlessly invalidated (Failed) for a
predictor period of 250,000 cycles. Smaller periods allow the
page to remain as private for longer, and the proportion of
purposeless invalidations slightly decreases. Nonetheless, 4
out of 5 invalidations could still be avoided while keeping
the classification efficiency.

Employing shorter periods for usage predictions may
prematurely invalidate more translations, which in turn
causes the TLB miss rate to rocket, producing more network
inquiries, and ultimately, invalidating even more TLB en-
tries. It can be seen as a positive feedback situation, or ping-
pong invalidations when only two nodes are involved. An
accurate usage predictor would hardly affect system perfor-
mance since blocks within the page will not be accessed in
the near future. Conversely, blindly invalidating TLB entries
might hurt execution time and network traffic, since TLB-
based classification entails strict inclusion between the TLB
structure and the L1 cache in order to avoid incoherences
among the classification of the blocks stored in caches
and their pages cached in TLBs. Thus, page blocks in the
private L1 cache are flushed after every TLB invalidation
and brought back again due to inaccurate predictions.

In order to avoid ping-pong invalidations, which make
the TLB usage predictor unattractive, a slight modification
of the prediction strategy was introduced, namely Forced
Sharing [7]. The forced-sharing strategy avoids prediction-
induced invalidations after the first prematurely invalidated
entry is detected. A translation entry is considered prema-
turely invalidated when the page is reaccessed soon after
the invalidation (the invalidated entry is still allocated in
the TLB). In order to avoid further miss-predicted page in-
validations in other cores’ TLBs, a special forced-sharing TLB

TABLE 1: Properties of classification schemes

A-priori Read-Only Adaptive Accurate
Directory 7 3 3 3
TLB 3 7 3 3
OS 3 3 7 3
Compiler 3 3 3 7
TokenTLB 3 3 3 3

miss request is sent. This request overrides the prediction,
and grants a classification based solely on the presence of
page translation entries in other TLBs.

Although the forced-sharing strategy effectively reduces
predictor-induced damage to system performance, the solu-
tion itself is again strongly dependent on TLB size. With
smaller TLBs, invalidated TLB entries are evicted sooner
and forced-sharing would not be triggered. With larger
TLBs, many pages would be erroneously considered as
prematurely invalidated, since translations remain longer
in the TLBs, and prediction would be frequently ignored.
Besides, further opportunities to reclassify as private may
be lost if no other TLB misses occur during a favorable time
period.

To illustrate the problem, Figure 3 shows the amount of
TLB misses for different predictor periods, using the basic
usage predictor for TLBs [6] (Base-UP), and the modified
forced-sharing predictor [7] (Forced-UP), both normalized to
a TLB-based classification mechanism without predictor.
TLB misses are classified into 3C misses (compulsory, ca-
pacity, and conflict), prediction-induced (Predictor) misses,
and Forced misses (i.e., predictor-induced TLB misses trig-
gering the forced-sharing strategy). As can be seen, Forced-
UP avoids some prediction-induced TLB misses, specially
using the lowest predictor period considered, for which 19%
of all TLB misses trigger a Forced miss. Nevertheless, the
proportion of TLB misses is still increased by more than 6.5
times due to Predictor misses, showing how inaccurate the
TLB usage predictor is.

Finally, Shared Usage Predictor (SUP) [29] has been re-
cently proposed. SUP maintains a centralized system-wide
users track, employing a distributed shared last-level TLB
structure. However, this approach does not perform a full-
adaptive classification, nor discern read-only pages, which
limits its capability to perform an accurate classification.
Furthermore, a shared last-level TLB is not a common
design choice in commodity processors. This paper deals
with usage-prediction overheads for purely-private TLB
structures.

3.3 Potential Benefits

TokenTLB. Table 1 summarizes the main properties of the
state-of-the-art classification approaches (see Section 2.1)
compared to TokenTLB. We expect TokenTLB to reach all
desirable properties for classification mechanisms.

Furthermore, token-based classification allows a transla-
tion entry to eventually re-acquire all system tokens and be
immediately reclassified to private. We refer to this property
as full-adaptivity. To illustrate this, Figure 4 shows an ex-
ample for a 2-core system, where each black line represents
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each TLB local generation time3 for a page, and the clas-
sification bar in the upper side represents the behavior of
an adaptive TLB-based mechanism (e.g., TLB-snooping [6]).
In this example, C0’s TLB holds the page exclusively in
period ¶, but the classification remains shared. Adaptive
classification requires the global generation time to end and
the page to be reaccessed (·) to transition back to private.
Conversely, a full-adaptive mechanism, such as TokenTLB,
would immediately transition to private in period ¶.

CUP. To understand the main benefits of the Cooperative
Usage Predictor (CUP), Figure 5 depicts two examples for
the global generation time of a given page in the TLBs of
a 4-core CMP. Every black line represents a page live time
in a single TLB, and the grey dotted lines represent their
disuse periods. The upper colored line shows how the page
is classified using the pertinent usage predictor classification
approach.
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Fig. 5: Prediction-based classification examples.
Figure 5a represents the behavior for a state-of-the-art

non-cooperative usage predictor approach. C3’s TLB misses
in period ¶ while the page is predicted not to be used in
C0 and C2. In response to the TLB miss request, the disused
entries are invalidated, even though the page classification
remains as shared, since C1 is still accessing the page.
Consequently, C2 incurs in an extra induced TLB miss after-
wards (time instant ·), evidencing a premature invalidation
due to an inaccurate disuse prediction. Yet, reclassification
to private is only achieved in period ¸, when a miss occurs
in C0’s TLB, by invalidating the disused entry in C3’s TLB.

