

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/124228

Lucas Alba, S.; Gutiérrez Gil, R. (2018). Automatic Synthesis of Logical Models for Order-
Sorted First-Order Theories. Journal of Automated Reasoning. 60(4):465-501.
https://doi.org/10.1007/s10817-017-9419-3

http://doi.org/10.1007/s10817-017-9419-3

Springer-Verlag

jar manuscript No.
(will be inserted by the editor)

Automatic Synthesis of Logical Models for Order-Sorted
First-Order Theories

Salvador Lucas · Raúl Gutiérrez

Abstract In program analysis, the synthesis of models of logical theories repre-
senting the program semantics is often useful to prove program properties. We
use Order-Sorted First-Order Logic as an appropriate framework to describe the
semantics and properties of programs as given theories. Then we investigate the
automatic synthesis of models for such theories. We use convex polytopic domains as
a flexible approach to associate different domains to different sorts. We introduce
a framework for the piecewise definition of functions and predicates. We develop its
use with linear expressions (in a wide sense, including linear transformations rep-
resented as matrices) and inequalities to specify functions and predicates. In this
way, algorithms and tools from linear algebra and arithmetic constraint solving
(e.g., SMT) can be used as a backend for an efficient implementation.

Keywords Logical models · Order-sorted first-order logic · Program analysis

1 Introduction

The interplay between logic and program analysis and verification is central in the
development of reliable software. Starting from the landmark papers by Floyd,
Hoare, and Naur [36,62,98] many researchers have used (first-order) logic as a uni-

versal language to describe the semantics of languages and specify program proper-
ties [22]. Reasoning methods have been developed for the (automatic) verification
of such properties thus leading to what is known as the formal methods approach

to reliable software development (see [95] for instance).
Many-sorted logic [109,73,122] often improves one-sorted (first-order) logic re-

garding expressivity1, knowledge representation [59], simplicity2 [59,73,109], im-

Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV PROME-
TEOII/2015/013. R. Gutiérrez also supported by Juan de la Cierva Fellowship JCI-2012-13528.

DSIC, Universitat Politècnica de València, Spain

1 “Quantification in first-order logic always involves all elements of the universe. However,
it is often more natural to just quantify over those elements of the universe which satisfy a
certain condition” [19,52].

2 “The unsorted theory will in general be much larger (more symbols and more axioms)
than the sorted theory” [59, page 500].

(Rf) x→∗ x (T)
x→ y y →∗ z

x→∗ z

(C)
xi → yi

f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk) (Re) `→ r
where f ∈ Σw,s, w = s1, . . . , sk, and 1 ≤ i ≤ k where `→ r ∈ R

Fig. 1 Inference rules for Order-Sorted TRSs R

proved deductive efficiency3 [24,110,121], etc. The main idea is distinguishing
different kinds of objects sharing some common properties by associating them a
given sort. Variables have sorts and are bound to objects of this sort. Similarly, the
arguments of function and predicate symbols are typed with sorts and only objects
of those sorts are allowed in the corresponding argument. The outcome of a func-
tion also has a sort. The introduction of an ordering on sorts [46,24] provides an
increased expressiveness over many-sorted logic as Order-Sorted First-Order Logic

(OS-FOL). Indeed, most programming languages enable the use of types or sorts in
program components. For instance, the specification and programming languages
OBJ [53], CafeOBJ [40], and Maude [23] support the specification of sorts with a
subsort ordering among them by means of the subsort relation <. They also al-
low the definition of sorted function symbols (in the aforementioned sense) when
writing programs as Order-Sorted Term Rewriting Systems (OS-TRS).

Remark 1 OS-TRSs are OS-FOL theories where only two predicate symbols→ and
→∗ are used. Programs are specified by means of rules `→ r for sorted terms ` and
r. Computations are described by means of the one-step rewrite relation → and
the zero-or-more-steps relation →∗, see Figure 1. All rules in the inference system
in Figure 1 are schematic in that each inference rule B1 ··· Bn

A can actually be used

under any instance σ(B1) ··· σ(Bn)
σ(A) of the rule by a substitution σ [113].

Programmers often use a sort discipline to ensure a ‘good behavior’ of programs.

Example 1 The following OS-TRS is based on the famous Toyama’s example [115].
It shows that the use of sorts can reinforce termination (see also [123]).

mod ToyamaOS is

sorts S S1 S2 .

subsorts S2 < S1 .

op a : -> S2 . op f : S1 S1 S1 -> S .

op b : -> S1 . op g : S1 S1 -> S1 .

var x : S2 . vars y z : S1 .

rl f(a,b,x) => f(x,x,x) .

rl g(y,z) => y .

rl g(y,z) => z .

endm

The unsorted version of this module is nonterminating [115]. Actually, if S1 and S2

are merged into a single sort (thus becoming many-sorted, with only two unrelated
sorts), it is also nonterminating:

f(a, b, g(a, b))→ f(g(a, b), g(a, b), g(a, b))→ f(a, g(a, b), g(a, b))→ f(a, b, g(a, b))→ · · ·

3 “Many sorted logics can allow an increase in deductive efficiency by eliminating useless
branches of the search space” [24, Abstract].

2

But the subsort hierarchy makes ToyamaOS terminating. For instance, variable x (of
sort S2) cannot be bound to terms of sort S1, which is supersort of S2. Since g(a, b)
is of sort S1, the second step, which requires a binding x 7→ g(a, b), is not possible.

In program analysis and verification, the synthesis of models A for theories S rep-
resenting programs or program properties is useful to:

1. Approximate computational relations associated to programs by means of a
computational logic: one-step transitions →, big-step transitions ⇓, etc. By
soundness of the corresponding logic we can over-approximate provability of
formulas ϕ in S (denoted S ` ϕ) as satisfaction in A (denoted A |= ϕ) for any
model A of S. This provides a logic-based abstraction mechanism that can be
used in program analysis and verification (see also [29]).

2. Solve verification conditions [69,75], i.e., “logical formulas whose satisfiability
implies program correctness” [5] and other safety properties [12,13,54,56,107].

3. Bound the derivational complexity of rewrite systems [67]. The association of
a numerical measure to the computational relation → is often used to obtain
such bounds, see [65,66,119], and also [94] and the references therein. Further-
more, similar techniques have also been used to bound the so-called runtime

complexity where the focus is on rewrite sequences starting from terms where a
defined function symbol is applied to arguments in normal form [61], in closer
correspondence to the so-called initial expressions in functional programming.

4. Similarly, the analysis of resource consumption (time, space) of functional pro-
grams is also based on the appropriate generation of interpretations that can
be used to measure the property of interest [3,41,89,96,103].

5. Implement proof obligations in program analysis by means of appropriate rela-

tions; for instance, in proofs of termination of declarative programs it is often
necessary to compare expressions by means of special (well-founded) relations,
so that a witness of termination can be obtained [80,82].

Since most programs use types or sorts, it is natural to include them in the logic
we use to reason about them [49]. Section 2 summarizes the basics of OS-FOL.

When giving semantics to function or predicate symbols without any intended

interpretation (e.g., those in ToyamaOS) it is useful to map them into (combinations
of) symbols which are better understood (e.g., Presburger’s arithmetic, [26,27]).

Remark 2 The interpretation of a binary function symbol g as an arithmetic ex-

pression, displayed as gA(x, y)
def

= x + y + 1 in the description of an algebra A, is
another symbolic device to avoid the extensional association of the mapping {(0, 0) 7→
1, (1, 0) 7→ 2, (0, 1) 7→ 2, . . .} to g. The point is that the new symbols x, y, +, and
1 occurring in the right-hand side of the equation have an intended interpretation.

Following this general approach, the first part of the paper develops the notion of
derived structures and models. Burstall and Goguen [20,48] introduced the notion
of derivor4 to transform terms of a given signature Σ into terms of another (already
familiar) signature Σ′. For instance, the interpretation of g in Remark 2 is a derived

interpretation via arithmetic expressions. We generalize them to deal with OS-FOL
theories (Section 3). Derivors d are used in [50] to induce a derived Σ-algebra dA′
from a given Σ′-algebra A′. We generalize this to derive OS-FOL structures (Section

4 Implemented as part of the mechanisms available in the programming language Clear
[20] to synthesize operations out from a set of basic (and available) ones [47,48].

3

4). In Section 5 we discuss a few usual requirements in program analysis and the
possibility of representing them as formulas which are added to the original theory
representing our specific problem. Some of them (e.g., well-foundedness) cannot
be expressed at this syntactic (first-order!) level. Thus, we need to guarantee them
at the semantic level by an appropriate selection of the structure which is used to
derive the model. This first part of the paper (Sections 3 to 5) provides a general

methodology to translate a given OS-FOL theory into a target theory for which the
generation of a model can be (efficiently) automated. The derivor can then be used
‘backwards’ to provide a model for the original theory.

In the second part of the paper, we discuss the use of linear algebra for this au-
tomation purpose. Nevertheless, other possibilities could be explored in this second
stage without changing anything essential in the first part of the treatment (e.g.,
algebraic or rational functions as sketched in Section 3). In Section 6 we introduce
a generic notion of piecewise definition of function and predicate interpretations,
which is similar to McCarthy’s conditional forms [91] (see also [117,118] for a recent
approach concerning the synthesis of ranking functions), and use it as a powerful
method to describe functions and predicates in algebras and structures. Our cur-
rent approach to the (automatic) synthesis of models for OS-FOL theories relies
on the use of linear expressions to define the derivors, which are used to describe
functions and predicates using the previously introduced piecewise schema. This is
explained in Section 7. The main purpose of using linear expressions is being able
to map the final problem into the range of available techniques and tools to deal
with linear arithmetic expressions (e.g., SMT techniques [97]). The simultaneous
use of different (unbounded, e.g., R; semi-bounded, e.g., [0,+∞); and bounded,
e.g. [0, 1]) domains for different sorts can be essential to obtain a model which
can be used to solve the problem at stake. The convex domains introduced in5 [80]
provide an appropriate framework to generate them, since only linear expressions
and formulas are required. Thus, the mechanisms of linear algebra and efficient
constraint solving techniques based on linear arithmetics (using SMT) provide a
suitable basis for an efficient generation of the models. Section 8 explains how
to obtain order-sorted first-order structures based on convex domains. Section 9
explains their integration in the linear piecewise approach presented in Section 7.

In program analysis, a standard practice is the use of expressions made up
of parameters and variables, so that a concrete interpretation (witnessing, e.g.,
termination) is obtained by instantiating the parameters with numbers by means of
a constraint solving process6. For instance, continuing Remark 2, there is no special
reason to prefer x + y + 1 over 1 or 2x + 1 as the interpretation of g. The choice
will depend on the specific application described by the theory at stake. Thus, a
‘winning’ approach is assigning a parametric expression g1x + g2y + g0 to symbol
g, so that parameters g1, g2 and g0 can be appropriately instantiated (to natural
numbers) depending on other constraints in the problem. The choice of linear

expressions is essential to achieve an efficient mechanization of the computation
of derived models. Section 10 briefly discusses these issues. This methodology is
the basis for the implementation of our tool AGES for the automatic generation of
models for order-sorted first-order theories [57]. It has also been used in the last

5 The idea of using domains defined by means of linear inequations in program analysis
actually goes back to earlier works like [30], for instance.

6 In the realm of program termination, see, e.g., [87] for an early reference and [25] for a
more systematic approach focusing on termination of rewrite systems.

4

version of our tool mu-term for proving termination properties of (variants of)
rewrite systems [1]. Section 11 discusses related work. Section 12 concludes.

This paper is a revised and extended version of [77] and [78, Sections 4 and 5.3].
The main improvements with respect to these previous papers are the following:

1. The definition of function symbols is relational (or implicit) [63, pages 71–72]
rather than algebraic (or explicit).

2. The notion of derivor is generalized to primarily deal with order-sorted signa-
tures with predicates.

3. The notion of derived structure is also new.
4. The notion of piecewise definition of functions and predicates is here the most

basic one for automation.
5. We provide sufficient conditions to prove well-foundedness of piecewise binary

relations.
6. The systematic definition of derivors to transform OS-FOL theories into an

OS-FOL theory amenable for automation is made explicit.
7. The whole approach to the synthesis of structures through parametric expres-

sions and constraint solving has been reworked.

2 Order-Sorted First-Order Logic

The material in this section follows [49,52]. Given a set of sorts S, a many-sorted

signature is an S∗×S-indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S containing func-

tion symbols with a given string of argument sorts and a result sort. If f ∈ Σs1···sk,s,
we often write f : s1 · · · sk → s (a rank declaration for symbol f). Constant symbols
c (having no argument) have rank declaration c : λ → s for some sort s (where λ
denotes the empty sequence). An order-sorted signature (S,≤, Σ) consists of a poset
of sorts (S,≤) together with a many-sorted signature (S,Σ). The connected compo-

nents of (S,≤) are the equivalence classes [s] corresponding to the least equivalence
relation ≡≤ containing ≤. We extend the order ≤ on S to strings of equal length
in S∗ by s1 · · · sn ≤ s′1 · · · s′n iff si ≤ s′i for all i, 1 ≤ i ≤ n. Symbols f can be
subsort-overloaded, i.e., they can have several rank declarations related in the ≤ or-
dering. Constant symbols, however, have only one rank declaration. Furthermore,
the following monotonicity condition must be satisfied: f ∈ Σw1,s1 ∩ Σw2,s2 and
w1 ≤ w2 imply s1 ≤ s2. An order-sorted signature Σ is regular iff given w0 ≤ w1 in
S∗ and f ∈ Σw1,s1 , there is a least (w, s) ∈ S∗ × S such that f ∈ Σw,s and w0 ≤ w.
If, in addition, each connected component [s] of the sort poset has a top element
>[s] ∈ [s], then the regular signature is called coherent.

Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of variables
(which are also disjoint from the signature Σ), the set TΣ(X)s of terms of sort s is
the least set such that (i) Xs ⊆ TΣ(X)s; (ii) if s′ ≤ s, then TΣ(X)s′ ⊆ TΣ(X)s; and
(iii) for each f : s1 . . . sk → s and ti ∈ TΣ(X)si , 1 ≤ i ≤ k, f(t1, . . . , tk) ∈ TΣ(X)s.
If X = ∅, we write TΣ rather than TΣ(∅) for the set of ground terms. The set
TΣ(X) of order-sorted terms is TΣ(X) =

⋃
s∈S TΣ(X)s. The assumption that Σ is

regular yields the very useful property that for any Σ-term t there is a least sort

lsΣ(t) such that t ∈ TΣ(X)lsΣ(t) [52, Proposition 2.10]. Furthermore, if [s] 6= [s′],

then TΣ(X)[s] ∩TΣ(X)[s′] = ∅. In the following, Σ will always be assumed regular.

5

Example 2 The order-sorted signature for ToyamaOS is (S,≤, Σ) where S = {S, S1, S2}
and ≤ is the least ordering on S satisfying S2 ≤ S1. Thus, (S,≤) consists of con-

nected components [S] = {S} and [S1] = {S2, S1} with S (resp. S1) the top sort of [S]
(resp. [S1]). The signature Σ = ΣS1 ∪ ΣS2 ∪ ΣS1 S1,S1 ∪ ΣS1 S1 S1,S, with ΣS1 = {b},
ΣS2 = {a}, ΣS1 S1,S1 = {g}, and ΣS1 S1 S1,S = {f} is regular and coherent.

An order-sorted signature with predicates is a quadruple Ω = (S,≤, Σ,Π) such that
(S,≤, Σ) is a coherent order-sorted signature, and Π = {Πw | w ∈ S∗} is a family
of predicate symbols P , Q, . . . We write P : w for P ∈ Πw. Overloading is also
allowed on predicates with the following regularity condition7 [49, Definition 11]:
for each w0 such that there is P ∈ Πw1 with w0 ≤ w1, there is a least w such that
P ∈ Πw and w0 ≤ w. Furthermore, if the equality symbol is used (as usual as a
logical symbol, as in first-order logic), then there is an equality predicate symbol
= ∈ Πss iff s is the top of a connected component of the sort poset S. We often
write Σ,Π instead of (S,≤, Σ,Π) if S and ≤ are clear from the context.

