
Applying Software Product Lines
to Build Autonomic Pervasive

Systems

Carlos Cetina Englada
Supervisors: Dr. Vicente Pelechano Ferragud & Dr. Joan Fons Cors

A Thesis Presented in Partial Fulfillment of the Requirements

for the Degree of M.Sc.

Centro de Investigación en Métodos de Producción de Software

Universidad Politécnica de Valencia

Camino de Vera s/n, E-46022, Spain

September of 2008

“Any customer can have a car painted any
colour that he wants so long as it is black”

–Henry Ford,

My Life and Work, 1922

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 A Systematic Software Engineering Approach 3

1.1.2 Run-Time Adaptation . 4

1.2 Problem Statement . 4

1.3 Contributions . 5

1.4 Outline . 6

2 Background 8

2.1 Abstract . 8

2.2 Software Product Lines . 9

2.2.1 Definition . 9

2.2.2 Background . 10

2.3 Model Driven Development . 11

2.3.1 Definition . 11

2.3.2 Background . 12

2.4 Autonomic Computing . 12

2.4.1 Definition . 13

2.4.2 Background . 13

2.5 Pervasive Computing . 15

2.5.1 Definition . 15

2.5.2 Background . 15

iii

Contents iv

3 Related Work 17

3.1 Abstract . 17

3.2 Adaptation Frameworks . 17

3.3 Dynamic Software Product Lines . 20

3.3.1 Connected SPL . 22

3.3.2 Disconnected SPL . 24

3.4 Conclusions . 27

4 A SPL-Based Approach for Building Dynamically Reconfigurable

Systems 29

4.1 Abstract . 29

4.2 Reconfiguration Scenarios . 29

4.3 SPLs for Dynamically Reconfigurable Systems 32

4.3.1 Reusing the SPL Reconfiguration Knowledge 33

4.3.2 Extending the SPL . 36

4.3.3 Configurable Product Generation 39

4.3.4 Decision Maker . 40

4.3.5 Elaborating a Contingency Plan 42

4.4 Conclusions . 42

5 The Reconfiguration Realization in both SPL and Products 44

5.1 Abstract . 44

5.2 The Reconfiguration Strategy . 44

5.2.1 The Reconfiguration Strategy from the Product Perspective . 45

5.2.2 The Reconfiguration Strategy from the SPL Perspective . . . 46

5.3 The Reconfiguration Framework . 49

5.3.1 Characterization Component 49

5.3.2 Analyzer Component . 50

5.3.3 Reconfigurator Component . 51

5.4 Conclusions . 52

September 15, 2008

Contents v

6 Reconfiguration Architecture 53

6.1 Abstract . 53

6.2 Architectural Design Patterns for System Adaptation 54

6.3 The Adaptive Architecture . 56

6.3.1 The Underlying Components 56

6.3.2 Adaptation Actions . 57

6.4 Adaptation Rules . 58

6.4.1 Adaptation in Evolution Scenario 59

6.4.2 Adaptation in Involution Scenario 61

6.5 Conclusions . 63

7 Case Study:

An Autonomic Smart Home 65

7.1 Abstract . 65

7.1.1 The Smart Home Family Description 65

7.2 Adaptation-Scenarios . 67

7.2.1 Smart Home Reconfiguration 69

7.3 Conclusions . 71

8 Conclusions 73

8.1 Abstract . 73

8.2 Results and Contributions . 73

8.2.1 Publications . 75

8.2.2 Research Visit . 77

8.2.3 Degree Project . 78

8.2.4 Supporting Tool . 78

8.3 Assessment . 78

8.3.1 Limitations . 79

8.3.2 Future Research . 79

Bibliography 82

Appendix 95

September 15, 2008

Contents vi

A MOSKitt Feature Modeler 95

A.1 Requirements for Feature Visualization 96

A.1.1 Using layout to reflect the structure 96

A.1.2 Nesting capabilities . 97

A.1.3 Support for multiple notations 98

A.1.4 Customization . 98

A.1.5 User guidance . 99

A.2 Moskitt Feature Modeler . 99

A.2.1 Customizing the Notation Style 101

A.2.2 Visualizing Model Structure 104

A.2.3 Feature Explosion with Visual Guidance 107

A.3 MFM-FMP Interoperability . 110

A.4 Related work . 111

A.5 Conclusions and Future Work . 113

September 15, 2008

List of Figures

3.1 Classification of DSPL . 22

3.2 Connected DSPL Overview . 23

3.3 Disconnected DSPL Overview . 25

4.1 Evolution Scenarios . 30

4.2 SPL following the MDD Approach 34

4.3 PervML Pervasive System . 37

4.4 SPL Extensions . 38

5.1 Involution and evolution scenarios . 45

5.2 Reconfiguration Strategy . 47

5.3 Adaptation Strategy . 48

6.1 System components. 56

6.2 Adaptation process for evolution scenarios. 60

6.3 Adaptation process for involution scenarios. 62

7.1 Models for the SPL . 68

7.2 Testbed . 69

7.3 Adaptation Tests . 72

A.1 Foldable node and diagram based editors. 97

A.2 Supported notations in MFM. 101

A.3 Colored Features and Semantic 2D Tree Techniques 105

A.4 Feature Explosion Technique . 108

A.5 MFM-FMP Model Comparison . 110

vii

Chapter 1

Introduction

Software Product Line (SPL) engineering has proved itself as an efficient way to

deal with varying user needs and resource constraints. However, the focus has been

on the efficient derivation of customized product variants that once created, keep

their properties throughout their lifetime.

The work developed in this Master Thesis proposes a SPL method to develop

dynamically-adaptive pervasive systems in a systematic manner. This approach

allows pervasive systems to use the variability modeling from the SPL design at

run-time. The approach makes use of two primary ideas: (i) collective modeling

instead of individual modeling; and (ii) the application of product-line architectures

(PLAs) [1]. This work extends the production operation of the SPLs in order to

augment SPL products with variability models and also some extra assets that enable

reconfiguration. It makes use of the variability models and the available resources

to find the “best” reconfiguration of the software system to achieve the user goals.

These variability models assist the execution strategy to determine the steps that are

necessary to reconfigure the software system. Then, the PLA is rapidly retargeted

to the desired configuration. The use of variability models at run-time enables the

pervasive system to dynamically decide how to achieve the user goals in an efficient

manner.

This adaptation approach is focused on two adaptation scenarios very common

in Pervasive Systems: evolution (a resource is added) and involution (a resource is

removed). These scenarios have different requirements regarding adaptation, and

1

1.1. Motivation 2

the way in which models are handled at run-time should consider those particular

requirements. A model-based approach is introduced in order to organize the knowl-

edge required for adaptation according to the specific demands of each adaptation

scenario. In involution scenarios, we use models with precalculated knowledge in

order to provide an autonomic response in a reduced amount of time. While in

evolution scenarios, we offer an advanced system response (feature dependency res-

olution and user participation) because we consider that installing new resources in

the system is not as critical as handling resource failures.

This work has used dynamic adaptation in a manner of constrained adaptation

for the development of autonomic pervasive systems. By constrained adaptation we

refer to the fact, that we require complete specifications of the adaptation behavior

already at design time, which are evaluated by the system at runtime in order to

adapt to the current runtime situation. Since the models forming the basis for the

adaptation behavior are available at design time, we are able to conduct thorough

analysis of the specifications for the purpose of validation and verification. We are

able to guarantee deterministic adaptation behavior at runtime, which is essential

for reliable systems.

1.1 Motivation

Increasingly, software needs to dynamically adapt its behavior at run-time in re-

sponse to changing conditions in the supporting computing infrastructure and in

the surrounding physical environment [2]. Adaptability is emerging as a necessary

underlying capability, particularly for highly dynamic systems. Pervasive systems

are highly dynamic and fault-prone since new kinds of entities (sensors, actuators,

external software systems) can enter these systems at any time. Existing entities

may fail or leave the system for a variety of reasons: hardware faults, OS errors, soft-

ware bugs, network faults, etc. The dynamic and fault-prone nature of these systems

makes it necessary to design new techniques to ensure their smooth operation.

Pervasive computing is defined as a technology that “weaves itself into the fabric

of everyday life until it is indistinguishable from it” [3]. To be successful, the per-

September 15, 2008

1.1. Motivation 3

vasive computing functioning should be transparent to the user. Such transparency

is achievable if the software frees users from having to repair and reconfigure the

system when faults or changes occur in the environment.

Autonomic systems [4] configure themselves automatically in accordance with

high-level policies (self-configuration) and can detect, diagnose, and repair localized

problems (self-healing). In a car or an air-plane, faults need to be be repaired

without shutting down and restarting the entire system. In a smart home, end-

users should be able to perform homes upgrades (install new sensors or actuators)

without having to reconfigure the software system. To achieve this autonomic goal,

a pervasive system needs to “know itself”, and its components should also possess

a system identity [5]. Pervasive systems need to evolve in an autonomic way even

though they are built using a Software Product Line (SPL) approach.

Many research efforts have proposed ways for automating variant construction

from component-based models or feature models. Some of these efforts are focussed

on providing techniques for reasoning about the best variant selection according to

a set of requirements [6, 7]. Other techniques also address the problem of producing

and deploying the calculated variant from the SPL [8, 9].

There is not a lack of adaptive pervasive system but current approaches ad-

dress the design of the dynamic reconfiguration in an ad hoc manner. There is a

need for a Systematic Software Engineering Approach which models possible

configurations of an application as a product family capable of automatically recon-

figuring from one configuration of the family to another. Furthermore, Run-time

Adaptation must be capable to compensate failures as far as possible.

1.1.1 A Systematic Software Engineering Approach

Since the specification of the adaptation behavior is a complex and error prone task,

a systematic software engineering approach for the development of such systems is

required. Such constructive methodological support involves a dedicated methodol-

ogy enabling developers to systematically develop adaptive embedded systems.

First, this includes a seamless modeling methodology. In this regard, it is im-

portant to make the complexity manageable, e.g. by separating the adaptable spec-

September 15, 2008

1.2. Problem Statement 4

ification of the non-adaptable specification.

Second, the seamless software engineering approach also includes the model-

based analysis, validation and verification of dynamic adaptation. For dependable

pervasive systems, it is indispensable to have a means to analyze the adaptation

behavior already at design time and to guarantee certain properties.

1.1.2 Run-Time Adaptation

There exist different means, like fault prevention, fault tolerance, fault removal

and fault forecasting, to reach higher reliability in current software engineering ap-

proaches. These means certainly help to amend those characteristics in software

systems, but are not sufficient in pervasive systems where high dynamics come into

play and/or failures must be compensated at runtime.

Two possible approaches exist to address this problem: a) provide sufficient

redundancy by means of additional (physical) devices or b) make systems adaptive

so that they are capable to compensate failures by runtime adaptation. Whereas

the first approach provides the higher degree of dependability, the second approach

is less expensive and brings also the advantage of making systems more flexible with

respect to other QoS attributes (i.e. to react to varying resources or changing user

goals).

Moreover dynamic adaptation is the more flexible approach so that it is also easily

possible to realize conventional safety and reliability patterns based on dynamic

adaptation. In the case of errors, the system adapts to compensate these errors

as far as possible. In some cases it is accepted that an error leads to a degraded

functionality as long as the safety of the system is ensured (graceful degradation or

survivability [18]).

1.2 Problem Statement

The development of Autonomic Pervasive Systems is not a closed research topic. We

can see from the above discussion how some problems need to be still considered. The

work that has been done in this thesis tries to improve the development of Autonomic

September 15, 2008

1.3. Contributions 5

Pervasive Systems by considering these problems. In particular, the problems that

this master thesis tries to solve can be stated by means of the following two problem

statements:

For the development of pervasive systems based on dynamic adaptation, it is

indispensable to come to a seamless software engineering approach: an integrated

methodology guiding the developer systematically from the requirements to an adap-

tive system. Since the specification of the adaptation behavior is a complex and error

prone task, a systematic software engineering approach for the development of such

systems is required. It is necessary that the adaptation behavior is explicitly defined.

However, such constructive methodological support for the development of safe and

reliable embedded systems is still in its infancy.

1.3 Contributions

In this master thesis, we present a SPL approach for developing autonomic pervasive

systems in a systematic manner. This approach allows pervasive systems to use the

variability modeling from the SPL design at run-time. This approach is developed by

achieving the following goals: (a) Identifying the suitable variability knowledge for

performing adaptation; (b) Extending the SPL to transfer the variability knowledge

to the SPL products; and (c) Augmenting the SPL products to reuse the variability

knowledge at run-time in order to perform the adaptation.

The main contributions of this thesis are developed in order to address the prob-

lem statement presented above. In particular:

1. In our approach not only an execution platform or mechanism to realize dy-

namic adaptation at runtime is provided, but also a dedicated methodology

enabling developers to systematically develop autonomic pervasive systems.

2. Therewith this model-driven approach makes it possible to identify reason-

able configurations in an early stage of the development process without first

implementing them. Furthermore, it also benefits from the whole range of

typical gains brought by model-driven engineering approaches (i.e. validation,

verification, reuse, automation).

September 15, 2008

1.4. Outline 6

3. Our approach separates the model specifying the non-adaptive behavior from

the one specifying the adaptive behavior, thus making the model more amenable

to human inspection and automated analysis.

4. The differences between evolution (a resource is added) and involution (a re-

source is removed) scenarios are addresses in our approach. In involution

scenarios, we use models with precalculated knowledge in order to provide an

autonomic response in a reduced amount of time. While in evolution scenarios,

we offer an advanced system response (feature dependency resolution and user

participation) because we consider that installing new resources in the system

is not as critical as handling resource failures.

5. Since the models forming the basis for the adaptation behavior are available

at design time, we are able to guarantee deterministic adaptation behavior at

runtime, which is essential for reliable systems.

Furthermore, we have elaborated a taxonomy of SPLs for adaptive products.

We intend to summarize the SPL architectures that have been proposed at date,

dividing them in connected and disconnected SPL depending on their dependence

with the SPL infrastructure.

Finally, the Moskitt Feature Modeler tool (MFM) has been developed in the

context of this master thesis. MFM is a feature model editor where the tri-state

configuration proposed in this work has been implemented. In a tri-state configura-

tion, features can be set to one of the following states: discarded, deactive or active.

Active features conform the initial configuration of the pervasive system, whereas

deactive features identified the quiescent components of the system.

1.4 Outline

The rest of this thesis is organized as follows:

Chapter 2: Background. This chapter introduces the background (Software

Product Lines, Model Driven Development and Autonomic Computing) on top of

which the remaining chapters are developed.

September 15, 2008

1.4. Outline 7

Chapter 3: Related Work. This chapter presents a critical analysis of the most

well known SPL approaches for the development of adaptive pervasive systems.

In particular, we focus on where the adaptation is performed in these approaches

(whether in the SPL or in the system itself). We also study these approaches form

the following perspectives: autonomic degree, adaptation capabilities and computa-

tional overload.

Chapter 4: A SPL-Based Approach for Building Dynamically Reconfigurable Sys-

tems. This chapter introduces the SPL method for developing dynamically-adaptive

pervasive systems. First, we describe suitable adaptation scenarios where the SPL

knowledge can be applied. Then, we present the SPL extensions to transfer this

knowledge to the SPL products.

Chapter 5: The Reconfiguration Realization in both SPL and Products. In this

chapter, we analyze the reconfiguration process both from the point of view of the

SPL and the Products. Finally, we describe the key infrastructure components to

support the reconfiguration process.

Chapter 6: Reconfiguration Architecture. In this chapter, first we discuses design

patterns for adaptation architectures and then the architecture to realize dynamic

adaptation at runtime is presented. This architecture supports different adaptation

mechanisms depending on how much critical the adaptation is.

Chapter 7: Case Study: An Autonomic Smart Home. We illustrate the proposed

SPL for Autonomic Pervasive Systems by modeling a smart home family: a localized

technology-augmented environment where people perform everyday life activities.

This chapter presents the models of the SPL and a set of adaptation-scenarios to

check the adaptation capabilities.

Chapter 8: Conclusions. This chapter concludes by discussing the appropri-

ateness of the solution proposed in this thesis. Contributions are summarized and

future works are proposed.

September 15, 2008

Chapter 2

Background

2.1 Abstract

Software Product Lines (SPL) Software Product Line (SPL) engineering intends

to produce a set of products that share a common set of assets in an specific domain.

SPL engineering techniques allow to adapt a product to the customer needs while

its production costs and time to market are decreased. SPL promotes the shift

from the development of an stand-alone programs to the development of a family of

programs.

Model Driven Development (MDD) is a paradigm where we can construct

a model of a software system that we can then transform into the real thing. The

goal of this paradigm is to automatically translate an abstract specification of the

system into a fully functional software product.

