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Abstract

Direct Numerical Simulations of turbulent heat transfer in a channel flow are presented for three different Reynolds
numbers, namely Reτ = 500, 1000 and 2000. Medium and low values of the molecular Prandtl number are studied,
ranging from 0.71 (air), down to 0.007 (molten metals), in order to study its effect on the thermal flow. Mixed boundary
conditions at both walls are used for the thermal flow. Mean value and intensities of the thermal field were obtained.
Two different behaviors were observed, depending on the Prandtl and Péclet numbers. The expected logarithmic
behavior of the thermal flow completely disappears for Prandtl below 0.3. This is a direct effect of the thicker viscous
thermal layer generated as the Prandtl number is reduced. Von Kármán constant was computed for cases above this
Prandtl, and turbulent Prandtl and Nusselt numbers were obtained for all the cases. Finally, the turbulent budgets for
heat fluxes, temperature variance and its dissipation rate are presented. As a general result, there is a scaling failure
near the wall in very cases studied, which is accentuated for lower Prandtl numbers. The statistics of all simulations
can be downloaded from the web page of our group.
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List of symbols
B Logarithmic profile constant
cp Specific heat at constant pressure
h Channel half height
h Convective heat transfer coefficient
Nu Nusselt number
P Pressure
Peτ Péclet number (=ReτPr)
Pr Prandtl number (= ν/α)
Prt Turbulent Prandtl number
qw Normal heat flux to the walls
qtotal Total heat flux
Re Reynolds number (= Ubh/ν)
Reτ Reynolds friction number (= uτh/ν)
t Time
Tτ Friction temperature

(
= qw/

(
ρcpuτ

))
ui Velocity fluctuation
uτ Friction velocity

(
=

√
τw/ρ

)
Ui Velocity in the direction xi

Ub Bulk velocity
(
= 〈U1〉x,y,z,t

)
xi Coordinate xi (≡ x, y, z)
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Greek
α Thermal diffusion coefficient
θ Temperature fluctuation
Θ Transformed temperature
κ Thermal conductivity
κt Thermal von Kármám constant or

thermal eddy diffusivity
ν Viscosity
νt Momentum eddy diffusivity
ρ Density

τw Statistically averaged wall shear stress
Superscripts
•′ Root mean square
• Statistically averaged
• Normalized by h, Ub and ν
•+ Normalized by uτ, Tτ and ν

Subscripts
〈•〉xi Mean value in xi direction

1. Introduction

Turbulent flows are intrinsic to almost any flow in en-
gineering. Particularly, they play a crucial role in the
transport of heat. In a recent study for NASA, Slotnick
et al [1] highlighted the importance of thermal flows in
aeronautics applications for the foreseeable future. As
an example, the performance of the high pressure tur-
bines present in aircraft engines is limited by the max-
imum temperature that can be reached without deform-
ing the blades. An improvement in the knowledge of
thermal flow around the blade could then increase the
efficiency and reduce the emissions of the engine [2],
[3]. To cite only a couple of examples, for low and
very low Prandtl numbers a better knowledge of the dy-
namics of thermal flows is needed for the simulation of
nuclear Liquid Metal Reactors (LMR) [4, 5]. Also, a
direct application of the very low Prandtl cases is con-
centrated solar power (CSP), as stated in Cachafeiro et
al. [6]. However, the dynamics of turbulent flows is
still an open problem in physics. If thermal flows are
included, the situation is even worse, due to the com-
plexity of thermal flows experiments. Thus, Direct Nu-
merical Simulation (DNS) has become one of the main
tools to study the behaviour of thermal flows where little
is known.

The first DNS of a thermal flow was carried out by
Kim and Moin in 1987 [7], for Reτ = uτh/ν ≈ 180 and
Pr = 0.1, 0.71 and 2, where uτ is the friction velocity, h
is the half channel height and ν is the kinematic viscos-
ity. The friction Reynolds number, Reτ, characterize the
turbulent behaviour of the flow. The molecular Prandtl

number, Pr, is the ratio between the momentum diffu-
sivity (kinematic viscosity) to the thermal diffusivity. In
this work, values from 0.007 (melted sodium) to 0.71
(air) are studied. Another dimensionless number that
can be derived from Reτ and Pr is the friction Péclet
number, Peτ = ReτPr. Peτ plays the same role in the
thermal equation than Reτ does in the momentum equa-
tions. Therefore, Peτ can be understood as a parameter
of how viscous or turbulent the thermal flow is.

Kim and Moin [7] obtained first order turbulence
statistics, including the turbulent Prandtl number, de-
fined later. In addition, for Pr = 0.71, correlations be-
tween the velocity and the temperature were also cal-
culated. A somewhat artificial boundary condition was
imposed in which heat was generated internally and re-
moved from both cold isothermal walls. This condition
for the thermal flow plays an analogous role to that of
the pressure gradient does for the velocity field. Later,
Lyons et al. [8] performed a simulation for Reτ ≈ 150
and Pr = 1. The boundary condition used in this later
work consisted in both walls kept at different temper-
atures. Finally, Kasagi et al. [9] performed a DNS for
Reτ ≈ 150 and Pr = 0.71 with a more realistic boundary
condition, the Mixed Boundary Condition (MBC from
now on). For this condition, the average heat flux over
both heating walls is constant and the temperature in-
creases linearly in the streamwise direction. The instan-
taneous heat flux may vary with respect to time and po-
sition. This is the boundary condition used in this work.

In the work done by Piller [10], three different bound-
ary conditions were used and the differences in the tem-
perature field were studied. The first one, ideal isoflux
boundary condition, assumes that the instantaneous wall
heat fux is both uniform in space and constant in time.
Therefore, the tieme-averaged temperature is linear with
x. For the ideal isothermal boundary condition, the
time-averaged wall temperature is uniform and con-
stant, resulting in an exponential variation of the time-
averaged temperature difference. The last one was the
MBC, the one used in this work (explained above). He
found that the MBC acts as an ideal isothermal bound-
ary condition in the inner layer and as an ideal isoflux
boundary condition in the outer layer.