Remark 3 Order-sorted signatures with predicates for OS-TRSs contain (at least)
as many overloads for the computational relation →∗ as connected components
[s] in S/≡≤ : due to axiom (Rf), terms in a class TΣ(X)[s] rewrite with →∗. By

coherence of the signature, we can just let →∗∈ Π>[s] >[s]
for all s ∈ S. Then, rule

(T) requires a corresponding overload for → as well, i.e., Π>[s] >[s]
= {→,→∗} for

all s ∈ S. This is compatible with any possible instance of rule (Re) because terms
` and r in rewrite rules ` → r of OS-TRSs belong to TΣ(X)[s] for some s ∈ S. By

coherence, `, r ∈ TΣ(X)>[s]
for some s ∈ S.

Example 3 The signature (S,≤, Σ) in Example 2 is extended into (S,≤, Σ,Π) where

ΠS S = ΠS1 S1 = {→,→∗}

are the only nonempty sets of predicate symbols.

The formulas ϕ of an order-sorted signature with predicates Σ,Π are built up from
atoms P (t1, . . . , tn) with P ∈ Πw and t1, . . . , tn ∈ TΣ(X)w, logic connectives (e.g.,
∧, ¬) and quantifiers (∀) as follows: (i) if P ∈ Πw, w = s1 · · · sn, and ti ∈ TΣ(X)si
for all i, 1 ≤ i ≤ n, then P (t1, . . . , tn) ∈ FormΣ,Π ; (ii) if ϕ ∈ FormΣ,Π , then
¬ϕ ∈ FormΣ,Π ; (iii) if ϕ,ϕ′ ∈ FormΣ,Π , then ϕ ∧ ϕ′ ∈ FormΣ,Π ; (iv) if s ∈ S,
x ∈ Xs, and ϕ ∈ FormΣ,Π , then (∀x : s) ϕ ∈ FormΣ,Π . As usual, we can consider
formulas involving other logic connectives and quantifiers (e.g., ∨, ⇒, ⇔, ∃,...)
by using their standard definitions in terms of ∧, ¬, ∀. A formula without any
occurrence of a quantifier is said to be quantifier-free. A closed formula, i.e., one
whose variables are all universally or existentially quantified, is called a sentence.

2.1 Semantics

Given a many-sorted signature (S,Σ), an (S,Σ)-algebra A (or just a Σ-algebra, if
S is clear from the context) is a family {As | s ∈ S} of sets called the carriers or

7 As for terms, the regularity requirement guarantees the existence of a least rank w for
overloaded predicates, see [49, Footnote 7].

6

domains8 of A together with a function fAw,s ∈ Aw → As for each f ∈ Σw,s where
Aw = As1 ×· · ·×Ask if w = s1 · · · sk, and Aw is a one point set when w = λ. Given
an order-sorted signature (S,≤, Σ), an (S,≤, Σ)-algebra (or Σ-algebra if (S,≤) is
clear from the context) is an (S,Σ)-algebra such that

1. If s, s′ ∈ S are such that s ≤ s′, then As ⊆ As′ , and
2. If f ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2, then fAw1,s1 ∈ Aw1 → As1 equals fAw2,s2 ∈
Aw2 → As2 on Aw1 .

An (S,Σ)-homomorphism between (S,Σ)-algebrasA andA′ is an S-sorted function
h = {hs : As → A′s | s ∈ S} such that for each f ∈ Σw,s with w = s1, . . . , sk,

hs(f
A
w,s(a1, . . . , ak)) = fA

′
w,s(hs1(a1), . . . , hsk(ak)). If w = λ, we have hs(f

A) = fA
′
.

An (S,≤, Σ)-homomorphism h : A → A′ between (S,≤, Σ)-algebras A and A′
is an (S,Σ)-homomorphism that also satisfies the following condition: if s ≤ s′

and a ∈ As, then hs(a) = hs′(a). The family of domains {TΣ(X)s}s∈S together
with f : (t1, . . . , tk) 7→ f(t1, . . . , tk) define an order-sorted Σ-algebra called the free

algebra on X and denoted TΣ(X).
Let Ω = (S,≤, Σ,Π) be an order-sorted signature with predicates. An Ω-

structure9 is an order-sorted (S,≤, Σ)-algebra A together with an assignment to
each P ∈ Πw of a subset PAw ⊆ Aw such that [49]: (i) for P the identity predicate

= : ss, the assignment is the identity relation, i.e., (=)As s = {(a, a) | a ∈ As};
and (ii) whenever P : w1 and P : w2 and w1 ≤ w2, then PAw1

= Aw1 ∩ PAw2
.

Let A,A′ be Ω-structures. Then, an Ω-homomorphism h : A → A′ is an
(S,≤, Σ)-homomorphism such that, for each P ∈ Πw with w = s1, . . . , sn, if and

only if (a1, . . . , an) ∈ PAw , then h(a1, . . . , an) ∈ PA
′

w . Given an S-sorted valuation

mapping α : X → A, the evaluation mapping []αA : TΣ(X) → A is the unique
(S,≤, Σ)-homomorphism extending α [52]. Finally, []αA : FormΣ,Π → Bool is given
by:

1. [P (t1, . . . , tn)]αA = true (with P ∈ Πw) if and only if ([t1]αA, . . . , [tn]αA) ∈ PAw ;
2. [¬ϕ]αA = true if and only if [ϕ]αA = false;
3. [ϕ ∧ ψ]αA = true if and only if [ϕ]αA = true and [ψ]αA = true; and

4. [(∀x : s) ϕ]αA = true if and only if for all a ∈ As, [ϕ]
α[x 7→a]
A = true.

A valuation α ∈ X → A satisfies ϕ ∈ FormΣ,Π in A (written A |= ϕ [α]) if
[ϕ]αA = true. We then say that ϕ is satisfiable; otherwise, i.e., there is no valuation
α such that A |= ϕ [α], we say that ϕ is unsatisfiable or inconsistent. If A |= ϕ [α] for
all valuations α, we write A |= ϕ and say that A is a model of ϕ or that ϕ is true in
A [64, page 12]. Initial valuations are not relevant for establishing the satisfiability
of sentences; thus, both notions coincide on them. Thus, we indistinctly say that
A satisfies a sentence ϕ or that A is a model of ϕ if A |= ϕ [7, page 22]. We say that
A is a model of a set of sentences S ⊆ FormΣ,Π (written A |= S) if for all ϕ ∈ S,
A |= ϕ. Given a sentence ϕ, we write S |= ϕ iff A |= ϕ holds for all models A of S.

2.1.1 Clauses, normalization

A literal is an atom or the negation of an atom. A clause is a disjunction of
literals. A set of clauses S is regarded as a conjunction of all clauses in S, where

8 Following [64, Section 1.1], these sets can be empty.
9 As in [64], we use ‘structure’ and reserve the word ‘model’ to refer those structures satis-

fying a given set of sentences (theory).

7

(∀x : S) x→∗ x (1)

(∀x : S1) x→∗ x (2)

(∀x, y, z : S) x→ y ∧ y →∗ z ⇒ x→∗ z (3)

(∀x, y, z : S1) x→ y ∧ y →∗ z ⇒ x→∗ z (4)

(∀x1, y1, x2, x3 : S1) x1 → y1 ⇒ f(x1, x2, x3)→ f(y1, x2, x3) (5)

(∀x1, x2, y2, x3 : S1) x2 → y2 ⇒ f(x1, x2, x3)→ f(x1, y2, x3) (6)

(∀x1, x2, x3, y3 : S1) x3 → y3 ⇒ f(x1, x2, x3)→ f(x1, x2, y3) (7)

(∀x1, y1, x2 : S1) x1 → y1 ⇒ g(x1, x2)→ g(y1, x2) (8)

(∀x1, x2, y2 : S1) x2 → y2 ⇒ g(x1, x2)→ g(x1, y2) (9)

(∀x : S2) f(a, b, x)→ f(x, x, x) (10)

(∀x, y : S1) g(x, y)→ x (11)

(∀x, y : S1) g(x, y)→ y (12)

Fig. 2 Order-Sorted First-Order Theory for ToyamaOS

every variable in S is universally quantified [22]. For every sentence ϕ ∈ FormΣ,Π

there is a sentence ϕ′ in clausal form (i.e., that can be seen as a set of clauses in the
above sense) which is inconsistent if and only if ϕ is [22, Section 4.2] (see [110] for
the OS-FOL setting). Thus, “all questions concerning the satisfiability of sentences

in predicate logic can be addressed to sentences in clausal form” [33, Section 2]. A
Horn clause is a clause ¬A1 ∨ · · · ∨ ¬An ∨ B with at most one non-negated atom;
in implicative form: A1 ∧ · · · ∧An ⇒ B.

2.2 Theories and programs

A theory is a set of sentences. Given a logic L describing computations in a (declar-
ative) programming language, programs are viewed as theories of L [92, Section 6].
For instance, in the logic of OS-TRSs, the theory for an OS-TRS R = (S,≤, Σ,R)
with set of rules R (for instance, our running example) is obtained from the
schematic inference rules in Figure 1 after specializing them as (C)f,i for each
f ∈ Σs1···sk,s and i, 1 ≤ i ≤ k and (Re)ρ for all ρ : `→ r ∈ R. Then, inference rules
B1,...,Bn

A become implications B1 ∧ · · · ∧Bn ⇒ A.

Example 4 The theory for ToyamaOS is shown in Figure 2: (1) and (2) specialize (Rf)
in Figure 1 for the overloads of →∗; (3) and (4) specialize (T) for the overloads
of → and →∗; (5), (6), and (7) specialize (C) for symbol f (using the appropriate
overloads of→ according to the rank of f) and (8) and (9) specialize (C) for symbol
g. Finally, (10), (11), and (12) specialize (Re) for each rewrite rule in ToyamaOS.

3 Derivors for order-sorted signatures with predicates

The notion of derivor [50] generalizes signature morphisms.10 Derivors d can be
used to define theory transformations (also denoted d):

10 Goguen and Burstall consider the notion of a derivor as a more general kind of morphism
between signatures [48, Section 6]. Mart́ı-Oliet, Meseguer, and Palomino develop a similar
notion called generalized signature morphism [90, Definition 3].

8

1. Each sort s ∈ S is given a corresponding sort τ(s) ∈ S′ by some τ : S → S′.
2. Each function symbol f ∈ Σs1···sk,s is given a derived term ds1···sk,s(f) ∈
TΣ′(X ′) of sort τ(s) with variables x1, . . . , xk such that, for all i, 1 ≤ i ≤ k,
xi ∈ Xsi ∩ Xτ(si). Here, we assume that each variable x ∈ Xs of sort s remains

as a variable x ∈ X ′τ(s) of sort τ(s) in the S′-indexed set of variables X ′. Con-

sequently, for all s ∈ S, such ‘imported’ variables x ∈ Xs ∩ X ′τ(s) do not belong

to any other set of variables X ′s′ if s′ 6= τ(s), i.e., for all s ∈ S and s′ ∈ S′, if
s′ 6= τ(s), then Xs ∩ X ′s′ = ∅.

This is then extended into a mapping d : TΣ(X)→ TΣ′(X ′): each term t ∈ TΣ(X)s
of sort s ∈ S is transformed into a term d(t) of sort τ(s):

1. If t = x (of sort s), then d(t) = x (of sort τ(s)).
2. If t = f(t1, . . . , tk) with f ∈ Σw,s, then d(t) = σ(dw,s(f)) where, for all i,

1 ≤ i ≤ k, σ(xi) = d(ti).

We generalize derivors to order-sorted signatures with predicates.

Remark 4 Some presentations of first-order logic do not use function symbols f
of arity k > 0 (i.e., nonconstant symbols) with the proviso that, by using the
equality symbol, they can be introduced by means of appropriate predicate symbols
Rf (x1, . . . , xk, y) with k + 1 arguments (free variables) with the last one playing
the role of output argument, so that Rf (x1, . . . , xk, y) means f(x1, . . . , xk) = y.
With some additional conditions we guarantee totality and uniqueness properties
of functions as relations (see [63, pages 71–72] and also Section 4).

This relational approach to define functions can be used advantageously. The use
of algebraic or rational functions [15], which are ultimately defined by means of
polynomials, can be implemented in this way.

Example 5 The (non-negative) square root sqrt(x) of x ≥ 0 (an algebraic function)
can be defined as follows:

Rsqrt (x, y)⇔ x = y2 ∧ y ≥ 0 (13)

And a rational function like f(x, y, z) = x+z+xy+yz
y , for real values x, y, z ≥ 1 (see

[76, Example 8]) can be defined as follows:

Rf (x, y, z, t)⇔ x+ z + xy + yz = ty (14)

In both cases, we obtain (decidable!) sentences of the First-Order Logic of the Real

Closed Fields [9,114]. This provides a basis for their implementation.

The systematic use of this relational approach (Remark 4) leads to a more general
notion of derivor which is used in the following (in particular, to deal with the
piecewise definition of functions and predicates, see Section 6). In the following
definition, we call τ : S → S′ monotone iff ∀s, s′ ∈ S, s ≤ s′ ⇒ τ(s) ≤′ τ(s′) holds.

Definition 1 Let Ω = (S,≤, Σ,Π) and Ω′ = (S′,≤′, Σ′, Π ′) be order-sorted signa-
tures with predicates. A general derivor from Ω to Ω′ consists of a monotone
mapping τ : S → S′, a mapping d : S → FormΣ′,Π′ , a family of mappings
dw,s : Σw,s → FormΣ′,Π′ , and a family dw : Π → FormΣ′,Π′ such that

9

1. d(s) is a formula ∆s(x) with at most a single free variable x ∈ Xs ∩ Xτ(s).
2. for all f ∈ Σw,s, with w = s1 · · · sk, dw,s(f) is a formula Φfw,s(x1, . . . , xk, y) ∈

FormΣ′,Π′ with free variables xi ∈ Xsi ∩ Xτ(si), 1 ≤ i ≤ k, and y ∈ Xs ∩ Xτ(s).
3. for all P ∈ Πw, with w = s1 · · · sn, dw(P) is a formula ΦPw(x1, . . . , xn) ∈

FormΣ′,Π′ with free variables xi ∈ Xsi ∩ Xτ(si), 1 ≤ i ≤ n.

In the following, when no confusion arises, we often write s′ instead of τ(s).

Remark 5 In Definition 1, ∆s(x) is intended to provide an explicit description of
sort s ∈ S in the derived structure A = dA′ as follows: As = {x ∈ A′τ(s) | ∆s(x)}.

Remark 6 A derivor (as in [50], see above) can be seen as a general derivor by
using, for each f ∈ Σw,s, an equation y = dw,s(f), where y ∈ X ′s is a fresh variable,
instead of the term dw,s(f) ∈ TΣ′(X ′)τ(s). We often use the term-based notation for
derivors of function symbols and assume the previous translation when necessary.

Every quantifier-free formula ϕ ∈ FormΣ,Π containing an occurrence of a function
symbol f : w → s (written ϕ = C[f(t1, . . . , tk)]) is logically equivalent to the
formula (∀y : s) f(t1, . . . , tk) = y ⇒ C[y] where y is a fresh variable of sort s not
occurring in ϕ. Proceeding in this way we can flatten every formula ϕ to obtain an
equivalent formula where function calls are replaced by new variables holding the
value of the call. Conversely, we can use this trick to define functions whose return
value depends on the satisfaction of appropriate logical conditions. In this way, a
general derivor is extended to a mapping d : FormΣ,Π → FormΣ′,Π′ as follows:

1. d(P (t1, . . . , tn)), where P ∈ Πw for some w ∈ S+, is

(∀yP1 : s′1, . . . , y
P
n : s′n) ω(t1, y

P
1) ∧ · · · ∧ ω(tn, y

P
n)⇒ σ(ϕ′)

where σ is a substitution and, if we let s′ = τ(s) for any s ∈ S in the following:
(a) yP1 , . . . , y

P
n are new variables of sorts s′1, . . . , s

′
n, respectively.

