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Abstract. Diabetic Retinopathy (DR) is a severe and widely spread eye
disease. Exudates are one of the most prevalent signs during the early
stage of DR and an early detection of these lesions is vital to prevent the
patient′s blindness. Hence, detection of exudates is an important diag-
nostic task of DR, in which computer assistance may play a major role.
In this paper, a system based on local feature extraction and Support
Vector Machine (SVM) classification is used to develop and compare
different strategies for automated detection of exudates. The main nov-
elty of this work is allowing the detection of exudates using non-regular
regions to perform the local feature extraction. To accomplish this ob-
jective, different methods for generating superpixels are applied to the
fundus images of E-OPHTA database and texture and morphological
features are extracted for each of the resulting regions. An exhaustive
comparison among the proposed methods is also carried out.
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1 Introduction

Diabetic Retinopathy (DR) is a common complication of diabetes, which is
among the major causes of vision loss in the world. However, at the initial phase
of the disease, the vision impairment is not easily realized by the patient [1, 2].
Exudates are one of the most prevalent signs during the early stage of DR. These
lesions are formed due to the leakage of blood and its early detection can im-
prove patients′ chances to avoid blindness [3]. In Fig.1 it is possible to observe
the difference between a healthy fundus image and a retinal image containing
exudates as a consequence of DR.

Manual detection of exudates by ophthalmologists is laborious and time-
consuming. Therefore, automated screening techniques for exudate detection
have great significance in saving cost, time and labour, allowing the ophthalmol-
ogists to make the treatment decision timely [4]. In this sense, one of the main
objectives of this work is to develop and compare different strategies to locally
extract information of fundus images for detecting exudates.

Several methods related to the automatic detection of exudates have been
proposed in the literature, these can be grouped in: thresholding-based [5, 6],
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(a) (b)

Fig. 1. Fundus images. (a) Healthy eye, (b) Pathological eye with exudates.

region growing-based [3, 7] and morphological-based classification [6, 8]. These
methods focus their efforts in the exudates segmentation, however, these ap-
proaches are characterised by presenting a high false-positive rate. For this rea-
son, in the methodology proposed in this work, the characterisation of healthy
and damaged retinal areas is performed by applying image descriptors in a local
way, avoiding the segmentation step. Methods involving feature extraction and
classification of the retinal tissue have been studied in the literature. The most
common procedure requires the extraction of features from a lesion candidate
map generated by different techniques, such as: mathematical morphology [4,6];
background subtraction [9]; clustering [10]; or using banks of filters and apply-
ing a low adaptive threshold [11,12]. Subsequently, the candidates are classified
as exudate or non-exudate elements, making use of the extracted features and
classification algorithms.

The strategies proposed in this work do not require the previous segmentation
of exudates or the generation of candidate maps. Exudates usually represent less
than one percent of the total number of pixels that compose the retinal image.
For this reason, in the methodology presented in this paper, the image is divided
in regions or patches and, during the feature extraction step, features vectores
are extracted for each region. Different methods to generate superpixels are
presented as a strategy to create non-regular regions.

Superpixels are regions resulting from a low-level segmentation of an image
and are typically used as primitives for further analysis such as detection, seg-
mentation, and classification of objects. The underlying idea is that this first
low-level partition decreases the computational complexity of the following pro-
cessing steps and improves their robustness [13]. Methods for generating super-
pixels have been studied in the literature. Those can be broadly categorized as:
graph-based algorithms [14, 15]; gradient ascent methods [16, 17]; or clustering
methods [18]. Of these, the latter has particular interest since the Simple Linear
Iterative Clustering (SLIC) algorithm [18], which is an adaptation of k-means
for superpixel generation, will play an important role during the evaluation of
this work. V. Machairas et al. [19] also proposed a strategy to create superpixels
by applying the watershed transformation to a spatially regularized gradient to
achieve a tunable trade-off between superpixels regularity and adherence to ob-
ject boundaries. With this approach, the term “waterpixels” was introduced in
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the literature. The strategies proposed in this paper rely on the marker-controlled
watershed transformation, in order to efficiently generate waterpixels.

The main objective of this work is to develop and compare different strate-
gies to obtain regions of interest with the purpose of locally describing healthy
and pathological retinal areas. Allowing the detection of exudates using non-
regular regions to perform the local feature extraction is the main novelty of this
work. Therefore, two different strategies for generating waterpixels are applied to
the images of the E-OPHTA database. Subsequently, texture and morphological
features are locally extracted and, finally, each region is classified according to
healthy and pathological classes, during the classification stage. In the end, an
elaborated comparison between the proposed strategies for generating waterpix-
els and the SLIC superpixels is also performed.