Figure 5b shows a similar example for our cooperative
usage predictor. In this case, translations are invalidated

3. The local generation time is defined as the time elapsed from a
page is first allocated in a TLB until the eviction of the page entry from
that same TLB [7].

only when a reclassification opportunity is revealed, thus
avoiding the unnecessary invalidations and the subsequent
TLB miss in period ¶ (contribution #2). Then, the cooper-
ative usage predictor unveils an opportunity to reclassify
as private in period · beforehand (i.e., without TLB miss
reliance), which results successful (contribution #1). Finally,
the disused entry is invalidated in period ¸ to help the
page to remain as private, just as with a non-cooperative
predictor.

Conclusion. When using tokens for classification, To-
kenTLB improves classification accuracy over previous TLB-
based classification schemes by favoring immediate reclas-
sification to private (i.e., full-adaptivity), improves network
consumption over TLB-snooping mechanisms by constrict-
ing response traffic and translation replication, and en-
hances private-shared dichotomy by adding read-only de-
tection capability.

Furthermore, collecting system-wide usage information
by employing tokens for prediction improves the predictor
accuracy and eliminates most, if not all, miss-predicted TLB
invalidations. Moreover, CUP reveals reclassification oppor-
tunities and performs system-wide invalidations without
waiting for a TLB miss to occur, which completely dissoci-
ates TLB size and associativity from TLB-based classification
accuracy and performance.

4 TOKENTLB
Token-counting is a simple yet precise classification mecha-
nism. It associates a fixed number of tokens per page equal
to the number of cores and classifies the page according to
the token count in a TLB entry: private when it holds all
tokens for that page; shared when it holds a subset of the
page tokens; and invalid when it holds no tokens. Tokens are
exchanged through TLB-to-TLB messages alongside page
translations, allowing a natural and fast reclassification both
to and from private.

4.1 Token Request After a TLB Miss
Upon every TLB miss, a request is issued to the other TLBs
in the system, in parallel with a page table walk. TLB-to-
TLB request grants fast TLB miss resolution through on-
chip communication. Initially, the page table holds all N
tokens for each page translation for a system with N cores.
Then, after the first TLB miss for a memory page, the page
table delivers all the tokens to the requestor TLB. From now
on, tokens are held by TLBs and sent through messages on
response to TLB miss requests, spreading across the core’
TLBs.

Upon receiving a TLB request, a TLB checks if it is a
page owner (i.e., it holds the page translation with two or
more tokens). If so, the TLB responds with a short message,
giving one token away and keeping the rest. When the
first translation response with tokens is received by the
requesting TLB, the page table walk is canceled, tokens are
annotated privately in the corresponding page TLB entry,
and the memory access proceeds. By doing this, response
traffic is constrained as only one TLB is allowed to answer
in the common case.

After the first store operation on a read-only page, writ-
ten information needs to be updated in all copies of the
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Fig. 6: Token path for messages in a 16-core (4x4) mesh.

translation stored in other TLBs. While a private page up-
dates its written information locally, a shared page requires
a broadcast message and collect its acknowledgments in
order to atomically update the written status in all TLBs
holding a valid page translation. As a consequence, the page
transitions to shared-written (SW). A written page (either
private or shared) remains as such until the global page gen-
eration time for that page ends, since written information is
sent alongside tokens on TLB miss responses.

4.2 Token Release for Correctness
In a token-counting classification, tokens cannot be gen-
erated nor destroyed. If a TLB entry that is involved in
an eviction process is holding all N tokens, they are sent
back to the page table (where tokens are compressed into
a single bit that is added to the page table format –either
all tokens or none). Otherwise, tokens are sent to the net-
work in a token evict message, looking for another TLB to
hold them while the initiator of the eviction waits for an
acknowledgment. This process is referred to as non-silent
eviction. In the interest of performing a neat exploration of
the network, non-silent evictions are sent following a virtual
ring, as shown in Figure 6. The virtual ring is network-
topology dependent, but it can be similarly implemented
for any topology.

Also, to ensure livelock avoidance in a scenario where
all the TLBs holding a page (and all of its tokens) try to
simultaneously evict the associated entry, a given TLB in-
volved in an eviction process is allowed to temporarily store
tokens in its MSHR structure. Nonetheless, an additional
condition is required for starvation avoidance in a scenario
where multiple evicting TLBs for the same page endlessly
pass on their tokens. Tokens are stored in the MSHR of an
evicting TLB only if its core ID is greater than the requestor
core ID. This way, if all TLBs simultaneously evict a given
page, all N tokens will eventually end up in the TLB of the
core with the greater ID that has accessed the page, which
will send all tokens back to the page table.

Figure 7 shows the TLB entry format for TokenTLB. Light
grey fields represent the ones required for classification: a
log2(N) bits field (tokensC) for tracking the classification
status through token count, an L bit for locking page access
when required, and a W bit for tracking write condition
on pages. Valid bit (V) is used to establish the absence of
classification tokens (i.e., the page is invalid).

5 COOPERATIVE USAGE PREDICTOR

Cooperative Usage Predictor (CUP) is a mechanism de-
signed to work in conjunction with a TLB-based classifica-

Fig. 7: TLB entry format for double token set strategy.
TokenTLB’s extra fields are shaded in light grey. CUP’s extra
fields are shaded in dark grey.

tion approach. The twofold goal of our mechanism is to im-
prove prediction accuracy while avoiding pointless TLB in-
validations. To do so, TLB entries gather system-wide page
usage information from other cores. This is accomplished
through TLB cooperation, by sending notifications as soon
as a given page is predicted not to be in use in the near
future. Then, only if a shared page is hinted to be currently
in use in a single core, disused TLB entries are invalidated
through a reclassification process. Nonetheless, system-wide
translation invalidation is only performed when it can posi-
tively contribute to the classification characterization.