(b) ϕ′ with free variables x1, . . . , xn of sorts s′1, . . . , s
′
n, respectively, is obtained

from dw(P) by renaming its bound variables so that no bound variable in
ϕ′ occurs free in the antecedent of the implication.

(c) σ(xi) = yPi for all 1 ≤ i ≤ n and σ(x) = x for any other variable x.
(d) ω(t, z), where t is a term of sort s and z is a variable of sort s′, is a formula

in FormΣ′,Π′ defined as follows:

– If t is a variable x ∈ Xs, then ω(t, z)
def

= x = z (note that x ∈ Xs′) and
we assume = ∈Π ′s′s′ .

– If t is f(t1, . . . , tk) with f ∈ Σw,s, w = s1, . . . , sk, and ti ∈ TΣ(X)si for
1 ≤ i ≤ k, then ω(t, z) is

(∀yf1 : s′1, . . . , y
f
k : s′k) ω(t1, y

f
1) ∧ · · · ∧ ω(tk, y

f
k) ∧ θ(dw,s(f))

where, if dw,s(f) has free variables x1, . . . , xk, y,

i. yf1 , . . . , y
f
k are new variables of sorts s′1, . . . , s

′
k, respectively.

ii. θ(xi) = yfi for all 1 ≤ i ≤ k, θ(y) = z, and θ(x) = x for any other
variable x.

2. For the logical connectives, we have:

d(¬ϕ) = ¬d(ϕ) (15)

d(ϕ ∧ ϕ′) = d(ϕ) ∧ d(ϕ′) (16)

d((∀x : s)ϕ) = (∀x : s′)(∆s(x)⇒ d(ϕ)) (17)

10

(∀x : nat) x ≥ x (18)

(∀x : nat) x ≥ x (19)

(∀x, y, z : nat) x > y ∧ y ≥ z ⇒ x ≥ z (20)

(∀x, y, z : nat) x > y ∧ y ≥ z ⇒ x ≥ z (21)

(∀x1, y1, x2, x3 : nat) x1 > y1 ⇒ x1 + x2 + x3 > y1 + x2 + x3 (22)

(∀x1, x2, y2, x3 : nat) x2 > y2 ⇒ x1 + x2 + x3 > x1 + y2 + x3 (23)

(∀x1, x2, x3, y3 : nat) x3 > y3 ⇒ x1 + x2 + x3 > x1 + x2 + y3 (24)

(∀x1, y1, x2 : nat) x1 > y1 ⇒ x1 + x2 + 1 > y1 + x2 + 1 (25)

(∀x1, x2, y2 : nat) x2 > y2 ⇒ x1 + x2 + 1 > x1 + y2 + 1 (26)

(∀x : zero) 0 + 1 + x > x+ x+ x (27)

(∀x, y : nat) x+ y + 1 > x (28)

(∀x, y : nat) x+ y + 1 > y (29)

Fig. 3 Derived sentences for the sentences in Figure 2

Example 6 Consider Ω′ = (S′,≤′, Σ′, Π ′) with S′ = {zero, nat}, zero ≤′ nat, and
Σ′ = Σ′λ,zero∪Σ

′
λ,nat∪Σ

′
nat2nat where Σ′λ,zero = {0}, Σ′λ,nat = {1}, and Σ′nat2nat = {+}.

We define a derivor as follows: τ(S) = τ(S1) = nat and τ(S2) = zero, d(S) = d(S1) =
d(S2) = true, dλ,S2(a) = 0, dλ,S1(b) = 1, dS1 S1 S1,S1(f) = x+y+ z, and dS1 S1,S1(g) =
x + y + 1 (see Remark 6). For the overloaded predicates →,→∗∈ ΠS S ∪ΠS1 S1 as

follows: dS S(→)
def

= x > y and dS S(→∗)
def

= x ≥ y with x, y ∈ Xnat (similarly for
dS1 S1(→) and dS1 S1(→); note that τ(S) = τ(S1) = nat). Sentences (1)–(12) are
then translated into the derived sentences (18)–(29) in Figure 3.

4 Derived structures and models

Since Φfw,s(x1, . . . , xk, y) (see Definition 1) must provide a functional interpretation
fAw,s for f : w → s (with w = s1 · · · sk) in any derived algebra (or structure) A = dA′,
we need to impose some requirements to such formulas. If s′i = τ(si) for 1 ≤ i ≤ k,
and s′ = τ(s), then the following conditions must be satisfied:

1. (Totality/Algebraicity) The outcome y of the function is of sort s′:

A′ |= (∀x1 : s′1, . . . , xk : s′k ∃y : s′)(
k∧
i=1

∆si(xi)

)
⇒ ∆s(y) ∧ Φfw,s(x1, . . . , xk, y) (30)

2. (Uniqueness) The outcome of the function is determined by the arguments:

A′ |= (∀x1 : s′1, . . . , xk : s′k, y, z : s′)(
k∧
i=1

∆si(xi)

)
∧ Φfw,s(x1, . . . , xk, y) ∧ Φfw,s(x1, . . . , xk, z)⇒ y = z (31)

The following definition establishes the conditions for a target structure to guaran-
tee that a general derivor provides a sound description of (i) the subsort relation,
(ii) function symbols as mathematical functions, and (iii) overloaded symbols.

11

Definition 2 Given order-sorted signatures with predicates Ω = (S,≤, Σ,Π) and
Ω′ = (S′,≤′, Σ′, Π ′), a general derivor 〈τ, d〉 from Ω to Ω′, and an Ω′-structure
A′ = (A′, Σ′A′ , Π

′
A′), we say that d is A′-sound if the following conditions hold:

1. for all s1, s2 ∈ S, if s1 ≤ s2, then A′ |= (∀x : s′1)∆s1(x)⇒ ∆s2(x).
2. for all f ∈ Σw,s, conditions (30) and (31) hold.
3. If f ∈ Σw1,s1 ∩Σw2,s2 , w1 ≤ w2, and w1 = s11 · · · s1k, the following holds:

A′ |= (∀x1 : s′11, . . . , xk : s′1k, y : s′1, z : s′2)

k∧
i=1

∆s1i(xi) ∧ Φ
f
w1,s1(x1, . . . , xk, y) ∧ Φfw2,s2(x1, . . . , xk, z)⇒ y = z (32)

4. If P ∈ Πw1 ∩Πw2 , w1 ≤ w2, and w1 = s11 · · · s1n, the following holds

A′ |= (∀x1 : s′11, . . . , xn : s′1n)

k∧
i=1

∆s1i(xi)⇒ (ΦPw1
(x1, . . . , xn)⇔ ΦPw2

(x1, . . . , xn)) (33)

Definition 3 (Derived structure) Let Ω = (S,≤, Σ,Π) and Ω′ = (S′,≤′, Σ′, Π ′)
be order-sorted signatures with predicates and 〈τ, d〉 be a general derivor from Ω

to Ω′. Let A′ = (A′, Σ′A′ , Π
′
A′) be an Ω′-structure such that d is A′-sound. The

Ω-structure dA′ (denoted A for short) derived from A′ by 〈τ, d〉 consists of:

1. The S-sorted set of domains A = {As | s ∈ S} where, for each sort s ∈ S,

As = {a ∈ A′s′ | [∆s(x)]
{x 7→a}
A′ }.

2. For each f ∈ Σw,s such that dw,s(f) has free variables in {x1, . . . , xk, y} where
for all i, 1 ≤ i ≤ k, xi ∈ Xsi ∩ Xs′i and y ∈ Xs ∩ Xs′ , a mapping fAw,s as follows:

for all a1 ∈ As1 , . . . , ak ∈ Ask and b ∈ As, fAw,s(a1, . . . , ak) = b iff [dw,s(f)]αA′
holds for α given by α(xi) = ai for all 1 ≤ i ≤ k and α(y) = b.

3. For each P ∈ Πw such that dw(P) has free variables in {x1, . . . , xn} where for
all i, 1 ≤ i ≤ n, xi ∈ Xsi ∩ Xs′i , interpretations PAw defined to be set of tuples
in Aw that satisfy dw(P), i.e.,

PAw = {(a1, . . . , an) ∈ Aw | [dw(P)]αA′ , α(xi) = ai, 1 ≤ i ≤ n}

The following obvious result formalizes the use of the previous construction.

Theorem 1 Let Ω = (S,≤, Σ,Π) and Ω′ = (S′,≤′, Σ′, Π ′) be order-sorted signatures

with predicates and 〈τ, d〉 be a derivor from Ω to Ω′. Let A′ be an Ω′-structure such

that d is A′-sound, and S ⊆ FormΣ,Π be a theory. If A′ |= d(S), then dA′ |= S.

5 Additional requirements in logic and non-logic form

Derived models for a theory S representing a program analysis or verification
problem can be expected to meet some requirements which sometimes can be
guaranteed by just adding further OS-FOL sentences. In other cases this is not
possible, but we can still add specific requirements on the interpretation to achieve
the goal. We consider some of them.

12

5.1 Well-founded relations

Well-foundedness of (binary) relations is required in many important applications
(in particular, in termination analysis).

Definition 4 (Well-founded relation) Consider a binary relation R on a set A,
i.e., R ⊆ A × A. We say that R is well-founded if there is no infinite sequence
a1, a2, . . . such that for all i ≥ 1, ai ∈ A and ai R ai+1.

Well-foundedness can be expressed in second-order logic [111, Section 5.1.4], where
a new kind of variables (called relation and function variables) is introduced with
an arity distinction for them (so that there are n-place predicate and function
variables for n > 0). Then, a new kind of sentences can be written where such
predicate and function variables may occur in the same places where predicate
and function symbols (respectively) are allowed in first-order logic; furthermore,
they can be quantified using ∀ and ∃ as well [17, Section 22]. A relation R is
well-founded iff the following second-order formula ϕ holds [111]:

∀X[∃x(x ∈ X)⇒ ∃x(x ∈ X ∧ ∀y(y ∈ X ⇒ ¬(x R y)))] (34)

Here, X is a monadic predicate variable and we write x ∈ X rather than X(x). Un-
fortunately, the well-foundedness of a relation PAss interpreting a binary predicate
P ∈ Πss can not be characterized in first-order logic [111, Section 5.1.4].

Remark 7 According to [63, Section 20], ϕ, i.e., (34), can be expressed in a two-

sorted FOL with sorts s1, s2 by just adding a new predicate symbol ε : s1s2 (and
giving any other predicate or function symbol a rank using s1 only) to obtain ϕ↓:

∀z2[∃x1(x1ε z2)⇒ ∃x1(x1ε z2 ∧ ∀y1(y1ε z2 ⇒ ¬(x1 R y1)))] (35)

so that, for all (second-order) models11 A of ϕ there is a two-sorted first-order

model A↓ of ϕ↓, where A↓s1 is A and A↓s2 is P(A), the collection of subsets of A.
Then, ε is interpreted as the membership relation of elements in A in some set in
P(A). Therefore, the second-order satisfaction A |= ϕ of ϕ by A implies the two-
sorted, first-order satisfaction A↓ |= ϕ↓ of ϕ↓ by A↓. However, if A is a two-sorted
first-order structure satisfying ϕ↓, i.e., A |= ϕ↓ holds, this does not, in general,
imply that the second-order structure A↑ (obtained from A by just disregarding the
interpretation of ε and all sort information), satisfies ϕ, i.e., we cannot guarantee
that A↑ |= ϕ holds. Hence, finding a model A of ϕ↓ does not guarantee that A↑
is a model of ϕ. Therefore, finding a model of (35) does not guarantee that the
‘synthesized’ relation RA is well-founded.

Hence, we guarantee well-foundedness of the relation PAss interpreting a predicate
P ∈ Πss at the semantic level by an appropriate choice of PAss (see Section 8.3.1).

Proposition 1 Let Ω and Ω′ be order-sorted signatures with predicates, 〈τ, d〉 be a

general derivor from Ω to Ω′, and P ∈ Πss (for some s ∈ S) be such that dss(P) =
ΦPss(x, y). Let A′ be an Ω′-structure and A = dA′. If R = {(a, b) ∈ A′τ(s)τ(s) |

[ΦPss]
{x 7→a,y 7→b}
A′ } is well-founded, then PAss is well-founded.

11 Second-order structures are defined as for (unsorted) FOL; the difference with second-order
logic is in the treatment of second-order variables that brings a different notion of satisfaction
[17, page 280].

13

Proof By contradiction. If PAss is not well-founded, then there is an infinite sequence
(ai)i≥1 with ai ∈ As such that for all i ≥ 1 (ai, ai+1) ∈ PAss. By Definition 3(3),

[ΦPss]
{x 7→ai,y 7→ai+1}
A′ holds for all i ≥ 1. Since, by Definition 3(1), As ⊆ A′τ(s), it

follows that for all i ≥ 1 (ai, ai+1) ∈ R, i.e., R is not well-founded, a contradiction.

5.2 Non-empty domains.

An important requirement in termination analysis is that the domain As where a
well-founded relation R is defined is non-empty.

Remark 8 Termination of (unsorted) rewriting can be proved by using well-founded

monotone algebras [123, Section 2.1], i.e., algebras A whose domain is given a well-

founded ordering � such that the following monotonicity requirement is satisfied: for
all k-ary symbols f , 1 ≤ i ≤ k, and a1, . . . , ak, a, b ∈ A,

a � b⇒ fA(a1, . . . , ai−1, a, . . . , ak) � fA(a1, . . . , ai−1, a, . . . , ak)

Then, an ordering �A on terms is defined as follows: for all terms s, t,

s �A t⇐⇒ (∀α ∈ X → A) [s]αA � [t]αA (36)

A TRSR is terminating iff there is a monotone algebraA with a non-empty domain
such that for all rules ` → r in R, ` �A r, [123, Proposition 1]. This is because
well-foundedness of � on A together with monotonicity induces a well-founded

and monotonic ordering on terms which can then be used to prove termination
of R, according to the well-known Lankford’s Theorem [74, page 11]. Indeed, if
the domain A of the algebra is empty, then the rightmost ‘sentence’ in (36) is
vacuously true, disregarding the terms s and t. Thus, for all terms t, we would have
t �A t �A · · · contradicting the necessary well-foundedness of �A.

In a many-sorted or order-sorted setting, the requirement of non-empty domains
in algebras or structures could be relaxed as there can be good reasons to do so
(see [51] and the references therein). If the signature contains no constant of sort
s, we can add a sentence (∃x : s)x = x to our theory S to guarantee that As 6= ∅ in
any possible interpretation of sort s. By skolemization, this is equivalent to adding
a fresh constant k of sort s to the signature.

Example 7 Consider Ω′ in Example 6 and the Ω′-structure A′ with A′nat = N and
A′zero = {0}. Note that A′zero ⊆ A′nat. Symbols 0, 1, +, ≥ and > are given the
intended interpretations over the natural numbers. Then, A′ satisfies the sentences
in Figure 3: (18)–(26) and (28)–(29) hold by standard properties of the arithmetic
operations and comparison operators (reflexivity and transitivity of ≥N, etc.). And
(27) holds due to our choice for Azero: since Azero = {0}, x is restricted to take
value 0; thus, ∀x ∈ {0} 0 + 1 + x >N x+ x+ x becomes 1 >N 0, which is true. Since
>N is a well-founded relation over Anat 6= ∅, termination of ToyamaOS is proved.
The choice of a well-founded ordering >N to interpret → is essential to conclude
termination of ToyamaOS from the fact that A is a model of sentences (18)–(29).