2 Methods

This paper’s methodology allows the characterisation of healthy and damaged
retinal areas by applying image descriptors in a local way. Therefore, it is possible
to summarise the methodology proposed into three principal steps: computation
of waterpixels; local feature extraction; and, finally, classification of the retinal
tissue. These steps will be developed in the following subsections.

2.1 Computation of Waterpixels

Creation of the grid and gradient definition. The first step consists in
computing a grid of regular cells Ci. A grid of hexagons is created with the size
of the input image. Note that the hexagon side s is a tunable parameter. The
smaller s is, the smaller the resulting waterpixels and the higher the number of
resulting regions. The distance between adjacent hexagon centres is denoted as
σ and it plays a normalization role in the waterpixel computation process.

At this stage, the computation of the morphological gradient g from the
input image f : D (where D is a rectangular subset of Z2) is performed. The
morphological gradient can be defined as:

g(f) = δB(f)− εB(f) (1)

where δ and ε are, respectively, the operators dilation and erosion and B is a
unitary structuring element.

Selection of the Markers. The selection of markers allows us to control the
number and regularity of the resulting waterpixels: the number of markers is
equal to the number of waterpixels in the final partition; to obtain regions which
are similar in shapes and sizes, it is necessary to select the markers in a way that
they are regularly spaced out over the image.

Taking this into account, a unique marker per cell is selected to obtain total
control over the number of waterpixels, and a strong impact on their size and
shape. During this procedure, it is necessary to have in mind that the ideal is to
find a marker that enables to obtain the best performance in terms of boundary
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adherence and regularity. Therefore, two approaches are tested: selecting the
centres of the grid cells as markers (c-Waterpixels) and selecting one minimum
of the gradient per cell as markers (m-Waterpixels). In the second approach, each
cell Ci of the grid defines a region of interest where the content of g is analysed
to select a unique marker, taking into account the following considerations:

– if there exist more than one minimum of g inside Ci, the one with the highest
surface extinction value [13] is selected.

– if there is no minimum of g inside Ci, the centre of Ci is defined as marker
(to guarantee regularity).

– if there is a unique minimum of g inside Ci, this minimum is obviously
selected as marker.

Spatial regularisation of the gradient and Watershed computation.
A spatially regularised gradient greg is computed to guarantee a compromise
between boundary adherence and regularity:

greg = g + kdQ (2)

where g is the gradient of the image, k is the spatial regularisation parameter,
which, in this work, is set to one. Finally, let Q = qi1≤i≤N be a set of N connected
components of the image f . For all p ∈ D, we can define a distance dQ with
respect Q as follows:

∀p ∈ D, dQ(p) =
2

σ
min
i∈[1,N ]

d(p, qi) (3)

where σ is the grid step defined in the previous section.
Finally, the watershed transformation is performed on the spatially regu-

larised gradient greg, starting the flooding from the markers. This allowed the
partition of the image into waterpixels regions. Figure 2 shows the the resulting c
and m-Waterpixels and Fig.3 illustrate the described steps to create this regions.

(a) (b)

Fig. 2. Comparison of the two proposed strategies to generate waterpixels. (a) c-
Waterpixels and (b) m-Waterpixels.

2.2 Feature Extraction

Local Binary Pattern (LBP) is a simple yet very efficient texture descriptor
which labels the pixels of an image by thresholding the neighborhood of each
pixel:
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Fig. 3. Illustration of m-Waterpixels generation. (a) Original image, (b) Morphological
gradient of the original image, (c) Regular grid of hexagonal cells (s = 32), (d) Selected
markers within the regular grid, (e) Spatially regularised gradient, (f) m-Waterpixels.

LBPP,R =

P−1∑
p=0

s(gp − gc) · 2p, s(x) =

{
1 if x ≥ 0
0 if x < 0

(4)

where P represents the number of samples on the symmetric circular neighbour-
hood of radius R, gc is the grey value of the pixel (i, j) and gp is the grey value
of each neighbour.

When LBP is used for texture description it is common to include a contrast
measure by defining the Rotational Invariant Local Variance (VAR) as:

V ARP,R =
1

P

P−1∑
p=0

(gp − µ)2, µ =
1

P

P−1∑
p=0

gp (5)

LBP riu2P,R , defined in [20], and V ARP,R are complementary measures and
the combination of both is expected to be a powerful descriptor for detecting
abnormal retinal patterns. LBP riu2P,R and V ARP,R operators are locally computed
for each pixel of the green channel of the retinal image. As a result, LBP and
VAR images are obtained. These resulting images are divided into waterpixels
regions and normalised histograms are computed for each region combining the
information provided by both images using the method proposed in [21].
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Granulometries. Mathematical morphology has become increasingly relevant
in the image processing field essentially due to its versatility and rigorous math-
ematical description. Granulometry is one of the most interesting techniques
based on mathematical morphology.