5.1 Double Token Set: Implementation Details

CUP can be easily implemented with an additional set of
tokens associated with every page, extending TokenTLB.
This way, CUP employs two sets of tokens with different
interpretations. First, a set of tokens, namely classification
tokens (or tokensC), performs a page classification based on
the token count. Similarly, a second set of tokens, called
usage tokens (or tokensU), offers a hint for current system-
wide page usage in order to reveal reclassification oppor-
tunities. In other words, CUP associates each page with
a (#tokensC,#tokensU) pair, N tokens per set for a N -core
system.

Figure 7 shows the extra fields that CUP requires in each
TLB entry in darker grey. Specifically, compared to previous
predictors, our cooperative usage predictor only requires an
extra dlog2(N + 1)e-bit field to track from 0 to N usage
tokens and keep a system-wide record based on its page
sharers usage. The 2-bit counter field is introduced in all
usage predictors to determine whether a page is currently
being accessed or not (field is saturated) in any given TLB.
Counter field is increased after a fixed period and reset after
every access to the corresponding entry. Therefore, a page
falls into disuse after four predictor periods without being
accessed. All in all, our double token set strategy requires
3 + dlog2(N + 1)e ∗ 2 total bits. Since the TLB entry data
field often contains some unused bits [30] that are reserved,
hardware overhead may be avoided by taking advantage of
them. In any case, the hardware overhead represents only
13 extra bits per entry for a 16-core CMP, or 25 bits for a
1024-core CMP. As a consequence, the area overhead for our
strategy represents∼15% or∼25% of the L2 TLB area for 16-
and 1024-core CMPs, respectively, according to CACTI [31].

5.1.1 Basic semantics

The presence of tokensU stored in a TLB entry signifies
that the core is a potential page sharer. When a translation
entry falls into disuse, tokensU are transferred to a core
that is currently accessing the related page. Nonetheless,
a memory request can continue freely accessing any valid
page translation entry (i.e., with at least 1 tokenC) without
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tokensU . Tokens are exchanged (and tokensU may be reac-
quired) through TLB miss responses or non-silent evictions.
The main differences with TokenTLB are:

i) Upon TLB misses, a page-owning TLB does not need
usage tokens to reply, but it still sends (1,1) tokens to the
requester if it is holding 2 or more tokensU .

ii) On non-silent evictions, when the evicting TLB has
any tokenU stored, a potential receiver TLB has to be
currently in use (i.e., either holding at least 1 tokenU or
with an unsaturated prediction counter) in order to store the
incoming tokens. This way, when a given TLB recovers all
tokensU , it is very likely the only core currently accessing
the page. Consequently, if the TLB entry is not in possession
of all page’s tokensC (i.e., page is shared), a reclassification
process starts so the page may transition to private.

5.2 Time-based obsolescence for TLB entries
CUP averts immediate invalidation for disused translations,
since TLB misses cease being considered as reclassification
opportunities. In other words, CUP shelves translation in-
validation until TLBs hint for a reclassification opportunity.
Hence, TLB cooperation is carried out by announcing the
disuse condition right after the TLB entry counter fields
saturate. Two principles guide a cooperative predictor:

Principle #1: keeping the page as private as long as
possible. While a page is private, only one TLB is holding
its translation, and thus the disused condition does not need
to be revealed. A private TLB entry holds all (N,N ) tokens,
and the disuse condition is discovered upon the reception
of a network TLB request, just as in non-cooperative usage
prediction. When a TLB miss is received and the local
translation entry is not in use, all (N,N ) tokens are sent
to the requester alongside the page translation, invalidating
the responder TLB entry and favoring the page to remain
private.

Note that the forced-sharing strategy is orthogonal to our
cooperative TLB scheme, and can be easily adopted by it.
Accordingly, if a forced-sharing request is received and the
page is private, prediction is overridden (i.e., it does not
take into account the counter field) and a (1,1) token pair is
sent back to the requester, promoting the page to shared.

Principle #2: cooperating to detect shared-to-private
opportunities precisely. Whenever a predictor counter field
of a shared page (i.e., #tokensC < N ) saturates, the
associated TLB entry preserves only a single classification
token, giving a total of (#tokensC − 1,#tokensU ) tokens
away, that is, only one tokenC is kept. Tokens are never
destroyed, but optimistically sent to the network looking
for a new holder. The process of giving usage tokens away
is called disuse announcement, and is sent following the token
path depicted in Figure 6.

In order to acquire the tokens from a disuse announce-
ment, a given TLB must be holding a valid, in-use page
translation entry (i.e., with at least one tokenC and the 2-
bit predictor counter not saturated). Unlike eviction mes-
sages, acknowledging the token acquisition from a disuse
announcement is not required, since the classification is not
immediately updated after the announcement message is
sent. That is, a valid page that does not hold any tokensU
is not blocked and can be accessed. Naturally, as tokens
are given away blindly looking for a new holder, a disuse

announcement may traverse the network back to the initial
requester if all the remaining TLB page entries fall into
disuse at the same time. In that situation, the source TLB re-
trieves its own tokens from the network regardless the usage
status of the page entry. Thereupon, disuse announcement is
turned off, preserving all remaining tokens. Consequently,
a shared, disused entry may have stored some tokensU
that failed to find a new holder. Thus, after receiving the
next TLB miss request, the TLB simply responds by sending
(#tokensC − 1,#tokensU ) tokens to the requester TLB.