After these simulations were made, the trend has been
to increase the friction Reynolds number for different
molecular Prandtl numbers. However, values of Reτ
and Pr are limited by the computational cost, which
can be approximated by L2

xLyRe4
τPr3/2 [11]. Thus, the

Reynolds number achieved is still low for a majority of
Prandtl numbers. Kawamura et al. [12] made an ex-
haustive analysis of the Prandtl number influence for
Reτ ≈ 180. Pr varied for a wide range from 0.025 to
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5. First order turbulent statistics were calculated, but
also the budgets of the transport equations for the tur-
bulent heat flux and the temperature variances were ob-
tained. One year later, Kawamura et al. [13] performed
a new simulation increasing the Reynolds number up to
a value of Reτ ≈ 395 and for Pr = 0.025, 0.2 and 0.71.
They obtained the same set of results than in the previ-
ous paper and also images of the instantaneous velocity
and thermal field were visualized to analyze the struc-
ture of the vortices.

Abe at al. [14] reached Reynolds numbers of Reτ ≈
640 and 1020 for Pr = 0.025 and 0.71, in both cases.
Seki et al. [15] made a simulation for Reτ ≈ 180 and
for Pr = 0.71, 1, 2 and 10. The values of Pr = 0.025
and Pr = 10 are, up to the knowledge of the authors, the
lowest and highest values, respectively, used in a DNS
of a thermal channel flow. To increase the Reynolds
number, one of the alternatives would be to reduce the
length and width of the computational box. This box,
however, has to be large enough to accurately describe
the flow. Lozano-Durán and Jiménez for isothermal
channel flow [16], and Lluesma et al. for thermal ones
[17], found out that a relatively small computational box
of stream- and span-wise sizes of only 2πh×πh can sat-
isfactorily recover the one-point statistics of the flow.
Using this box, Lluesma et al [17] ran a simulation for
Pr = 0.71 and Reτ = 2000. Among other things, they
found that for these two parameters the thermal flow
shows the first stages of a thermal logarithmic layer for
a thermal von Kármán constant of 0.44. This constant
seems to be actually constant in the range of Reynolds
numbers studied. In 2016, Pirozzoli et al. [18] ran dif-
ferent simulations for three different Prandtl numbers:
0.2, 0.71 and 1 using a simimilar boundary condition
to [7]. Four different friction Reynolds numbers were
used: 550, 1000, 2000 and, for the first time up to the
knowledge of the authors, 4000. A comparison of Piroz-
zoli et al.’s data and the one obtained in this work is
presented in section 3.5.

In this paper, moderated Reynolds numbers of values
500, 1000, and 2000 are simulated. The behaviour of
the thermal flow for medium to low Prandtl numbers is
studied. Table 1, summarizes the simulations made for
this work. Already available simulations and the new
ones are shown. Most of these simulations are new and,
for the first time, Prandtl number below 0.01 have been
simulated for turbulent channel flows. First order turbu-
lent statistics and turbulent budgets have been obtained
and will be discussed.

The structure of the paper is as follows. In the sec-
ond section, the equations together with the numerical
method and the different parameters of each simulation

Pr Reτ 500 1000 2000
0.71 x [14] x [14] x [17]
0.5 ◦ ◦ ◦

0.3 x [14] x [18] x [18]
0.1 x [14] x [18] x [18]
0.05 ◦ ◦ ◦

0.02 x [14] x [14] ◦

0.01 ◦ ◦ ◦

0.007 ◦ ◦ ◦

Table 1: Summary of cases studied. The x indicates a published simu-
lation at close values of Reτ and Pr. The ◦ denotes a new simulation.

are described. In the third and fourth sections, the dy-
namics of the different flows are discussed. Finally, the
fifth section contains the conclusions.

2. Numerical procedure

2.1. Flow configuration and computational domain

In this work, a new set of DNS of a passive ther-
mal flow in a Poiseuille turbulent channel has been con-
ducted. The flow is considered incompressible, and
heated by a uniform heat flux from both walls. The aver-
age walls temperature is independent with time and in-
creases linearly along the streamwise direction. These
conditions are known as Mixed Boundary Conditions
(MBC).

A schematic representation of the computational box,
with periodicity in the streamwise and spanwise di-
rections, can be seen in Figure 1, where contours of
the velocity are shown for the case Reτ = 500 and
Pr = 0.3. The dimensions of the computational box
are 2πh, 2h, πh in the streamwise, wall-normal and span-
wise directions, respectively. Their correspondent spa-
tial coordinates are represented by x, y and z, respec-
tively. The velocities for each direction are U, V and W
or, in index notation, Ui. The temperature is represented
by T and the transformed temperate (see below) by Θ.
Using the Reynolds decomposition any flow magnitude,
denoted by uppercase letters, can be decomposed into
its average part, which is denoted by an overbar, and its
fluctuating part, which is denoted by lowercase letters,
i. e. U = U + u.

2.2. Governing equations and numerical schemes

The behaviour of thermal flows is characterized by
the Navier Stokes equations, this is continuity and mo-
mentum equations,
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Cases Colour Re Nx Ny Nz

Reτ = 500 10200 384 251 384
Reτ = 1000 22300 768 383 768
Reτ = 2000 48500 1536 633 1536

Prandtl 0.71 0.5 0.03 0.01 0.05 0.02 0.01 0.007
Symbol 4 D � � © 2 3 O

Table 2: Parameters of the simulation. Three different Reynolds numbers for eight different Prandtl numbers have been simulated. The third column
shows the bulk Reynolds numbers. Nx, Ny and Nz are the number of collocation points in each of the three directions of the computational box.
Line colours (second column) and symbols (second table) are used to identify the cases through all the figures of this article.