Autonomic Computing is an initiative started by IBM in 2001. Its ultimate

aim is to develop computer systems capable of self-management, to overcome the

rapidly growing complexity of computing systems management, and to reduce the

barrier that that complexity poses to further growth.

Pervasive Computing is a post-desktop model of human-computer interac-

tion in which information processing has been thoroughly integrated into everyday

objects and activities. As opposed to the desktop paradigm, in which a single user

consciously engages a single device for a specialized purpose, someone ”using” ubiq-

uitous computing engages many computational devices and systems simultaneously.

8

2.2. Software Product Lines 9

This chapter provides a quick glance at Software Product Lines, Model Driven

Development, Autonomic Computing and Pervasive Computing.

2.2 Software Product Lines

Mass production was popularized by Henry Ford in the early 20th Century. McIlroy

coined the term software mass production in 1968 [10]. It was the beginning of

Software Product Lines. In 1976, Parnas introduced the notion of software program

families as a result of mass production [11]. The use of features (to drive mass pro-

duction) was proposed by Kang in the early 1990s [12]. Shortly, the first conferences

appeared turning SPL into a new body of research [13, 14].

2.2.1 Definition

SPLs are defined as ”a set of software-intensive systems, sharing a common, managed

set of features that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed

way” [15]. This definition can be redefined into five major issues:

1. Products. a set of software-intensive systems.... SPL shift the focus from

single software system development to SPL development. The development

processes are not intended to build one application, but a number of them (e.g.,

10, 100, 10,000, or more). This forces a change in the engineering processes

where a distinction between domain engineering and application engineering

is introduced. Doing so, the construction of the reusable assets (platform) and

their variability is separated from production of the product-line applications.

2. Features. ...sharing a common, managed set of features.... Features are units

(i.e., increments in application functionality) by which different products can

be distinguished and defined within an SPL [16].

3. Domain. ...that satisfy the specific needs of a particular market segment or

mission.... An SPL is created within the scope of a domain. A domain is a

September 15, 2008

2.2. Software Product Lines 10

specialized body of knowledge, an area of expertise, or a collection of related

functionality [17].

4. Core Assets. ...are developed from a common set of core assets.... A core

asset is ”an artifact or resource that is used in the production of more than

one product in a software product line” [15].

5. Production Plan. ...in a prescribed way. It states how each product is pro-

duced. The production plan is ”a description of how core assets are to be used

to develop a product in a product line and specifies how to use the production

plan to build the end product [18]. The production plan ties together all the

reusable assets to assemble (and build) end products. Synthesis is a part of

the production plan.

2.2.2 Background

According to Clements and Northrop, a software product line consists of a set of soft-

ware products sharing a common set of features that satisfy the needs of a particular

domain and that are developed from a common set of core assets in a prescribed way.

Therefore, software product line engineering is about producing families of similar

systems rather than the production of individual systems. Software product line

engineering consists of three main activities: domain engineering (also called core

asset development) and application engineering(also called product development)

and management. These three activities are complementary and provide feedback

to each other. Domain engineering deals with the production of software assets to

be used in different products of the product line. On the other hand, application

engineering deals with the production of individual systems from core assets and

individual needs and management that is responsible for giving resources, coordi-

nating, and supervising domain and application engineering activities.

In general, facing an SPL implies to distinguish between two separate processes,

namely, the domain engineering process, and the application engineering process.

Domain Engineering is defined as the activity of collecting, organizing and storing

past experience in building systems or parts of systems in a particular domain in

September 15, 2008

2.3. Model Driven Development 11

the form of reusable assets (e.g., architecture, models, code, and so on), as well

as providing an adequate means for reusing these assets (...) when building new

systems [19].

Using a ”design-for-reuse” approach, domain engineering (core asset development

[15]) is in charge of determining the commonality and the variability among product

family members. In general, domain engineering is divided into domain analysis,

domain design and domain implementation. However, this simple division hides a

number of practices and activities. Refer to [15, 20] for a complete account.

Application Engineering is the process of building a particular system in the do-

main [19]. Application engineering (a.k.a., product Development [15]) is responsible

for deriving a concrete product from the SPL using a ”design-withreuse” approach.

To attain this, it reuses the reusable assets developed previously. This process is sub-

divided into application analysis, application design and application implementation

(some other activities are omitted as well [15]). Some authors introduce a separated

process for Management where organizational issues are handled specifically [15].

2.3 Model Driven Development

2.3.1 Definition

The arrival of the MDSD and MDA are changing the way of using models in the

development of software. As stated by Agrawal [3]:

the models are not merely artifacts of documentation, but living docu-

ments that are transformed into implementations. This view radically

extends the current prevailing practice of using UML: UML is used for

capturing some of the relevant aspects of the software, and some of the

code (or its skeleton) is automatically generated, but the main bulk of

the implementation is developed by hand. MDA, on the other hand,

advocates the full application of models, in the entire life-cycle of the

software product.

September 15, 2008

2.4. Autonomic Computing 12

The goal of these methods is to automatically translate an abstract specification

of the system into a fully functional software product.

2.3.2 Background

Model-Driven Software Development (MDSD) is the notion that we can construct

a model of a software system that we can then transform into the real thing [21].

Models have been used for a long time in the software development field. From

formal and executable specification languages (like OBLOG [22], TROLL [23] or

OASIS [24]), which have not been widely accepted by the industry, to the most

accepted notations (like UML [25]) and processes (like RUP [26]) models are present

in the software development area.

Kent defines Model Driven Engineering (MDE) by extending MDA with the

notion of software development process (i.e., MDE emerged later as a generalization

of the MDA for software development) [27]. MDE refers to the systematic use

of models as primary engineering artifacts throughout the engineering lifecycle4.

Kurtev provides a discussion on existing MDE processes [28] (refer to [29, 30] for

a specific approach). In general, these approaches introduce concepts, methods and

tools [31]. All of them are based on the concept of model, meta-model, and model

transformation.

Model Driven Architecture (MDA) is a concrete realization of MDD. As men-

tioned above,MDA classifies models into 2 classes: Platform Independent Models

(PIMs) and Platform Specific Models (PSMs) [32]. A PIM is a view of a system

from a platform-independent viewpoint. Likewise, a PSM is a view of a system from

a platform-dependent viewpoint [32]. Doing so, the definition of platform becomes

fundamental.

2.4 Autonomic Computing

In October 2001, IBM released a manifesto [4] describing the vision of Autonomic

Computing. The purpose is to countermeasure the complexity of software systems

by making systems self-managing. The paradox has been spotted, that systems

September 15, 2008

2.4. Autonomic Computing 13

need to become even more complex to achieve this. The complexity, it is argued,

can be embedded in the system infrastructure, which in turn can be automated.

The similarity of the described approach with the autonomic nervous system of the

body, which relieves basic control from our consciousness, gave birth to the term

Autonomic Computing.

2.4.1 Definition

Autonomic Computing is a potential solution to the problem of increas-

ing system complexity and costs of maintenance. It is an approach where

the ultimate goal is to create computer systems that can manage them-

selves while hiding their complexity from the end users.

Thus, by hiding and removing the low-level complexities from the realm of human

control, humans can be freed from the burdens of maintenance to concentrate on

achieving higher-level, business orientated objectives.

The concept and vision behind Autonomic Computing is certainly a promising

one. However, due to its goal orientated approach, development in the Autonomic

Computing field is driven by goal achievement and not by systematic engineering

processes. As a result, a commonly accepted definition of Autonomic Computing

is yet to be established, allowing any technology that exhibits behaviours of self-

management to automatically be classified as Autonomic Computing.

2.4.2 Background

In Kepharts and Chess Vision of Autonomic Computing [33] the following four

system abilities are discussed:

• Self-configuring involves automatic incorporation of new components and

automatic component adjustment to new conditions.

• Self-optimising on a system level is about automatic parameter tuning on

services. A suggested method to do this is explore, learn and exploit.

September 15, 2008

2.4. Autonomic Computing 14

• Self-healing from bugs and failures can be accomplished using components

for detection, diagnosis and repair.

• Self-protecting of systems will prevent large-scale correlated attacks or cas-

cading failures from permanently damaging valuable information and critical

system functions. It may also act proactively to mitigate reported problems.

It is claimed that as these aspects become properties of a general architecture

they will merge into a single self-maintenance quality. The architecture of an Au-

tonomic Computing system will be a collection of components called autonomic

elements , which encapsulates managed elements. The managed element can be

hardware, application software or an entire system. An autonomic element is an

agent, managing its internal behaviour and relationships with others in accordance

to policies. It is driven by goals, by other elements or by contracts established

by negotiation with other elements. System self-management will arise both from

interactions among agents and from agents internal self-management.

An autonomic multi-agent system will run in agent-oriented architectures of yet

unknown proportions. These architectures present numerous engineering challenges

to be solved, involving agent lifecycles and relationship management such as nego-

tiation and trust, just to mention a few. There are also scientific challenges such as

induction of global behaviour, control theories, machine learning, etc.

At IBM, the Autonomic Computing initiative spans across all levels of computer

management, from the lowest levels of hardware to the highest levels of software

systems. IBM System Journal has collected some of this work. On the hardware

level, systems are dynamically upgradable [34]. On the operating system level,

active operating system code is replaced dynamically [35]. Some work on autonomic

middleware can be found at other sources [36] [37] [38]. On the application level,

databases self-validate optimisation models [39] and web servers are dynamically

reconfigured by agents to adapt service performance [40].

These examples illustrate that, although some of the characteristic Autonomic

Computing features seem to be far away, some of the ideas from Autonomic Com-

puting have already been put into practice. In the next section, we will examine

other current technological signs of a coming new computing era.

September 15, 2008

2.5. Pervasive Computing 15

2.5 Pervasive Computing

2.5.1 Definition

The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable

from it.

This can be the summary of what Weiser stated as Ubiquitous Computing in

his seminar paper [41]. This vision is based on the construction of computing satu-

rated environments properly integrated with human users. Essential to the vision is

networking [42], for without the ability of these computing devices to communicate

with one another, the functionality of such a system would be extremely limited.

Weiser stated that the next generation computing environment would be one “in

which each person is continually interacting with hundreds of nearby wirelessly con-

nected computers”. At the time, such forms of wireless networking were still in their

infancy, but today with wireless Wi-Fi, WiMax and Bluetooth, the possibilities for

such dense local area networks are entering the realm of commercial reality.

2.5.2 Background

Several terms are used in literature for talking about similar concepts. The main

differences depends on the context of use: for instance, EEUU vs Europe or Academy

vs Industry. According to Mattern [43], while Weiser saw the term “ubiquitous

computing” in a more academic and idealistic sense as an unobtrusive, human-

centric technology vision that will not be realized for many years yet, industry (IBM)

has coined the term “pervasive computing” with a slightly different slant [44, 45].

In [42] is stated that while researchers in the United States were working on

the vision of ubiquitous computing, the European Union began promoting a similar

vision for its research and development agenda. The term adopted in Europe is

“ambient intelligence” (coined by Emile Aarts of Philips) which has a lot in common

with Weiser’s ubiquitous computing vision. This point of view is confirmed by the

great number of events and research projects that are organized and/or funded in

September 15, 2008

2.5. Pervasive Computing 16

Europe under this term which topics clearly matches the ones that are inside the

scope of the ubiquitous computing area.

Although subtle differentiations could be done between these terms according to

their etymological meanings (nor ubiquitous implies intelligence, neither intelligence

implies pervasiveness, etc.), in general we can state that the main idea or vision

behind them is the same and, therefore, they can be equally used.

September 15, 2008

Chapter 3

Related Work

3.1 Abstract

This chapter presents a critical analysis of the most well known SPL approaches for

the development of adaptive pervasive systems. In particular, we focus on where the

adaptation is performed in these approaches (whether in the SPL or in the system

itself). In this chapter we intend to summarize the SPL architectures that have been

proposed at date, dividing them in connected and disconnected SPL depending on

their connectivity and dependence with the SPL development infrastructure. We

also study these approaches form the following perspectives: autonomic degree,

adaptation capabilities and computational overload. Finally, We discuss the benefits

of both connected and disconnected SPL architectures, giving some details about

its internals.

Before presenting this analysis some background about Adaptation Frameworks

without a Systematic Engineering Support is introduced.

3.2 Adaptation Frameworks

Most of the research of recent years has been focused on explicit adaptation without

an underlying engineering of adaptation. The main characteristic shared by these

approaches is the presence of a dedicated runtime adaptation framework. This

framework could be a central component in the system coordinating all adapta-

17

3.2. Adaptation Frameworks 18

tion processes or it could be a decentralized aspect that is scattered to different

components. In any case, however, the dynamic adaptation is explicitly controlled

and/or coordinated. The adaptation frameworks are usually quite simple and re-

quire a model or specification telling them under which condition which adaptation

strategy has to be chosen. For complex systems it is hardly possible to define such

a specification ad hoc without applying an appropriate, constructive development

methodology. Therefore this leads to another challenge, an immense effort is re-

quired to manage the complexity of the adaptation behavior. A vast majority of

the researches concerning constraint adaptation are dealing with the development

of runtime adaptation frameworks ([46], [47], [48], [49] to name a few examples).

A project of Carnegie Mellon University called RoSES [47] uses product family

architectures for realizing dynamic reconfiguration. They define a product family

and, in the case of faults they reconfigure the system to an alternative product

configuration from this product family. [46] uses a low-fidelity high-speed search

algorithm and a high-fidelity search algorithm to determine the next system config-

uration. If a reconfiguration is subject of hard timing constraints, e.g., if failures

occur that affect critical system services, the high speed algorithm searches for a

viable configuration that implements all critical functions. The high-fidelity algo-

rithm that searches high utility system configurations is applied when no timing

constraints are given, e.g., a viable configuration is currently active.

In [48] so-called Containment Units monitor the quality of functionalities. De-

pending on the detected quality, the containment unit turns the functionalities off

or replaces them with alternative functionalities.

The researches of the embedded adaptive systems laboratory EASL [50] deals

with the transitions between configurations, taking into account that the configura-

tions might have continuous or discrete states. Although the EASL does not aim at

the development of a framework their research results contribute to evolution stage

2, because they take the specification of the adaptation behavior for granted and

focus on the realization of the adaptation behavior.

In [51], the authors introduce a method for constructing and verifying adap-

tation models using Petri nets. In [52], linear temporal logic is extended with an

September 15, 2008

3.2. Adaptation Frameworks 19

adapt operator for specifying requirements on the system before, during and after

adaptation. An approach to ensure correctness of component based adaptation was

presented in [53], where theorem proving techniques are used to show that a program

is always in a correct state in terms of invariants. [54] introduces a formal model

of reconfiguration and an associated set of high-level, general system dependability

properties that can be verified.

Although these approaches already support verification of dynamic adaptation,

the current state of the research is at the very beginning of a software engineering

of adaptive systems. The main reason for this is that they are based on adaptation

behavior specifications without providing adequate constructive modeling method-

ologies. Therefore these specifications are hardly to define in a reasonable manner

for real systems. For instance specifying adaptation behavior using Petri nets [51]

is not an intuitive way to design complex industry sized systems like the ESP (Elec-

tronic Stability Program). Furthermore, in current researches the quality assessment

of adaptive systems is solely based on verification techniques, however, other tech-

niques like probabilistic analysis are indispensable for quality assurance in particular

with respect to assurance of safety requirements.

As an example the MARS project aims at providing a seamless engineering ap-

proach from the requirements to running systems. MARS uses dynamic adaptation

as a flexible error handling technique aiming at cost-efficient development of depend-

able embedded systems. Starting from a Feature-Model [55] the system architecture

is defined using the Mars modeling language [56], which is basically an extension of

established concepts of architecture description languages [57]. For this purpose we

use the modeling environment GME [58].

From the analysis model that specifies the adaptation behavior, a design model

in Matlab/Simulink is generated that combines adaptation and functionality in an

integrated model building the basis for the subsequent system design [59]. The

validation and verification techniques of the adaptation behavior include simulation,

verification [60], and probabilistic analysis [61].

September 15, 2008

3.3. Dynamic Software Product Lines 20

3.3 Dynamic Software Product Lines

SPL main objective is producing products while costs and time-to-market are re-

duced by an intensive reuse of commonalities and a suitable variability management.

Products are commonly produced by selecting the features that are part of a prod-

uct and removing those that are not part of it. To make this decision, features are

selected and/or discarded at different binding times. Those features thought to be

bound at runtime are kept in the final product even when they may not be used by

the final product. The product must provide the mechanisms to select the suitable

feature at runtime and optionally reconfigure the product. After the production,

no automated activity is specified in SPL development to maintain a product in

connection with the SPL so it may not eventually benefit from feature updates.

On the other hand, DSPL development mainly intends to produce configurable

products [62] whose autonomy allows to reconfigure themselves and benefit from a

constant updating. In a DSPL, a configurable product (CP) is produced from a

product line similarly to standard SPL. However, the reconfiguration ability implies

the usage of two artifacts to control it: the decision maker and the reconfigurator.