5.3 Cruise-missile reclassification
Eventually, a given TLB entry for a shared page will col-
lect all N tokensU , suggesting that it is the only TLB
currently accessing the page while other TLBs still retain
some tokensC. As a consequence, a reclassification process
is initiated in order to attempt to retrieve all tokensC,
which would entail the page transition to private. To do so,
we employ an exploration technique, namely cruise-missile
reclassification (CMR), that shares some similarities with
cruise-missile-invalidates [32]. The cruise-missile reclassifica-
tion process sends a single message across the virtual ring.
The CMR message keeps a (#tokensC,#tokensU ) pair,
namely token pool, which is initialized to (0, N−#tokensC).
The first component stores the tokensC as they are recov-
ered, whereas the second represents the maximum number
of tokensC to be recovered, which remain spread in other
TLBs. Usage tokens in the CMR token pool also allow a
reaccessed translation entry to reacquire tokensU . A CMR
message traverses the virtual ring until tokensC are fully re-
covered, and other cores’ translation entries are invalidated.

Notice that memory accesses are not blocked in the
initiator core for a page involved in a reclassification pro-
cess. Classification evolves naturally when a CMR mes-
sage returns to the initiator. This way, the negative impact
on system performance for our cruise-missile strategy is
avoided. CMR simply delays reclassification, causing some
temporarily miss-classified shared accesses to otherwise
possibly private data.

Lastly, reclassification rarely needs to completely tra-
verse the ring, and some exploration optimizations may
be applied, resulting in three possible outcomes, which are
depicted in Figure 8 for a 16-core CMP:

Case #1: successful reclassification. On every hop of
a CMR message, if a page translation is present, valid,
and disused, the translation entry is invalidated, the blocks
for that page in the L1 cache are flushed, and all of its
tokensC are stored in the CMR token pool. Then, as long
as #tokensC < #tokensU in the token pool, CMR is
forwarded to the next TLB in the virtual ring. Conversely,
when #tokensC = #tokensU , reclassification process suc-
ceeds (i.e., reclassification recovered all missing tokensC)
and tokens are sent back to the initiator.

The initial C5’s page sharing status in Figure 8a is (14,16)
tokens. Thus, a reclassification starts with (0,2) tokens in
the CMR message (C5’s TLB keeps (14,14) tokens). CMR
message misses on C9 and is forwarded to the next node in
the virtual ring (transitions a and b ). Next, TLB in C10

invalidates its disused page translation, storing the single
remaining tokenC in the CMR token pool. Then, CMR is
forwarded to the next node (transition c ) with (1,2) tokens.
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(a) Case #1: Cores 10 and 11 are in
disuse when receiving the reclassifi-
cation message. Page is reclassified to
private.

(b) Case #2: Core 10 is being used
although it gave its tokensU away.
Reclassification is interrupted.

(c) Case #3: A TLB misses while a
reclassification tryout is ongoing. Re-
classification is interrupted.

Fig. 8: Different outcomes for cruise-missile reclassifications initiated by the TLB in core 5. The grey dashed arrows depict
the route followed by CMR messages across the virtual ring.

TLB entry in C11 is disused again, and the last tokenC is
stored in the CMR. Finally, since the token pool contains
the same amount of classification and usage tokens (i.e.,
(2,2) tokens), CMR is sent back to the initiator (i.e., C5 in
transition d ). The result is that the page is successfully
reclassified to private with (16,16) tokens.

Case #2: page restoration from the CMR token pool.
When a TLB entry receives a CMR message and has
a recently-accessed, valid page translation, it reclaims as
many tokensU from the token pool as tokensC it is cur-
rently holding, which restores the TLB entry (i.e., it counts
again as a page sharer) and aborts reclassification. CMR
is sent back to the initiator, since reclassification cannot be
fulfilled.

Initially, C5’s TLB entry holds (11,16) tokens in Fig-
ure 8b. Hence, CMR token pool contains (0,5) tokens at
the beginning of the reclassification. Since C9’s TLB entry
remains disused, the translation is invalidated, and its single
classification token is stored in the token pool. Next, (1,5)
tokens are forwarded within the CMR message to the next
TLB in the virtual ring (transition b ). However, TLB entry
in C10 contains 2 tokensC and has been recently accessed.
Therefore, the translation is restored by taking 2 tokensU
from the CMR token pool. CMR is sent back to the initiator
with (1,3) tokens (transition c ). Finally, the TLB in C5

annotates the tokens received, collecting a total of (12,14)
tokens. As a consequence, the reclassification to private
fails. Note how TLBs in other cores (e.g., 11 or 13) are not
consulted by the CMR message although they may be in
disuse. Restoring the entry in C10 disallows reclassification,
allowing other cores to retain their tokens.

Case #3: racing TLB miss during reclassification at-
tempt. Finally, reclassification to private is canceled when
a CMR message bumps into a TLB which either has recently
obtained tokens (e.g., after resolving a TLB miss for the
same page), or is currently involved in a TLB miss. Since
a reclassification starts with all N tokensU stored in the
initiator TLB entry, the presence of tokensU in a TLB in the
route of a CMR message implies that tokens were recently
obtained from the initiator TLB, and thus missing tokensC
cannot be fully recovered. As a special case scenario, if a
CMR message traverses a TLB which afterwards suffers a
miss for the same page, reclassification might return to the

initiator TLB either as in case #1 or case #2. Nevertheless,
reclassification will still fail since some tokensC would have
been delivered to the TLB that missed.

Figure 8c shows how TLB in C11 misses for a page that is
involved in a reclassification process. The broadcast TLB re-
quest message (dashed arrows) reaches the page-owning TLB
in C5, which kept (14,14) tokens after initiating the CMR. In
response, C5’s TLB sends (1,1) tokens alongside the page
translation to the TLB in C11 (transition c ) to resolve the
TLB miss. Then, after having traversed C9 and C10, the CMR
message reaches C11 in transition d , which is currently
holding (1,1) tokens. Hence, reclassification is canceled and
the CMR is sent back to the initiator with (1,2) tokens (the
tokenC was recovered from C10). Reclassification fails with
(14,15) tokens in C5’s TLB.