Let f be a grey-level image, f ∈ F (E, T ) such that f(x) : E → T where x =
(x, y) ∈ E is the pixel position and E ⊆ Z2. T is an ordered set of grey-levels.
After the selection of a fixed set B ⊆ E, the two elementary operations of erosion
(εB(X)) and dilation (δB(X)) can be composed together to generate a new set
of grey-level operators given by the grey-level opening(γB) and closing (ϕB):

γB(f)(x) = (f ◦B)(x) = δB(εB(f))(x) (6)

ϕB(f)(x) = (f •B)(x) = εB(δB(f))(x) (7)

When a series of openings with SE of increasing size (λ) are sequentially
computed on the image, a morphological opening pyramid is obtained and it
can be defined as:

Πγ(f) = {Πγλ : Πγλ = γλ(f),∀λ ∈ [0, ..., nmax]} (8)

where nmax represents the maximum size of the structuring element. By duality,
the morphological closing pyramid Πϕ is defined in the same way.

A shape descriptor can be defined using the morphological pyramids above
described. Let m(f) be the Lebesge measure of a discrete image f . The granu-
lometry curve, or pattern spectrum of f with respect to Γ is defined as:

PSΓ (f, n) = PS(f, n) =
m(Πγn(f))−m(Πγn+1(f))

m(f)
, n ≥ 0 (9)

By duality, this concept extends to the anti-granulometry curve PSΦ(f).
Granulometry is used in this work by applying a series of morphological

opening (closing) operations with increasing-size structuring elements (SE) de-
fined by a specific step (s = 2) and a maximum value (nmax = 22), to obtain
a local description of the shape and size of the retinal exudates. SE is a disk or
a line giving place to an isotropic or angular granulometry, respectively. In the
end, four feature vectors are obtained: two regarding the isotropic granulometry
(opening and closing operations) and two regarding the angular granulometry.
Thus, these pattern spectrums are combined giving place to the morphologi-
cal feature vector composed by 44 elements. Note that angular granulometry is
computed in the directions 0◦, 45◦, 90◦ and 135◦. The regions containing optic
disk pixels are not considered during the feature extraction stage. To detect the
optic disk, the method proposed in [22] is used. Figure 4 illustrates the results
obtained by applying this method.

2.3 Retinal Tissue Classification

After the feature extraction step, the Support Vector Machines (SVM) classifier
[23] is used to classify each region in healthy or pathological. This classifier
generates a classification model, based on the information of features and labels
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(a) (b)

Fig. 4. Optic disk detection results. (a) Waterpixels, (b) Optic disk regions.

of the training set, able to predict the correct class of new samples belonging
to the test set. With this purpose, SVM maximises the distance between the
hyperplanes defined by the support vectors with the aim of finding the optimal
separation between classes. The Radial Basis Function (RBF) kernel is employed
when the SVM algorithm is applied. The library for support vector machines
(libSVM) used was introduced by C. Chang in [23].

An external K-fold cross validation is performed to provide robustness to the
decision system and to guarantee that all the instances are used in the creation
of the model and in the prediction stage. A different partition is selected as test
subset while the rest of the partitions are used to train the model.

As it was previously discussed, exudates represent only a small percentage
of the total number of pixels that compose the retinal image, which results in a
very unbalanced dataset when the feature extraction is performed. Training the
classifier with this dataset can result in an overfitting to the class “healthy”.

To avoid this problem, the set of all healthy samples is randomly permuted
and partitioned into T = round(M/N) subsets, being M and N the number of
healthy and pathological samples, respectively. After that, a set of T classifiers
is trained using all pathological training samples and each partition of healthy
training samples. Finally, during the test stage, testing samples are evaluated
for each of the T models and soft majority voting is applied to the output
probabilities as the final criterion. If the obtained probability is higher than a
given threshold (δ), the region is assigned to the class “pathological”.

3 Results

The database chosen to validate the method proposed in this project was the
E-OPHTHA public database [24]. This database is divided in two subsets and
the one used in this paper is composed by 47 images containing exudates. These
lesions are manually annotated by experts. It was necessary to perform a spatial
normalization of the fundus images since they presented different resolutions.

Two different strategies to obtain waterpixels were presented in this paper.
These regions were used to perform a local feature extraction in fundus im-
ages for detecting pathological areas. To evaluate these strategies, the procedure
explained in section 2.3. was used to train different classification models.
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In order to compare the strategies proposed in this paper with another state-
of-the-art method, the same procedure was applied using the SLIC algorithm to
generate superpixels. This algorithm adapts a k-means clustering approach to
efficiently generate superpixels. By default, the only parameter of the algorithm
is k, which is the desired number of approximately equally sized superpixels.
Several tests using the original images (OI) and the images without the blood
vessels (W/V) were performed for each of the strategies mentioned. The images
without blood vessels were obtained through the inpainting technique [25].