The decision maker is in charge of capturing all the information in its environment

that suggests a change such information from external sensors or even from users.

The analyser must know the whole structure of a CP so it makes a decision on

which features must be activated and deactivated. The reconfigurator is responsible

of executing the decision by using the standard SPL runtime binding. A CP may be

considered as an extension to traditional SPL products where there are no bound

features but the decision maker and the reconfigurator and the remaining features

are bound at runtime. As a consequence, new features may be added to an existing

product or even existing features may be updated at runtime.

Comparing both, SPL and DSPL development, DSPL development might be

considered as a particular case of SPL where following properties are added:

• Adaptation to changing requirements and environment: a product is prepared

to response to the so called adaptation triggers which alert the system to

a change in the environment or the conditions the product is working in.

September 15, 2008

3.3. Dynamic Software Product Lines 21

Besides, a user may explicitly ask for a change in a product configuration.

Both cases are analysed for their consequences and if it is possible, the system

is reconfigured to adapt itself to new situations.

• Autonomic capabilities: a CP is able to make decisions about the features that

are activated and deactivated at a time from the information obtained from

its environment and whenever an adaptation trigger or an user request arrives

to the decision maker.

• Product Updates: as all the features are bound at runtime, updating an ex-

isting product with new features or updates is eased

Several approaches for developing CP using DSPLs have been presented along

the published literature. In this work, we have classified these approaches in two

categories, according to the way in which product adaptation is considered. These

categories are the following:

• Connected DSPL. The DSPL is in charge of the product adaptation.

• Disconnected DSPL. The CP itself is in charge of the product adaptation.

We describe both connected and disconnected DSPLs from the product perspec-

tive. In this perspective, we study the advantages and disadvantages obtained as

result of incorporating adaptation in SPL products. The following criteria help us

to evaluate the return of investment on DSPLs:

• Autonomic degree. This criterion addresses how much products depend on

the DSPL to perform adaptation.

• Adaptation capabilities. This criterion addresses the adaptation level achieved

by the CP.

• Computational overload. This criterion addresses how much computa-

tional overload is introduced by the DSPL approach in the CP execution.

Figure 3.1 shows the methods included in connected and disconnected categories.

They have been ordered according to year in which they appear in the literature.

September 15, 2008

3.3. Dynamic Software Product Lines 22

Gomma20
04

20
05 Hallsteinsen

Lemlouma

Jaejoon
20

06
20

07 White Trinidad

20
08

Cetina

Connected DSPL Disconnected DSPL

Figure 3.1: Classification of DSPL

According to Figure 3.1, there are six DSPL that focus their efforts on developing

configurable products. An overview of these DSPL is presented next:

3.3.1 Connected SPL

Connected DSPLs stay in touch with products in order to send them updates. These

updates enable products to deal with context changes. Figure 3.2 shows the steps

to send the updates from the DSPL to the CPs.

1. The CP senses a relevant change which starts the adaptation process. Both

changes in the environment and in the CP itself can trigger the adaptation

process.

2. The CP sends information about the change to the SPL. Optionally, the CP

can locally preprocess the information in order to send a more specific infor-

mation to the SPL.

3. The SPL incorporates the acquired information to the product requisites and

then it calculates a new CP variant.

September 15, 2008

3.3. Dynamic Software Product Lines 23

Decision
Maker

1

There is not a valid
configuration

2
3

3.1
Adaptation

Trigger

New Requirement

Adaptation Fails

Assets

Production
Operation

Valid
configuration

4

5

6

Configurable ProductDynamic Software Product Line

Adaptation

Product Update

Figure 3.2: Connected DSPL Overview

(a) If there is no variant that satisfies the product requisites, then the SPL

notifies the CF and the adaptation process fails.

4. The SPL generates the CP update. This update can be the whole calculated

variant or the difference between the old variant and the new one.

5. The SPL sends the update to the CP.

6. The CP updates itself using the update information from the SPL.

According to the criteria presented before, we characterize a connected DSPL as

follows:

• Autonomic degree. The system depends on the SPL availability in order to

get the system updates to perform the adaptation.

• Adaptation capabilities. To address adaptation, variability knowledge in-

dicates the involved components. However, some of these components are not

in the system. In this case, the system has to get these components from the

SPL. Hence, it is necessary a bidirectional connection between the DSPL and

the CP. If this connection becomes unavailable then the adaptation can not

be performed.

September 15, 2008

3.3. Dynamic Software Product Lines 24

• Computational overload. An disconnected DSPL approach introduces the

following additional overload in the CP execution: (1) the communication with

the SPL (to get system updates) and (2) the on-line installation of updates.

Lemlouma. Lemlouma et al. [8] present Negotiation and Adaption Core archi-

tecture for adapting and customizing content before delivering it to a mobile device.

Their strategy takes into account device preferences and capabilities which are spec-

ified using a device independent model. These models are queried using the XQuery

language and the adaptation is achieved by means of client repositories and SOAP

services.

Adaptation Trigger. There is a real time evaluation of the context dimensions.

Lemlouma explicitly identifies the following context dimensions: user preferences,

network speed and current confection protocol.

White. The Scatter tool [9] was developed by White et atl. to address efficient

online variant selection. Scatter captures the requirements of the product line archi-

tecture and the resources of a mobile device and then quickly constructs a custom

variant for the device. This tool also ensures that variant selection is optimal with

regard to a configurable cost function.

Adaptation Trigger. A mobile device discovery service obtains the non-

functional properties of a devices such as JVMVersion or Position. This service

is implemented using SOAP-based web service and a CORBA remoting mechanism

for remotely communicating device characterizations as they are discovered.

3.3.2 Disconnected SPL

Disconnected DSPLs produce CP which can reconfigure itself to deal with contex-

tual changes. Compared with connected DSPLs, CP reconfigures itself without any

DSPL contact. CP are augmented with variability knowledge and quiescent com-

ponents in order to perform the reconfiguration as Figure 3.3 shows:

1. The CP senses a relevant change which starts the adaptation process. Both

changes in the environment and in the CP itself can trigger the adaptation

process.

September 15, 2008

3.3. Dynamic Software Product Lines 25

Embedded
Decision
Maker

1

There is not a valid
configuration

2

2.1

Adaptation
Trigger

Adaptation Fails
Decision
Maker

Active Components

Valid configuration

3

Configurable Product

Reconfiguration

Quiescent Components

Maker

Assets

Production
Operation

Dynamic Software Product Line

Figure 3.3: Disconnected DSPL Overview

2. The CP calculates a new configuration to deal with the sensed change.

(a) If there is no configuration that satisfies the product requisites, then the

adaptation process fails.

3. The CP reconfigures itself to apply the calculated configuration. The recon-

figuration operation implies (1) start/stop components and (2) establish con-

nections between them.

According to the criteria presented before, we characterize a disconnected DSPL

as follows:

• Autonomic degree. The CP have no dependency of the SPL to perform the

adaptation because there is necessary no connection between the SPL and the

CP. The adaption depends only on CP resources. The CP reconfigures itself

to perform adaptation.

• Adaptation capabilities. In general, the more variability knowledge the

system has about itself and its variants, the more adaptable the system will

get. This knowledge is captured in the variability models incorporated to the

system. However, the variability models must be complemented with system

components. Some components conform the initial system configuration, while

the others are used in system reconfiguration. In conclusion, the adaptation

September 15, 2008

3.3. Dynamic Software Product Lines 26

capabilities depends on the knowledge captured in the models and on the

number of components for system reconfiguration.

• Computational overload. A connected DSPL approach introduces a com-

putational overload to the system execution when the adaptation is triggered.

This overload comes from (1) the model queries and (2) the execution of the

reconfiguration (starting stopping and linking system components).

Gomaa. Reconfigurable Product Line UML Based Environment (RPLUSEE) [63]

was proposed by Gomaa et al. Their main contribution is provisioning software

dynamic reconfiguration patterns. Depending on the location of dynamic recon-

figuration information, these patterns are classified into master-slave, centralized,

client-server and decentralized. This method also provides reconfiguration State-

chart and reconfiguration transaction models for the dynamic reconfiguration. This

approach focuses on high-level specifications of dynamic reconfigurable units; how-

ever, it does not describe techniques and guideline for for reconfigurable component

identification, design and implementation detail.

Adaptation Trigger. Users specify runtime configuration changes so that ex-

ecutable system is dynamically changed from the old configuration to the new con-

figuration.

Lee. Lee et al. proposed a systematic method to developing dynamically re-

configurable core assets and a reconfigurator that monitors and manages product

configuration at run-time [64]. The method first analyzes a product line in terms of

features and their binding time. Then, core assets are developed with the analysis

results as key design driver. Finally, the developed reconfigurator address reconfig-

uration contexts, reconfiguration strategies and reconfiguration actions (what to do

to reconfigure)

Adaptation Trigger. The configuration plane is in charge of detecting contex-

tual changes. The plane consists of two components: Master Configurator and Local

Configurator. Master Configurator collects information from Local Configurators

and/or external probes to detect contextual changes. Each Local Configurator mon-

itors local messages within the product. Hallsteinsen. The MADAM approach [65]

September 15, 2008

3.4. Conclusions 27

was developed by Hallsteinsen et al. This approach builds adaptive systems as com-

ponent based systems families with the variability modeled explicitly as part of the

family architecture. MADAM uses property annotations on components to describe

their Quality of Service. For example a Video Streaming component may have prop-

erties such as start up time, jitter and frame drop. At run-time, the adaptation is

performed using these properties and a utility function for selecting the component

that best fits the current context.

Adaptation Trigger. The Context Manager is responsible for managing and

monitoring a set of contexts in the system environment relevant for the adaptation.

Context includes execution platform context elements such as network and memory

resources, the environment context elements such as light and noise, and user context

elements location and stress level.

Trinidad. Trinidad et al [66] present a process to automatically build a com-

ponent model from a feature model based on the assumption that a feature can be

modeled as a component. This process focuses on enabling a dynamic SPL to dy-

namically changing a product by activating or deactivating its features at run-time.

Adaptation Trigger. One o more users set the requirements of the product.

3.4 Conclusions

We have presented a brief analysis of the main approaches published in the literature

that provide support for the development of adaptive systems. In this analysis, we

have focused on the adaptation techniques that these approaches propose. Then,

we have briefly overview first those approaches based on adaptation frameworks

but lacks of an underlying systematically method. Finally, we present a critical

analysis of the most well known SPL approaches for the development of adaptive

pervasive systems. In particular, we focus on where the adaptation is performed

in these approaches, whether in the SPL (Connected SPL) or in the system itself

(Disconnected SPL). Table 3.1 summarizes the specification techniques of each the

analyzed approaches as well as the underlying infrastructure to support adaptation.

September 15, 2008

3.4. Conclusions 28

V
ar

ia
bi

li
ty

S
pe

ci
fi

ca
ti

on
A

da
pt

at
io

n
In

fr
as

tr
u

ct
u

re

G
o
m

a
a

U
M

L
S
ta

te
C

h
ar

ts
R

ec
on

fi
gu

ra
ti

on
P

at
te

rn
s

L
e
m

lo
u

m
a

D
ev

ic
e

In
d
ep

en
d
en

t
M

o
d
el

S
O

A
P

S
er

v
ic

es

L
e
e

F
ea

tu
re

M
o
d
el

w
it

h
B

in
d
in

g
U

n
it

s
D

y
n
am

ic
al

ly
R

ec
on

fi
gu

ra
b
le

A
ss

et
s

H
a
ll
st

e
in

se
n

U
M

L
Q

oS
P

ro
p

er
ti

es
P

ro
fi
le

P
la

n
n
in

g
P

ro
ce

ss

W
h

it
e

R
eq

u
ir

em
en

ts
an

d
R

es
ou

rc
es

S
p

ec
ifi

ca
ti

on
V

ar
ia

n
t

D
el

iv
er

y

T
ri

n
id

a
d

F
ea

tu
re

M
o
d
el

R
el

at
io

n
sh

ip
C

om
p

on
en

ts

C
e
ti

n
a

S
co

p
e,

C
om

m
on

al
it

ie
s

an
d

V
ar

ia
b
il
it

y
M

o
d
el

O
S
G

I
S
er

v
ic

es

T
ab

le
3.

1:
D

S
P

L
C

om
p
ar

is
on

September 15, 2008

Chapter 4

A SPL-Based Approach for

Building Dynamically

Reconfigurable Systems

4.1 Abstract

In this chapter, we propose a model-driven SPL for developing autonomic pervasive

systems. The process focusses on reusing the SCV knowledge from the SPL design

to the SPL products. This SCV knowledge enables SPL products to deal with

evolution in an autonomic way. First, we describe suitable adaptation scenarios

where the SPL knowledge can be applied. Then, we presente the SPL extensions to

transfer this knowledge to the SPL products.

4.2 Reconfiguration Scenarios

Pervasive systems can be found in numerous and heterogeneous domains such as

smart homes, health care, mobile devices, automotive, emergency situations and

urban domains. All of these domains are composed of different entities and have

different evolutionary needs.

In this section, we propose a pervasive systems categorization from the evolution-

ary point of view how pervasive systems respond to changes in their environment.

29

4.2. Reconfiguration Scenarios 30

A

B

Becomes
Unavailable

A

B

A

B

Becomes
Available

A

B

A

B

A new .
is Desired

A

B

C

A

B

C

A

B

A is
Discarded

Goal Sensor Actuator External
Software Service

[G, R-1] [G, R+1] [G+1, R] [G-1, R]1 2 3 4

Figure 4.1: Evolution Scenarios

The aim of this categorization is to establish a correlation between the knowledge

required for system evolution and the knowledge used to design the SPLs.

SPLs for pervasive systems accomplish the construction of software systems by

evolving numerous resources: sensors, actuators and services provided by external

software systems. These resources are meant to be used by the software system

to achieve user goals [67]. The software system must dynamically adapt itself to

achieve user goals according to the available pervasive resources without requiring

participation from the user.

Since pervasive resources (R) are highly dynamic and user goals (G) can change

over time, the following scenarios may arise:

1. A resource becomes unavailable. The software system must achieve the

same goals using fewer resources, [G, R-1]. This scenario can be identified in

domains such us automotive, mobile devices or urban domains. An example of

this is the Bosch Gasoline System SPL for gasoline engine control units [68],

September 15, 2008

4.2. Reconfiguration Scenarios 31

where the system needs knowledge about how to simulate an unavailable re-

source by using the available resources (see section 1, Figure 4.1).

2. A new resource becomes available. The software system can use a new

resource to achieve the same user goals, [G, R+1]. This scenario can be identi-

fied in domains such us smart homes or mobile devices. An example of this is

the SPL for home automation systems [69], where the system needs knowledge

about how to involve the new resource to contribute to achieving the user goal

(see section 2, Figure 4.1).

3. The user pursues a new goal. The software must achieve a new user goal

with the same resources, [G+1, R]. This scenario can be identified in domains

such us smart homes, health care or emergency situations. The user demands

new functionality from the system that was foreseen when designing the SPL

but that was not selected when producing the system. For instance, in a smart

home when the users are ready to go on holidays, they may want the presence

simulation functionality which deters thieves by acting as if there were people

at home. (see section 3, Figure 4.1).

4. The user discards a goal. The software system must achieve fewer goals

using the same resources, [G-1, R]. This scenario can be viewed as a particu-

lar case of scenario 2 (a new resource becomes available). Discarding a goal

does not always imply eliminating its resources. The resources associated to

the discarded goal are now available to support other goals (see section 4,

Figure 4.1).

Through the analysis of different reconfiguration needs we have detected several

suitable reconfiguration scenarios [70]. However, we have mainly classified them in

two groups:

• Involution Scenarios: in these scenarios the set of active features changes but

new features are not included. The new configuration of a system is performed

using the available features, activating or deactivating them. This kind of

scenario happens whenever an adaptation is triggered from the system.

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 32

• Evolution Scenarios: the set of features is modified (by the usage of a new

feature or the update of an existing one). The new configuration of a system

can be considered a new version.

These two kinds of scenarios can impact the system in a different degree. Invo-

lution scenarios involve only a change in the feature state (e.g., enable or disable a

feature), so the possible combination of active features is limited. Thus, the num-

ber of involution scenarios is finite. However, evolution scenarios are difficult to be

anticipated for a system as unknown features may appear.

Considering the time dimension, involution scenarios occur in a more unexpected

way that evolution scenarios. Evolution scenarios commonly respond to an upgrade

intent. These upgrading activities can be scheduled, making evolution scenarios

more predictable (users can decide when to upgrade). However, involution scenarios

might arise from unpredictable events such as a device breakdown or an unavailable

service. In these cases, the fastest response is needed to restore an stable state of

the system where functionality is at least maintained or reduced as few as possible.