Figure 1: Schematic representation of the computational box. The
flow is driven by a constant pressure gradient and moves from the left
to the right. Both walls are considered adiabatic, and the thermal heat
flux, qw, is constant. The thermal flow is shown for Reτ = 500 and
Pr = 0.3.

∂tU+
i + U+

j ∂ jU+
i = −∂iP+ +

1
Reτ

∂ j jU+
i , (1)

∂ jU+
j = 0, (2)

and the energy equation,

∂tΘ
+ + U+

j ∂ jΘ
+ =

1
ReτPr

∂ j jΘ
+ + U+

1 /〈U
+〉xyz. (3)

For this last equation, the transformed temperature,
defined as Θ = T − Tw, has been used to satisfy the
MBC. In the streamwise direction, the hypothesis is
that temperature increases linearly. Subtracting Tw to
T makes Θ periodic, as Tw carries the non-periodic part
of the thermal flow. Among other things, this allows the
use of highly efficient Fourier methods in the stream-
wise direction. In order to solve equations (1), (2) and
(3), the same method that was used in [17] has been em-
ployed. This method is based on the velocity-vorticity

method developed in [7]. The Navier Stokes equations
are transformed into equations for the wall-normal vor-
ticity, Ωy, and the Laplacian of the wall-normal veloc-
ity, Φ. Then, the rest of variables can be recovered from
these two fields using continuity and vorticity equations.
For the spatial discretization, dealiased Fourier expan-
sions in the x and z direction are implemented. The y
direction is discretized through a seven-point compact
finite differences scheme with fourth-order consistency
and extended spectral-like resolution [19]. The tempo-
ral discretization is a third-order semi-implicit Runge-
Kutta scheme [20].

2.3. Simulation parameters

Tables 2 and 3 show the mesh information for the dif-
ferent simulations performed. The number of points in
the y direction are chosen in such a way that the spac-
ing obtained is proportional to the local isotropic Kol-
mogorov scale η =

(
ν3/ε

)1/4
. The increment in y is set

to be ∆y = 1.5η. Therefore, the wall normal resolution
in the wall in physical space is ∆y+ = 0.72, 0.44 and
0.32, for Reτ = 500, 1000 and 2000, respectively. In
the center of the channel, the resolution is ∆y+ = 5.3,
7.4 and 8.8, for Reτ = 500, 1000 and 2000, respectively.
On the other hand, the streamwise and spanwise resolu-
tion in physical space is ∆x+ ∼ 8.18 and ∆z+ ∼ 4.09.
These values are similar to many other trusted simula-
tions [12, 14, 17, 21, 22]. The code used for this sim-
ulation is a variation of LISO code [21, 22, 23, 24] for
thermal flows that was validated in [17].

The procedure to run the simulation is the same as
in other works [17, 21, 22, 23, 24]. For every case one
Reynolds and one Prandtl number are chosen. An initial
file is used to initialize the simulation. This initial file
has been taken form a similar case previously simulated.
When the variables of the simulation have reached a sta-
tistically steady state, statistics of the flow are collected.
As a first rule of thumb, the simulations were run for 20
wash-outs, where a wash-out is the time needed for an
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(a) (b)

Figure 2: Colour online. (a) Mean temperature profile in inner (bottom, dashed line) and outer (top, pointed line) scales for Reτ = 400 and Pr =

0.025. (b) Temperature RMS (dashed) and streamwise (dash-pointed) and wall-normal (pointed) heat fluxes. Black solid lines from Kawamura’s
database [14].

∆ Wall Center
x+ 8.18
z+ 4.09

y+ (Reτ = 500) 0.72 5.3
y+ (Reτ = 1000) 0.44 7.4
y+ (Reτ = 2000) 0.32 8.8

Table 3: Physical resolution in x, y and z directions, at the wall and in
the center line.

eddy to cross the channel. However, before reaching the
statistically steady state, there exists a transition phase
in which the variables have to adapt to the new values of
Reτ and Pr. This convergence, especially for the tem-
perature variable, is very time consuming and it can be
as long as the time needed to gather all the statistics. In
order to overcome this problem, the expected mean tem-
perature of the initial field has been extrapolated from
previous simulations, reducing the convergence time to
a negligible fraction of the total simulation time.

In order to validate the code for lower Prandtl num-
bers, a simulation for Reτ = 400 and Pr = 0.025 has
been performed. This Prandtl number is, up to the
knowledge of the authors, the lowest Prandtl number
simulated in turbulent channel flows and was done first
by Abe et al [14]. The results of the simulation have
been compared with the data provided in Kawamura’s
database [14]. This comparison is shown in Figure 2.
Figure 2a shows a perfect agreement for the mean tem-
perature in both inner and outer scales. Also, in figure
2b all curves collapse almost perfectly for the tempera-

ture variance and both heat fluxes. The very small differ-
ences can be due to small statistical uncertainties during
the simulation, a slightly different Reynolds number or
a different numerical scheme.

In order to further validate the database, an optimum
averaging time of the simulation for statistical conver-
gence could have been used as in [25]. Instead, the to-
tal heat flux has been calculated and compared with the
molecular and turbulent heat fluxes. These equations
come from integration of equation (3),

q+
total =

Molecular︷   ︸︸   ︷
1
Pr

dΘ+

dy+

Turbulent︷  ︸︸  ︷
− v+θ+ =

Total︷                         ︸︸                         ︷
1 −

1
Reτ

∫ y+

0

U+
1

〈U+〉 xyz
dy .