14

5.3 Specification of requirements in target logic form

We assume that the source theory S ⊆ FormΣ,Π contains all ‘basic’ information
about the problem at stake (e.g., the semantics of the program as given by the OS-
FOL theory ToyamaOS in Figure 2) together with any other requirement in source

logic form (i.e., sentences ϕ ∈ FormΣ,Π). Requirements that cannot be expressed
in this way (e.g., well-foundedness, see Section 5.1), must be guaranteed at the
derived level by sentences in FormΣ′,Π′ interpreted over specific structures A′ so
that the requirement is propagated backwards (e.g., Proposition 1, regarding well-
foundedness). Then, we actually start with a pair 〈S | ρ〉 where ρ is a list of pairs
where the requirements are associated to syntactic components of Ω. For instance,
(→ : SS,wellfounded) says that predicate → : SS in ToyamaOS language should be
interpreted as a well-founded relation in the derived structure.

6 Piecewise function and predicate definitions

Derived interpretations dw,s(f) for function symbols f : w → s (with w = s1 · · · sk)
can be given by using a sequence of Nf :w→s (or just Nf if no confusion arises)

terms tf,i ∈ TΣ′(X ′)s′ , for 1 ≤ i ≤ Nf , with variables x1, . . . , xk of sorts s1, . . . , sk
(used in X ′ with sorts s′1, . . . , s

′
k, see Section 3). The use of terms tf,i is controlled

by qualifiers ψf,i ∈ FormΣ′,Π′ which are formulas with free variables x1, . . . , xk:

dw,s(f) =

tf,1 if ψf,1

...

tf,Nf if ψf,Nf

(37)

Eventually, the last formula ψf,Nf can be true (often written “otherwise”) to accept

any combination of arguments to f not allowed by qualifiers ψf,1, . . . , ψf,Nf−1.

Example 8 Functions max and min are defined as follows:

max(x, y) =

{
x if x ≥ y
y otherwise

min(x, y) =

{
x if x ≤ y
y otherwise

A piecewise function definition dw,s(f) as in (37) is interpreted by the following
characteristic formula:

Φfw,s(x1, . . . , xk, y)
def

=

Nf∨
i=1

(
Ψf,i(x1, . . . , xk) ∧ tf,i = y

)
(38)

where x1, . . . , xk and y are free variables and the formulas

Ψf,i(x1, . . . , xk)
def

=
i−1∧
j=1

¬ψf,j(x1, . . . , xk) ∧ ψf,i(x1, . . . , xk) (39)

for 1 ≤ i ≤ Nf characterize the pieces of the domain of fAw,s (as in Definition 3)

defined by the qualifiers. Note that formulas Ψf,i exclude each other. The domain

of the entire function is characterized by the disjunction
∨Nf
i=1 Ψ

f,i, or just by the

disjunction
∨Nf
i=1 ψ

f,i of the qualifiers. We say that (37) is a piecewise function

definition of f and that Φfw,s is its characteristic formula.

15

Remark 9 (Totality/algebraicity) The following condition

A′ |= (∀x1 : s1, . . . , xk : sk)

Nf∨
i=1

ψf,i (40)

guaranteeing that dw,s(f) denotes a total function fAw,s is easily fulfilled by just

letting ψf,Nf
def

= true (or otherwise). Then, (30) becomes

A′ |= (∀x1 : s′1, . . . , xk : s′k, y : s′)

(
k∧
i=1

∆si(xi)

)
∧ Φfw,s(x1, . . . , xk, y)⇒ ∆s(y) (41)

Note that y is universally quantified now.

Remark 10 (Uniqueness) Note that fAw,s (as in Definition 3) is well-defined: given
a1 ∈ As1 , . . . , ak ∈ Ask , b ∈ As, there is at most one i ∈ {1, . . . , Nf} such that

[Ψf,i]αA holds with α = {x1 7→ a1, . . . , xk 7→ ak, y 7→ b}. Therefore, fAw,s(a1, . . . , ak)

is uniquely defined as [tf,i]αA (which is equal to b, see (38)) because tf,i is a term.

Example 9 Assume that max : Int Int→ Int is a function symbol from a signature
Σ. Consider the target signature with predicates P = (SP ,≤P , ΣP , ΠP) of (a
fragment of) Presburger’s arithmetic with SP = {int} and ≤P being the equality.

Only predicate symbols ≥,= ∈ ΠPint int are used. Let τ(Int) = int and ∆Int(x)
def

= true

with x of sort int. The characteristic formula for dInt Int,Int(max) as in Example 8
is:

Φmax
Int Int,Int(x, y, z)

def

= (x ≥ y ∧ x = z) ∨ (¬(x ≥ y) ∧ true ∧ y = z)

Interpretations for predicate symbols P ∈ Πw (with w = s1 · · · sn) can also be
given by using a sequence of NP :w (or just NP) test pieces ϕP,i ∈ FormΣ′,Π′ for
1 ≤ i ≤ NP which are formulas with free variables x1, . . . , xn such that, for all i,
1 ≤ i ≤ n, xi ∈ Xsi ∩ Xs′i whose use is controlled by qualifiers ψP,i ∈ FormΣ′,Π′

with (the same) free variables x1, . . . , xn, written

dw(P) ⇔

ϕP,1 if ψP,1

...

ϕP,NP if ψP,NP

(42)

We think of dw(P) as decomposed into NP pieces characterized by the formulas

ΨP,i(x1, . . . , xn)
def

=
i−1∧
j=1

¬ψP,j(x1, . . . , xn) ∧ ψP,i(x1, . . . , xn) (43)

for 1 ≤ i ≤ NP , which exclude each other. Then, for all a1 ∈ As1 , . . . , an ∈ Asn ,
PAw (a1, . . . , an) is equivalent to [ϕP,i]αA with α = {x1 7→ a1, . . . , xn 7→ an}, provided
that [ΨP,i]αA holds. This corresponds to the following characteristic formula:

ΦPw(x1, . . . , xn)
def

=

Nf∨
i=1

(
ΨP,i(x1, . . . , xn) ∧ ϕP,i(x1, . . . , xn)

)
(44)

with free variables x1, . . . , xn. We say that dw(P) given as in (42) is a piecewise

predicate definition with characteristic formula ΦPw .

16

Remark 11 A single-row definition, i.e., NP = 1, is a ‘degenerate’ case which is
equivalent to defining dw(P) as ϕP,1∧ψP,1, thus making notation (42) quite useless.

Example 10 The lexicographic product >lex of strict orderings >i on sets Ai for
1 ≤ i ≤ n is a relation on tuples x,y ∈ A1 × · · · ×An defined as follows:

x = (x1, . . . , xn)T >lex (y1, . . . , yn)T = y⇔

x1 >1 y1 if x1 6=1 y1

...
xn−1 >n−1 yn−1 if xn−1 6=n−1 yn−1

xn >n yn otherwise

6.1 Well-foundedness of piecewise binary relations

A binary relation R on a set A is disjunctively well-founded if it is the union of
a finite set of well-founded relations, i.e., R =

⋃n
i=1Ri for well-founded relations

R1, . . . , Rn ⊆ A × A [104]. A transitive and disjunctively well-founded relation R

is well-founded. In the following, we say that a formula ϕ(x1, . . . , xn) with free
variables x1, . . . , xn of sorts s1, . . . , sn, respectively, is an overapproximation of a
formula ϕ(x1, . . . , xn) (with the same free variables) if the following sentence holds:

(∀x1 : s1, . . . , xn : sn) ϕ(x1, . . . , xn)⇒ ϕ(x1, . . . , xn)

Theorem 2 Let Ω = (S,≤, Σ,Π) be an order-sorted signature with predicates, s ∈ S,

x, y ∈ Xs, N > 0, and A be an Ω-structure. Let

R(x, y) ⇔

ϕ1 if ψ1

...

ϕN if ψN

(45)

with ϕ1, . . . , ϕN , ψ1, . . . , ψN ∈ FormΣ,Π having free variables x, y and Φss(x, y)
def
=∨N

i=1

(
Ψ i(x, y) ∧ ϕi(x, y)

)
, where Ψ i is as in (43), using ϕi instead of ϕP,i and ψi

instead of ψP,i. For all 1 ≤ i ≤ N , let Θi(x, y) be an overapproximation of Ψ i(x, y) ∧
ϕi(x, y) and Φss(x, y)

def
=
∨N
i=1Θi(x, y). If

1. for all i, 1 ≤ i ≤ N , Ri = {(a, b) ∈ Ass | [Θi]
{x 7→a,y 7→b}
A } is well-founded, and

2. A |= (∀x, y, z : s)(Φss(x, y) ∧ Φss(y, z)⇒ Φss(x, z)),

then RAss = {(a, b) ∈ Ass | [Φss]{x 7→a,y 7→b}A } is well-founded.

Example 11 Using the notation in (43) and (44) regarding the piecewise definition

of a predicate P ∈ Πss, let Θi(x, y)
def

= ψP,i(x, y) ∧ ϕP,i(x, y). Note that Θi(x, y)
overapproximates ΨP,i(x, y) ∧ ϕP,i(x, y) because Θi(x, y) is obtained from it by

removing the ‘negative’ conjuncts
∧i−1
j=1 ¬ψ

P,j(x, y) from ΨP,i(x, y), see (43).

We use Theorem 2 and the overapproximation in Example 11 in Theorem 4 below.

17

7 Piecewise definitions based on linear expressions

In the following, we use a logic based on linear expressions with intended numerical
interpretation. Let Λ = (N,≤N, LExp,BCmp) be a signature with predicates where:

1. N consists of sorts ν1, ν2, . . . that will be interpreted as numerical structures

(essentially sets of numerical vectors).
2. ≤N is an ordering on N.
3. The signature LExp is the union of LExpλ,νi , LExpνi,νj and LExpνiνi,νi , where,

for each i, j ∈ N,
– LExpλ,νi consists of constant symbols (we call them constant coefficients),
– Symbols c ∈ LExpνi,νj (called linear coefficients) permit the definition of

linear monomials cx of sort νj for each variable x of sort νi, and
– LExpνiνi,νi = {+} contains overloaded versions of the addition operator.

4. BCmp is the union of BCmpν′iν
′
i

= {>,≥,≤, <,=} for each i ∈ N. We do not

assume any specific relationship among them. For instance, we do not assume
x ≥ y as equivalent to x > y ∨ x = y.

We define a (generic) derivor for a given signature with predicates Ω where function
and predicate symbols are given piecewise definitions based on linear expressions
in Λ. We also need a set of formulas Ξ to be satisfied by the considered structure
A′ in order to guarantee that the obtained derivor is safe (Definition 2).

1. Sorts. Define an injective mapping τ : S → N; in the following, τ(s) ∈ N is
denoted νs. Each sort s is given a domain inequality ∆s(x) as follows:

s1x ≥ s0 (46)

with s1 ∈ LExpνs,ν and s0 ∈ LExpλ,ν for some ν ∈ N.
2. Subsorts. The subsort relation ≤N among sorts in N is the least one satisfying:

if s ≤ s′ for s, s′ ∈ S, then νs ≤N νs′ . We add the following formulas to Ξ:

{(∀x : νs) s1x ≥ s0 ⇒ s′1x ≥ s′0 | s, s′ ∈ S, s ≤ s′} (47)

3. Constants. For each f ∈ Σλ,s, dλ,s(f) = f0 ∈ LExpλ,νs . We add a sentence
s1f0 ≥ s0 (algebraicity, see (41)) to Ξ.

4. Non-constant function symbols. For each f ∈ Σw,s, with w = s1 · · · sk, k > 0,
define Nf , the number of rows of the piecewise function definition for f . Then:

dw,s(f) =

f1(x1, . . . , xk) if f

1
(x1, . . . , xk) ≥ f10

...

fNf−1(x1, . . . , xk) if f
Nf−1

(x1, . . . , xk) ≥ fNf−1
0

fNf (x1, . . . , xk) otherwise

(48)

where for all 1 ≤ j ≤ Nf ,

– fj(x1, . . . , xk)
def

=
∑k
i=1 f

j
i xi + fj0 with fji ∈ LExpνsi ,νs

for all 1 ≤ i ≤ k

fj0 ∈ LExpλ,νs and + ∈ LExpνsνs,νs , and

– f
j
(x1, . . . , xk)

def

=
∑k
i=1 f

j
ixi with f

j
i ∈ LExpνsi ,νj

for all 1 ≤ i ≤ k, and

f
j
0 ∈ LExpλ,νj for some νj ∈ N and + ∈ LExpνjνj ,νj .

For each characteristic formula (38), we add a sentence (41) to Ξ.

18

5. Overloaded functions. For each f ∈ Σw,s ∩Σw′,s′ with w ≤ w′, add (32) to Ξ.

6. Equality. For each = ∈ Πss, let dss(=)
def

= x1 = x2 where the equality symbol in
the right-hand side of the definition is = ∈ BCmpνsνs .

7. Predicate symbols. For each P ∈ Πw with w = s1, . . . , sn, let

dw(P) =

P 1(x1, . . . , xn) ≥ P 1

0 if P
1
(x1, . . . , xn) ≥ P 1

0

...

PNP (x1, . . . , xn) ≥ PNP0 if P
NP (x1, . . . , xn) ≥ PNP0

(49)

for some NP > 1, where for all 1 ≤ j ≤ NP , P j(x1, . . . , xn)
def

=
∑n
i=1 P

j
i xi and

there are νj , ν
′
j ∈ N such that for all 1 ≤ i ≤ n, P ji ∈ LExpνsi ,νj

, P j0 ∈ LExpλ,νj ,

P
j
i ∈ LExpνsi ,ν

′
j
, and P

j
0 ∈ LExpλ,ν′j .

8. Overloaded predicates. For each P ∈ Πw ∩Πw′ with w ≤ w′, we add (33) to Ξ.

Example 12 Let Ξ = ∅. For ToyamaOS we obtain the following derivor:

1. Let ∆S(x)
def

= S1x ≥ S0, ∆S1(x)
def

= S11x ≥ S10, and ∆S2(x)
def

= S21x ≥ S20 where
S1 ∈ LExpνS,ν , S11 ∈ LExpνS1,ν1 , S21 ∈ LExpνS2,ν2 , S0 ∈ LExpλ,ν , S10 ∈ LExpλ,ν1 ,
and S20 ∈ LExpλ,ν2 for some ν, ν1, ν2 ∈ N.

2. νS2 ≤N νS1. We add (∀x : νS2) S21x ≥ S20 ⇒ S11x ≥ S10 to the set Ξ:
3. Let Na = Nb = 1 and Nf = Ng = 2. Then, dλ,S2(a) = a0, dλ,S1(b) = b0, and

dS1 S1 S1,S(f) =

{
f11x1 + f12x2 + f13x3 + f10 if f

1
1x1 + f

1
2x2 + f

1
3x3 ≥ f

1
0

f21x1 + f22x2 + f23x3 + f20 otherwise

dS1 S1,S1(g) =

{
g11x1 + g12x2 + g10 if g11x1 + g12x2 ≥ g10
g21x1 + g22x2 + g20 otherwise

Accordingly, we add algebraicity conditions (41) for a, b, f, and g to Ξ.
4. Let N→:SS = N→:S1 S1 = N→∗:S S = N→∗:S1 S1 = 1. Then,

dS S(→) = r1x1 + r2x2 ≥ r0 dS1 S1(→) = r′1x1 + r′2x2 ≥ r′0
dS S(→∗) = s1x1 + s2x2 ≥ s0 dS1 S1(→∗) = s′1x1 + s′2x2 ≥ s′0

7.1 Normal form of derived formulas

In the following, we assume S′ = d(S) ∪ Ξ normalized as a set of universally
quantified clauses (Section 5.3) consisting of (possibly negated) atoms of the form

A(x1, . . . , xm) = b or A(x1, . . . , xm) ≥ b (50)

for variables x1, . . . , xm of sorts ν1, . . . , νm, where A(x1, . . . , xm) =
∑m
i=1Aixi is

a linear expression with Ai ∈ LExpνi,ν for some sort ν, b ∈ LExpλ,ν , and =,≥ ∈
BCmpν,ν . That is, ϕ′ ∈ S′ has the following (implicative) form, for M,P,Q ∈ N:

(∀x1 : ν1, . . . , xM : νM)
P∧
i=1

B−i (x)⇒
Q∨
j=1

B+
j (x) (51)

where both B−i and B+
j are atoms of one of the forms (50).