4.3 SPLs for Dynamically Reconfigurable Systems

Although traditional SPL engineering recognizes that variation points are bound

at different stages of development, and possibly also at runtime, it typically binds

variation points before delivery of the software.

In contrast, DSPL engineers typically arent concerned with pre-runtime variation

points. However, they recognize that in practice mixed approaches might be viable,

where some variation points related to the environments static properties are bound

before runtime and others related to the dynamic properties are bound at runtime.

Current DSPL approaches address the design of the dynamic reconfiguration in

an ad hoc manner. There is a need for an approach that systematically models

possible configurations of a system as a product family capable of automatically

reconfiguring from one configuration of the family to another. This section describes

an approach for dynamic software reconfiguration in software product families based

on variability management. The solution presented in this chapter allows for the

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 33

automatic management of the evolution within the product family.

SPLs employ a two-life-cycle approach that separates domain and application

engineering. Domain engineering involves analyzing the product line as a whole and

producing any common (and reusable) variable parts.

Application engineering involves creating product-specific parts and integrating

all aspects of individual products. Both life cycles can rely on fundamentally differ-

ent processes for example, agile application engineering combined with plan-driven

domain engineering.

To achieve the goal of dynamic reconfiguration, the system needs knowledge

about itself and how to deal with the above scenarios. The Scope, Commonality,

and Variability analysis (SCV) [71] that was made to design the SPLs (Domain

engineering) can contribute to this dynamical reconfiguration. To reuse this SCV

analysis, it is necessary to perform the following steps to transfer the knowledge

from the SPL design to the run-time system in a systematic manner:

1. Reusing the SPL Reconfiguration Knowledge. Identify the useful knowl-

edge from the SCV analysis to obtain the dynamic reconfiguration.

2. Extend the SPL. Extend the SPLs for pervasive systems to incorporate the

relevant SCV knowledge to the pervasive system.

3. Introduce the Autonomic Reconfigurator Component. Improve the

pervasive system architecture by using the SCV knowledge to obtain the dy-

namic reconfiguration.

The aim of these steps is to translate the relevant SCV knowledge from the SPL

design to the SPL output by introducing an autonomic reconfigurator component.

4.3.1 Reusing the SPL Reconfiguration Knowledge

By following an MDD approach, the modeling languages gather the SCV knowl-

edge, and the relevant knowledge for the scenarios can be obtained by performing

model to model (M2M) transformations. Previous works [72, 73, 74] addresses this

same issue of applying MDD to SPL development. Our work also uses MDD as a

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 34

Figure 4.2: SPL following the MDD Approach

catalyst to transfer the knowledge from the SPL design to the SPL products. Fig-

ure 4.2 illustrates the relationship between these modeling languages and the SPL

concepts. The following subsections present these modeling languages and identify

the knowledge that can be reused to deal with the above evolution scenarios.

The PervML Model

Pervasive Modeling Language (PevML) [75] is a DSL for describing pervasive sys-

tems using high-level abstraction concepts. This language is focussed on specifying

heterogeneous services in concrete physical environments such as the services of a

smart home. These services can be combined to offer more complex functionality

by means of interactions. These services can also start the interaction as a reaction

to changes in the environment. The main concepts of PervML are: (1) a Service

coordinates the interaction between suppliers to accomplish specific tasks (these

suppliers can be hardware o software systems); (2) a Binding provider (BP) is a

supplier adapter that embeds the issues of dealing with heterogeneous technologies;

(3) an Interaction is a description of a set of ordered invocations between Services;

and (4) a Trigger is an ECA rule (Event Condition Action) that describes how a

Service reacts to changes in its environment. Figure 4.3 illustrates the relationships

between these concepts. This DSL have been applied to develop solutions in the

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 35

smart home domain [76].

The PervML Model provides knowledge that is related to Scenario 2 (a new re-

source becomes available). The BP concept is the key element for managing new

resources. The BP provides a level of indirection between the Services and the Re-

sources. Resource operations interact with the environment (sensors and actuators)

and provide functionality from external software systems. Services coordinate these

resource operations to offer high-level functionality. If the resource operations do

not match the Service expectations, then a BP is used to adapt these operations.

Hence, the BPs decouple Services from resource operations. This property is essen-

tial for introducing extensibility to new devices and avoids having to modify existing

Services to support the operations presented by new devices.

The FAMA Feature Model

Feature models are widely used to describe the set of products in a software product

line in terms of features. In these models, features are hierarchically linked in a

tree-like structure and are optionally connected by cross-tree constraints. There are

many proposals about the type of the relationships and the graphical representation

of feature models [77]. We have chosen the FAMA Feature Model [7] as the modeling

language because it is oriented to feature reasoning and also because it has good

tool support.

The FAMA Feature Model allows us to introduce knowledge related to Scenario

3 (the user pursues a new goal). From the point of view of the user, the goals

represent his/her intentions [67]. From the point of view of the system, the features

represent the functionality to support the user intentions. [78] presents mappings

from user goals to feature models. To support a new user goal, the related features

must be enabled. This step implies extending the production operation (see Section

4.3.2) to provide the required assets. The architecture must also be improved to

introduce the knowledge from these models in order to dynamically integrate these

assets. Thus, the goals are only limited by the available resources.

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 36

The Realization Model

The Realization Model is an extension that we have incorporated to Atlas Model

Weaving (AMW) [79] to relate the SPL Features with the PervML elements. AMW

is a model for establishing relationships between models. Our extension augments

the AMW relationship with the default and alternative tags. This augmented rela-

tionship is applied between features and PervML elements (BPs and Services). In

the context of a BP, the default relationship means that the BP is selected for the

initial configuration of the system. The alternative relationship means that the BP

is considered as a quiescent element that should be incorporated to the SPL prod-

uct, but it does not participate in the initial configuration. Quiscent BPs provide

an alternative BP to replace the default BP in case of fault. The more quiescent

BPs that can be identified, the more flexible the adaptation will be.

The Realization Model provides knowledge related to scenario 1 (a resource be-

comes unavailable). The level of indirection introduced by the BPs facilitates the

use of alternative resources, and the Realization Model determines the applicability

of the BPs. Self-healing of the system is performed by applying a quiescent BP

to a suitable resource. Quiescent elements and the Realization Model enable the

Autonomic Reconfiguator to establish a dynamic binding at run-time.

4.3.2 Extending the SPL

Once the relevant SCV knowledge has been identified, it must be transferred to the

SPL product. In this step, the Variability Model for the relevant SCV knowledge is

obtained, and the model is prepared to be deployed in the software system platform.

Figure 4.4 shows the extensions incorporated to the production operation. There

are two new phases (Pruning and Wrapping) and the code generation phase has

been augmented.

The Pruning Phase

A fundamental problem in SPL engineering is that a real product line can easily

incorporate several thousands of variable features [80]. Incorporating variability

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 37

Figure 4.3: PervML Pervasive System

models to assist the system evolution impacts the complexity and system perfor-

mance. The incorporated latency is determined by (a) a model reasoner and (b) the

size of the variability model. The efficiency of the model reasoner is out of the scope

of this work, and there are other works that address this problem [7]. The size of

the model can be optimized by taking care of the specific evolutionary needs of each

specific domain.

The Pruning phase performs model to model (M2M) transformations to prune

the SCV models. For each one of the evolutionary scenarios that is not feasible (or

interesting) in the specific domain, the pruning phase applies a set of pruning rules.

These rules only prune the model elements that provide information that is related

to the undesired scenarios. For example, the following algorithm describes the rules

for pruning Scenario 3 (the user pursues a new goal):

1. Delete the relationships (from the Realization Model) that are reachable from

an unselected feature (FAMA Feature Model).

2. Delete the model elements (from the PervML Model) that are not involved in

a relationship (Realization Model).

3. Delete the features that are not selected by the user (FAMA Feature Model).

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 38

Figure 4.4: SPL Extensions

These rules have been implemented using the INRIA ATL [81] transformation lan-

guage and tools. They take the SCV models as input and return a pruned varibility

model. We have defined a set of ATL rules for each scenario, which can be applied

in chain to prune more than one scenario.

The Wrapping Phase

The Wrapping phase is performed after the Pruning phase and has two steps. In the

first step, the FAMA Feature Model, the Realization Model and the PervML Model

are joined in a stand-alone XMI file (Variability Model). In the second step, the

Variability Model is prepared for the specific software platform. This step depends

on the deploying platform. In our case, the specific platform is OSGI [82] and the

model has to be wrapped in an OSGI bundle.

In summary, we can state that the SCV Models describe a software system

and its variants. Then, the pruning phase eliminates the variants related to the

unfeasible (or not interesting) evolution scenarios, and the wrapping phase prepares

the Variability Model for the deploying platform.

The Code Generation Phase

The Code Generation phase translates the model elements into the implementation

code. This is performed by applying a model to text (M2T) transformation to a

subset of the PervML Model. This subset is made up of the elements involved in

a default relationship with a selected feature. The transformation takes the subset

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 39

model as input and generates the OSGI bundles with the Java implementation [83].

An OSGI bundle contains all the Java classes related to only one PervML concept

(Service bundles, Interaction bundles, Trigger bundles and BP bundles). These

bundles make up the initial configuration of the system and are installed and started

in the OSGI environment.

The extension to this phase addresses the generation of the quiescent elements.

These elements are those PervML elements that after the pruning phase are not

related to any selected feature, or are related to an alternative relationship. The

generated bundles represent variations to the system they are installed but are not

started. These alternative bundles are the building blocks to perform the dynamic

reconfiguration. The following chapter describes how the system is dynamically

reconfigured using these bundles and the variability model.

4.3.3 Configurable Product Generation

The production of a Configurable Product (CP) differs a bit from common SPL

product configuration, where features are selected or removed to produce a final

product. A CP might be considered as a partial or staged configuration of a vari-

ability model where three kinds of feature are considered:

1. Discarded features: feature that are not deployed in a CP.

2. Active features: features that are deployed and activated in a CP.

3. Deactive features: features that are deployed in a CP but are not activated,

however they are available for reconfiguration.

Our SPL use variability models to describe the derivable CPs. Each CP keeps

the information about the dependencies and relationships among its features, using

a CP-specific variability model. A CP variability model is generated from the SPL

variability model where discarded features are removed. It is important to check

both, the selection and the resultant CP variability model for containing no errors,

such as mandatory features that have accidentally being removed or incompatible

selections of features.

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 40

From a CP point of view, only two kinds of features are considered in variability

models: active and deactive features. Reconfiguration is held on the reconfigura-

tion component that is in charge of de/activating the features to adapt itself when

adaptation triggers are received.

4.3.4 Decision Maker

A decision maker is in charge of reacting to the adaptation triggers, deciding which

features must be activated or deactivated. The way to make decisions is not fixed and

many alternatives may be considered such as rules system or ad-hoc reasoners that

use logic paradigms. The information to be taken into account to make decisions is:

• The features available in the CP and their state (activated or deactivated)

• Dependencies among features.

• Adaptation triggers that inform about an involution scenario or a needed fea-

ture.

• User requests of features activation or deactivation.

Then, a variability model may be used to represent information relative to fea-

tures and their relationships, and the adaptation trigger or user requests inform

about a list of features to be activated or deactivated. In this kind of SPL, two

decision makers are used, one at SPL side and another one at CP side. The respon-

sibilities of a CP decision maker are:

• Asking the DSPL for new reconfigurations when an evolution or involution

scenario is performed.

• Giving a response to evolution and involution scenarios whenever DSPL is not

available.

• Communicating the reconfigurator for the features to be activated or deacti-

vated in reconfigurations.

• Giving a fast response to involution scenarios by means of precalculated re-

configurations.

September 15, 2008

4.3. SPLs for Dynamically Reconfigurable Systems 41

On the DSPL side, its decision maker is conscious of the whole structure of the

DSPL by means of its variability model. Moreover, the SPL knows the big picture

of the DSPL, its variability model manages more knowledge than a CP variability

model and commonly pervasive systems are computationally more limited than other

systems. Because of these two factors, we determine the following responsibilities of

the DSPL decision maker:

• Calculating the reconfiguration in involution and evolution scenarios and send

them to the CP configurators.

• Generating a CP variability model from the SPL variability model and the

selected features.

FAMA Framework [84] is a SPL able to produce customized tools to reason about

variability models. It uses different logic paradigms and algorithms to reason and

extract information from variability models to help on decision making.

Although any solution may be given to implement a decision maker, we propose

using FAMA Framework to generate both DSPL and CP decision makers. We specify

the operations that are needed to extract information from a variability model and

make decisions:

• Producing a CP variability model from the SPL variability model either when

a CP is firstly produced or in an evolution scenario.

• Calculating involution scenarios by propagating decisions when a feature is

de/activated.

• Providing explanations [85] when a reconfiguration is not possible.

As FAMA Framework is a SPL itself, we may create specific products that sup-

port above operations at both sides. This is important in CPs whose resources are

limited and some functionality of FAMA Framework is never used. In this case, we

are currently working on developing FAMA Lite, a specific product for hardware-

limited CP.

September 15, 2008

4.4. Conclusions 42

4.3.5 Elaborating a Contingency Plan

Evolution scenarios are predictable and commonly come from an updating process

and may be scheduled. A new CP is regenerated where existing features are main-

tained and new ones are optionally added. The DSPL decision maker is in charge of

deciding about the new CP configuration so the CP decision maker has no respon-

sibility on this process but receiving and storing the new active configuration.

However, involution scenarios might arise from unpredictable events such as a

device breakdown or an unavailable service. In these cases, a the fastest response is

needed to restore a stable state of the CP where functionality is at least maintained

or reduced to a minimum.

The CP reconfigurator must be in charge of determining the features to be acti-

vated or deactivated to take the CP to a stable state. However, explaining a failure

and restoring it [85] is an NP-hard problem that in many cases might not produce

a fast response. Failure restoring problems may be solved by using heuristics that

return a good response that may or may not be the best response. It will allow to

give a fast response in a limited time at the risk of reducing the functionality of the

CP more than it is needed due to a non-minimal diagnosis.

As the number of involution scenarios is finite and can be foreseen, a contingency

plan may be built by the DSPL decision maker so the CP decision maker knows

how to act in these cases, giving an optimum response and restoring the CP rapidly

to the state where most of the services are correctly working.

When an involution scenario happens, the contingency plan must be regenerated.

In order to generate it as fast as possible, the CP decision maker may ask the DSPL

for producing part of the contingency plan or a complete one. Whenever DSPL

decision maker is not available, the contingency plan may be calculated on CP

decision maker idle times.

4.4 Conclusions

Current practices in adaptive systems development can not scale to produce highly

complex systems in an effective and satisfactory way. SPL engineering approaches

September 15, 2008

4.4. Conclusions 43

can help to overcome this problem. Different proposals that are based on the SPL

principles are available, all of them with strong and weak points (see Chapter 3

Related Work). In this chapter we have proposed an approach which integrates the

SPL principles (in particular variability modeling) and the MDD principles.

In summary, this chapter has defined the overall approach to extend SPL for

building autonomic Pervasive Systems. The approach focusses The approach fo-

cusses on reusing the SCV knowledge from the SPL design to the SPL products.

We also described the adaptation scenarios where these pervasive systems can be ap-

plied. Next chapters introduce the adaptation strategy and the system architecture

of these autonomic pervasive systems.

September 15, 2008

Chapter 5

The Reconfiguration Realization

in both SPL and Products

5.1 Abstract

During the production process of a product in a SPL, a feature may be bound

at different times: design time, compilation time, configuration time and runtime.

Intensively using runtime binding, we would be able to produce reconfigurable prod-

ucts that may change their functionality even when they are deployed.

However, in our approach a product has the ability of changing the functionality

automatically and autonomically, i.e. without the interaction of users. This grade

of autonomy implies the use of techniques that provide the knowledge or reasoning

ability to adapt a product at runtime.

In this chapter, we analyze the reconfiguration process both from the point of

view of the SPL and the Products. Finally, we describe the key infrastructure

components to support the reconfiguration process.

5.2 The Reconfiguration Strategy

In the environment full of embedded services that Pervasive Computing envisions

there is little space for configuration at the user side. Users demand a minimal

configuration effort to incorporate new features or repair their systems. Therefore,

44

5.2. The Reconfiguration Strategy 45

Figure 5.1: Involution and evolution scenarios

involution and evolution scenarios should be supported in a sound way. In this

section, an strategy defined to cope with both kinds of scenarios is described.

Figure 5.1 illustrates an overview of this strategy for both kind of scenarios.

Is worth noting that the Software Product Line is only involved in the evolution

scenarios. While involution scenarios require no connection with the product line

since the features included in the product are not augmented.

As the number of involution scenarios is finite and can be foreseen, a contingency

plan may be built so that the system could know how to react in these cases, giving

an optimum response and restoring itself quickly to the state where most of the

services are correctly working.