(4)

In Figure 3, all three heat fluxes are represented for
all Prandtl numbers at Reτ = 1000 and 2000. Molecu-
lar and turbulent heat fluxes are compared with the total
one and the difference is obtained. It has been consid-
ered that enough statistics were obtained when this dif-
ference was below 10−3. As a first result, turbulent heat
flux decreases for lower Prandtl numbers. This entails a
thermal flow that is less turbulent. The magenta line is
formed by the cross points between the molecular and
turbulent heat fluxes. For a certain value of Prandtl, tur-
bulent heat flux is lower than molecular heat flux in all
the channel. This value of the Prandtl number increases
with the Reynolds number, since a higher Re entails a
more turbulent flow.
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(a) (b)

Figure 3: Colour online. Heat fluxes for (a) Reτ = 1000 and (b) Reτ = 2000. Molecular (blue solid), turbulent (black, dash-dot) and total (green,
dashed) heat fluxes. Red pointed line represents the difference between the LHS and RHS of equation 4. Magenta solid line is formed by the cross
points between molecular and turbulent heat fluxes. Simbols as in Table 2.

3. Results

3.1. Instantaneous visualizations

The instantaneous visualizations of the velocity and
thermal fields for different simulations for Reτ = 2000
are shown in Figure 4. The objective is to compare the
turbulent scales and see how a decrease in the Prandtl
number affects to these scales. In figure 4a, the velocity
field for Pr = 0.71 is shown. These turbulent scales are
comparable to the ones presented in the thermal field
for the same Prandtl number, figure 4b. This result was
expected since Pr ∼ 1 and, therefore, Peτ ∼ Reτ.

As equations (1-3) are solved for each case, the ve-
locity field for Pr = 0.05 and Pr = 0.007 is similar
to the one presented in figure 4a. However, the instan-
taneous temperature fields shown in figures 4c and 4d,
respectively, are different. For low Prandtl number the
thermal flow becomes less turbulent and, for the small-
est case studied, the thermal flow is almost laminar. This
confirms once again that reducing the Prandtl number,
the thermal field is less turbulent, reducing the turbulent
heat flux and the heat transfered by convection.

3.2. Mean temperature profiles

Mean temperature profiles are shown in figure 5a.
Keeping Pr constant, all Θ+ collapse in the near-wall
and logarithmic region. In the central zone, when Reτ
increases, temperature profiles go deeper and, for the
same Pr, the slope of the line slightly decreases.

An important parameter that can be derived from the
mean temperature profile is the thermal von Kármán

constant, κt. For sufficiently high Pr numbers, the mean
temperature profile can be described in the logarithmic
region with the following relation

Θ+ =
1
κt

ln
(
y+) + B. (5)

The classic limits for this logarithmic region for the
streamwise velocity are y+ ≈ 70 and y/h = 0.2, accord-
ing to Jiménez [26]. The same limits have been used for
the thermal flow. Even if a logartimic layer is not really
present until a higher Reynolds is reached [27, 28, 29],
an indicator of this region is the first minimum of the
diagnosis function. This first minimum, and thus a log-
arithmic layer, appears for Prandtl numbers greater than
approximately 0.3. It is worthy to stress that all the cal-
culations shown below are a first approximation to the
actual value of κt. A truly logarithmic layer is not ex-
pected untill at least Reτ ≈ 5000.

The values of κt and B are collected in Table 4. Notice
that the value of κt increases slightly with an increase
of the Reτ number, for the smaller Reynolds number.
This is caused by a slight reduction of the slope of U
in the logarithmic region for the same Pr when Reτ is
increased. However, for Reτ ≥ 1000, κt seems to be, in-
deed, constant, with an approximate value of 0.44. This
result agrees with the one obtained by Abe et al [14].
The constant B changes for each Prandtl number. For
Pr = 0.71, a value of B ≈ 3 is obtained, which also
agrees with the one obtained by Abe et al [14]. When
the Prandtl number is reduced to 0.5 and 0.3, the values
of B are reduced to approximately 0.6 and −1.9, respec-
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(a) (b)

(c) (d)

Figure 4: Instantaneous visualizations for Reτ = 2000 and (a) velocity field for Pr = 0.71, (b) thermal field for Pr = 0.71, (c) thermal field for
Pr = 0.05 and (d) thermal field for Pr = 0.007.

tively.

κt
Reτ

500 1000 2000
0.71 0.417846 0.436265 0.439748

Pr 0.5 0.419616 0.434211 0.435943
0.3 0.426754 0.438126 0.436668

B Reτ
500 1000 2000

Pr
0.71 2.888235 3.107018 3.052149
0.5 0.548110 0.703806 0.641138
0.3 -1.988293 -1.870591 -2.000945

Table 4: Thermal von Kármán constant and B values.

To further explore this logarithmic region, the thermal
diagnosis function, defined as

ΞT = y+∂y+Θ+, (6)

is used. In figure 5b, ΞT is plotted for all cases. It can
be seen how for the three greater Pr numbers, there ex-
ist two maximum values. The y+ location of the first
maximum does not depend on Reτ. However, its value
decreases slightly for an increase in the Reynolds num-
ber. When the Prandtl number is decreased below 0.3,

this first maximum disappears and, therefore, the loga-
rithmic region. On the other hand, the y+ coordinate of
the second maximum is independent of Pr. In outer co-
ordinates (not shown), the position of the second maxi-
mum is independent of both Reτ and Pr and it is located
at y/h = 0.5. It has been observed that the value of
ΞT at this second maximum is constant for Peτ > 30.
When this Péclet number is reduced below 30, the value
of second maximum is then reduced. Therefore, the be-
haviour of the second maximum cannot be characterized
only by Pr.

3.3. Nusselt number
Coming back to figure 5a, black lines represent the

thermal law of the wall, Θ+ = Pr · y+. In the conduction
region of the flow, Θ+ behaves approximately according
to this law. It can be seen that a decrease in the Pr num-
ber entails a bigger conductive region. Therefore, an
increase in the heat transfer by conduction is expected.