As remarked above, we consider linear expressions in a broad sense, including
those with matrices as multiplicative factors. The following section shows how to
define a sufficiently flexible class of structures which can be used for our purposes.

19

Sort Cs bs D(Cs,bs) N As = DN (Cs,bs)
∅ (0) (1) ∅ − ∅

Nat (1) (0) [0,+∞) Z N
NzNat (1) (1) [1,+∞) Z {1, 2, . . .}
Zero (1,−1)T (0, 0)T {0} − {0}
Bool (1,−1)T (0,−1)T [0, 1] Z {0, 1}
Char (1,−1)T (0,−255)T [0, 255] Z {0, 1, . . . , 255}
Int (0) (0) R Z Z

Fig. 4 Convex domains for some usual sorts

8 Order-Sorted Structures with Convex Domains

In this section we introduce a class of structures which can be systematically
used in the last step of the synthesis of models through the definition of piecewise

and linear derivors as in the previous section. Our starting point are the convex
polytopic domains introduced for termination analysis in [80].

Definition 5 [80, Definition 1] Given a matrix C ∈ Rm×n, and b ∈ Rm, the set
D(C,b) = {x ∈ Rn | Cx ≥ b} is called a convex polytopic domain.

In Definition 5, vectors x,y ∈ Rn are compared using the coordinate-wise extension
of the ordering ≥ among numbers which, by abuse, we denote using ≥ as well:

x = (x1, . . . , xn)T ≥ (y1, . . . , yn)T = y iff x1 ≥ y1 ∧ · · · ∧ xn ≥ yn (52)

In the following, we introduce a simple approach to define structures based on
convex polytopic domains including functions and predicates. Section 9 explores
its combination with the piecewise scheme discussed before.

8.1 Domains

Sorts s ∈ S are given convex domains As = D(Cs,bs), where Cs ∈ Rms×ns is an
ms × ns-matrix and bs ∈ Rms . Thus, As ⊆ Rns . Given s ∈ S, we have to fix ms

and ns according to some criterion.

Remark 12 (Bounded domains) In order to generate a bounded domain As ⊆ [α, β]ns

for some α, β ∈ R, we need to imposems ≥ ns+1. Indeed, convex polytopic domains
are intersections of hyperplanes defined by Csi.x ≥ bi for all 1 ≤ i ≤ ms, where
Csi. is the i-th row of matrix Cs. Thus, we need to intersect at least ns + 1 such
hyperplanes to enclose D(Cs,bs) into [α, β]ns . For intervals (ns = 1), fixing ms = 2
suffices because more than 2 rows in Cs adds nothing.

Convex domains can be parameterized by a subset N ⊆ R with C ∈ Nm×n, and
b ∈ Nm and defining DN (C,b) = {x ∈ Nn | Cx ≥ b}. Figure 4 shows intended

interpretations as convex domains for some usual sorts.
Regarding the subsort relation, if s ≤ s′, then As = D(Cs,bs) ⊆ D(Cs

′
,bs

′
) =

As′ must hold. This is achieved by the following sentence:

(∀x ∈ Rns) Csx ≥ bs ⇒ Cs
′
x ≥ bs

′
(53)

We need ns = ns′ so that the objects in both domains have the same dimension
and the aforementioned inclusion makes sense.

20

8.2 Functions

By a many-sorted convex matrix intepretation for f : w → s where w = s1 · · · sk, we
mean a linear expression F1x1 + · · ·+ Fkxk + F0 such that

1. F0 ∈ Rns ; for all i, 1 ≤ i ≤ k, Fi ∈ Rns×nsi are ns × nsi -matrices and xi are
variables ranging on Asi , and

2. the following algebraicity condition is satisfied:

∀x1 ∈ Rns1 , . . .∀xk ∈ Rnsk
(

k∧
i=1

Csixi ≥ bsi ⇒ Cs(
k∑
i=1

Fixi + F0) ≥ bs

)
(54)

If k = 0 (f is a constant symbol f : λ→ s), then condition (54) becomes CsF0 ≥ bs.

8.3 Predicates

Each predicate symbol P ∈ Πw with w = s1 · · · sk (we use ‘k’ here to avoid confu-
sions with the use of ‘n’ for the dimension of the domains) is given an inequality

R1x1 + · · ·+Rkxk ≥ R0 or
∑k
i=1Rixi ≥ R0 for short (55)

where (i) R0 ∈ RmP for some mP > 0 and for all i, 1 ≤ i ≤ k, (ii) Ri ∈ RmP×nsi
are mP × nsi -matrices, and (iii) xi are variables ranging on Asi . Then,

PAw = {(x1, . . . , xk) ∈ As1 × · · · × Ask |
k∑
i=1

Rixi ≥ R0}

or, in our specific setting,

PAw = {(x1, . . . , xk) ∈ Rns1 × · · · × Rnsk |
∧k
i=1 C

sixi ≥ bsi ∧
∑k
i=1Rixi ≥ R0}

Note that PAw ⊆ Aw, as required.

Remark 13 If w = λ (k = 0), then PAw = {() | 0 ≥ R0} is a singleton {()} if 0 ≥ R0

(P interpreted as true) and an empty set ∅ if 0 6≥ R0 (P interpreted as false).

Example 13 (Equality) The interpretation of an equality predicate = ∈ Πs s must
be the equality relation {(x, x) | x ∈ As} on As. With mP = 2ns, R1, R2 ∈ RmP×ns

given by R1 =

[
Ins
−Ins

]
(for Ins the identity matrix of ns × ns entries), R2 = −R1,

and R0 = (0, . . . , 0)T ∈ RmP , we obtain the equality on Rns .

Example 14 (Orderings) The ordering ≥ on n-tuples x,y ∈ Rn (52) is obtained if
R1 = In, R2 = −In and R0 = 0.

Remark 14 Let P, P ′ ∈ Πw with w = s1 · · · sk be given inequalities
∑k
i=1Rixi ≥ R0

and
∑k
i=1R

′
ixi ≥ R′0, respectively, where for all i, 1 ≤ i ≤ k, Ri is an m × nsi

matrix and R′i is an m′×nsi matrix for some positive integers m and m′. Then, the
conjunction P (x1, . . . , xk) ∧ P ′(x1, . . . , xk) can be seen as a single linear inequality

k∑
i=1

[
Ri
R′i

]
xi ≥

[
R0

R′0

]
where the i-th matrix coefficient is an (m + m′) × nsi -matrix and the constant

coefficient a vector in Rm+m′ .

21

8.3.1 Well-foundedness

The following result provides a sufficient condition to guarantee well-foundedness

of a binary relation R on Rn defined as explained in Section 8.3.

Theorem 3 Let R1, R2 ∈ Rm×n and R0 ∈ Rm for some m,n > 0, and R be a binary

relation on A ⊆ Rn as follows: for all x,y ∈ A, xR y if and only if R1x +R2y ≥ R0.

If there is i ∈ {1, . . . , n} such that (a) (R2)i· = −(R1)i·, i.e., the i-th row of R2 is

obtained from the i-th row of R1 by negating all components, (b) there is α ∈ R such

that for all x ∈ A, (R1)i·x ≥ α, and (c) (R0)i > 0, then R is well-founded.

Proof By contradiction. If R is not well-founded, then there is an infinite sequence
x1, . . . ,xn, . . . of vectors in A such that, for all j ≥ 1, xj R xj+1. By (a) we have
that, for all j ≥ 1, (R1)i·xj − (R1)i·xj+1 ≥ (R0)i. For all p > 0,

p∑
j=1

(R1)i·xj − (R1)i·xj+1 = (R1)i·x1 − (R1)i·xp+1 ≥ p(R0)i

By (b), there is α ∈ R such that for all p > 0, (R1)i·xp ≥ α. Therefore, for all p > 0,
(R1)i·x1−α ≥ (R1)i·x1−(R1)i·xp+1, and then (R1)i·x1−α ≥ p(R0)i. Let r = (R0)i.
By (c), r > 0. Then, for all p > 0, (R1)i·x1 ≥ α + pr, leading to a contradiction
because α+ pr tends to infinity as p grows to infinity, but (R1)i·x1 ∈ R is fixed.

Example 15 Borrowing [2], the following strict ordering on vectors in Rn:

(x1, . . . , xn)T >δ (y1, . . . , yn)T iff x1 >δ y1 ∧ (x2, . . . , xn)T ≥ (y2, . . . , yn)T

is obtained if R1 = In, R2 = −In and R0 = (δ, 0, . . . , 0)T . Here, given δ > 0, for all
x, y ∈ R, x >δ y iff x− y ≥ δ, see [76]. Theorem 3 guarantees the well-foundedness
of the restriction of >δ to any A ⊆ Rn such that A ⊆ [α,∞)n for some α ∈ R.

Example 16 The following strict ordering on vectors in Rn: x >wΣ y iff x ≥ y ∧∑n
i=1 xi >1

∑n
i=1 yi, borrowing the “weak decrease + strict decrease in sum of com-

ponents” ordering over tuples of natural numbers in [99, Definition 3.1], is obtained
if mP = n+ 1 (i.e., R1, R2 are (n+ 1)× n-matrices and R0 ∈ Rn+1) and

R1 =

[
1T

In

]
R2 = −R1 R0 = (δ, 0, . . . , 0)T

for some δ > 0, where 1 is the constant vector (1, . . . , 1)T ∈ Rn. Take A ⊆ [α,+∞)n,
for some α ≥ 0 and i = 1 with the corresponding R1, R2, and R0 to prove >wΣ
well-founded on A. Theorem 3 guarantees well-foundedness of >wΣ .

The following result is a simple consequence of Theorem 2 when the overapproxi-
mation in Example 11 is considered, and taking into account Remark 14.

Theorem 4 Let R be a binary relation on A ⊆ Rn, piecewise defined as follows

R(x, y) =

R1(x, y) ≥ R1

0 if R̂1(x, y) ≥ R̂1
0

...

RN (x, y) ≥ RN0 if R̂N (x, y) ≥ R̂N0

(56)

22

for some N > 0, where for all 1 ≤ i ≤ N , Ri(x, y)
def
= Ri1x + Ri2y and R̂i(x, y)

def
=

R̂j1x + R̂i2y, with Ri1, R
i
2 ∈ Rmi×n, R̂i1, R̂

i
1 ∈ Rm

′
i×n, Ri0 ∈ Rmi and R̂i0 ∈ Rm

′
i

for some mi,m
′
i ∈ N. Let Φ(x, y)

def
=
∨N
i=1

(
Ψ i(x, y) ∧ ϕi(x, y)

)
, where Ψ i is as in

(43), using Ri(x, y) ≥ Ri0 instead of ϕP,i and R̂i(x, y) ≥ R̂i0 instead of ψP,i. Let

Φ(x, y)
def
=
∨N
i=1Θi(x, y) where for all 1 ≤ i ≤ N

Θi(x, y)
def
=

[
Ri1
R̂i1

]
x+

[
Ri2
R̂i2

]
y ≥

[
Ri0
R̂i0

]
(57)

If the relations defined by Θi(x, y) on A are well-founded for all 1 ≤ i ≤ N , and

(∀x, y, z ∈ A) Φ(x, y) ∧ Φ(y, z)⇒ Φ(x, z) (58)

holds, then R = {(a,b) ∈ A2 | Φ(a,b) holds} is well-founded (on A).

Well-foundedness of relations Θi in Theorem 4 can be proved using Theorem 3.

Example 17 For pairs (x1, x2) of numbers, the lexicographic ordering admits a
compact definition as a piecewise predicate:

x = (x1, x2)T >lex (y1, y2)T = y⇔
{
x2 > y2 if x1 = y1
x1 > y1 otherwise

which is written in the linear format with convex-domain interpretation as follows:

x >lex y⇔

[

0 1
] [x1
x2

]
+
[

0 −1
] [y1
y2

]
≥
[

1
]

if

[
1 0
−1 0

] [
x1
x2

]
+

[
−1 0
1 0

] [
y1
y2

]
≥
[

0
0

]
[

1 0
] [x1
x2

]
+
[
−1 0

] [y1
y2

]
≥
[

1
]

otherwise

In order to prove >lex well-founded, we use Theorem 4 as follows:

1. The two components of the piecewise relation for >lex are:

Θ1(x,y)
def

=

 0 1
1 0
−1 0

[x1
x2

]
+

 0 −1
−1 0
1 0

[y1
y2

]
≥

 1
0
0

 (59)

Θ2(x,y)
def

=
[

1 0
] [x1
x2

]
+
[
−1 0

] [y1
y2

]
≥
[

1
]

(60)

Note that Θ1(x,y)⇔ x2 ≥ y2 + 1 ∧ x1 = y1 and Θ2(x,y)⇔ x1 ≥ y1 + 1.
2. Well-foundedness of Θ1 and Θ2 on [0,+∞)2 can be proved using Theorem 3.
3. Regarding (58), we have to prove:

(Θ1(x, y) ∨Θ2(x, y)) ∧ (Θ1(y, z) ∨Θ2(y, z))⇒ (Θ1(x, z) ∨Θ2(x, z))

that is:

((x2 ≥ y2 + 1 ∧ x1 = y1) ∨ x1 ≥ y1 + 1) ∧ ((y2 ≥ z2 + 1 ∧ y1 = z1) ∨ y1 ≥ z1 + 1)
⇒ ((x2 ≥ z2 + 1 ∧ x1 = z1) ∨ x1 ≥ z1 + 1)

which can be proved true by considering the different combinations of cases.

Thus, we conclude well-foundedness of >lex using Theorem 4.

23

9 Structures with convex domains and piecewise definitions

The piecewise linear schema to define derivors introduced in Section 7 is used
together with Λ-structures A′ based on convex polytopic domains to derive an
Ω-structure A def

= dA′ as explained in Definition 3:

– Sorts. Sorts ν ∈ N are interpreted as A′ν = Nnν where N is a set of numbers
(e.g., Z, Q, R, C, etc.) and nν > 0.

Remark 15 Actually, N should be a ring with identity12 (e.g., Z, Q, etc.) so that
we can use matrix algebra to deal with linear applications for a vector space

over N [106, Section 1.3]. Although this excludes N, we can still use it as the
domain of a sort s ∈ S by means of the domain constraints (see Figure 4).

The choice of N (typically Z, Q or R) essentially depends on the availability
of techniques to prove satisfiability of the formulas that are obtained.

– Subsorts. If ν, ν′ are such that ν ≤N ν
′, then nν = nν′ .

– Function symbols.
1. Each constant c ∈ LExpλ,ν for ν ∈ N is interpreted as a vector cAλ,ν ∈ N

nν .
2. Each function c· ∈ LExpν,ν′ is interpreted as a linear mapping from nν-

dimensional vectors into nν′ -dimensional vectors given by a matrix c·Aν,ν′ ∈
Nnν′×nν as usual (e.g., [106, Section 6.2]).

3. Each operator + ∈ LExpν ν,ν is interpreted as the (componentwise) addition

+Aν ν,ν of nν-dimensional vectors.
– Predicate symbols. We only use = ∈ BCmpν ν (interpreted as in Example 13)

and ≥ ∈ BCmpν ν (interpreted as in Example 14), for each ν ∈ N.