5.2.1 The Reconfiguration Strategy from the Product Per-

spective

The Autonomic Reconfiguration component is responsible for applying the auto-

nomic behavior to the system by performing dynamic bindings, taking the available

resources and the Variability Model into account. This component is involved in

the steps of resource discovery, model querying and reconfiguration execution. Fig-

ure 5.2 represents these steps graphically.

1. The user invokes a Service of the system to achieve a specific goal.

2. The software system core asks the Autonomic Reconfigurator Component for

a dynamic binding of Services and Resources by using BPs.

3. The Autonomic Reconfigurator Layer discovers the available resources by using

the discovery capabilities of the PervML framework [75].

September 15, 2008

5.2. The Reconfiguration Strategy 46

4. The Variability Model is queried to performing the dynamic binding according

to the available resources. The Autonomic Reconfigurator gets a set of rela-

tionships between Services and BPs from the Variability Model. If this set is

empty, the reconfiguration procedure is stopped and the user is informed that

there are no suitable resources to fulfill the goal.

5. The Autonomic Reconfigurator Component performs the binding of Services

and BPs. If there is more than one feasible binding, the bindings that involve

bundles from the default category are preferred. This step is performed by

using the dynamic capabilities of the OSGI framework [86] to install, start,

restart and uninstall Services and BPs (wrapped in OSGI bundles) without

restarting the entire system.

6. Once all the bindings between Services and BPs are performed, the system is

ready to access the available resources.

These steps are performed when the user starts the interaction using a service.

However, in pervasive systems, the interaction can also be started by the resources.

For instance, when a presence sensor detects a person in its action range, the alarm

service is started. To cope with these situations, steps (3) to (5) are performed when

there is a change in the availability of any resource.

5.2.2 The Reconfiguration Strategy from the SPL Perspec-

tive

We propose a self-reconfiguring strategy which addresses both evolution and invo-

lution scenarios. Figure 5.3 shows the strategy steps in order to perform reconfigu-

ration by a pervasive system.

1. Both changes in the environment and in the system itself can trigger the

adaptation process. These changes start the adaptation process.

2. The system calculates a new configuration to deal with the sensed change.

These configurations are calculated using the variability models which describe

the system in terms of features.

September 15, 2008

5.2. The Reconfiguration Strategy 47

Figure 5.2: Reconfiguration Strategy

(a) If there is no configuration that resolves the adaptation trigger, then the

system delegates the adaptation to the SPL. Therefore, the system sends

information about the adaptation to the SPL. Optionally, the system

can preprocess the information locally and send then a more specific

information to the SPL.

(b) The SPL incorporates the acquired information to the product require-

ments and then it calculates a new system variant.

i. If there is no variant that satisfies the product requirements, then

the SPL notifies the system and the adaptation process fails.

(c) The SPL generates the update for the system. The update can be the

whole calculated variant or the difference between the old variant and the

new one.

(d) The SPL sends the update to the system.

(e) The system updates itself using the update from the SPL and the adap-

tation process ends.

3. The system reconfigures itself to apply the calculated configuration. The re-

configuration operation implies (1) starting/stoping components and (2) es-

September 15, 2008

5.2. The Reconfiguration Strategy 48

Figure 5.3: Adaptation Strategy

tablishing connections between them.

This is a global strategy which addresses both evolution and involution scenarios.

Next, we analyze the strategy from either the evolution perspective or the the in-

volution perspective. From the involution perspective, we characterize the strategy

from the following points of view:

• Autonomic degree. The CP have no dependency of the SPL to perform the

adaptation because there is necessary no connection between the SPL and the

CP. The adaption depends only on CP resources.

• Adaptation capabilities. In general, the more variability knowledge the

system has about itself and its variants, the more adaptable the system will

get. This knowledge is captured in the variability models incorporated to the

system. However, the variability models must be complemented with system

components. Some components conform the initial system configuration, while

the others are used in system reconfiguration. In conclusion, the adaptation

capabilities depends on the knowledge captured in the models and on the

number of components for system reconfiguration.

• Computational overload. The self-reconfiguring strategy introduces a com-

putational overload to the system execution when the adaptation is triggered.

September 15, 2008

5.3. The Reconfiguration Framework 49

This overload comes from (1) the model queries and (2) the execution of the

reconfiguration (starting stopping and linking system components).

From the evolution perspective, we characterize the strategy as follows:

• Autonomic degree. The system depends on the SPL availability to perform

the adaptation, because the system gets updates from the SPL to perform

the adaptation.

• Adaptation capabilities. To address an evolution scenario, variability mod-

els indicate the necessary components. However, some of these components

are not in the system. In this case, the system has to get these components

from the SPL. In this case, the adaptation capabilities depends on the available

components at the SPL.

• Computational overload. Compared with involution scenarios, an evolu-

tion scenario introduces the following additional overload: 1) the communica-

tion with the SPL (to get system updates) and (2) the on-line installation of

updates.

5.3 The Reconfiguration Framework

This reconfiguration strategy is supported by the variability models and a reconfigu-

ration framework. The (1) reconfiguration framework provides the underlying infras-

tructure for adaptation. This framework is based on OSGI [82] and it implements

a complete and dynamic component model where components can be remotely in-

stalled, started, stopped, updated and uninstalled without requiring a reboot. Next

sections describe the key infrastructure components of this framework.

5.3.1 Characterization Component

In the present work the context information is expressed by means of a list of the

active contextualizers for each kind. We rely in XML namespaces to allow the defini-

tion of organization-specific contextualizers, enable a safe sharing and combination,

September 15, 2008

5.3. The Reconfiguration Framework 50

and the definition of standard vocabularies. The extensible capabilities of XML

allow us to extend contextualizers with additional information. In this way, a more

complex description of context information can be used. However, to take advantage

of this the rest of the components should be updated to consider this specific infor-

mation. The acquisition of the information in order to create this XML document

can be performed by the user or it can be gathered automatically by means of sen-

sors. For example, the user can explicitly state that she is starting a long journey.

While, sensors can be used to detect her transition from an indoor environment to

an outdoor one and adapt the service accordingly. In the developed prototypes we

have considered the explicit elaboration of these documents since the acquisition of

context information is out of the scope of the present work.

The active contextualizers are provided to the system in order to allow the adap-

tation of all their services to the context of use. Our implementation gathers this

information from an XML document when the system is accessed. This information

is processed to identify the known contextualizers and express them by means of

key-value pairs as shown in Fig. .

5.3.2 Analyzer Component

The analyzer component actuates as a filter for the alternatives that are expressed in

the Feature Model. For a given service, only the features that can fulfil the specified

constraints are considered. The active contextualizers define a set of required, pre-

ferred, discouraged and forbidden properties. These requirements are used to decide

which features are the most suited as it was illustrated in Fig. 3. In order to select

a feature, this feature has to support the required properties and not support the

forbidden ones. In addition, preferred features are favoured respect the disallowed

ones. This selection operation is defined by means of the following expression in

OCL:

Features . a l l I n s t a n c e s () −>

s e l e c t (f | f . complete−> union (f . p a r t i a l)−>

c o n t a in s A l l (ctx . r equ i r ed)−>

r e j e c t (f | f . complete−>union (f . p a r t i a l)−>

September 15, 2008

5.3. The Reconfiguration Framework 51

containsAny (ctx . fo rb idden)−>

sortedBy (f | ranking (ctx . p r e f e r r ed , ctx . d iscouraged , f))

The expression defines the set of available features given a certain set of contex-

tualizers (ctx in the formula). First, features that support the required properties

are selected; then, the ones that support forbidden requirements are excluded. The

remaining features are ordered according to their preferred and disallowed properties

by means of the ranking function.

5.3.3 Reconfigurator Component

Once the Analyzer component determines the suitable features, it is necessary to

identify the resources that support these features and establish the resource-service

bindings. This corresponds with the step 4 of the Execution Strategy. First, the

Analyzer component provides the list of feature names which fulfil the contextualizer

constraints, and then the reconfiguration component locates the references to the

resources tagged with one of the feature names. Finally, the service-resource bindings

are implemented using the OSGI Wire Class (an OSGI Wire is an implementation

of the publish-subscribe pattern oriented to dynamic systems). The following Java

method describes the actions to retrieve the reference of the selected resources:

public Se rv i c eRe f e r ence [] g e tSe rv i c eRe f e r enc e

(S t r ing f i l t e r S t r i n g){

F i l t e r f i l t e r = context . c r e a t e F i l t e r (f i l t e r S t r i n g) ;

Se rv i ceTracker t r a c k e r = new Serv i ceTracker (context , f i l t e r , null) ;

t r a c ke r . open () ;

S e rv i c eRe f e r ence [] s e l e c t e d ; =

s e l e c t e d= t r a c k e r . g e t S e r v i c e R e f e r e n c e s () ;

i f (s e l e c t e d !=null) return s e l e c t e d ;

else return new Se rv i c eRe f e r ence [0] ; }

The above Java code uses the OSGI ServiceTracker to filter OSGI services (both

PervML resources and PervML services are wrapped into OSGI services). The

Service Tracker matches the services’ properties against a filter parameter to narrow

September 15, 2008

5.4. Conclusions 52

down the query results. The OSGi filter is based on the LDAP search filter’s string

representation. For example, the filter to find the resources related with the In-

Home-Detection feature is: ”(Feature= In-Home-Detection)”. Finally, the resources

are bind with the service demanded by the user. The following Java method performs

these bindings:

protected void createWires

(WireManager wm, ArrayList resourcesPIDs , S t r ing serv icePID){

wm. de l e teWires (consumerPID) ;

// E s t a b l i s h the new b i n d i n g

St r ing wireID = wm. createPID (producerPIDs , consumerPID) ;

Hashtable props = new Hashtable () ;

%props . put (PervML WireID , wireID) ;

wm. createWires (producerPIDs , consumerPID , props) ; }

Before the new bindings are created, the old ones must be deleted. Previous

resource-service bindings represent a previous dynamic customization of the ser-

vices. The new bindings are created using OSGI Wire objects. A Wire object

connects a resource (producer) to a service (consumer). Producer and Consumer

services communicate with each other via Wire messages. Both producers and con-

sumers implement OSGI interfaces (Consumer and Producer) to send/receive Wire

messages. Once these wires are created, the system services have been customized.

The services messages are communicated to the resources that better fulfil user

contextualizers.

5.4 Conclusions

In this chapter, we analyze the reconfiguration process both from the point of view

of the SPL and the Products. This reconfiguration process has been discussed by

means of the following criteria: Autonomic degree, Adaptation capabilities and

Computational overload. Finally, we described the the underlying infrastructure

components to support the reconfiguration process: Characterization Component,

Analyzer Component and Reconfigurator Component.

September 15, 2008

Chapter 6

Reconfiguration Architecture

6.1 Abstract

In previous chapters, a methodology based on SPLs principles was defined to cope

with adaptivity of Pervasive Systems. This approach is based on the reuse of the

knowledge from the design of SPLs to support adaptivity in the resulting systems.

By means of model transformations, the SPL knowledge is systematically reused at

run-time.

This chapter is focused on the model-based architecture for support some adap-

tation scenarios very common in Pervasive Systems (evolution and involution sce-

narios). These scenarios have different requirements regarding adaptation, and the

way in which models are handled at run-time should consider those particular re-

quirements. First, we discuses design patterns for System Adaptation and then the

architecture to realize dynamic adaptation at runtime is presented. In this architec-

ture different adaptation mechanisms can be offered depending on how much critical

the adaptation is.

53

6.2. Architectural Design Patterns for System Adaptation 54

6.2 Architectural Design Patterns for System Adap-

tation

Software architectural patterns [87, 88] provide the skeleton or template for the

overall software architecture or high-level design of an application. These include

such widely used architectures [89] as client/server and layered architectures. Design

patterns [90] address smaller reusable designs than architectural patterns, such as

the structure of subsystems within a system. The description is in terms of com-

municating objects and classes customized to solve a general design problem in a

particular context.

Basing a candidate software architecture on one or more software architectural

patterns helps in designing the original architecture as well as evolving the archi-

tecture. This is because the adaptation and evolutionary properties of architectural

patterns can also be studied and this assists with an architecture-centric evolution

approach [91].

There are two main categories of software architectural patterns [92]. Architec-

tural structure patterns address the static structure of the software architecture.

Architectural communication patterns address the message communication among

distributed components of the software architecture. Most software systems can be

based on well understood overall software architectures. For example, the clien-

t/server software architecture is prevalent in many software applications. There is

the basic client/server architecture, with one server and many clients. However,

there are also many variations on this theme, such as multiple client / multiple

server architectures and brokered client/server architectures. Furthermore, with a

client/server pattern, the server can evolve by adding new services, which are dis-

covered and invoked by clients. New clients can be added that discover services

provided by one or more servers.

Many real-time systems [93] provide overall control of the environment by pro-

viding either centralized control, decentralized control, or hierarchical control. Each

of these control approaches can be modeled using a software architectural pattern.

In a centralized control pattern, there is one control component, which executes a

September 15, 2008

6.2. Architectural Design Patterns for System Adaptation 55

state machine. It receives sensor input from input components and controls the

external environment via output components. In a centralized control pattern, evo-

lution takes the form of adding or modifying input and/or output components that

interact with the control component, which executes a state machine. Another ar-

chitectural pattern that is worth considering because of its desirable properties is

the layered architecture. A layered architectural pattern allows for ease of exten-

sion and contraction [94] because components can be added to or removed from

higher layers, which use the services provided by components at lower layers of the

architecture.

In addition to the above architectural structure patterns, certain architectural

communication patterns [88] also encourage adaptation and evolution. In software

architectures, it is often desirable to decouple components. The Broker, Discovery,

and Subscription/Notification patterns encourage such decoupling. With the broker

patterns, servers register with brokers, and clients can then discover new servers.

Thus a software system can evolve with the addition of new clients and servers.

A new version of a server can replace an older version and register itself with the

broker. Clients communicating via the broker would automatically be connected to

the new version of the server. The Subscription/Notification pattern also decouples

the original sender of the message from the recipients of the message.

The software architecture is composed of distributed software architectural pat-

terns, such as client/server, master/slave, and distributed control patterns, which

describe the software components that constitute the pattern and their interconnec-

tions. For each of these architectural patterns, there is a corresponding software

adaptation pattern, which models how the software components and interconnec-

tions can be changed under predefined circumstances, such as replacing one client

with another in a client/server pattern, inserting a control component between two

other control components in a distributed control pattern, etc.

A software adaptation pattern defines how a set of components that make up

an architecture or design pattern dynamically cooperate to change the software

configuration to a new configuration given a set of reconfiguration commands. A

software adaptation pattern requires state- and scenario-based reconfiguration be-

September 15, 2008

6.3. The Adaptive Architecture 56

Figure 6.1: System components.

havior models to provide for a systematic design approach. The adaptation patterns

are described in UML with adaptation integration models (using communication or

sequence diagrams) and adaptation state machine models [95, 96]. An adaptation

state machine defines the sequence of states a component goes through during from

a normal operational state to a quiescent state, as shown in Figure 1. Once quies-

cent, the component is idle and can be removed from the configuration, so that it

can be replaced with a different version of the component.

6.3 The Adaptive Architecture

To perform adaptation, our approach is based upon a framework for adaptive sys-

tems proposed in [97] by analyzing common terminology and synergy between dif-

ferent approaches. This framework introduces the roles of (1) triggers which specify

the event or condition that causes the need of adaptation; (2) adaptation actions

which realize the actual adaptation; and (3) adaptation rules that define which trig-

gers cause which adaptation actions. In our approach, these rules are driven by

run-time models to modify the system architecture using adaptation actions.

6.3.1 The Underlying Components

In order to allow a flexible adaptation process, we have considered an architecture

based on communication channels (called bindings). This architecture for the final

September 15, 2008

6.3. The Adaptive Architecture 57

system allows an easy reconfiguration process since communication channels can

be established dynamically between the components that form the system (see left

of Fig. 6.1). These components are classified in Service and Binding Providers as

follows:

• Service. A Service coordinates the interaction between resources to accom-

plish specific tasks (these resources can be hardware or software systems);

• Binding Provider. A Binding provider (BP) is a resource adapter that han-

dles the issues of dealing with heterogeneous technologies. The BP provides

a level of indirection between Services and resources. Resource operations in-

teract with the environment (sensors and actuators) and provide functionality

from external software systems. Services coordinate these resource operations

to offer high-level functionality. If the resource operations do not match the

Service expectations, then a BP is used to adapt these operations. Hence, the

BPs decouple Services from resource operations.

For example, in a smart home a security service is composed of several re-

sources such as presence sensors, movement detectors, sirens, contact detectors, SMS

senders, silent alarms and so on. The security service coordinates the behaviour of

all these resources.