The Nusselt number is calculated according to the
following definition [12]

Nu =
Lh
κ

=
2ReτPr
〈Θ+〉xyz

=
2Peτ
〈Θ+〉xyz

, (7)

where L is a characteristic length, in this case it is the
channel height of the computational box, 2h; h is the
convective heat transfer coefficient; and κ is the thermal
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(a) (b)

Figure 5: Colour online. (a) Mean temperature profile. Black lines correspond to the thermal law of the wall. (b) Thermal diagnosis function. The
dashed horizontal line corresponds to a thermal von Kármán constant of 0.44. Colours and lines as in Table 2.

Figure 6: Colour online. Nusselt number. Thin black line from Kawa-
mura et al [12] for Reτ = 180. Colours and lines as in Table 2.

conductivity. According to this definition, the minimum
Nusselt number that can be obtained for the present con-
figuration is 4. In such a case, temperature will behave
following the thermal law of the wall in the entire chan-
nel. In Figure 6, obtained Nusselt number are plotted
as a function of the Prandtl number. Up to the knowl-
edge of the authors, it is the first time that these results
are provided for Prandtl numbers of 0.01 and 0.007 and
Reτ > 500. Nusselt number was calculated by Kawa-
mura et al [12] for Reτ = 180 and Prandtl numbers from
0.025 to 5. They found that in the range of Prandtl be-
tween 0.2 and 1.5, Nu had a linear logarithmic incre-
ment. This agrees with the results obtained in this paper

for larger Re numbers. In addition, it is seen that the
range of Prandtl numbers where Nu has a linear log-
arithmic increment is larger when Re is increased (at
least the lowest limit is reduced). As it was expected,
the Nusselt number decreases with Reτ or Pr numbers.
This entails in a decrement of the heat transfered by con-
vection.

3.4. Temperature and heat fluxes intensities
The root mean square of the temperature variance,

θ′+, and the heat fluxes in the streamwise, u+θ+, and
wall-normal, v+θ+, directions are represented in Figure
7. All Reτ = 2000 cases are plotted as a function of
y/h in figures 7a and 7c. Meanwhile, in figures 7b and
7d, the same functions are plotted for all three Reynolds
numbers of study and for three different Prandtl num-
bers: 0.71, 0.3 and 0.02. The tendency of the results
of these turbulent intensities agrees perfectly with the
results obtained by Abe et al [14] and Kawamura et al
[12].

First at all, in figure 7a, for Prandtl numbers greater
than approximately 0.3, θ′+ tends to collapse in the outer
region, approximately for y/h > 0.3. However, when
Reτ is reduced (figure 7b), the value of Pr at which θ′+

collapses increases. It is observed again, that the use of
the Péclet number gives a good approximation to de-
termine which cases collapse in the central region of
the channel. For Peτ > 325, θ′+ tends to collapse for
y/h > 0.3. The maximum value of θ′+ increases when
Reτ increases. The location of this maximum depends
on the Prandtl number. On the one hand, when Pr is
greater than approximately 0.3, the y+ coordinate of the
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(a) (b)

(c) (d)

Figure 7: Colour online. Root mean square of the temperature variance and wall-normal heat flux for (a) Reτ = 2000 as a function of y/h and (b)
Pr = 0.71, 0.3 and 0.02 as a function of y+. Streamwise heat flux for (c) Reτ = 2000 as a function of y/h and (d) Pr = 0.71, 0.3 and 0.02 as a
function of y+. Colours and lines as in Table 2.

maximum is independent of the Reτ number. In such
cases, it is located in the buffer layer or logarithmic re-
gion. On the other hand, for Pr lower than 0.3 the mor-
phology of θ′+ changes. Now, its maximum location
moves to the outer region. For these cases, the coordi-
nate y+ of the maximum depends on both Reynolds and
Prandtl numbers.

In the same way as θ′+, all the profiles for v+θ+ (fig-
ure 7a) collapse in the outer region, for y/h > 0.1 and
Péclet numbers greater than approximately 225. The
minima location of v+θ+ is always in the outer region.
This location depends on both the Reynolds and Prandtl
numbers.

Finally, u+θ+ is shown in figures 7b and 7d. The be-
haviour of this function is the same as the previous tur-

bulent intensities. Values collapse from y/h = 0.07 up
to the center of the channel when Peτ > 325. Regard-
ing to the location of the function maxima, the anal-
ysis is the same as for θ′+, and the threshold is again
Pr ≈ 0.3. For Prandtl numbers above this threshold,
these maxima are located in the buffer layer or loga-
rithmic region. Their positions are independent of the
Reτ number. For the lower Prandtl numbers, the y+ co-
ordinate of the maxima depends on both Reτ and Pr.
These similitudes between θ′+ and u+θ+ come from the
high correlation that exist between them. However, as
the Péclet number is reduced, this correlation is also re-
duced, and the differences between the different profiles
are increased.

As a general rule, one can conclude that the location
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Figure 8: Colour online. Turbulent Prandtl number. Colours and lines
as in Table 2.

of the maxima does not depend on the Reynolds num-
ber when the maximum is located in the buffer layer or
in the logarithmic region. However, for lower Prandtl
numbers, the maxima location moves to the outer re-
gion. Here, it does depend on the Reynolds number.

In every case, the values of the root mean square of
the temperature variance and both heat fluxes decrease
when Pr decreases. This means that, for lower Prandtl
numbers, turbulent intensities decreases, in other words,
the thermal flow is less turbulent. This confirms the
result obtained during the validation of the simula-
tion, when molecular and turbulent heat fluxes were ob-
tained.

3.5. Boundary conditions influence

As it was explanied in the introduction the MBC was
used in the simulations of the present work. The results
obtained for the cases of Pr = 0.71 and Reτ = 1000
and 2000 are now compared with the ones calculated by
Pirozzoli et al. [18]. For that work, a spatially uniform
forcing was adopted as the boundary condition of the
thermal equation, in the same way as in [7]. Therefore,
one cannot expect to obtain the same results, but the
tendencies of the temperature and its intensities would
not differ abruptly.