Cruise-missile against broadcast reclassification. To
sum up the main properties of our cruise-missile reclas-
sification, we compare it against an alternative solution
for reclassification based on broadcasts. First, CMR is far
more efficient in terms of traffic, as it avoids the require-
ment for multiple response messages, while allowing many
cases where system exploration ends beforehand. Second,
contrary to a broadcast solution, CMR early conclusion
avoids system-wide invalidation of disused pages after ev-
ery reclassification tryout. Finally, even though broadcast
reclassification may parallelize invalidations and responses,
which allows faster transition to private, cruise-missile re-
classification does not incur in additional damage to system
performance. Accessing the memory hierarchy is permitted
during the whole process.

6 EVALUATION METHODOLOGY

We evaluate our proposal with full-system simulation using
Virtutech Simics [33] along with the Wisconsin GEMS toolset
[34], which enables detailed simulation of multiprocessor
systems. The interconnection network has been modeled
using the GARNET simulator [35]. Our baseline architec-
ture is a 16-tile CMP implementing directory-based cache
coherence with the parameters shown in Table 2. The L2
TLB miss latency considers four memory references to walk
the page table, as in the 48-bit x86-64 virtual address space.
The cache and TLB latencies and energy consumption have
been calculated using the CACTI tool [31] assuming a 32nm
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TABLE 2: System parameters for the baseline system.

Memory Parameters
Processor frequency 2.8GHz
TLB hierarchy Exclusive
Split instr & data L1 TLBs 8 sets, 4-way (32 entries)
L1 TLB hit time 1 cycle
Unified L2 TLB 128 sets, 4-way (512 entries)
L2 TLB hit time 2 cycle
Predictor interval value 250K, 50K, 10K, and 2K cycles
Page size 4KB (64 blocks)
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split instr & data L1 caches 64KB, 4-way (256 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 1MB/tile, 8-way (2048 sets)
L2 cache hit time 2 (tag) and 6 (tag+data) cycles
Directory cache 256 sets, 4 ways (same as L1)
Directory cache hit time 1 cycle
Memory access time 160 cycles

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

process technology. Four different predictor periods have
been evaluated, based on the study for TLB live and dead
times in [7]: 250K, 50K, 10K, and 2K cycles.

Our proposal is evaluated through a wide variety of
parallel workloads from several benchmarks suites, cover-
ing different sharing patterns and sharing degrees. Barnes
(8192 bodies, 4 time steps), Cholesky (tk15.O), FFT (64K
complex doubles), Ocean (258 × 258 ocean), Radiosity (room,
-ae 5000.0 -en 0.050 -bf 0.10), Raytrace-opt (teapot, optimized
by removing a lock acquisition for a ray ID which is not
used), Volrend (head), and Water-NSQ (512 mol., 4 time
steps) are from the SPLASH-2 benchmark suite [36]. Tomcatv
(256 points, 5 time steps) and Unstructured (Mesh.2K, 5
time steps) are two scientific benchmarks. FaceRec (script)
and SpeechRec (script) belong to the ALPBenchs suite [37].
Blackscholes (simmedium), Swaptions (simmedium), and x264
(simsmall) come from PARSEC [38]. Finally, Apache (1000
HTTP transactions) and SPEC-JBB (1600 transactions) are
two commercial workloads [39]. All the reported experi-
mental results correspond to the parallel phase of these
benchmarks.

6.1 Case Study: Coherence Deactivation

We test the virtues and overheads of token-based data
classification through Coherence Deactivation [3].

On current large CMPs, the directory cache suffers from
scalability problems. Directory area and latency overheads
increase in order to avoid evictions, as the eviction of a
directory entry usually entails the invalidation of blocks
on the lower memory hierarchy levels. Due to the limited
size or associativity of directory caches or the lack of a
backup directory, a system with a large number of cores
may produce frequent invalidations, which dramatically
increases the number of Coverage misses [40] (i.e., cache
misses caused by invalidations on the directory cache due to
the limited capacity) and, therefore, results in performance
degradation.

In this regard, coherence deactivation identifies pri-
vate [3] and read-only [41] (non-coherent) blocks, and
avoids storing those blocks in the directory cache, since they
do not require coherence maintenance. Therefore, directories

exploit their limited storage capacity more efficiently as
classification mechanism becomes more accurate.

Nevertheless, when transitioning from a non-coherent to
a coherent state, a recovery operation is required. Recovery
is a costly system-wide operation in order to atomically
update TLBs’ sharing status and flush non-coherent copies
of blocks in the L1 cache.

Furthermore, as full-adaptivity is provided, a page might
be reclassified to non-coherent again (i.e., from SW to PW).
Although initially no further actions are required, blocks
may have been accessed as coherent, allocating the corre-
sponding entry in the directory cache. When evicting the
directory entry due to a conflict, if it results in the invali-
dation of a non-coherent cache entry, an avoidable coverage
cache miss may occur afterwards. To prevent this to happen,
if a block is found as non-coherent when evicting a directory
entry, invalidation is acknowledged but the block is allowed
to remain in the cache as non-coherent.

7 RESULTS

Firstly, we show how TokenTLB classification behaves com-
pared to previous runtime classification approaches. Then,
we present some detailed results to analyze how CUP
operates. Finally, we show an overview of TokenTLB and
CUP compared to previous classification approaches when
applied to coherence deactivation.

7.1 Single Token Set: TokenTLB
This section demonstrates the classification accuracy and
efficiency of TokenTLB compared to previous classification
proposals.