Table 1 contains the Area Under ROC Curve (AUC), accuracy, sensitivity
and specificity (as well as the standard deviation associated with each of these
metrics) of the resulting classification processes, taking into account the ground-
truth provided by the ophthalmologists. The results of accuracy, sensitivity and
specificity were obtained using a decision threshold of δ = 0.5.

As it can be observed through the analysis of Table 1, the values of accuracy
improve, for each of regions of interested developed, when the inpainting tech-
nique is applied in order to remove the blood vessels from the original images.
During the evaluation of the different techniques it is important to remember the
importance of obtaining a good trade-off between the sensitivity and specificity.
Additionally, in the context of this paper, sensitivity plays a major role since
this measure represents the ability of our system to detect exudates. Having
that in mind, and through the analysis of Table 1, it is possible to conclude that
the waterpixels approaches outperform the SLIC [18] method when it comes to
generate the most appropiate regions to detect exudates.

The ROC curves for each of the tests performed with the images without
vessels are represented in Fig. 5. As it can be observe, the c-Waterpixels out-
perform the other methods for lower false positive rates while the m-waterpixels
exceed the c-Waterpixels and SLIC superpixels for highest false positives rates.

Table 1. AUC, accuracy, sensitivity and specificity related to the exudate detection
on the original images (OI) and images without vessels (W/V) for each of the region
of interest developed: m-Waterpixels, c-Waterpixels and SLIC superpixels.

m-Waterpixels c-Waterpixels SLIC Superpixels
OI W/V OI W/V OI W/V

AUC 0.7998 ± 0.0317 0.8287 ± 0.0246 0.7937 ± 0.0325 0.8277 ± 0.0199 0.7987 ± 0.0311 0.8169 ± 0.0299
Accuracy 0.6514 ± 0.1093 0.7585 ± 0.0676 0.6650 ± 0.0870 0.7545 ± 0.0679 0.7635 ± 0.0238 0.8037 ± 0.0222
Sensitivity 0.7779 ± 0.0987 0.7216 ± 0.0834 0.7651 ± 0.0477 0.7496 ± 0.0295 0.6567 ± 0.0824 0.6656 ± 0.0634
Specificity 0.6363 ± 0.1295 0.7595 ± 0.0789 0.6546 ± 0.0990 0.7539 ± 0.0757 0.7736 ± 0.0305 0.8175 ± 0.0273

4 Conclusions

In this paper, a system based on local feature extraction and SVM classification
is used to develop and compare different strategies of exudates automated detec-
tion. These strategies involve performing the local feature extraction using three
different methods to generate non-uniform regions: m-Waterpixels, c-Waterpixels
and SLIC superpixels. Analysing the results obtained for each of the proposed
methods, it is possible to conclude that the watershed-based approaches lead to
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Fig. 5. ROC curves for the different superpixels methods.

a better detection of pathological areas. The results also demonstrate that ap-
plying the inpainting technique to remove the blood vessels is essential to obtain
a more accurate detection of exudates. Future work will allow the detection of
other lesions related to DR, such as microaneurisms and hemorrhages.
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Mériaudeau, F.: Statistical atlas based exudate segmentation. Computerized Med-
ical Imaging and Graphics 37(5-6) (2013) 358–368

6. Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., et al.: Exudate detection
in color retinal images for mass screening of diabetic retinopathy. Medical image
analysis 18(7) (2014) 1026–1043

7. Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a
model based approach. IEEE Transactions on biomedical engineering 51(2) (2004)
246–254



10 J. Pereira et al.

8. Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automati-
cally detecting exudates in color eye fundus images. computerized medical imaging
and graphics 34(3) (2010) 228–235

9. Giancardo, L., Meriaudeau, F., Karnowski, T.P., Li, Y., Garg, S., Tobin, K.W.,
Chaum, E.: Exudate-based diabetic macular edema detection in fundus images
using publicly available datasets. Medical image analysis 16(1) (2012) 216–226

10. Amel, F., Mohammed, M., Abdelhafid, B.: Improvement of the hard exudates
detection method used for computer-aided diagnosis of diabetic retinopathy. In-
ternational Journal of Image, Graphics and Signal Processing 4(4) (2012) 19

11. Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classifi-
cation of retinal lesions for grading of diabetic retinopathy. Computers in biology
and medicine 45 (2014) 161–171

12. Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Automated detection of exu-
dates and macula for grading of diabetic macular edema. Computer methods and
programs in biomedicine 114(2) (2014) 141–152

13. Machairas, V.: Waterpixels and their application to image segmentation learning.
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