Remark 16 N is assumed to be ordered by a partial order (i.e., a reflexive,
antisymmetric, and transitive relation [31, Definition 1.2]).

Example 18 A Λ-structure to be used with the derivor in Example 12 is as follows.
Sorts νS, νS1, and νS2 and auxiliary sorts ν and ν1 are all interpreted as Z. Sort ν2
is interpreted as Z2. The coefficients for the domain inequalities are:

S1 = 1 S0 = 0 S11 = 1 S10 = 0 S21 =

[
1
−1

]
S20 =

[
0
0

]
Therefore, the derived domains for S, S1, and S2 are:

AS = {x ∈ Z | S1x ≥ S0} = {x ∈ Z | x ≥ 0} = N
AS1 = {x ∈ Z | S11x ≥ S10} = {x ∈ Z | x ≥ 0} = N

AS2 = {x ∈ Z | S21x ≥ S20} = {x ∈ Z |
[

1
−1

]
x ≥

[
0
0

]
} = {0}

With the following assignment for the function symbols:

a0 = 0 f11 = f12 = f13 = 1 f10 = 0 f
1
1 = f

1
2 = f

1
3 = f

1
0 = 0

b0 = 1 f21 = f22 = f23 = 0 f20 = 0
g11 = g12 = 1 g10 = 1 g11 = g12 = g10 = 0
g21 = g22 = 0 g20 = 0

12 A ring with identity is a set with a rule of addition and a rule of multiplication satisfying
the commutative, associative, zero element, inverse and distributive rules [106, Section 1.3].

24

and for the predicate symbols:

r1 = 1 r2 = −1 r0 = 1 r′1 = 1 r′2 = −1 r′0 = 1
s1 = 1 s2 = −1 s0 = 0 s′1 = 1 s′2 = −1 s′0 = 0

we obtain the structure in Example 6 as a particular case of Example 12.

9.1 Checking satisfiability of sentences

Now, we have to check whether A′ satisfies S′. Since variables x : ν actually
represent tuples (a1, . . . , anν) ∈ Nnν , we think of such a variable as a sequence
x1, . . . , xnν of nν variables ranging on N . For instance, consider

(∀x : νs) s1x ≥ s0 ⇒ s′1x ≥ s′0 (61)

as in (47) for sorts νs, νs′ such that νs ≤N νs′ . Provided that

1. νs ∈ N is interpreted as the set Nnνs of tuples of nνs numbers in N ,

2. (s1)A
′

νs,ν is a matrix A1 ∈ Nnν×nνs for some sort ν, (s0)A
′

λ,ν is a vector A0 ∈ Nnν ,

(s′1)A
′

νs′ ,ν
′ is a matrix B1 ∈ Nnν′×nνs for some sort ν′ (remember that nνs = nνs′

due to νs ≤N νs′), and (s′0)A
′

λ,ν is a vector B0 ∈ Nnν′ ,

formula (61) is treated as the following sentence involving a conjunction of affine
arithmetic inequalities (recall that ns = ns′)

(∀x1, . . . , xnνs ∈ N)

ms∧
i=1

ns∑
j=1

A1
ijxj ≥ A

0
i

⇒
ms′∧
i=1

ns∑
j=1

B1
ijxj ≥ B

0
i

 (62)

which corresponds to the matrix-vector product (the
∑

expressions) together with
the pointwise comparison of components of tuples (the

∧
connectives).

Once A′ is fixed as explained above, the standard definition of satisfaction is
used to check whether A′ satisfies S′. However, for the sake of the automation, it
is worth to make it explicit as we do not provide the matrices and vectors in the
definition of the structure. This is addressed in the next section.

10 Parametric structures and constraint-solving

The automatic generation of models for a theory (e.g., S′ = d(S)∪Ξ) is a bottom-up

process where things remain ‘unspecified’ until an attempt to solve some con-
straints obtained from S′ succeeds. The solution is then used to synthesize a struc-
ture which yields (by construction) a model of S′ and then of S (Theorem 1). This
is accomplished by interpreting the function and predicate symbols without an in-

tended interpretation as parametric objects: symbols b ∈ LExpλ,ν and C ∈ LExpν,ν′
for ν, ν′ ∈ N are given parametric vectors and matrices, respectively:

bν =

 bν1
...

bνnν

 Cν,ν
′

=

Cν,ν

′

11 · · · Cν,ν
′

1nν
...

. . .
...

Cν,ν
′

nν′1
· · · Cν,ν

′

nν′nν

where Cν,ν

′

ij and bνi are parameters, i.e., variables assumed to be existentially quan-

tified in any formula during the generation process.

25

10.1 Parametric sentences from linear sentences

Clauses ϕ ∈ S′ of the form (51) are translated into parametric clauses $(ϕ):

1. If ϕ is A(x1, . . . , xm) ./ b for variables x1, . . . , xm of sort ν1, . . . , νm, respectively,
A(x1, . . . , xm) =

∑m
j=1A

jxj with Aj ∈ LExpνj ,ν for some sort ν, b ∈ LExpλ,ν ,
and ./ ∈ {=,≥} ⊆ BCmpν,ν , then:

$(A(x1, . . . , xm) ./ b) =

nν∧
i=1

m∑
j=1

nνj∑
k=1

Aijk · x
j
k ./ bi (63)

where the Aijk and bi are parameters. The multiplication rule of N (see Remark
15) is represented by ‘·’. And ./ is the equality or inequality relation on N .

2. $(ϕ ∧ ϕ′) = $(ϕ) ∧$(ϕ′) (similarly $(ϕ ∨ ϕ′) = $(ϕ) ∨$(ϕ′)).
3. $(ϕ⇒ ϕ′) = $(ϕ)⇒ $(ϕ′).
4. $((∀x : ν)ϕ) = (∀x1 ∈ N, . . . , xnν ∈ N)$(ϕ)

In this way, we obtain a set S] = $(S′) of parametric sentences.

10.2 Fulfilling well-foundedness requirements

For binary predicates P ∈ Πss which are required to be well-founded, we use Theo-
rems 3 and 4 to guarantee that the synthesized interpretation P dA

′
ss is well-founded.

For instance, assume that (according to Section 7),

1. the domain inequality ∆s(x) for sort s is s1x ≥ s0, with s1 ∈ LExpνs,ν and
s0 ∈ LExpλ,ν for some ν ∈ N.

2. dss(P) = P 1y1 + P 2y2 ≥ P 0, with P 1, P 2 ∈ LExpνs,ν′ for some ν′ ∈ N and

P 0 ∈ LExpλ,ν′ (we use y to avoid confusions with the x’s in the formulas below).

The application of Theorem 3 amounts at adding the following formula to S]:

nν′∨
i=1

nνs∧
j=1

P 1
ij = −P 2

ij ∧ P
0
i > 0 ∧

 nν∧
j=1

nνs∑
k=1

s1jkxk ≥ s
0
j

⇒ nνs∑
j=1

P 1
ij · xj ≥ α

 (64)

with x1, . . . , xnνs universally quantified on N and α a parameter (existentially quan-
tified at the outermost level of the sentence). Theorem 4 would be used likewise.

10.3 Normal form of parametric sentences

After normalization, S] is a set of clauses of the following shape, for M,P,Q ∈ N:

(∀x1, . . . , xM)
P∧
i=1

e−i (π,x) ./ d−i ⇒
Q∨
i=1

e+i (π,x) ./ d+i (65)

where (after applying some arithmetic rules to relocate some components)

1. π is a vector of parameters taken from π1, . . . , πK and ranging on appropriate
(search) domains of parameters, included in N ,

26

2. x is a vector of variables taken from x1, . . . , xM and ranging on N ,
3. e−i (π,x) and e+i (π,x) are expressions

∑
k πk ·xk for parameters πk and variables

xk (note that they are linear regarding variables xk),
4. d−i and d+i are parameters (or 0),
5. ./ ∈ {=,≥, >} are the usual comparison operators on numbers.

10.4 Quantifier elimination using Farkas’ lemma

If each clause (65) can be written as a set of clauses in the following affine form:

(∀x1, . . . , xM)
P ′∧
i=1

ei(π,x) ≥ di ⇒ e(π,x) ≥ d (66)

for some P ′ ∈ N, then the following Affine form of Farkas’ Lemma [108, cf. Corol-
lary 7.1h] considered in [80, Section 5.1] is useful.

Theorem 5 (Affine form of Farkas’ Lemma) Let Ax ≥ b be a linear system of k

inequalities and n unknowns over the real numbers with non-empty solution set S and

let c ∈ Rn and β ∈ R. Then, the following statements are equivalent:

1. cTx ≥ β for all x ∈ S,

2. ∃λ ∈ Rk0 such that c = ATλ and λTb ≥ β.

We use (2) in Theorem 5 as a sufficient condition for (1): proving ∀x (Ax ≥ b ⇒
cTx ≥ β) recasts into the constraint solving problem of finding a nonnegative vector
λ such that c is a linear nonnegative combination of the rows of A and β is smaller
than the corresponding linear combination of the components of b.13 For this
reason, Theorem 5 can be used with matrices A ∈ Nm×n, vectors x,b, c ∈ Nn,
and β ∈ N , with N ∈ {N,Z,Q}. Since N ⊆ R, whenever (2) holds, we have that
cTx ≥ β holds for all x ∈ S = {x ∈ Rn | Ax ≥ b}. Thus, in particular it is true for
the subset S ∩Nn = {x ∈ Nn | Ax ≥ b} we are interested in.

In order for sentences (65) to fit format (66), we (repeatedly) do the following:

1. Use (from left to right) the tautologies:

A⇒ B ∨ C ⇔ A ∧ ¬B ⇒ C (67)

A⇒ B ∧ C ⇔ A⇒ B ∧A⇒ C (68)

A ∧ (B ∨B′)⇒ C ⇔ (A ∧B ⇒ C) ∧ (A ∧B′ ⇒ C) (69)

In particular, (67) is used to move positive constraints e+i (π,x) ./ d+i in (65) to
the antecedent of the implications. It also can be used to move negated atoms
to the antecedent thus removing the negation: A⇒ ¬B ∨ C ⇔ A ∧B ⇒ C.

2. Atoms e(π,x) = d are replaced by14 e(π,x) ≥ d ∧ −e(π,x) ≥ −d. If the atom
is ‘positive’ (of type e+(π,x)), use (68) afterwards.

13 If Ax ≥ b has no solution, i.e., S in Theorem 5 is empty, the conditional sentence (1)
trivially holds. Thus, we do not need to check S for emptiness when using Farkas’ result,
although the systematic use of (2) to check (1) in this case may fail, thus eventually leading
to loose some positive answers for (1).
14 We rely on the existence of inverse additive elements of the ring structure of N for this,

see Remark 15; also on the antisymmetry of ≥ (Remark 16).

27

3. Negated atoms in the antecedent of an implication, (like those eventually ob-
tained after applying (67)) which are based on predicates = and ≥ yield atoms
with 6= and < which are not allowed in (66). We also may have atoms with >

(see Section 10.2). If N = Z, we can easily deal with these situations:
(a) Replace e(π,x) > d by e(π,x) ≥ d+ 1.
(b) Replace e(π,x) < d by −e(π,x) ≥ 1− d.
(c) Replace e(π,x) 6= d by e(π,x) ≥ d+ 1 ∨ −e(π,x) ≥ 1− d; then apply (69).

Example 19 Let ϕ be algebraicity sentence (41) for constant a in Example 12:

(∀y : νS2) a
0 = y ⇒ S2

1y ≥ S2
0 (70)

where a0 ∈ LExpλ,νS2 , S2
1 ∈ LExpνS2,ν2 , and S20 ∈ LExpλ,ν2 for some ν2 ∈ N. We use

superindices instead of subscripts to use the matrix/vector notation below. Let
nνS2 = 1 and nνν2 = 2 (see Remark 12). Then, $(ϕ) is

(∀y ∈ Z) a0 = y ⇒ S2
1
1y ≥ S2

0
1 ∧ S2

1
2y ≥ S2

0
2 (71)

Note that (71) is not in affine form. We apply the previous steps to transform it
into the following set of affine forms (the quantification remain equal):

{ y ≥ a
0 ∧ −y ≥ −a0 ⇒ S2

1
1y ≥ S2

0
1, y ≥ a

0 ∧ −y ≥ −a0 ⇒ S2
1
2y ≥ S2

0
2 } (72)

Although it is a very simple example, we use it to exemplify how Farkas’ Lemma
works. The application to a larger set of formulas is analogous. Each of the affine
forms in (72) is treated separately. First, we write them in matrix form as follows:[

1
−1

]
y ≥

[
a0

−a0
]
⇒ S2

1
1y ≥ S2

0
1 (73)[

1
−1

]
y ≥

[
a0

−a0
]
⇒ S2

1
2y ≥ S2

0
2 (74)

Now we apply Theorem 5 to each of them simultaneously, i.e., the constraint solv-
ing problem must be solved at once. The reason is that the external existential
quantification on the parameters concerns both affine forms. Therefore, we need
to find two vectors λ1,λ2 ∈ R2 of non-negative numbers such that

S2
1
1 =

[
1 −1

] [λ11
λ12

]
and

[
λ11 λ

1
2

] [a0

−a0
]
≥ S2

0
1, or equivalently:

S2
1
1 = λ11 − λ12 and λ11a

0 − λ12a0 ≥ S2
0
1 (75)

for the first affine form (73) and

S2
1
2 = λ21 − λ22 and λ21a

0 − λ22a0 ≥ S2
0
2 (76)

for the second one (74). Note that no universally quantified variables remain.
Actually, these constraint solving problems can be formulated as a satisfiability
problem for a single sentence as follows:

(∃a0, S211, S212, S201, S202, λ11, λ12, λ21, λ22) λ11 ≥ 0 ∧ λ12 ≥ 0 ∧ λ21 ≥ 0 ∧ λ22 ≥ 0

∧ S2
1
1 = λ11 − λ12 ∧ λ11a0 − λ12a0 ≥ S2

0
1 ∧ S2

1
2 = λ21 − λ22 ∧ λ21a0 − λ22a0 ≥ S2

0
2 (77)

A solution for these non-linear arithmetic constraints can be obtained by using
standard methods, see [11,18].

28

11 Related work

11.1 Termination of declarative programs

The generation of (homogeneous)15 algebras using parametric interpretations fol-
lowed by a constraint solving process is standard in termination analysis of term
rewriting, with a built-in requirement of monotonicity for (some of) the synthesized
functions [25] (see also Remark 8). In this setting, starting from [34], matrix in-
terpretations have been successfully used in the last decade to prove termination
of term rewriting [2,28,35,99] and also in complexity analysis of rewrite systems,
see [94] for a summary of research including relevant references. In a recent paper,
Waldmann discusses the use of a subclass of convex polytopic domains to define
algebras which can be used in proofs of termination of rewriting and for other
purposes, like the analysis of derivational complexity [119]. He also provides an
implementation of the automatic generation of such algebras as part of his tool
matchbox [120]. However, his domains are by default bounded from below (subsets
of vectors of non-negative rational numbers); also the matrices Fi which are used
in the defininition of functions (see Section 8.2) are restricted to contain natural
numbers only. In contrast to this situation, and after 25 years of research on ter-
mination of order-sorted and many-sorted rewrite systems [6,45,81,101,123], no
systematic treatment of the generation of heterogeneous algebras [10], including the
generation of different domains for sorts and interpretations of ranked functions in
many-sorted or order-sorted algebras has been attempted to date.16

Our tool AGES (Automatic GEneration of logical modelS) implements the tech-
niques described in this paper to generate a model A for an OS-FOL theory. We
also have integrated the methods developed in this paper as part of the termi-
nation tool mu-term. Convex domains and interpretations (for function symbols)
were successfully used to prove operational termination (i.e., the absence of infinite
proof trees when a computation is attempted [79]) of Conditional Term Rewriting

Systems (CTRSs, see [100, Chapter 7] for a survey) in the 2015 and 2016 editions
of the International Termination Competition [42]. The 2017 version of mu-term

incorporates piecewise functions and automatically generated relations. In this
setting, a simple example illustrates the impact of the research in this paper.