In Figure 9, the mean temperature, the root mean
square of the temperature variance, and the streamwise
and wall-normal heat fluxes are represented, in figures
9a, 9b, 9c and 9d, respectively. Indeed, all magnitudes
increase when the MBC is used, specially in the cen-
tral region of the channel. Values for Pr = 0.71 and
Reτ = 4000 obtained in [18] are also represented with

Nu Present work Pirozzoli et al.
Reτ = 1000 85.0416 86.0682
Reτ = 2000 153.378 159.854

Table 5: Comparison of the Nusselt number for Pr = 0.71 and Reτ =

1000 and 2000 with the ones obtained by Pirozzoli et al. [18].

the dashed black line to visualize the tendency of the
variables when increasing the Reynolds number.

With respect to the Nusselt number, Table 5 shows a
comparison between the Nusselt numbers obtained for
Pr = 0.71 and Reτ = 1000 and 2000 in the present work
and the ones obtained in [18]. A decrease in the value
of Nu is obtained when the MBC is used. This was
expected, since the temperature profiles were slightly
greater. Nevertheless, the results are reasonably similar.

3.6. Turbulent Prandtl number

The turbulent Prandtl number is defined as the ratio
between the momentum eddy diffusivity, νt, to the ther-
mal eddy diffusivity, κt,

Prt =
νt

κt
=

uv

vθ

dΘ/dy

dU/dy
. (8)

Prt is shown, as a function of y+, in Figure 8. These
results reaffirm the well-known law that states that Prt

is approximately constant and equal to 1 for medium
to high molecular Prandtl numbers but it increases for
low Prandtl numbers (Kawamura et al [12]). It can be
seen how for Pr <= 0.05 the values of Prt are higher,
not only in the wall vicinity but along all the channel.
In addition, an increase in the Reynolds number en-
tails a slightly decrease in the turbulent Prandtl number.
Therefore, new scaling laws for low Prandtl numbers
are needed.

4. Turbulent budgets

Budgets of the turbulent heat fluxes, uiθ, the temper-
ature variance, kθ = 1/2 θ2, and the dissipation rate of
the temperature variance, εθ = 1

Pr∂iθ∂iθ have been cal-
culated. The equations that define them can be obtained
from [30].

The budget equation for the turbulent heat fluxes, uiθ,
is given by

Duiθ

Dt
= Pi + Ti + Vi + Πs

i + Πd
i + εi, (9)

where D/Dt is the mean substantial derivative.
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(a) (b)

(c) (d)

Figure 9: Colour online. Comparison of the temperature and its intensities for Pr = 0.71 and Reτ = 1000 and 2000 with the ones obtained by
Pirozzoli et al. [18]. (a) Mean temperature profile, (b) root mean square of the temperature variance, (c) streamwise heat flux and (d) wall-normal
heat flux. Dashed lines reperents data from Pirozzoli et al. Black dashed lines represent values for Pr = 0.71 and Reτ = 4000 from Pirozzoli et al.
Colours and lines as in Table 2.

The different terms on the right hand side are referred
to as production, turbulent diffusion, viscous or molecu-
lar diffusion, pressure-temperature gradient correlation,
pressure diffusion and dissipation. They are respectively

defined according to

Pi = −uiv∂yΘ − vθ∂yUi, (10a)

Ti = −∂xk uiukθ, (10b)

Vi = ν∂xk

(
θ∂xk ui +

1
Pr

ui∂xkθ

)
, (10c)

Πs
i = p∂xiθ, (10d)

Πd
i = −∂xk

(
δki pθ

)
, (10e)

εi = −ν

(
1 +

1
Pr

)
∂xk ui∂xkθ. (10f)

In the previous definitions, δi j is Kronecker’s delta
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and repeated index imply summation over k = 1, 2, 3.
The transport equation of kθ involves production, turbu-
lent diffusion, viscous diffusion and dissipation terms,

Dkθ
Dt

= P + T + V + εθ. (11)

These terms are defined as

P = −vθ∂yΘ, (12a)

T = −
1
2
∂yθ2v, (12b)

V =
1

2Pr
∂2

yyθ
2, (12c)

εθ = −
1

Pr,
∂iθ∂iθ. (12d)

Finally, the transport equation for εθ is given by

Dεθ
Dt

= Pm + Pmg + Pg + Pt + Tt + Vεθ + εθ1. (13)

In this case, the terms are named mixed production,
mean gradient production, gradient production, turbu-
lent production, turbulent transport, molecular diffusion
and dissipation.

Pm = −
2
Pr
∂iv∂iθ∂yΘ, (14a)

Pmg = −
2
Pr
∂xθ∂yθ∂yU, (14b)

Pg = −
2
Pr

v∂yθ∂
2
yyΘ, (14c)

Pt = −
2
Pr
∂iθ∂ jθ∂ jui, (14d)

Tt = −
1
Pr
∂yv∂iθ∂iθ, (14e)

Vεθ =
1

Pr2 ∂
2
yyε0, (14f)

εθ1 = −
2

Pr2 ∂
2
k jθ∂

2
k jθ. (14g)

For the thermal heat fluxes, Figures 10 and 11, the
data has been adimensionalized by ν/u3

τθτ. For the tem-
perature variance, Figure 12, the term ν/u2

τθ
2
τ has been

used. Finally, the dissipation rate of the temperature
variance, Figure 13, employs ν3/u4

τθ
2
τ . In the latter fig-

ure, the four production terms have been sum up to fa-
cilitate the discussion. In previous works, [17] or [31],
turbulent budgets were obtained for Pr = 0.71. The
idea of this section is to check whether these scaling
laws work or not for low values of the Prandtl number.

As an anticipated result, for low Prandtl numbers, any
of the scaling laws work.