6.3.2 Adaptation Actions

The system architecture has to be modified as a result of the dynamic adaptation.

Old components must be dynamically replaced by new components while the system

is executing. The adaptation actions are in charge of this dynamic reconfiguration.

These actions deal directly with the system components by means of the following

operations: Component State-Shift and Component Binding.

1. Component State-Shift Kramer and Magee [98, 99] described how in an

adaptive system, a component needs to transit from an active (operational

state) to a quiescent (idle) state in order to perform the system adaptation.

September 15, 2008

6.4. Adaptation Rules 58

We have applied this approach to our systems by means of the OSGI frame-

work [82]. The OSGI Framework defines a component life cycle where com-

ponents can be dynamically installed, started, stopped, and uninstalled (see

right of Fig. 6.1). On the one hand, Triggers are in charge of perform the

install/uninstall operations. For example, when a resource fails or a new re-

source is installed in the system. On the other hand, Adaptation Rules are

in charge of perform the start/stop operations. For example, when a Binding

Provider must be activated to handle a new resource.

2. Component Binding Once a component transits to an active state, it needs

bindings with other components. These bindings are implemented by using

the OSGI Wire Class (an OSGI Wire is an implementation of the publish-

subscribe pattern oriented to dynamic systems). The OSGI Wires establish

communication channels between components to send messages one another.

Adaptation actions provide the basics operations to dynamically change the sys-

tem architecture. Adaptation rules orchestrate the execution of these actions by

means of the run-time models. The next section details how the adaptations rules

queries the models in order to apply the adaptation actions.

6.4 Adaptation Rules

In a nutshell, an adaptation rule is in charge of (A) handling the adaptation triggers,

(B) gathering the necessary knowledge from the run-time models and (C) applying

the adaptation actions.

As we state above, evolution and involution scenarios present different require-

ments. In involution scenarios the system must provide an autonomic response in a

reduced amount of time. While in evolution scenarios, the system does not present

the same time requirement and even the user might assist the adaptation. To ful-

fil theses requirements, we have defined two kinds of adaptation rules taking into

account the type of scenario.

September 15, 2008

6.4. Adaptation Rules 59

6.4.1 Adaptation in Evolution Scenario

When a component is plugged-in, first the adaptation rule queries the feature model

for which new features could potentially be activated. Then the user confirms the

features activation. Furthermore, activating new features can fulfil other feature con-

straints which might be enabled. Therefore, each time the user confirms a feature

activation, the adaptation rule queries the feature model for new features. Finally,

the Component and Structure Models drive the adaptation actions in order to dy-

namically reconfigure the system architecture and support the new features. The

steps to perform this adaptation (see Fig. 6.2) are detailed next:

1. By means of the Component model, the adaptation rule identifies those fea-

tures which are related to the trigger component. With these features, the rule

creates an ordered set called the evolution set. For each one of the features,

the rule performs the following steps, 2 to 5.

2. The rule checks the possibility of feature activation. This information is in the

Feature Model, specifically it depends on the requires, excludes and mandatory

relationships between features. If all these constraints are fulfilled, then the

feature can be activated.

3. Once the rule checks the feature activation, it asks the user for confirmation

by means of a dialog in the user interface. The message shows the name of

the feature and a description stored in he Feature Model. The message also

provides three options to the user: “Yes”, “Remind me later” and “No”.

4. Activating a new feature can fulfil other feature constraints. In this step, the

rule checks for new activable features. The rule adds these new features to the

evolution set.

5. In terms of the platform, activating a feature implies performing adaptation

actions to system components. In this step, the rule queries the Component

model for the feature components. For each one of these components, the rule

performs the following steps, 6 and 7.

September 15, 2008

6.4. Adaptation Rules 60

F
ig

u
re

6.
2:

A
d
ap

ta
ti

on
p
ro

ce
ss

fo
r

ev
ol

u
ti

on
sc

en
ar

io
s.

September 15, 2008

6.4. Adaptation Rules 61

6. The rule applies the State-Shift action to the component. Therefore, the com-

ponent transits from a quiescent state to an active state.

7. To connect the new active component with the rest of the system, the rule

queries the Structural model for the component bindings.

8. Finally, the rule applies the Binding action to create the communication chan-

nels between the components.

Due to space constraints, the sequence diagrams in this section represent only the

general case for adaptation. Diagrams consider only affirmative responses, lacking

alternative behaviour.

In our experience applying this approach to the smart home domain [70], we

have notice that the time response delay comes mainly from these factors: feature

dependency resolution (steps 2 and 4) and user confirmation (step 3). How much

time the user takes to confirm can not be foreseen, and dependency resolution is

more time consuming than other simpler queries (for example, step 7). However,

we consider that installing new resources in the system is not as critical as handling

resource failures. Thus, in evolution scenarios we offer an advance system response

(dependency resolution and user participation) although this response takes extra

time.

6.4.2 Adaptation in Involution Scenario

Involution scenarios are triggered by the removal of a resource. A fast adaptation of

the system is required to minimize the impact of the lost resource. In order to offer

a good response time, adaptation is automatic (not requiring user intervention) and

resource alternatives are precalculated in a model (the realization model). In this

way, the latency of asking the user is avoided and the effort of reasoning with the

feature model (e.g., looking for dependencies) is also reduced.

In Fig. 6.3, the adaptation process for an involution scenario is illustrated. Given

the removal of a component, the affected feature is obtained and an alternative

component for this feature can be directly retrieved from the Realization Model.

More detail about the process is given below:

September 15, 2008

6.4. Adaptation Rules 62

Figure 6.3: Adaptation process for involution scenarios.

September 15, 2008

6.5. Conclusions 63

1. When a change is produced in the system, the affected features are obtained in

the same way as in the evolution scenario. The following steps are performed

for each feature.

2. The rule queries the Realization model to obtain a component that can re-

place the affected one for a given feature. Since this information is expressed

explicitly in this model, queries are straightforward.

3. Once the rule has found an alternative component (initially in the quiescent

state) it is activated.

4. The alternative component may require communication with other compo-

nents. This information is obtained from the Structural model.

5. For each of the required bindings, a wire is created to establish the necessary

communication channel between components.

6. Finally, the affected component is destroyed. This implies the removal of

inactive wires. The destruction of this component is deferred until the end of

the adaptation process, since the priority in involution scenarios is to offer the

new services immediately.

The adaptation rule for involution reduces the delays commented for the evo-

lution scenarios. On the one hand, model queries are simplified. Reasoning over

a feature model is a time-consuming activity and termination becomes difficult to

guarantee [100]. On the other hand, the user does not participate in the process,

which is a requirement for the autonomic behavior required by this kind of scenarios.

6.5 Conclusions

In this chapter, we provide support for adaptation in pervasive systems by means

of run-time models. Our approach focusses on addressing the differences between

evolution (a resource is added) and involution (a resource is removed) scenarios.

In involution scenarios, we use models with precalculated knowledge in order to

provide an autonomic response in a reduced amount of time. While in evolution

September 15, 2008

6.5. Conclusions 64

scenarios, we offer an advanced system response (feature dependency resolution and

user participation) because we consider that installing new resources in the system

is not as critical as handling resource failures. Finally, we showed how models drive

the system adaptation within the context of each scenario.

September 15, 2008

Chapter 7

Case Study:

An Autonomic Smart Home

7.1 Abstract

We illustrate the proposed SPL for Autonomic Pervasive Systems by modeling a

smart home family: a localized technology-augmented environment where people

perform everyday life activities. This chapter presents the models of the SPL and

the output smart home produced by the SPL. Then, we identify a set of adaptation-

scenarios to check the adaptation capabilities. Finally, we describe how the smart

home reconfigures itself when the adaptation-scenarios are applied.

7.1.1 The Smart Home Family Description

The SPL developed for this case study addresses automated lighting, presence de-

tection and security functionality for the smart homes. The SPL models describe

the collection of all smart homes that can be produced. A smart home is uniquely

defined by the selections on the Feature Model. These selected features determine

(by means of the Realization Model) which elements of the PervML Model are used

for the initial configuration of the smart home.

From an adaptative point of view, the unselected features of the feature model

represent variants to the selected smart home. These unselected features determine

65

7.1. Abstract 66

which elements of the PervML Model are used to dynamically reconfigure the system.

All these models are presented as follows:

1. The FAMA Feature Model. This model (see the top of Figure 7.1) de-

termines the initial and the potential features of the smart home. The grey

features are the features selected to specify a member of the smart home fam-

ily. The white features represent potential variants. Initially, the smart home

provides automated lighting and a security system. This security system relies

on perimeter presence detection (outside the home) and a visual alarm. The

system can potentially be upgraded with in-home presence detection and more

alarms to enhance home security.

As stated in section 4.3.1, supporting a new user goal is translated into en-

abling more features. Some features can be enabled by plugging in new phys-

ical resources, while other features can be enabled because the restrictions

(mandatory, excludes or requires) are resolved. For instance, features (8) and

(13) can be enabled if a volumetric detector is plugged in. Then, the requires

dependency from (2) to (8) can be resolved.

2. The PervML Model. This model (see the bottom of Figure 7.1) describes

the building blocks for the assembly of a pervasive system [75]. The grey

blocks implement the functionality of the selected features. The white blocks

enable the reconfiguration of the system. The (a) and (e) blocks implement

the functionality for the unselected Presence Simulation feature. The (i), (k),

(l), (m), and (o) blocks provide adapters for the new resources that can be-

come available, as mentioned in Section 4.3.1. The Autonomic Reconfigurator

prioritizes the grey blocks over the white blocks since they are related to the

original features of the system, as stated in Chapter 4.

3. The Realization Model. This model (see the middle of Figure 7.1) estab-

lishes the relationships between the features and the PervML elements. Section

4.3.1 introduced the alternative relationship in order to identify BPs and Ser-

vices that mitigate system faults. For instance, the visual alarm feature is

September 15, 2008

7.2. Adaptation-Scenarios 67

related to a BP (n) for visual alarms, but, alternatively, it can be replaced

with a BP (k) that emulates the visual alarm by using the general lighting.

7.2 Adaptation-Scenarios

The adaptation-scenarios are designed to evaluate the adaptation capabilities of the

smart home. They describe changes in the physical environment or in the user inten-

tions according to the scenarios described in Chapter 4. These adaptation-scenarios

are performed using our testbed (see Figure 7.2), which features a scaled smart home

driven by a barebone-gateway, an Ultra Mobile PC (UMPC) for displaying the user

interfaces, and several European InstaBus (EIB) devices. This smart home repre-

sents the physical resources for performing hot plugging tests. The barebone runs

the OSGI server where all the Services, BPs, triggers and interactions are deployed,

and it also runs the non-physical resources such as a weather-forecaster or an instant

messaging client. Figure 7.3 shows the EIB devices related to the adaptation-tests.

1. A new resource becomes available. The security system relies on a pres-

ence detection service. This service integrates the functionality of several sen-

sors. Hence, the more coverture the sensors have, the more reliable the service

will be. In this adaptation-scenario we improve the coverture by incorporating

a new in-home volumetric sensor (see the top of Figure 7.3).

2. A resource becomes unavailable. In a security system, the alarm is a

key element. A fault (or manipulation) of this resource can invalidate the

entire security system. The aim of this resource is to alert the neighbors

of an unexpected situation in the house. There are several kinds of alarms

such as visual, acoustic, or silent alarms. This adaptation-scenario focusses on

dynamically replacing a damaged visual alarm with another one that consists

of a fast and constant blinking of all the lights in the home (see the middle of

Figure 7.3).

3. The user pursues a new goal. The addition of new resources to the system

reinforces the support to current goals. It can also potentially enable the sys-

September 15, 2008

7.2. Adaptation-Scenarios 68

(1) Smart Home

(2) Presence Simulation

(6) Alarm

(3) Security

(10)

(4) Automated Illumination

(5) Presence Detection

(9) Silent

3

FAMA Feature Model

(7) Perimeter Detection (11) Visual

Alarm

(10)

Siren

(13) Volumetric 360

degree Detection

(8) In home Detection (9) Silent

Alarm

(12) Infrared 160

degree Detection

2

1

Security

Realization Model

Requires

(3) <<Default>> (g)

(5) <<Default>> (f)

(5) <<Default>> (b)

(12) <<Default>> (l)

(6) <<Default>> (c)
(9) <<Default>> (m)
(10) <<Default>> (o)

(7) <<Default>> (j) (11) <<Alternative>> (k)

Security

Presence Detection Alarm

Presence Simulation Automated Illumination

2
(11) <<Default>> (n)

(13) <<Default>> (i)
1

(2) <<Default>> (a)

(2) <<Default>> (e)
(2) <<Default>> (h)
(2) <<Default>> (i)

(4) <<Default>> (a)

(4) <<Default>> (h)
3

<<Service>>

(a) Presence

Simulation

<<Service>>

(b) Presence

Detection

<< Service>>

(c) Alarm

<< Service>>

(d) Automated

Lighting

PervML Model Abstraction

<<Trigger>>

(e) Random

Simulation

Starter

<< Trigger>>

(f) Presence

Detected

<< BP>>

(j) Perimeter

Detector

<< BP>>

(l) Infrared

Detector

<< BP>>

(n) Visual Alarm

<< Interaction>>

(g) Security

<< BP>>

(m) Silent

Alarm

3

<< BP>>

(h) Automated

Lighting

<< BP>>

(i) Volumetric

Detector

1

<< BP>>

(k) Blink

Lighting

2

<< BP>>

(o) Buzzer

Figure 7.1: Models for the SPL

September 15, 2008

7.2. Adaptation-Scenarios 69

Figure 7.2: Testbed

tem to support new goals. Achieving presence simulation involves automated

lighting and an in-home presence sensor (see Figure 7.1). The new plugged

in-home sensor enables the system to offer the presence simulation service,

which was not previously supported (see the bottom of Figure 7.3).

7.2.1 Smart Home Reconfiguration

The knowledge from the SPL models enables the Autonomic Reconfigurator to es-

tablish a dynamic binding between the system components. When the adaptation-

scenarios are applied, the system reconfigures itself as follows:

1. A new resource becomes available. When a new resource is discovered

by the PervML Framework a connection with the related Services must be

established. This corresponds to steps 3 to 5 of Chapter 5. First (step 3, Figure

5.2), the PervML Framework identifies the category ID of the new resource

for the Autonomic Reconfigurator. To identify the BP that is appropriate for

this resource (step 4, Figure 5.2), the Autonomic Reconfigurator queries the

PervML Model with the category ID. The Autonomic Reconfigurator must

September 15, 2008

7.2. Adaptation-Scenarios 70

also identify the Services that have to be aware of the BP. The Realization

Model is queried for the features related to the BP. Then, the Autonomic

Reconfigurator navigates from these features to the first parent feature that is

related to a Service. The set of parent features indicates the Services that have

to be used. Finally, the dynamic binding between the BP and these Services

is performed (step 5, Figure 5.2). These bindings are implemented by using

the OSGI Wire Class (an OSGI Wire is an implementation of the publish-

subscribe pattern oriented to dynamic systems). The BP for the new resource

(in a quiescent state) is started and subscribed to the identified Service wires.

This behavior was tested by applying the first adaptation-scenario of section

1 (see the top of Figure 7.3). When the Volumetric Detector is plugged,

the Presence Detection Service needs to be aware of its notifications. The

Volumetric Detector BP is related to feature (13), and the first parent feature

that is related to a Service is the one labeled with a (5). Hence, the Volumetric

Detector BP is subscribed to the wire of the Presence Detected Service. The

relevant model elements of this example are denoted with the number 1 in

Figure 7.1.

2. A resource becomes unavailable. When the PervML framework detects

an unavailable resource, a dynamic binding to an alternative BP is requested

from the Autonomic Reconfigurator. Steps 2 to 5 of Chapter 5 are applied to

perform this binding. First (step 2, Figure 5.2), the active Service asks the

Autonomic Reconfigurator for a dynamic binding with the resources. The Per-

vML Framework looks for the available resources (step 3, 5.2). The autonomic

framework queries the models (setp 4, 5.2) for the feature that represents the

active Service of step 2. The BPs that are related to this feature (Realization

Model) are evaluated against the available resources. If there is no BP avail-

able with the default tag, then the first BP with the alternative tag is selected.

The binding is performed by susbscribing the selected BP to the wire of the

active Service (step 5, 5.2).

This behavior is tested by applying the second adaptation-scenario of Section

September 15, 2008

7.3. Conclusions 71

1 (see the middle of Figure 7.3). When the Visual Alarm fails, the Alarm

Service needs an alternative supplier. The Automated Lights can be adapted

to simulate a visual alarm. The BP (k) is selected to adapt the behavior of the

Automated Lights by performing a continuous blinking. The relevant model

elements of this example are denoted with the number 2 in Figure 7.1.