Example 20 Consider the following CTRS R [100, Example 7.2.45]:

a → a⇐ b→ x, c→ x (78)

b → d⇐ d→ x, e→ x (79)

c → d⇐ d→ x, e→ x (80)

By using the results in [83], and considering the conditional dependency pair A →
A⇐ b→ x, c→ x for R (where A is a new constant symbol), we can prove R op-
erationally terminating if the following sentence (with A a new predicate symbol)

(∀x) b→∗ x ∧ c→∗ x⇒ A A A (81)

holds in a model A of the theory associated to R where AA is well-founded.

15 i.e., with a single domain [10, page 116], as a particular case of heterogeneous algebras,
consisting of an indexed set of domains and functions over such domains.
16 In [34,35], the automated generation of monotone many-sorted algebras is considered.

However, only two-sorted algebras are considered for generating interpretations of function
symbols, on a previously fixed interpretation of sorts, see [35, Section 5].

29

The only possibility for (81) to hold is that b →∗ x ∧ c →∗ x is unsatisfiable in A.
Otherwise, AA AA AA should hold, which is not possible if AA is well-founded.
Thus, (81) is not satisfied by a ‘typical’ interpretation with domain N, with →∗
interpreted as ≥N and A as the usual well-founded ordering >N: for all bA, cA ∈ N,
the interpreted formula bA ≥ x ∧ cA ≥ x is satisfied by x = 0! The problem stands
if A = Nn and the usual extensions of ≥N and >N to tuples are used.

In contrast, we can provide at least two quite different solutions to this problem.
First, we encode the OS-FOL theory S for R as follows:

(∀x : S) x→∗ x (82)

(∀x, y, z : S) x→ y ∧ y →∗ z ⇒ x→∗ z (83)

(∀x : S) b→∗ x ∧ c→∗ x⇒ a→ a (84)

(∀x : S) d→∗ x ∧ e→∗ x⇒ b→ d (85)

(∀x : S) d→∗ x ∧ e→∗ x⇒ c→ d (86)

We add (81) to S and the requirement of A being well-founded so that operational
termination of R can be concluded from the existence of a model for S. Now,

1. We can use a domain AS of pairs of numbers for sort S (i.e., nS = 2) and,
according to Remark 8.1, we let mS = nS + 1 = 3 so that a bounded domain
is obtained if necessary. With AS given by the following matrix and vector:

CS =

−1 1
1 1
0 −1

 bS =

 0
0
−1

-1

0

1

-1 0 1

we have the values contained in the area of the displayed inverted triangle. The
(constant) function symbols are interpreted as follows:

bA = dA =

[
−1
1

]
AA = aA = cA = eA =

[
0
0

]
The interpretation of →∗ is the pointwise extension ≥ of ≥N (Example 14)
and both → and A are interpreted as the (well-founded) relation > on vectors
(Example 15). Sentences (81) − (86) are all satisfied by A. For instance, due
to the use of a bounded domain AS as above, no x ∈ AS satisfies bA ≥ x and
cA ≥ x. Therefore, the antecedent of the implication in (81) does not hold for
any x ∈ AS and the sentence trivially holds.

2. We can choose AS = N provided that alternative interpretations of → and →∗
are used. With bA = eA = 2, AA = aA = cA = dA = 0, and

x→A y ⇔ x =N y x(→∗)Ay ⇔ y ≤N x ≤N y + 1 x AA y ⇔ x >N y

we also obtain a model of (81)− (86). The point now is that the antecedent of
the implications is always false (for every natural number) due to the special
interpretation of →∗. For instance, (81) becomes

x ≤ 2 ≤ x+ 1 ∧ x ≤ 0 ≤ x+ 1⇒ 0 > 0

which holds because there is no x ∈ N such that [x, x+ 1] includes 0 and 2.

30

The piecewise approach is flexible enough to represent a good number of functions
(see Example 8) and predicates (Example 10). Indeed, these classes of functions
(e.g., max/min) and predicates (lexicographic orderings) have already been used
in the literature since long time ago, see [16,36,37,60,87,89,116], for instance.
Our approach permits their use in a common framework, as particular cases of a
single format. The good point is that all these interpretations can be obtained
automatically using the methodology presented in the previous sections.

11.2 Program analysis and verification

In proofs of program correctness, inferring interpretations for ‘unknown’ predi-
cate symbols introduced to formalize the verification conditions associated to the
verification problem is also important [69,75]. Indeed, characterizations of pro-
gram properties (correctness, partial correctness, equivalence, termination,...) as
satisfiability problems in first-order logic can be found in early papers in program
analysis by Zohar Manna and his collaborators [84–86] and also [72].

Example 21 The following summation program P [88, page 557]:

sum(n) ⇐ if n = 0 then 0 else n+ sum(n− 1) (87)

is intended to compute the addition of the first n natural numbers. Manna and
Pnueli describe the meaning of the program using the following formula WP (Q):

(∀n) ((n = 0⇒ Q(n, 0)) ∧ (n > 0⇒ (∀p) (Q(n− 1, p)⇒ Q(n, n+ p)))) (88)

where Q is intended to simulate the function sum computed by the program: if
f(n) returns a number s, then Q(n, s) holds. Actually, Q is the only uninterpreted

symbol; all other symbols in (88) receive the usual interpretation (integer con-
stants, arithmetic operators, or arithmetic comparison predicates). According to
[88, Theorem 1], the partial correctness of P is equivalent to the satisfiability of

WP (Q) ∧ (∀n, s) (ϕ(n) ∧Q(n, s))⇒ ψ(n, s) (89)

where ϕ(n) is the precondition for the summation program (for instance, n ≥ 0);
and ψ(n, s) is the postcondition (for instance, s = n(n + 1) ÷ 2). However, other
pre- and postconditions can be given to investigate other program properties. For
instance, with ϕ(n) being n > 0 and ψ(s, n) being s > 0 we say that the outcome of
the program is positive whenever the input is positive. We can use AGES to check
that (89) holds when ϕ(n) is n > 0 and ψ(n, s) is s > 0, see [57, Example 3].

After the seminal contributions in the late sixties [36,62,98] and Naur’s dramatic
call to write programs on more solid principles (“We cannot indefinitely continue
to build on sand” [98, page 310]), attempts to use theorem proving techniques in
automated program analysis and verification date back to the early seventies, as
reported in [32,58,69,72,75]. And the application of linear arithmetic and linear
algebra techniques started almost immediately [21,26,27,30,68,112].

Indeed, this logic-based approach is alive and healthy, see [5,14,29,54–56] and
the references therein, thanks to the generalized use of SMT techniques as a backend

where different kinds of program analysis and verification problems and approaches

31

can be mapped to [97]. In particular, the use of Horn clauses or constrained Horn

Clauses17 as a basis for program verification has recently deserved a lot of attention
and a number of associated tools have been developed so far [4,12,13,54,56,107].

For instance, in [13] a generic Horn solver is developed and used, in particular,
to prove termination of an imperative program dealing with arrays [13, Section 5.3].
The main approach is similar to ours (defining a generic approach to ‘solve’ un-
known relations occurring in a logic description of a given problem, thus applying
it to a variety of analysis and verification problems), but the proof of termination
finally requires a postprocessing where disjunctive well-foundedness of a number
of components is proved by a different tool. In our approach we could specify a
disjunction of atoms using OS-FOL sentences as part of the original theory with
a requirement of well-foundedness for the corresponding predicates (as sketched
in Section 5) and then reinforce well-foundedness of the associated relations as
explained in Section 10.2.

12 Conclusions and future work

The main contribution of this paper to the effort of applying logic-based techniques
in program analysis and verification is the development of a generic frontend to map
purely symbolic components (functions and predicates) of a first-order logic with
sorts into arithmetic constraints. Our starting point is the piecewise description
of functions and predicates. The advantage of this approach is its flexibility to
represent different, well-known, and widely used abstractions like linear functions,
max/min functions, lexicographic orderings, etc. We obtain them all as particular
cases of a single framework. We have extended the notion of derivor (Sections 3
and 4) to map a theory in the source language to another theory in a language
of linear expressions (Section 7). The class of OS-FOL structures based on the
convex polytopic domains described in Section 8 fits this logic very well (Section 9)
and permits a flexible translation into arithmetic constraints by using parametric
interpretations as explained in Section 10. A summary of our contributions follows:

1. The systematic generation of many-sorted structures with function and predicate
symbols interpreted as relations. This yields a powerful framework to define a
variety of functions and relations based on polynomial constraints which are
still amenable to automation as they rely on decidable theories (Example 5).

2. The notion of derivor and derived structure (and model) generalizes [50] to
order-sorted signatures with predicates. Our generalization is twofold: we han-
dle functions as (special) relations and also apply the transformation to for-
mulas instead of just terms (much in the style of [8,90,93]).

3. The piecewise definition of predicates and the sufficient condition for well-
foundedness based on a combination of disjunctive well-foundedness and ab-
straction is, as far as we know, new in the literature. The systematic treatment
of piecewise function definitions in a relational style is also new.

4. We provide a systematic scheme to derive models for a source OS-FOL theory
S enriched with specific requirements that cannot be expressed using OS-FOL
sentences (e.g., well-foundedness).

17 Constrained Horn clauses are essentially Horn clauses where some atoms have a predefined
structure and interpretation established by a well-known theory (e.g., linear arithmetic).

32

fmod PATH is
sorts Node Edge Path .
subsorts Edge < Path .
ops source target : Edge -> Node .
ops source target : Path -> Node .
op _;_ : [Path] [Path] -> [Path] .
var E : Edge .
vars P Q R S : Path .
cmb E ; P : Path if target(E) = source(P) .
ceq (P ; Q) ; R = P ; (Q ; R) if target(P) = source(Q) /\ target(Q) = source(R) .
ceq source(P) = source(E) if E ; S := P .
ceq target(P) = target(S) if E ; S := P .

endfm

Fig. 5 PATH program for graph specification

5. We explain the definition of OS-FOL structures based on convex domains and
also provide sufficient conditions guaranteeing the well-foundedness of relations
defined on convex domains by piecewise definitions.

6. We explain the synthesis of models based on such structures by using well-
known techniques from linear algebra and constraint solving (SMT).

7. A system implementing the techniques described in this paper to automatically
generate models is available (AGES). The techniques described in this paper
have also been used in our termination tool mu-term.

An important motivation to develop this paper was to provide a flexible and
mechanizable framework for the definition of appropriate abstractions to be used
in automated proofs of operational termination of declarative programs [82], where
structures rather than just algebras are required due to the logic-based definition
of operational termination [78,80,82]. For instance, in [78], the operational termi-
nation of the Maude program PATH in Figure 5 has been semi-automatically proved
by using the tool AGES. In PATH, sort Node represents the nodes in a graph and
sorts Edge and Path are intended to classify paths consisting of a single edge or
many of them, respectively [23, pages 561–562]. Note the overloaded syntax for
operators source and target. The essential aspect is that the computational de-
scription of PATH cannot be given in terms of reduction relations only. There are
also memberships, pattern matching operations, conditions in rules, and everything
is combined in an inference system which describes the computations (see [78, Fig-
ure 1]). As shown in [78], the role of logical models defining well-founded relations
in proofs of operational termination of a program like PATH is analogous to the role
of well-founded algebras in proofs of termination of rewriting (see Remark 8). For
this reason, the research in this paper is an essential step towards the implemen-
tation of a tool for automatically proving operational termination of declarative
programs based on the OT Framework [82].

12.1 Future work

As suggested in Example 5, our approach can also adapted to define other kind
of structures based on domains and function and predicate interpretations which
benefit from existing algorithms and techniques from Real Algebraic Geometry [9,
105] or matrix polynomials [28]. This is a subject for future work.

33

The ability to generate (well-founded) relations interpreting binary predicates
with rank is also important in termination analysis of OS-TRSs using the depen-
dency pair framework [81]. In this way, better techniques to prove termination
of OS-TRSs become available for proving other termination properties which are
persistent and remain unchanged after sort introduction [123]. This is the case of
termination of TRSs when some syntactical restrictions are required on their rules
[6,70] and of innermost termination of TRS [38,71], which has been recently proved
useful to prove termination of programs with pre-defined data structures and op-
erations like integer arithmetic [43,44,102]. In other settings, like higher-order
rewriting, type information has also been proved important to prove termination
[39] and the techniques developed in this paper could be useful as well. Thus, this
is also an important subject of future work. Also, we plan to investigate the prac-
tical use and impact of the techniques developed in this paper in the more general
field of program analysis and verification.

Acknowledgments. We thank José Meseguer for his comments and suggestions after
carefully reading a preliminary version of this paper. We also thank him for drawing
our attention to several relevant references. Salvador Lucas is most grateful to Prof.
Manfred Schmidt-Schauss for sending him a hardcopy of his PhD Thesis [110]. We
also thank the anonymous referees for many remarks and suggestions that led to
improve the paper.

References

1. B. Alarcón, R. Gutiérrez, S. Lucas, and R. Navarro-Marset. Proving Termination Prop-
erties with MU-TERM. In Proc. of AMAST’10, LNCS 6486:201-208, 2011.

2. B. Alarcón, S. Lucas, and R. Navarro-Marset. Using Matrix Interpretations over the
Reals in Proofs of Termination. In Proc. of PROLE’09. pages 255-264, September 2009.

3. E. Albert, S. Genaim, and R. Gutiérrez. A Transformational Approach to Resource Anal-
ysis with Typed-Norms. In Revised Selected Papers from LOPSTR’13, LNCS 8901:38-53,
2013.

4. E. de Angelis, F. Fioravante, A. Pettorossi, and M. Proietti. Proving correctness of
imperative programs by linearizing constrained Horn clauses. Theory and Practice of
Logic Programming 15(4-5):635-650, 2015.

5. E. de Angelis, F. Fioravante, A. Pettorossi, and M. Proietti. Semantics-based generation
of verification conditions by program specialization. In Proc. of PPDP’15, pages 91-102,
ACM Press, 2015.

6. T. Aoto. Solution to the Problem of Zantema on a Persistent Property of Term Rewriting
Systems. Journal of Functional and Logic Programming, 2001(11):1-20, 2001.

7. J. Barwise. An Introduction to First-Order Logic. In J. Barwise, editor, Handbook of
Mathematical Logic, North-Holland, 1977.

8. J. Barwise. Axioms for Abstract Model Theory. Annals of Mathematical Logic 7:221–265,
1974.

9. J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer-Verlag, Berlin,
1998.

10. G. Birkhoff and J.D. Lipson. Heterogeneous Algebras. Journal of Combinatorial Theory
8:115-133, 1970.

11. M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. The
Barcelogic SMT Solver. In Proc. of CAV’08, LNCS 5123:294-298, 2008.

12. N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko. Horn-Clause Solvers for
Program Verification. In Fields of Logic and Computation II - Essays Dedicated to Yuri
Gurevich on the Occasion of His 75th Birthday, LNCS 9300:24-51, 2015

13. N. Bjørner, K. McMillan, and A. Rybalchenko. On Solving Universally Quantified Horn-
Clauses. In Proc. of SAS’13, LNCS 7935:105-125, 2013.

34

14. N. Bjørner, K. McMillan, and A. Rybalchenko. Program Verification as Satisfiability
Modulo Theories. In Proc. of SMT’12, EPiC Series in Computing 20:3-11, 2013.