Budgets for u+θ+ are shown in Figure 10. Cases for
Reτ = 2000 and medium Prandtl numbers (0.71, 0.3 and
0.1) are plotted in figure 10a. For the same Reynolds,
the lowest Prandtl numbers (0.01 and 0.007) are se-
lected for figure 10b. On the other two subfigures, the
analysis is done for a variation of Reτ. Budget terms for
one of the medium Prandtl numbers, 0.1, are plotted for
all three Reynolds numbers in figure 10c. Meanwhile,
the lowest Prandtl, 0.007, is used, again for all three
Reynolds numbers, in figure 10d. For both, medium and
low Prandtl numbers, dissipation is compensated by vis-
cous diffusion near the wall. From the end of the buffer
layer up to the center of the channel, the production term
increases and becomes more important than the viscous
diffusion. In this part of the channel, for medium Prandtl
numbers (figures 10a and 10c), dissipation and pressure-
temperature gradient correlation terms are compensated
by production. However, for low values of Pr (figures
10b and 10d), production compensates dissipation, and
the rest of terms are negligible. Regarding the scaling
law, it can be seen that it presents several errors when Pr
varies (figures 10a and 10b). Not only the magnitudes
of all the budget terms change along the entire channel,
but also the location of the maximum changes depend-
ing on the Prandtl number. When Pr is kept constant
and with a medium value (figure 10c) all terms seems
to scale well in the logarithmic layer and in the center
of the channel (difference are due to the difference in
Reτ). However, in the wall vicinity, viscous diffusion
and dissipation present noticeable differences from one
case to another. When Pr is reduced (figure 10d), these
differences are even larger.

Budgets for vθ are shown in Figure 11. The arrange-
ment of the subfigures is the same as for the stream-
wise heat flux. It can be seen how for medium Prandtl
numbers (figures 11a and 11c) the more important bud-
get terms are pressure-temperature gradient correlation,
pressure diffusion and production. However, when Pr
is reduced (figures 11b and 11d), dissipation becomes
more important than both pressure terms. For the low-
est Prandtl numbers, these pressure terms become negli-
gible and dissipation is compensated by the production
term. Dissipation becomes more important for lower
Prandtl numbers since it occurs in eddies of a larger
scale, as it has been seen before in Figure 4. Regard-
ing the scaling law, the same problems as for uθ appear.
For a constant Reτ (figures 11a and 11b), the magnitude
of the budget terms and the location of their maxima do
not scale properly. When Pr is kept constant with value
0.1 (figure 11c) all terms seems to scale well except for
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the pressure terms in the near wall region. For the low-
est Prandtl number (figure 11d) scaling failures are seen
in the center of the channel for the production and dis-
sipation terms.

Budget terms for kθ are shown in Figure 12. Again,
the sub-figures information is presented in the same or-
der as in the previous ones. For all cases, dissipation is
compensated by molecular diffusion in the wall vicin-
ity and by production in the center of the channel. The
y+ coordinate where the production term becomes more
important than molecular diffusion increases with a de-
crease of the Prandtl number. Turbulent diffusion ap-
pears to be more noticeable at the end of the buffer layer
for medium Prandtl numbers. The scaling law used for
these budget terms presents the same problems as before
when a variation in the Prandtl number is introduced
(figures 12a and 12b). In addition, the problem for the
dissipation term is even more complex. In the buffer
layer, not only the magnitude of this term changes, but
also its morphology. For a variation of Reynolds and
Pr = 0.1 (figure 12c), the same scaling problem for dis-
sipation arises again. Molecular and turbulent diffusions
also present scaling problems in the buffer layer. For the
lowest Prandtl number (figure 12d) a better scaling law
is needed.

Finally budget terms for εθ are shown in Figure 13.
The cases shown in each sub-figure are the same as in
the previous analysis. Dissipation is mostly compen-
sated by production, except in the wall vicinity, where
viscous diffusion is not negligible. For lower Prandtl
numbers, the effect of viscous diffusion close to the wall
is more remarkable. The scaling law used for εθ present
the same problems for variations of Prandtl numbers
(figures 13a and 13b). When the Reynolds number is
changed and Pr = 0.1 (figure 13c) scaling errors appear
in the logarithmic region for production and dissipation
terms. Also, in the buffer layer, the viscous diffusion
term does not scales properly. For Pr = 0.007 (figure
13d), the differences in the production and dissipation
terms are larger.

In general, it is seen that scaling laws fail for lower
Prandtl numbers, especially in the near wall region. The
more conflictive terms are dissipation and viscous dif-
fusion. Also, remark the scaling errors in the pressure
terms for vθ and the production term for εθ. It has been
seen through all the article that the behaviour of the ther-
mal field changes for low Prandtl numbers. Therefore,
one could have expected these scaling differences. This
suggest that the modeling of some of the budget terms
depends on both Reτ and Pr, which makes their model-
ing a very complex problem.
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(a) (b)

(c) (d)

Figure 10: Colour online. Budgets of the streamwise heat flux, uθ, for Reτ = 2000 and (a) medium Prandtl numbers: Pr = 0.71, 0.3 and 0.1; (b)
low Prandtl numbers: Pr = 0.01 and 0.007. Reτ = 2000, 1000 and 500 for (c) Pr = 0.1 and (d) Pr = 0.007. Colours here denote budget terms:
production (red), turbulent diffusion (black), viscous diffusion (blue), dissipation (green), pressure-temperature-gradient correlation (magenta) and
pressure diffusion (orange). Line style determines the Reτ number: Reτ = 2000 (solid line), Reτ = 1000 (dashed line) and Reτ = 500 (pointed
line). Symbols as in Table 2.
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(a) (b)

(c) (d)