3. The user pursues a new goal. Plugging in new resources can enable the

system to support new user goals. The features that are related to the new

resources can resolve the restrictions (mandatory, excludes or requires) of other

features. However, reasoning about feature dependencies is not a trivial task.

We have implemented a toy reasoner within the Autonomic Reconfigurator

using the EMF runtime. This is just a proof of concept, we plan to integrate the

FAMA reasoner based on constraint programming. The reasoner determines

the new features that can be enabled. Then, the Autonomic Reconfigurator

starts the quiescent bundles and performs the suitable subscriptions to the

OSGI wires.

This behavior is tested by applying the third adaptation-scenario of Section

1 (see at the bottom of Figure 7.3). The new Volumetric Detector involves

features (13) and (8), and feature (8) resolves the require dependency of feature

(2). The relevant model elements of this example are denoted with the number

3 in Figure 7.1.

7.3 Conclusions

When end-users want to accomplish a particular activity they might use numerous

devices and services in the process. The lines between these two are blurred, and

users may not clearly distinguish between them. Hence, when something goes wrong

(or right) it may be hard to correctly attribute it to the service or the device. Con-

sider the case of a Smart Home Security service. This service relies on heterogeneous

sensors. When a sensor goes down and users are not notified of unexpected presence

in the some, their perceive that the whole service is malfunctioning.

September 15, 2008

7.3. Conclusions 72

Figure 7.3: Adaptation Tests

The seamless integration of services and devices presents a challenge to the up-

grading of smart homes. In some cases, it take too long to find the appropriate

feature to tune the behavior of services, or it can not be find at all. This suggests

that we need advanced mechanisms to manipulate feature models. We think that

the following mechanisms can improve the manipulation of feature models:

1. Filters. A filter acts as a limitation for the potential configurations. A typical

application of this mechanism occurs when end-users are looking for a config-

uration with a specific set of features, that is, they are not interested in all the

potential configurations, but only in some of them (those configurations that

pass the filter).

2. Optimum configurations. The Optimum configurations mechanism acts

by finding the best configurations according to a specific criterion. Most end-

users suggested criteria related to economical factors, such as asking for a

configuration with the security service and the minimum price.

September 15, 2008

Chapter 8

Conclusions

8.1 Abstract

In this Master Thesis, we have proposed a model-driven Software Product Line

(SPL) for developing autonomic pervasive systems. The work focusses on reusing

the Variability knowledge from the SPL design to the SPL products. This Variability

knowledge enables SPL products to deal with adaptation scenarios (evolution and

involution) in an autonomic way. We have presented SPL extensions to transfer

this knowledge to the SPL products. Finally, the product architecture has been

improved in in order to be able to reuse this knowledge.

This chapter reviews our central results and primary contributions, evaluates the

limitations of this work, and proposes new areas for future research.

8.2 Results and Contributions

We have stated that the work of this thesis is mainly related to two engineering

paradigms: Software Product Lines (SPL) and Autonomic Computing (AC). The

work of this thesis is related to SPL because we have presented a new SPL approach

for producing autonomic pervasive systems. The work of this thesis is related to

AC because this approach uses variability at run-time in order to dynamically self-

reconfigure pervasive systems without user intervention.

In this context, and having a more detailed look to the work of this thesis, we

73

8.2. Results and Contributions 74

can state that the main contributions that we have introduced are the following:

1. In Chapter 3 we elaborated a taxonomy of SPLs for adaptive products.

We intend to summarize the SPL architectures that have been proposed at

date, dividing them in connected and disconnected SPL depending on their

dependence with the SPL infrastructure. To bridge the gap between connected

and disconnected SPLs, we have proposed an hybrid approach called mixed

SPL. In Mixed SPLs some level of adaptivity is guaranteed, even if the SPL-

Product connection is unavailable. Hence, the SPL-Product connection is not

strictly necessary to achieve some level of adaptation. Although, SPL-Product

connection is necessary to achieve fully adaptivity.

2. Chapter 4 proposes a model-driven SPL for developing autonomic pervasive

systems. The main contribution is that this process systematically reuses

the variability knowledge from the SPL design to the SPL products.

This variability knowledge enables SPL products to deal with evolution in an

autonomic way. We have described suitable scenarios where this knowledge

can be applied. We have presented SPL extensions to transfer this knowledge

to the SPL products. Finally, we have made an improvement in architecture

(Autonomic Reconfigurator) in order to be able to reuse this knowledge at run-

time. With this SPL knowledge, the resulting pervasive system can perform

dynamic bindings to reconfigure itself without being connected to the SPL.

We have successfully applied our approach to adaptive pervasive systems for

smart homes, which are based on the scenarios described in [76].

3. Chapter 5 defines a strategy for the reconfiguration of pervasive systems at

run-time based on solid engineering approaches of both fields, pervasive sys-

tems and SPL. PervML and FAMA feature model allowed us to work at

modelling level providing a high level perspective of pervasive sys-

tem families. Thanks to these techniques we can capture the variability of

Pervasive Systems by means of models. These models can be later used by

the system to decide how to adapt itself in both evolution and involution sce-

narios. In this way, when some resources are incorporated or missing from the

September 15, 2008

8.2. Results and Contributions 75

system, the system can keep providing its services in the best available way.

4. In Chapter 6, we provide support for adaptation in pervasive systems by means

of run-time models. Our approach focusses on addressing the differences

between evolution (a resource is added) and involution (a resource

is removed) scenarios. In involution scenarios, we use models with pre-

calculated knowledge in order to provide an autonomic response in a reduced

amount of time. While in evolution scenarios, we offer an advanced system re-

sponse (feature dependency resolution and user participation) because we con-

sider that installing new resources in the system is not as critical as handling

resource failures. Finally, we showed how models drive the system adaptation

within the context of each scenario.

5. In Appendix A. We propose some visualization techniques to make Fea-

ture Models editors scale as the model grows, considering also user cus-

tomization. We have analyzed the particular visualization needs demanded

by Feature Modeling to detect some points of improvement. Finally we have

developed Moskitt Feature Modeler (MFM), a graphical editor that addresses

the detected limitations offering editing capabilities suitable for the feature

modeling of large systems. In addition, MFM support the tri-state configura-

tion of feature model introduced in this master thesis.

8.2.1 Publications

Parts of the results presented in this thesis have been presented and discussed before

on distinct peer-review forums. The distinct publications in which the author of this

thesis was involved are listed below.

1. Carlos Cetina, Joan Fons & Vicente Pelechano. Applying software prod-

uct lines to build autonomic pervasive systems. 12th International Software

Product Lines Conference (SPLC). Limerick, Ireland. 2008.

2. Carlos Cetina, Pau Giner, Joan Fons & Vicente Pelechano. A Model-Driven

Approach for Developing Self-Adaptive Pervasive Systems. Models at run.time

September 15, 2008

8.2. Results and Contributions 76

08 Workshop in conjunction with MODELS (Models@run-time). Touluse,

France. 2008.

3. Pau Giner, Carlos Cetina, Joan Fons & Vicente Pelechano. Adaptivity in

Ubicomp Systems: dealing with different services and interaction mechanisms.

3rd Symposium of Ubiquitous Computing and Ambient Intelligence (UCAMI).

Salamanca, Spain. 2008.

4. Carlos Cetina, Pablo Trinidad, Vicente Pelechano, Antonio Ruiz-Corts. An

Architectural Discussion on DSPL. 2nd International Workshop on Dynamic

Software Product Lines (DSPL08). Limerick, Ireland. 2008.

5. Carlos Cetina, Pau Giner, Joan Fons & Vicente Pelechano. Using Variabil-

ity Models for Developing Self-configuring Pervasive Systems. Workshop on

Autonomic and SELF-adaptive Systems (WASELF). Gijon, Spain. 2008.

6. Jose Manuel Marquez Vazquez, Carlos Cetina, Francisco Velasco, Luis Gonzalez-

Abril, Juan Antonio Ortega. Modelado de caractersticas para itinerarios for-

mativos adaptativos. X Jornadas de ARCA. Sistemas Cualitativos y Diag-

nosis, Robtica, Sistemas Domticos y Computacin Ubicua (JARCA). Tenerife,

Spain. 2008.

7. Carlos Cetina, Vicente Pelechano, Sonia Montagud. Inteligencia Ambiental:

Protegiendo a los Usuarios Finales de Ellos Mismos. Workshop on Require-

ments Engineering and Software Environments (IDEAS). Pernambuco, Brasil.

2008.

8. Carlos Cetina, Estefańıa Serral, Javier Muoz, Vicente Pelechano. Tool Sup-

port for Model Driven Development of Pervasive Systems.4th International

Workshop on Model-based Methodologies for Pervasive and Embedded Soft-

ware (MOMPES). Braga, Portugal. 2007

9. Carlos Cetina, Javier Muoz, Vicente Pelechano. Software Product Lines

Tool Support meets Open Source Software. Proceedings on the Second In-

ternational Workshop on Open Source Software and Product Lines (OSSPL).

September 15, 2008

8.2. Results and Contributions 77

Workshop at Third International Conference on Open Source Systems. Lim-

erick, Irlanda. 2007.

10. Estefańıa Serral, Carlos Cetina, Javier Muoz, Vicente Pelechano. PervGT:

Herramienta CASE para la Generacin Automtica de Sistemas Pervasivos. XII

Jornadas de Ingeniera del Software y Bases de Datos (JISBD). Zaragoza Spain.

2007.

8.2.2 Research Visit

The aim of this work was to be influenced and enriched by distinct research streams,

works, visions and schools. Thus, along this work there was interaction with the

members of the ITEA-MoSiS project (Model-driven development of highly config-

urable embedded Software-intensive Systems). In particular, the interaction was

with Jesús Bermejo from the Telvent Company and with Oystein Haugen from the

University of Oslo.

MoSiS is a European project financially supported by the ProFIT program of

Ministerio de Industria, Comercio y Turismo in Spain, Tekes in Finland, The Re-

search Council of Norway and The Swedish Governmental Agency for Innovation

Systems - VINNOVA.

The main goals in the MoSiS project are:

1. A standardized language for variability modelling and management, supported

by tools.

2. Model based approach to variability in extra-functional system properties.

3. Applicability of variability modelling and re-configurable architectures for run-

time adapt-ability.

As result of the interaction with Oystein Haugen and the high relation of the

MoSiS goals and the work presented in this master thesis, it is planned a research

stay of the author of this thesis in Object orientation, Modeling and Language Group

(OMS) at the Universty of Oslo. This stay will be hosted by Oystein Haugen from

October to December of 2008.

September 15, 2008

8.3. Assessment 78

8.2.3 Degree Project

Furthermore, the work of this master thesis has been also validated throughout its

application in a degree project, where it has been used it in order to resolve a case

study. In particular, the degree project in which this work has been applied is the

following:

• Title: Aplicación de Ĺıneas de Producto a Entornos de Intelignecia Ambiental

en la Plataforma Eclipse.

Student: Sonia Montagud Gregori.

Reading Date: July, 2007.

Mark: 10 (MH).

8.2.4 Supporting Tool

The Moskitt Feature Modeler tool (MFM) has been developed in the context of

this master thesis. MFM is a feature model editor where the tri-state configuration

proposed in this work has been implemented. In a tri-state configuration, features

can be set to one of the following states: discarded, deactive or active. Active

features conform the initial configuration of the pervasive system, whereas deactive

features identified the quiescent components of the system.

This tool has been developed as open source software under the EPL license.

MFM was published at http://www.pros.upv.es/mfm on June 23rd, 2008. Since this

date, the MFM website has reached 1786 visits and the tool has been downloaded

75 times.

8.3 Assessment

The work presented so far reveals insights combining Software Product Lines and

Model Driven Development in the synthesis of Autonomic Pervasive Systems. Al-

though our work exposed some challenges, a close assessment is necessary to reveal

some limitations of this work and propose some future work.

September 15, 2008

8.3. Assessment 79

8.3.1 Limitations

• Code generation. The SPL presented in this work follows an approach to MDD

where code generation is not complete. Although this approach automates

cumbersome tasks, it requires some human intervention (e.g., to complete

skeletal generated code). This is not exceptional, but is common in other

approaches. Nevertheless, future work should address the generation of further

code. This would likely embrace the definition of further models.

• Model superimposition. The proposed Realization Model is not a close model.

We are currently using and refining the proposed mappings between PervML

and FAMA. Furthermore, the PervML method is neither a close research topic.

In this context, improved versions of PervML are continuously appearing.

Then, new mappings must be defined in case that new conceptual primitives

are introduced.

• Validation. The ideas presented in this work were used with a product-line of

smart homes that we developed. This worked fine so far. However, further

case studies (industrial if possible) are needed to validate our findings.

To overcome these limitations is subject of future work.

8.3.2 Future Research

Most pervasive systems have to interact with highly dynamic environments. Dy-

namic adaptation has therefore always been an inherent key element of such sys-

tems. In order to apply dynamic adaptation for the development of safety-critical

and reliable systems, it is necessary that the adaptation behavior is explicitly defined

and that the negative as well. Since the specification of the adaptation behavior is

a complex and error prone task, a systematic software engineering approach for the

development of such systems is required. However, such methodological support for

the development of pervasive systems is still in its infancy. To contribute towards

this goal, our work presents an agenda for future research.

September 15, 2008

8.3. Assessment 80

• Current end-user programming techniques are mainly focused on providing

appropriate metaphors to user skills [101, 102, 103], whereas none of these

techniques addresses the evolution of user needs or devices. We are working in

a design method for adaptive smart homes where end-users and technical de-

signers participate cooperatively. End-users contribute with their context and

domain knowledge, while designers introduce their technical background to

preserve the quality of the system. We complement this method with a speci-

fication technique so that both end-users and designers configure the systems

in terms of features.

• For autonomic pervasive systems, it is indispensable to have a means to ana-

lyze the adaptation behavior already at design time and to guarantee certain

properties. Therewith this model-driven approach makes it possible to identify

reasonable configurations in an early stage of the development process with-

out first implementing them. As for any other software engineering approach

it is particularly possible to analyze and to predict the quality of the adap-

tation behavior to enable systematic control of the development process. We

are working on extend the feature modeling technique with a set of metrics

to evaluate the adaptation capabilities of the smart home. In particular, we

are working on structural metrics, which can be calculated once the designers

have defined the family scope, and run-time metrics which can be applied each

time the system reconfigures itself.

• In this work, we have defined how a set of components that make up an ar-

chitectural or design pattern dynamically cooperate to change the software

configuration to a new configuration. To achieve this goal, We have applied

the Quiescent software adaptation pattern which models how the software

components and interconnections can be changed. Further research includes

effective approaches for automatically evolving software architectures, in par-

ticular how to maintain the service sate while adaptation is taking place, and

Quality of Service issues during software adaptation.

• Aspects related to other contextual triggers are not addressed in the proposed

September 15, 2008

8.3. Assessment 81

approach. A forthcoming work will focus on complement this approach with

context aware capabilities. Currently, the PervML framework is been extended

with a context layer where location and user-personalization are taken into

account.

• Tool Support. Some tools were implemented to support our ideas (e.g., MFM,

PervML Framework, etc). Although we spent a great amount of effort on them

to work, still they require further work to be used by a regular customer.

September 15, 2008

Bibliography

[1] Paul Clements and Linda Northrop. Software Product Lines : Practices and

Patterns. Addison-Wesley Professional, August 2002.

[2] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. Cheng. Composing

adaptive software. Computer, 37(7):56–64, July 2004.

[3] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput.

Commun. Rev., 3(3):94–104, 1999.

[4] Paul Horn. Autonomic computing: Ibm’s perspective on the state of informa-

tion technology, 2001.

[5] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era.

IBM Syst. J., 42(1):5–18, 2003.

[6] Mike Mannion. Using first-order logic for product line model validation. In

SPLC 2: Proceedings of the Second International Conference on Software

Product Lines, pages 176–187, London, UK, 2002. Springer-Verlag.

[7] D. Benavides, Ruiz A. Cortés, and P. Trinidad. Automated reasoning on

feature models. LNCS, Advanced Information Systems Engineering: 17th In-

ternational Conference, CAiSE 2005, 3520:491–503, 2005.

[8] T. Lemlouma and N. Layaida. Context-aware adaptation for mobile devices.

Mobile Data Management, 2004. Proceedings. 2004 IEEE International Con-

ference on, pages 106–111, 2004.

[9] Jules White, Douglas C. Schmidt, Egon Wuchner, and Andrey Nechypurenko.

Automating product-line variant selection for mobile devices. Software Product

82

Bibliography 83

Line Conference, 2007. SPLC 2007. 11th International, pages 129–140, 10-14

Sept. 2007.

[10] M. Douglas McIlroy. Mass-produced software components. In J. M. Buxton,

Peter Naur, and Brian Randell, editors, Software Engineering Concepts and

Techniques (1968 NATO Conference of Software Engineering), pages 88–98.