15. G.A. Bliss. Algebraic Functions. Dover, 2004.
16. G. Bonfante, J-Y. Marion, and J.-Y. Moyen. On Lexicographic Termination Ordering

With Space Bound Certifications. In Revised Papers from PSI 2001, LNCS 2244:482-393,
2001.

17. G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic, fourth edition.
Cambridge University Press, 2002.

18. C. Borralleras, S. Lucas, A. Oliveras, E. Rodŕıguez, and A. Rubio. SAT Modulo Linear
Arithmetic for Solving Polynomial Constraints. Journal of Automated Reasoning 48:107-
131, 2012.

19. H.-J. Bürckert, B. Hollunder, and A. Laux. On Skolemization in constrained logics.
Annals of Mathematics and Artificial Intelligence 18:95-131, 1996.

20. R.M. Burstall and J.A. Goguen. Putting Theories together to make specifications. In
Proc. of IJCAI’77, pages 1045-1058, William Kaufmann, 1977.

21. M. Caplain. Finding invariant assertions for proving programs. In Proc. of the Interna-
tional Conference on Reliable Software, pages 165-171, ACM Press, 1975.

22. C.L. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, 1973.

23. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott.
All About Maude – A High-Performance Logical Framework. LNCS 4350, 2007.

24. A.G. Cohn. Improving the expressiveness of many sorted logic. In Proc. of the National
Conference on Artificial Intelligence, pp. 84-87, AAAI Press, 1983.

25. E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. Mechanically proving termination
using polynomial interpretations. Journal of Automated Reasoning, 34(4):325-363, 2006.

26. D.C. Cooper. Programs for Mechanical Program Verification. Machine Intelligence 6:43-
59, Edinburgh University Press, 1971.

27. D.C. Cooper. Theorem Proving in Arithmetic without Multiplication. Machine Intelli-
gence 7:91-99, Edinburgh University Press, 1972.

28. P. Courtieu, G. Gbedo, and O. Pons. Improved Matrix Interpretations. In Proc. of
SOFSEM’10, LNCS 5901:283-295, 2010.

29. P. Cousot, R. Cousot, and L. Mauborgne. Logical Abstract Domains and Interpretations.
In The Future of Sofware Engineering, pages 48-71, Springer-Verlag, 2011.

30. P. Cousot and N. Halbwachs. Automatic Discovery of linear restraints among variables
of a program. In Conference Record of POPL’78, pages 84-96, ACM Press, 1978.

31. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.

32. B. Elspas, K.N. Levitt, R.J. Waldinger, and A. Waksman. An Assessment of Techniques
for Proving Program Correctness. Computing Surveys 4(2):97-147, 1972.

33. M.H. van Emdem and R.A. Kowalski. The Semantics of Predicate Logic as a Program-
ming Language. Journal of the ACM 23(4):733-742, 1976.

34. J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for Proving Termi-
nation of Term Rewriting. In Proc. of IJCAR’06, LNCS 4130:574-588, 2006.

35. J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for Proving Termi-
nation of Term Rewriting. Journal of Automated Reasoning 40(2-3):195-220, 2008.

36. R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science
19:19-32, 1967.

37. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Max-
imal Termination. In Proc. of RTA’08, LNCS 5117:110-125, 2008.

38. C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp and S. Swiderski. Proving Termination
by Dependency Pairs and Inductive Theorem Proving. Journal of Automatic Reasoning,
47:133–160, 2011.

39. C. Fuhs and C. Kop. Polynomial Interpretations for Higher-Order Rewriting. In Proc.
of RTA’12, LIPIcs 15:176-192, 2012.

40. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST Series,
1998.

41. M. Gaboardi and R. Péchoux. On bounding space usage of streams using interpretation
analysis. Science of Computer Programming 111:395-425, 2015.

42. J. Giesl, F. Mesnard, A. Rubio, R. Thiemann, and J. Waldmann. Termination Compe-
tition (termCOMP 2015). In Proc. of CADE’15, LNCS 9195:105-108, 2015.

35

43. J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic Evaluation
Graphs and Term Rewriting – A General Methodology for Analyzing Logic Programs.
In Proc. of the PPDP’12, pages 1-12, ACM Press, 2012.

44. J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Automated
Termination Proofs for Haskell by Term Rewriting. ACM Transactions on Programming
Languages and Systems, 33(2), Article 7, January 2011.

45. I. Gnaedig. Termination of Order-sorted Rewriting. In Proc. of ALP’92, LNCS 632:37-52,
1992.

46. J.A. Goguen. Order-Sorted Algebra. Semantics and Theory of Computation Report 14,
UCLA, 1978.

47. J.A. Goguen and R.M. Burstall. Some Fundamental Algebraic Tools for the Semantics of
Computation. Part 1: Comma Categories, Colimits, Signatures and Theories. Theoretical
Computer Science 31:175-209, 1984.

48. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and Abstract Theories. Theoretical Computer Science
31:263-295, 1984.

49. J. Goguen and J. Meseguer. Models and Equality for Logical Programming. In Proc. of
TAPSOFT’87, LNCS 250:1-22, 1987.

50. J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the
specification, correctness and implementation of abstract data types. In Current trends
in Programming Methodology, pages 80-149, Prentice Hall, 1978.

51. J.A. Goguen and J. Meseguer. Remarks on Remarks on Many-Sorted Equational Logic.
Sigplan Notices 22(4):41-48, 1987.

52. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple in-
heritance, overloading, exceptions and partial operations. Theoretical Computer Science,
105:217–273, 1992.

53. J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ: algebraic
specification in action, Kluwer, 2000.

54. S. Grebenshikov, N.P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing Software
Verifiers from Proof Rules. In Proc. of PLDI’12, pages 405-416, ACM Press, 2012.

55. S. Gulwani and A. Tiwari. Combining Abstract Interpreters. In Proc. of PLDI’06, pages
376-386, ACM Press, 2006.

56. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J.A. Navas. The SeaHorn Verification
Framework. In Proc. of CAV’15, Part I, LNCS 9206:343-361, 2015.

57. R. Gutiérrez, S. Lucas, and P. Reinoso. A tool for the automatic generation of logical
models of order-sorted first-order theories. In Proc. of PROLE’16, pages 215-230, 2016.
Tool available at http://zenon.dsic.upv.es/ages/.

58. S.L. Hantler and J.C. King. An Introduction to Proving the Correctness of Programs.
ACM Computing Surveys 8(3):331-353, 1976.

59. P. Hayes. A Logic of Actions. Machine Intelligence 6:495-520, Edinburgh University
Press, Edinburgh, 1971.

60. B. Heidergott, G.J. Olsder, and J. van der Woude. Max Plus at Work. Modeling and
Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications.
Princeton University Press, 2006.

61. N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency
Pair Method. In Proc. of IJCAR 2008, LNCS 5195:364?379, 2008.

62. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the
ACM 12(10):576-583, 1969.

63. W. Hodges. Elementary Predicate Logic. Handbook of Philosophical Logic Volume 1,
pages 1-131. Reidel Publishing Company, 1983.

64. W. Hodges. A shorter model theory. Cambridge University Press, 1997.
65. D. Hofbauer. Termination Proofs by Context-Dependent Interpretation. In Proc. of

RTA’01, LNCS 2051:108-121, 2001.
66. D. Hofbauer. Termination Proofs for Ground Rewrite Systems. Interpretations and

Derivational Complexity. Applicable Algebra in Engineering, Communication and Com-
puting, 12:21-38, 2001.

67. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In
Proc. of RTA’89, LNCS 355:167-177, 1989.

68. T.E. Hull, W.H. Enright, and A.E. Sedgwick. The correctness of numerical algorithms.
In Proc. of PAAP’72, pages 66-73, 1972.

36

69. S. Igarashi, R.L. London, and D. Luckham. Automatic Program Verification I: A Logical
Basis and its Implementation. Acta Informatica 4:145-182, 1975.

70. M. Iwami. Persistence of Termination of Term Rewriting Systems with Ordered Sorts.
In In Proc. of 5th JSSST Workshop on Programming and Programming Languages,
Shizuoka, Japan, pp.47-56, 2003.

71. M. Iwami. Persistence of Termination for Non-Overlapping Term Rewriting Systems.
In Proc of Algebraic Systems, Formal Languages and Conventional and Unconventional
Computation Theory, Kokyuroku RIMS, University of Kyoto, 1366:91-99, 2004

72. S. Katz and Z. Manna. Logical Analysis of Programs. Communications of the ACM
19(4):188-206, 1976.

73. C.H. Langford. Review: Über deduktive Theorien mit mehreren Sorten von Grunddingen.
Journal of Symbolic Logic 4(2):98, June 1939.

74. D.S. Lankford. Some approaches to equality for computational logic: A survey and
assessment. Memo ATP-36, Automatic Theorem Proving Project, University of Texas,
Austin, TX.

75. R.L. London. The Current State of Proving Programs Correct. In Proc. of ACM’72,
volume 1, pages 39-46, ACM 1972.

76. S. Lucas. Polynomials over the Reals in Proofs of Termination: from Theory to Practice.
RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005.

77. S. Lucas. Synthesis of models for order-sorted first-order theories using linear algebra and
constraint solving. Electronic Proceedings in Theoretical Computer Science 200:32-47,
2015.

78. S. Lucas. Use Of Logical Models For Proving Operational Termination In General Logics.
In Selected papers from WRLA’16, LNCS 9942:1-21, 2016.

79. S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term
rewriting systems. Information Processing Letters, 95:446–453, 2005.

80. S. Lucas and J. Meseguer. Models for Logics and Conditional Constraints in Automated
Proofs of Termination. In Proc. of AISC’14, LNAI 8884:7-18, 2014.

81. S. Lucas and J. Meseguer. Order-Sorted Dependency Pairs. In Proc. of PPDP’08 , pages
108-119, ACM Press, 2008.

82. S. Lucas and J. Meseguer. Proving Operational Termination Of Declarative Programs
In General Logics. In Proc. of PPDP’14, pages 111-122, ACM Digital Library, 2014.

83. S. Lucas and J. Meseguer. Dependency pairs for proving termination properties of condi-
tional term rewriting systems. Journal of Logical and Algebraic Methods in Programming,
86:236-268, 2017.

84. Z. Manna. The Correctness of Programs. Journal of Computer and System Sciences
3:119-127, 1969.

85. Z. Manna. Properties of programs and the First-Order Predicate Calculus. Journal of
the ACM 16(2):244-255, 1969.

86. Z. Manna. Termination of programs represented as interpreted graphs. In Proc. of
AFIPS’70, pages 83-89, 1970.

87. Z. Manna and S. Ness. On the termination of Markov algorithms. In Proc. of the Third
Hawaii International Conference on System Science, pages 789-792, 1970.

88. Z. Manna and A. Pnueli. Formalization of Properties of Functional Programs. Journal
of the ACM 17(3):555-569, 1970.

89. Y.-I. Marion and R. Péchoux. Sup-Interpretations, a Semantic Method for Static Analysis
of Program Resources. ACM Transactions on Computational Logic 10(4), Article 27 (31
pages), 2009.

90. N. Mart́ı-Oliet, J. Meseguer, and M. Palomino. Theoroidal Maps as Algebraic Simula-
tions. In Revised Selected Papers from WADT’04, LNCS 3423:126-143, 2005.

91. J. McCarthy. Recursive Functions of Symbolic Expressions and Their Computation by
Machine, Part I. Communications of the ACM 3(4):184-195, 1960.

92. J. Meseguer. General Logics. In H.-D. Ebbinghaus et al., editors, Logic Colloquium’87,
pages 275-329, North-Holland, 1989.

93. J. Meseguer and S. Skeirik. Equational Formulas and Pattern Operations in Initial Order-
Sorted Algebras. In Revised Selected Papers from LOPSTR’15, LNCS 9527:36-53, 2015.

94. A. Middeldorp. Matrix Interpretations for Polynomial Derivational Complexity of
Rewrite Systems. In Proc. of LPAR’12, LNCS 7180:12, 2012.

95. J.-F. Monin. Understanding Formal Methods. Springer-Verlag, London, 2003.
96. M. Montenegro, R. Peña, and C. Segura. Space consumption analysis by abstract inter-

pretation: Inference of recursive functions. Science of Computer Programming 111:426-
457, 2015.

37

97. L. de Moura and N. Bjørner. Satisfiability Modulo Theories: Introduction and Applica-
tions. Communications of the ACM 54(9):69-77, 2011.

98. P. Naur. Proof of algorithms by general snapshots. Bit 6:310-316, 1966.
99. F. Neurauter and A. Middeldorp. Revisiting Matrix Interpretations for Proving Termi-

nation of Term Rewriting. In Proc. of RTA’11, LIPICS 10:251-266, 2011.
100. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, Apr. 2002.
101. P.C. Ölveczky and O. Lysne. Order-Sorted Termination: The Unsorted Way. In Proc. of

ALP’96, LNCS 1139:92-106, 1996.
102. C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated Termination Analysis

of Java Bytecode by Term Rewriting. In Proc. of RTA’10, LIPICS 6:259–276, 2010.
103. R. Péchoux. Synthesis of sup-interpretations: A survey. Theoretical Computer Science

467:30-52, 2013.
104. A. Podelski and A. Rybalchenko. Transition Invariants. In Proc. of LICS’04, pages 32-41,

IEEE Computer Society 2004.
105. A. Prestel and C.N. Delzell. Positive Polynomials. From Hilbert’s 17th Problem to Real

Algebra. Springer-Verlag, Berlin, 2001.
106. D.J.S. Robinson. A Course in Linear Algebra with Applications (2nd edition). World

Scientific Publishing, Co., 2006.
107. P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive Interpolants for Horn-Clause Verifi-

cation. In Proc. of CAV’13, LNCS 8044:347-363, 2013.
108. A. Schrijver. Theory of linear and integer programming. John Wiley & sons, 1986.
109. A. Schmidt. Über deduktive Theorien mit mehreren Sorten von Grunddingen. Matema-

tische Annalen 115(4):485-506, 1938.
110. M. Schmidt-Schauss. Computational Aspects Of An Order-Sorted Logic With Term

Declarations. PhD Thesis, Fachbereich Informatik der Universität Kaiserslautern, April
1988.

111. S. Shapiro. Foundations without Foundationalism: A Case for Second-Order Logic.
Clarendon Press, 1991.

112. R.E. Shostak. A Practical Decision Procedure for Arithmetic with Function Symbols.
Journal of the ACM 26(2):351-360, 1979.

113. R.M. Smullyan. Theory of Formal Systems. Princeton University Press, 1961.
114. A. Tarski. A Decision Method for Elementary Algebra and Geometry. Second Edition.

University of California Press, Berkeley, 1951.
115. Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems.

Information Processing Letters 25:141-143, 1987.
116. A.M. Turing, Checking a Large Routine. In Report of a Conference on High Speed

Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67-69, 1949.
117. C. Urban. The Abstract Domain of Segmented Ranking Functions. In Proc. of SAS’13,

LNCS 7935:43-62, 2013.
118. C. Urban, A. Gurfinkel, and T. Kahsai. Synthesizing Ranking Functions From Bits and

Pieces. In Proc. of TACAS’16, LNCS 9636:54-70, 2016.
119. J. Waldmann. Matrix Interpretations on Polyhedral Domains. In Proc. of RTA’15

LIPICS 26:318-333, 2015.
120. J. Waldmann, A. Bau, and E. Noeth. Matchbox termination prover. http://github.

com/jwaldmann/matchbox/, 2014.
121. C. Walther. A Mechanical Solution of Schubert’s Steamroller by Many-Sorted Resolution.

Aritificial Intelligence 26:217-224, 1985.
122. H. Wang. Logic of many-sorted theories. Journal of Symbolic Logic 17(2):105-116, 1952.
123. H. Zantema. Termination of term rewriting: interpretation and type elimination. Journal

of Symbolic Computation, 17:23-50, 1994.

38