Figure 11: Colour online. Budgets of the wall-normal heat flux, vθ, for Reτ = 2000 and (a) medium Prandtl numbers: Pr = 0.71, 0.3 and 0.1; (b)
low Prandtl numbers: Pr = 0.01 and 0.007. Reτ = 2000, 1000 and 500 for (c) Pr = 0.1 and (d) Pr = 0.007. Colours here denote budget terms:
production (red), turbulent diffusion (black), viscous diffusion (blue), dissipation (green), pressure-temperature-gradient correlation (magenta) and
pressure diffusion (orange). Line style determines the Reτ number: Reτ = 2000 (solid line), Reτ = 1000 (dashed line) and Reτ = 500 (pointed
line). Symbols as in Table 2.
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(a) (b)

(c) (d)

Figure 12: Colour online. Budgets of the temperature variance, kθ, for Reτ = 2000 and (a) medium Prandtl numbers: Pr = 0.71, 0.3 and 0.1; (b)
low Prandtl numbers: Pr = 0.01 and 0.007. Reτ = 2000, 1000 and 500 for (c) Pr = 0.1 and (d) Pr = 0.007. Colours here denote budget terms:
production (red), turbulent diffusion (black), viscous diffusion (blue) and dissipation (green). Line style determines the Reτ number: Reτ = 2000
(solid line), Reτ = 1000 (dashed line) and Reτ = 500 (pointed line). Symbols as in Table 2.
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(a) (b)

(c) (d)

Figure 13: Colour online. Budgets of the dissipation rate of the temperature variance, εθ, for Reτ = 2000 and (a) medium Prandtl numbers:
Pr = 0.71, 0.3 and 0.1; (b) low Prandtl numbers: Pr = 0.01 and 0.007. Reτ = 2000, 1000 and 500 for (c) Pr = 0.1 and (d) Pr = 0.007. Mixed
production, mean gradient production, gradient production and turbulent production have been added and plotted as an only production term.
Colours here denote budget terms: added production (red), turbulent diffusion (black), viscous diffusion (blue) and dissipation (green). Line style
determines the Reτ number: Reτ = 2000 (solid line), Reτ = 1000 (dashed line) and Reτ = 500 (pointed line). Symbols as in Table 2.
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5. Conclusions

A new set of Direct Numerical Simulations of turbu-
lent heat transfer in a channel flow are presented. Uni-
form heating from both walls is used as the boundary
condition. The effects in the thermal flow of Reτ and
medium to low molecular Prandtl numbers is study for
a range of values of: Reτ = 500, 1000 and 2000; and
Pr = 0.007 − 0.71.

A balance of the heat fluxes is calculated to validate
the simulations. It is seen that when Pr is reduced,
molecular heat flux becomes more important than tur-
bulent heat flux. Indeed, for the lowest Prandtl number,
turbulent heat flux is almost negligible except in the cen-
tral region of the channel.

First, instantaneuos visualizations of the flow have
been examined. For Prandtl numbers close to 1, Peτ ∼
Reτ and, therefore, turbulent scales of the velocity field
and thermal field are of the same order of magnitude.
However, when Pr is reduced, the thermal field be-
comes less turbulent and turbulent length scales in-
crease.

Mean temperature profiles, the diagnosis function
and turbulent intensities (θ′+, u+θ+ and v+θ+) are shown.
The logarithmic region appears only for Prandtl num-
bers greater than approximately 0.3. The von Kármán
constant is calculated and it seems to be, indeed, con-
stant for Reτ >= 1000, with value 0.43. The values
of the diagnosis function in the central region of the
channel collapse for Peτ > 30. On the other hand,
the morphology of the turbulent intensities change when
Pr > 0.3. Also, in the outer region, their values col-
lapse when the Péclet number is greater than 325 for
θ′+ and u+θ+; and 225 for v+θ+. In addition, the loca-
tion of the maximua of the functions does not depend on
the Reynolds number when the maximum is located in
the buffer layer or in the logarithmic region. However,
for lower Prandtl numbers, the maxima location moves
to the outer region and it does depend on the Reynolds
number. The absolute values of all three intensities de-
crease when Pr is reduced, which means that, in fact,
the thermal flow is less turbulent.

The Nusselt number is derived from the mean tem-
perature profile. It is seen that it can be represented
with a linear logarithmic expression for medium-low to
medium Prandtl numbers. This range seems to increase,
at least the lower limit of Pr, when Reτ is increased.
However, the upper limit of the linear behaviour is not
captured in this work, since it is greater than 0.71. An-
other dimensionless number calculated is the turbulent
Prandtl number. As it was known, for Pr > 0.05, its
value is more or less constant and approximately 1 in

all the channel. For Pr <= 0.05, the turbulent Prandtl
number increases as the molecular Prandtl or Reτ de-
crease.

A comparison with the results from [18] for the sim-
ulations of higher Reynolds and a value of Prandtl of
Pr = 0.71 have been done. For that work a boundary
condition different to the MBC and similar to the one
used in [7] was used. Results are not exactly the same
but similar. Also, tendencies of the thermal variables
are the same. Thermal values tend to increase when
the MBC is used, especially in the central region of the
channel.

Finally, turbulent budgets for heat fluxes, tempera-
ture variances and its dissipation rate are presented. For
vθ, the pressure terms become negligible when Pr is
reduced, and dissipation compensates the production
term. As it was expected, turbulent diffusion is negli-
gible for all low Prandtl number cases. Also, scaling
laws are analyzed. It is seen that for low Prandtl num-
bers, any of them work properly and a deeper study is
needed. The most conflictive terms, especially in the
near wall region, are dissipation and viscous diffusion,
pressure terms for vθ and production for εθ.

As a final remark, any scaling law for both the inten-
sities and turbulent budgets should consider the Pr and
Reτ dependencies. To unveil these scaling laws, a Lie-
Symmetry framework, as in [32], is being used by the
authors. Also, simulations at higher Prandtl are needed
to get a global picture of the situation. These simula-
tions would be harder, as the heat equation has to be
properly solved and a finer mesh would be needed. Fi-
nally, to help other researchers to test their theories, the
statistics of all simulations can be downloaded from the
web page of our group.
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