Private and Read-Only data. The percentage of pri-
vate and shared (read-only/written) pages is a good gen-
eral metric for measuring the goodness of non-adaptive
classification approaches. Figure 9 shows how pages are
classified as Private, Shared-ReadOnly or Shared-Written
with different classification mechanisms. OS-RO is a non-
adaptive OS-based classification mechanism with Read-
only detection [41]. SnoopingTLB is an adaptive broad-
cast TLB-based classification approach [7], and TokenTLB is
our fully-adaptive token-based TLB classification approach.
Since SnoopingTLB does not distinguish shared-read-only or
shared-written pages, all shared pages fall under the same
classification category. However, for the sake of clarity, in
the graph it appears as Shared-Written for all SnoopingTLB
results. We observe as, averagely, the sum of private and
shared-read-only pages for OS-RO does not suffice to out-
match private pages for SnoopingTLB, which represents a
63.4% of all accessed pages, proving the relevance of an
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adaptive approach. However, in some cases, as Raytrace-
opt or SpeechRec, a lot of potential classification precision
is lost when read-only detection is not performed, as OS-RO
overpasses SnoopingTLB.

However, this metric is unfair for adaptive classification
mechanisms, where shared pages are frequently reclassified
as private, since reclassification is not reflected in the fig-
ure. Specifically, this situation is favored by the fact that
TokenTLB unlocks page access after the first TLB response,
which accelerates TLB miss resolution, but with ongoing
evictions it might end up in a shared access while tokens
are still in-flight. Therefore, in the figure it appears as shared
while it is naturally reclassified as private short after its first
access. However, computing both private and shared-read-
only pages for TokenTLB, classification characterization is
still improved up to 74.9%.

Since all TLB-based approaches are page-granularity
classification mechanisms, even though adaptivity allows a
page to be freely reclassified, blocks are never individually
reclassified during a local block generation time. Therefore,
the more a page classification is kept as private or read-
only, the more blocks will end up being considered as such.
Figure 10 shows L1 data cache misses classification, which
will determine how accesses to data blocks are treated. Even
though classification of private pages in Figure 9 gets similar
figures when comparing SnoopingTLB and TokenTLB, L1
data misses considered as private is greatly increased using
TokenTLB, since, unlike SnoopingTLB, page reclassification
occurs naturally during a page generation time. Specifically,
TokenTLB is able to classify 61.1% of L1 data cache misses
as Private on average, 40.8% more than SnoopingTLB. Also,
note as, contrary to SnoopingTLB, TokenTLB and OS-RO
are capable of recognizing read-only pages, representing
the 24.4% of L1 cache misses for TokenTLB, thus greatly
enhancing the classification accuracy.

Token TLB-to-TLB exchange. One key benefit of To-
kenTLB classification over previous proposals is how it
handles TLB-to-TLB transfers, obtaining their benefits (i.e.,
page classification, usage prediction allowance, and trans-
lation acceleration), while limiting the required responses.
As a result, TLB traffic is reduced, whereas system block-
age waiting for collecting answers is avoided. Figure 11
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Fig. 12: TLB size and usage prediction analysis.

represents the average amount of TLB responses per TLB
miss using TokenTLB. Note how broadcast TLB transfers
for SnoopingTLB require invariably N − 1 (being N the
number of cores in the CMP) responses after every TLB
miss. Conversely, TokenTLB requires just 0.93 responses per
TLB miss on average. This figure is slightly lower than one
as TLB responses are neither sent nor expected when the
tokens are held by the page table. In some cases, as Apache
or SpeechRec, it goes beyond one response per TLB miss.
Since tokens on non-silent TLB evictions are annotated by
the first valid page TLB entry in the eviction ring (which
might not be the current page owner), more than one owner
might coexist in the TLB structure.

7.2 Double Token Set: Cooperative Usage Prediction
This section studies the behavior of the Cooperative Usage
Prediction strategy introduced in this paper, considering
predictor periods ranging from 250K to 2K cycles, and com-
paring it with previous prediction strategies (e.g., Forced-
UP). Baseline in this section for all prediction mechanisms
is No-UP (i.e., TLB-based classification without predictor),
which refers to TokenTLB.

TLB size influence. The main purpose of employing a
usage predictor is to make classification accuracy for TLB-
based classification mechanisms unaffected by TLB size. To
illustrate this, Figure 12 shows how classification varies with
different TLB sizes (associativity is kept invariable).

On the one hand, the average percentage of cycles per
page spent as private is shown in Figure 12a. As expected,
No-UP gradually diminishes the private time proportion per
page as the TLB size increases, to represent just 43.6% for
a 4096 entries’ TLB. Similarly, although usage prediction
increases the time spent as private, Forced-UP is still affected
by TLB size variations, progressively losing accuracy with
larger TLBs. Conversely, CUP remains invariable, keeping
pages 22% more time as private on average with CUP 250K,
and up to 36.8% with CUP 2K, both compared to No-UP
with the largest TLB analyzed. Also, CUP 250K spends 8.1%
more cycles as private compared to Forced-UP 250K.

On the other hand, Figure 12b shows how TLB miss rate
evolves for different TLB sizes. As can be expected, applying
usage prediction techniques comes with a cost, since it
entails increasing the TLB miss rate as the predictor period
is reduced. Moreover, the larger the TLB size, the lower the
TLB miss rate. Surprisingly, TLB miss rate reduction evolves
faster with Forced-UP, since many positive feedback TLB
invalidations are naturally and gradually prevented only by
increasing TLB size. Unfortunately, reducing the TLB miss
rate potentially reduces private page detection. Per contra,
classification accuracy loss can be prevented through TLB
cooperation, as shown in Figure 12a, since reclassification
opportunities are unveiled without TLB miss reliance.



1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2782808, IEEE
Transactions on Parallel and Distributed Systems

11

 250K  50K  10K  2K

Predictor period interval

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

rm
. 

T
L

B
 i
n

v
a

lid
a

ti
o

n
s Base-UP

Forced-UP
CUP

(a) Predictor-induced TLB in-
validations.

 250K  50K  10K  2K

Predictor period interval

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

N
o
rm

. 
T

L
B

 m
is

s
e
s

Base-UP
Forced-UP
CUP

(b) TLB misses normalized to
non-prediction.

 250K  50K  10K  2K

Predictor period interval

0.0

2.0

4.0

6.0

8.0

10.0

12.0

N
o
rm

. 
T

L
B

 n
e
tw

o
rk

 f
lit

s Base-UP
Forced-UP
CUP

(c) TLB network flits normal-
ized to non-prediction.

No-UP  250K  50K  10K  2K

Predictor period interval

0.0

5.0

10.0

15.0

20.0

25.0

30.0

%
 o

f L
1 

ca
ch

e 
flu

sh
in

g 
m

is
se

s

Base-UP
Forced-UP
CUP

(d) Proportion of L1 cache
flushing misses.

Fig. 13: Usage prediction overhead analysis.

Prediction overheads analysis. CUP aspiration and one
of its main contributions is to smartly invalidate TLB entries
only when a page may effectively transition to private,
dramatically reducing the amount of predictor-induced in-
validations and their consequences (e.g., miss-predicted in-
validations), as seen in Figure 13a (normalized to Base-UP
with 2K period). Forced-UP lessens the amount of predictor-
induced invalidations by detecting positive feedback sit-
uations, as much as 22% reduction for the 2K predictor
period compared to Base-UP. Unlike previous predictors,
CUP nearly flattens the proportion of extra invalidations for
all configurations. However, the most aggressive predictor
period considered in the study still induces some additional
invalidations, which degrades prediction accuracy to favor
slightly better classification accuracy. Yet 4 out of 5 invalida-
tions are still avoided compared to Base-UP.

Therefore, eliminating most miss-predicted invalidations
in the TLB implies reducing the amount of predictor-
induced TLB misses, as shown in Figure 13b. TLB misses
in the figure are normalized to a non-predicting token-
counting classification. Specifically, CUP halves the amount
of TLB misses compared to Forced-UP, particularly on
greater predictor periods.

Moreover, the network TLB traffic issued to support
prediction-based classification is dramatically increased as
a consequence of predictor-induced TLB misses, since the
mechanism tries to obtain tokens through network explo-
ration. However, Figure 13c shows how the total TLB traffic
increase is tackled by TLB cooperation, halving it compared
to Forced-UP, and amply offsetting the extra TLB traffic
issued by CMR messages.

Finally, note how TLB-based classification mechanisms
induce some extra cache misses as a consequence of con-
flicted TLB entries and TLB-cache inclusion policy. In ad-
dition, employing a usage predictor for TLBs may increase
the amount of blocks forcefully flushed from the cache due
to TLB invalidations and recoveries. Figure 13d depicts the
average L1 cache misses proportion caused due to the TLB-
cache inclusion policy in order to study the impact of usage
prediction. Expressly, it shows how CUP induces just up
to an extra 5% of L1 cache misses for the smallest predictor
period, whereas Base-UP and Forced-UP gets up to 28.2% and
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18.4% extra misses, respectively, for the same period period.
These extra L1 misses are caused by frequent, brute-force,
system-wide invalidations (and consequent cache flushes)
after every TLB miss.

Cruise-Missile Reclassification analysis. System-wide
usage prediction on CUP should be as accurate as possible
to avoid premature invalidations. In this sense, Figure 14
shows the proportion of reclassification tryouts that success-
fully end up transitioning to private. Specifically, for any
predictor period in the evaluation, the success rate for page
reclassification to private through CMR messages is greater
than 85%, proving the accuracy of our cooperative predictor.

A cruise-missile message progresses node by node
through the network until reclassification either succeeds
or is aborted. Hence, CMR messages are not required to
visit all system nodes in the common case. Figure 15 shows
the number of average hops that a CMR message has to
perform to finish a reclassification process. Regardless of
the predictor period employed, a CMR message requires
less than 8 hops in average in order to conclude a reclas-
sification process. Thus, just half the maximum number of
hops are taken for the 16-core CMP system considered in the
evaluation. In the case of a 250,000 cycles predictor period,
a CMR tryout is completed after just 5.7 hops in average.

Reclassification frequency is indicative of prediction ag-
gressiveness. Unlike in a non-cooperative predictor, where
each and every TLB miss is seen as an opportunity for
reclassification, CUP smartly invalidates TLB entries by
sending a CMR message when a reclassification opportu-
nity arises. Therefore, for comparison purposes, Figure 16
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depicts the amount of CMR tryouts per TLB miss of Forced-
UP. Particularly, CUP reclassification rates for 250K, 50K,
10K, and 2K predictor periods are 0.03, 0.045, 0.065, and
0.09 tryouts per TLB miss, respectively.

Conclusion. CUP improves the time spent as private per
page by 22% over a non-predicting classification, effectively
making classification characterization independent of TLB
size (contribution #1). Also, CUP constrains TLB traffic to a
third, compared to a non-cooperative predictor, as it avoids
4 out of 5 aimlessly induced TLB invalidations (contribution
#2). Efficient CMR messages are sent exclusively when a
reclassification opportunity is detected, obtaining over 85%
success rate in private reclassification, and less than 8 nodes
visited per tryout.

7.3 Applying to Coherence Deactivation
We chose coherence deactivation as our study case to test the
benefits of the proposed data classification scheme. Results
for 10K and 2K predictor periods are not displayed in
most figures of this section for the sake of clarity. Anyhow,
although they reduce directory usage to a greater extent,
inasmuch as TLB and cache miss rates are increased by 3.6%
and 2.5%, respectively, its application may be discouraged.
Base-UP is not employed for similar reasons. Baseline of this
section, not shown either in the figures, does not employ a
coherence deactivation strategy.

Coherence maintenance is deactivated when a block
access is considered non-coherent by the classification mech-
anism. For SnoopingTLB, which only characterizes mem-
ory accesses into private/shared scheme, all shared pages
are coherent. Differently, TokenTLB also distinguish read-
only pages, so only shared-written pages are considered
coherent. Figure 17 shows the average number of directory
entries required per cycle normalized to baseline. Constrain-
ing the directory usage is the ultimate goal for coherence
deactivation and is strongly dependent on the accuracy of
the classification mechanism. This way, TokenTLB greatly
improves directory usage by 65.9% over baseline and 21.9%
over SnoopingTLB, on average. Finally, both Forced-UP and
CUP further reduce directory entries per cycle by up to
71.7% for a 50K period.

Reducing directory pressure reduces cache coverage
misses, which, along with the fact that TLB-based clas-
sification accelerates page translation through TLB-to-TLB
transfers, has a direct positive impact on execution time.
Specifically, execution time is improved by 20.0% using
TokenTLB compared to Base, as shown in Figure 18. Also, ex-
ecution time is reduced by 2.4% compared to SnoopingTLB,
as TokenTLB unblocks page access earlier after TLB misses
and provides more accurate private classification.
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Then, when accounting for prediction mechanisms,
Forced-UP does not suffice to overcome its own overheads
over the benefits obtained from a better classification when
applied to coherence deactivation. In fact, blindly invali-
dating translation entries gradually damages system perfor-
mance compared to TokenTLB, by 3.1% and 4.7% for Forced-
UP 250K and Forced-UP 50K, respectively. On the contrary,
CUP squeezes coherence deactivation to its maximum while
mostly eliminating prediction overheads, smartly invalidat-
ing translation entries through precise system-wide predic-
tions. Altogether, CUP positively impacts execution time,
not only avoiding performance penalization, but also im-
proving execution time with CUP 250K by 5.8% compared
to TokenTLB, 8.8% over Forced-UP 250K, and up to 25.8%
over baseline.

Our proposal also entails a reduction in the cache hier-
archy dynamic energy consumption, as shown in Figure 19.
TokenTLB reduces overall consumption by 21.9% compared
to baseline, particularly L1 cache energy consumption, since
cache pressure is reduced through coherence deactivation.
Network consumption is also significantly decreased, al-
though proportionally to the total consumption its impact is
diluted. Comparatively, TokenTLB reduces the dynamic con-
sumption by 5.7% with respect to SnoopingTLB. Nonethe-
less, Forced-UP increases the consumption over TokenTLB,
by 3.3% and 4.8% for 250K and 50K predictor periods,
respectively, due to the burden of extra induced TLB and
cache misses. Conversely, CUP 250K reduces dynamic con-
sumption by 4.7% over TokenTLB, and 8.0% with respect to
Forced-UP.

7.3.1 System Scalability
This section shows how the different classification ap-
proaches scale when applied to deactivate coherence. Due
to the slowness of the simulation tools, this study is only
performed using SPLASH 2 benchmarks and scientific ap-
plications.

On the one hand, Figure 20a depicts the average exe-
cution time for 16- and 32-cores’ systems. Specifically, it
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Fig. 20: Scalability analysis of classification approaches
when increasing core count.

shows how TokenTLB scales better compared to SnoopingTLB
and OS-RO, reducing the execution time by 30.5% on a 32-
cores CMP, while SnoopingTLB reduces it by 25.15% over
the baseline. Then, contrary to Forced-UP, CUP further re-
duces execution time, by up to 33.7% with CUP 250K. This
improvement evidences how performing a more accurate
classification entails better directory usage and ultimately
better system performance, specially with CUP, which miti-
gates prediction overheads.

On the other hand, Figure 20b shows the average traf-
fic issued for 16- and 32-cores’ systems. TokenTLB reduces
traffic to a greater extent. Expressly, TokenTLB maintains the
traffic reduction up to 38.6% for a 32-cores system, while
OS-RO is only able to reduce the traffic by 32.5%. Finally,
prediction mechanisms introduce some traffic overhead.
However, while Forced-UP 50K increases network traffic by
11.4% over TokenTLB for a 32-cores CMP, CUP 50K increase
is constrained to just 3.7%.

8 CONCLUSIONS

This paper introduces a novel token-based scheme for both
page classification and usage prediction (TokenTLB+CUP).
On the one hand, TokenTLB is a TLB classification mech-
anism based on counting and exchanging tokens through
TLB-to-TLB communication, where only TLBs owning the
translation are in charge of supply them. Token counting is
highly efficient for performing a fully-adaptive classification
into a private-shared and read-only scheme.

On the other hand, we introduce Cooperative Usage Pre-
dictor (CUP), a token-based prediction mechanism designed
to reduce the generation time of page translations in TLBs
according to its usage in order to service a more accurate pri-
vate classification. CUP is completely independent on TLB
size, eagerly unveils private pages, and smartly invalidates
TLB entries only when an opportunity for reclassification
to private is detected. To do that, we propose to utilize a
second token set, namely usage tokens, representing the page
usage throughout the system. Employing disuse announce-
ments, where usage tokens are released, the opportunity for
reclassification is promptly discovered. Then, our proposed
cruise-missile approach allows an efficient reclassification
to private at a minimum cost in terms of performance and
traffic. As a consequence, CUP enables optimizations for
private accesses with minimum overhead. All in all, unlike
previous approaches, CUP manages to make usage pre-
diction appealing, promoting classification accuracy while
effectively improving system performance.
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