NATO Science Committee, October 1968.

[11] D.L. Parnas. On the design and development of program families. Software

Engineering, IEEE Transactions on, SE-2(1):1–9, March 1976.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.

Feature-oriented domain analysis (foda) feasibility study. Technical report,

Carnegie-Mellon University Software Engineering Institute, November 1990.

[13] F. van der Linden. Lecture Notes in Computer Science, volume 2290. Springer,

Bilbao, Spain, October 3-5, 2001 2002.

[14] P. Donohoe. Number ISBN 0-7923-7940-3. Denver, Colorado, USA, August

28-31.

[15] Paul C. Clements and Linda Northrop. Software Product Lines: Practices and

Patterns. SEI Series in Software Engineering. Addison-Wesley, August 2001.

[16] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise

refinement. IEEE Transactions on Software Engineering, 30:2004, 2003.

[17] L. Northrop. SEI’s Software Product Line Tenets. IEEE Software, 19(4):32–

40, July/August 2002.

[18] G. Chastek and J.D. McGregor. Guidelines for developing a product line

production plan. Technical report, CMU/SEI, June 2002.

[19] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming:

methods, tools, and applications. ACM Press/Addison-Wesley Publishing Co.,

New York, NY, USA, 2000.

September 15, 2008

Bibliography 84

[20] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product

Line Engineering: Foundations, Principles and Techniques. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2005.

[21] Stephen J. Mellor and Anthony N. Clark and Takao Futagami. Guest Editors’

Introduction: Model-Driven Development. IEEE Software, 20(5):14–18, 2003.

[22] Amílcar Sernadas, Cristina Sernadas, and Hans-Dieter Ehrich. Object-

oriented specification of databases: An algebraic approach. In VLDB ’87:

Proceedings of the 13th International Conference on Very Large Data Bases,

pages 107–116, San Francisco, CA, USA, 1987. Morgan Kaufmann Publishers

Inc.

[23] Ralf Jungclaus, Gunter Saake, Thorsten Hartmann, and Cristina Sernadas.

TROLL: a language for object-oriented specification of information systems.

ACM Trans. Inf. Syst., 14(2):175–211, 1996.

[24] Michael Rohs and Jürgen Bohn. Entry points into a smart campus

environment ” overview of the ethoc system. In ICDCSW ’03: Proceedings

of the 23rd International Conference on Distributed Computing Systems, page

260, Washington, DC, USA, 2003. IEEE Computer Society.

[25] Object Management Group. Unified Modeling Language: Superstructure ver-

sion 2.1.1. OMG Specification, February 2007.

[26] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[27] Stuart Kent. Model driven engineering. In Proceedings of the Third Interna-

tional Conference Integrated Formal Methods (IFM’2002), 2002.

[28] Ivan Kurtev. Adaptability of Model Transformations. phdthesis, IPA, 2005.

ISBN 90-365-2184-X.

[29] Jean Bzivin, Nicolas Farcet, Jean marc Jzquel, Benot Langlois, and Damien

Pollet. Reflective model driven engineering. pages 175–189. Springer, 2003.

September 15, 2008

Bibliography 85

[30] J. Bzivin. In search of a basic principle for model driven engineering. UP-

GRADE, 1:15–24, 2004.

[31] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.

Computer, 39(2):25–31, 2006.

[32] Joaquin (Hrsg.) Miller and Jishnu (Hrsg.) Mukerji. Mda guide version 1.0.1,

2003. Letzte Änderung am 12. Jun. 2003, besucht am 15. Mai 2008.

[33] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36(1):41–50, 2003.

[34] J. Jann, L. M. Browning, and R. S. Burugula. Dynamic reconfiguration: Basic

building blocks for autonomic computing on ibm pseries servers. IBM Syst.

J., 42(1):29–37, 2003.

[35] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva,

O. Krieger, M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger,

P. McKenney, M. Ostrowski, B. Rosenburg, M. Stumm, and J. Xenidis. En-

abling autonomic behavior in systems software with hot swapping. IBM Syst.

J., 42(1):60–76, 2003.

[36] Stephen A. Jarvis, Daniel P. S pooner, Helene N. Lim Choi Keung, Justin R.D.

Dyson, Lei Zhao, and Graham R. Nudd. Performance-based middleware ser-

vices for grid computing. ams, 0:151, 2003.

[37] Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang, and Sandeep K.S. Gupta.

Reconfigurable context-sensitive middleware for pervasive computing. IEEE

Pervasive Computing, 01(3):33–40, 2002.

[38] Gordon S. Blair, Geoff Coulson, Lynne Blair, Hector Duran-Limon, Paul

Grace, Rui Moreira, and Nikos Parlavantzas. Reflection, self-awareness and

self-healing in openorb. In WOSS ’02: Proceedings of the first workshop on

Self-healing systems, pages 9–14, New York, NY, USA, 2002. ACM.

[39] V. Markl, G. M. Lohman, and V. Raman. Leo: An autonomic query optimizer

for db2. IBM Syst. J., 42(1):98–106, 2003.

September 15, 2008

Bibliography 86

[40] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing web server

performance with autotune agents. IBM Syst. J., 42(1):136–149, 2003.

[41] Mark Weiser. The Computer for the 21st Century. Scientific American,

265(3):94–104, Sept. 1991.

[42] David Wright, Elena Vildjiounaite, Ioannis Maghiros, Michael Friedewald,

Michiel Verlinden, Petteri Alahuhta, Sabine Delaitre, Serge Gutwirth, Wim

Schreurs, and Yves Punie. Safeguards in a world of ambient intelligence

(swami) deliverable d1. the brave new world of ambient intelligence: A state-

of-the-art review, June 2005. A report of the SWAMI consortium to the

European Commission under contract 006507.

[43] Friedemann Mattern. Ubiquitous Computing: Scenarios from an informatised

world, pages 145–163. Springer-Verlag, 2005.

[44] Jochen Burkhardt, Thomas Schaeck, Horst Henn, Stefan Hepper, and Klaus

Rindtorff. Pervasive Computing: Technology and Architecture of Mobile In-

ternet Applications. Addison-Wesley, April 2002.

[45] Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and Thomas Stober. Per-

vasive Computing Handbook. Springer-Verlag, 2001.

[46] O.A. Rawashdeh and J.E. Lumpp. A technique for specifying dynamically

reconfigurable embedded systems. Aerospace Conference, 2005 IEEE, pages

1–11, March 2005.

[47] ROSES. Robust self-configuring embedded systems.

http://www.ece.cmu.edu/ koopman/roses/.

[48] Depaude-Project Webpage. Dependability for embedded automation systems

in dynamic environment with intra-site and inter-site distribution aspects.

http://www.esat.kuleuven.be/electa/depaude/.

[49] Jamieson M. Cobleigh, Leon J. Osterweil, Alexander Wise, and Bar-

bara Staudt Lerner. Containment units: a hierarchically composable archi-

September 15, 2008

Bibliography 87

tecture for adaptive systems. SIGSOFT Softw. Eng. Notes, 27(6):159–165,

2002.

[50] Wills, L.M., Kannan, S., Sander, S., Guler, M., Heck, B., Prasad, J.V.R.,

Schrage, D., Vachtsevanos, G. A prototype open control platform for reconfig-

urable control systems. Software-Enabled Control: Information Technologies

for Dynamical Systems, pages 63–84, May 2003.

[51] Ji Zhang and Betty Cheng. Model-based development of dynamically adaptive

software. In ICSE ’06: Proceedings of the 28th international conference on

Software engineering, pages 371–380, New York, NY, USA, 2006. ACM.

[52] Ji Zhang and Betty H. C. Cheng. Specifying adaptation semantics. In WADS

’05: Proceedings of the 2005 workshop on Architecting dependable systems,

pages 1–7, New York, NY, USA, 2005. ACM.

[53] Sandeep S. Kulkarni and Karun N. Biyani. Correctness of component-based

adaptation. Technical Report MSU-CSE-04-2, Department of Computer Sci-

ence, Michigan State University, East Lansing, Michigan, January 2004.

[54] Elisabeth A. Strunk. Reconfiguration Assurance in Embedded System Software.

PhD thesis, University of Virginia.

[55] M. Trapp. Modeling the Adaptation Behavior of Adaptive Embedded Systems.

PhD thesis, Technical University of Kaiserslautern, 2005.

[56] Mario Trapp, Rasmus Adler, Marc Förster, and Janosch Junger. Runtime

adaptation in safety-critical automotive systems. In SE’07: Proceedings of the

25th conference on IASTED International Multi-Conference, pages 308–315,

Anaheim, CA, USA, 2007. ACTA Press.

[57] N. Medvidovic and R.N. Taylor. A classification and comparison framework

for software architecture description languages. Software Engineering, IEEE

Transactions on, 26(1):70–93, Jan 2000.

[58] Gme. http://www.isis.vanderbilt.edu/projects/gme/.

September 15, 2008

Bibliography 88

[59] Andreas Beicht. Entwicklung eines frameworks zur entwicklung und analyse

adaptiver eingebetteter systeme. Master’s thesis, TU Kaiserslautern, 2007.

[60] Klaus Schneider, Tobias Schuele, and Mario Trapp. Verifying the adaptation

behavior of embedded systems. In SEAMS ’06: Proceedings of the 2006 inter-

national workshop on Self-adaptation and self-managing systems, pages 16–22,

New York, NY, USA, 2006. ACM.

[61] Rasmus Adler, Marc Forster, and Mario Trapp. Determining configuration

probabilities of safety-critical adaptive systems. Advanced Information Net-

working and Applications Workshops, 2007, AINAW ’07. 21st International

Conference on, 2:548–555, May 2007.

[62] Software product-family engineering. 5th International Workshop, PFE 2003,

Siena, Italy, November 4-6, 2003, Revised Papers, 3014, 2004.

[63] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases

to Pattern-Based Software Architectures. Addison Wesley Longman Publishing

Co., Inc., Redwood City, CA, USA, 2004.

[64] Jaejoon Lee and Kyo C. Kang. A feature-oriented approach to developing

dynamically reconfigurable products in product line engineering. splc, 0:131–

140, 2006.

[65] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using product line tech-

niques to build adaptive systems. Software Product Line Conference, 2006

10th International, pages 21–24, Aug. 2006.

[66] P. Trinidad, , A. Ruiz-Cortés, and J. Pe na. Mapping feature models onto

component models to build dynamic software product lines. International

Workshop on Dynamic Software Product Line, 2007.

[67] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Yijun Yu. To-

wards requirements-driven autonomic systems design. In DEAS ’05: Proceed-

ings of the 2005 workshop on Design and evolution of autonomic application

software, pages 1–7, New York, NY, USA, 2005. ACM.

September 15, 2008

Bibliography 89

[68] Christian Tischer, Andreas Muller, Markus Ketterer, and Lars Geyer. Why

does it take that long? establishing product lines in the automotive do-

main. Software Product Line Conference, 2007. SPLC 2007. 11th Interna-

tional, pages 269–274, 10-14 Sept. 2007.

[69] Markus Voelter and Iris Groher. Product line implementation using aspect-

oriented and model-driven software development. Software Product Line Con-

ference, 2007. SPLC 2007. 11th International, pages 233–242, 10-14 Sept.

2007.

[70] Carlos Cetina, Joan Fons, and Vicente Pelechano. Applying Software Product

Lines to Build Autonomic Pervasive Systems. Software Product Line Confer-

ence, 2008. SPLC 2008. 12th International, 8-12 Sept. 2008.

[71] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in software

engineering. Software, IEEE, 15(6):37–45, Nov/Dec 1998.

[72] Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, Sean Lau,

and Krzysztof Pietroszek. Model-driven software product lines. In OOPSLA

’05: Companion to the 20th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, pages 126–127,

New York, NY, USA, 2005. ACM.

[73] Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner. MOD-

ELS’05 Workshop ”MDD for Software Product-lines: Fact or Fic-

tion?”. http://www.geocities.com/andreynech/ MDDandProductLinesWork-

shop.html, 2005.

[74] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature oriented model driven

development: A case study for portlets. icse, 00:44–53, 2007.

[75] Javier Muñoz and Vicente Pelechano. Applying software factories to pervasive

systems: A platform specific framework. In ICEIS (3), pages 337–342, 2006.

[76] Javier Muñoz, Vicente Pelechano, and Carlos Cetina. Implementing a perva-

sive meeting room: A model driven approach. In IWUC, pages 13–20, 2006.

September 15, 2008

Bibliography 90

[77] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves

Bontemps. Generic semantics of feature diagrams. Comput. Networks,

51(2):456–479, 2007.

[78] Yijun Yu, John Mylopoulos, Alexei Lapouchnian, Sotirios Liaskos, and Julio

Cesar Sampaio do Prado Leite. From stakeholder goals to high-variability

software designs. Technical report, University of Toronto, 2005. Available at:

ftp://ftp.cs.toronto.edu/csrg-technical-reports/509/.

[79] Marcos Didonet Del Fabro, Jean Bzivin, and Patrick Valduriez. Weaving

models with the eclipse amw plugin. In Eclipse Modeling Symposium, 2006.

[80] Felix Loesch and Erhard Ploedereder. Optimization of variability in software

product lines. Software Product Line Conference, 2007. SPLC 2007. 11th

International, pages 151–162, 10-14 Sept. 2007.

[81] Eclipse Foundation. ATL Model Transformation Language website.

http://www.eclipse.org/m2m/atl/.

[82] D. Marples and P. Kriens. The open services gateway initiative: an introduc-

tory overview. Communications Magazine, IEEE, (12):110–114, Dec 2001.

[83] Carlos Cetina, Estefana Serral, Javier Munoz, and Vicente Pelechano. Tool

support for model driven development of pervasive systems. mompes, 0:33–44,

2007.

[84] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. Fama

framework. In Software Product Line Conference, 2008. SPLC 2008. 12th

International.

[85] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated

error analysis for the agilization of feature modeling. Journal of Systems and

Software, 81(6):883–896, 2008.

[86] Choonhwa Lee, D. Nordstedt, and S. Helal. Enabling smart spaces with osgi.

Pervasive Computing, IEEE, 2(3):89–94, July-Sept. 2003.

September 15, 2008

Bibliography 91

[87] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael

Stal, Peter Sommerlad, and Michael Stal. Pattern-Oriented Software Archi-

tecture, Volume 1: A System of Patterns. John Wiley & Sons, August 1996.

[88] Hassan Gomaa. Designing software product lines with uml 2.0: From use cases

to pattern-based software architectures. splc, 0:218, 2006.

[89] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,

Second Edition. Addison-Wesley Professional, April 2003.

[90] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Addison-Wesley Pro-

fessional, 1995.

[91] Hassan Gomaa. Architecture-centric evolution in software product lines. In

In ECOOP-ACE 05, 2005.

[92] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases

to Pattern-Based Software Architectures. Addison Wesley Longman Publishing

Co., Inc., Redwood City, CA, USA, 2005.

[93] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Applica-

tions with Uml. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2000.

[94] D. L. Parnas. Designing software for ease of extension and contraction. IEEE

Trans. Softw. Eng., 5(2):128–138, 1979.

[95] Hassan Gomaa and Mohamed Hussein. Software reconfiguration patterns for

dynamic evolution of software architectures. volume 0, page 79, Los Alamitos,

CA, USA, 2004. IEEE Computer Society.

[96] Hassan Gomaa. A software modeling odyssey: Designing evolutionary

architecture-centric real-time systems and product lines. In MoDELS, pages

1–15, 2006.

September 15, 2008

Bibliography 92

[97] Nelly Bencomo, Gordon Blair, and Robert France. Model-driven software

adaptation report on the workshop m-adapt at ecoop 2007. Object-Oriented

Technology. ECOOP 2007 Workshop Reader, pages 132–141, 2008. Springer,

LNCS.

[98] J. Kramer and J. Magee. The evolving philosophers problem: dynamic change

management. Software Engineering, IEEE Transactions on Software Engi-

neering, pages 1293–1306, 1990.

[99] J. Kramer and J. Magee. Analysing dynamic change in software architectures:

a case study. Configurable Distributed Systems, 1998. Proceedings. Fourth

International Conference on Configurable Distributed Architecture, pages 91–

100, 1998.

[100] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts. FAMA: Tooling a

framework for the automated analysis of feature models. In Proceeding of the

First International Workshop on Variability Modelling of Software-intensive

Systems, 2007.

[101] Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter kesson, Bori-

ana Koleva, Tom Rodden, and Pr Hansson. Playing with the bits” user-

configuration of ubiquitous domestic environments. Ubicomp 2003, pages 256–

263, 2003.

[102] Hague, R., et al. Towards pervasive end-user programming. UbiComp 2003,

pages 169–170, 2003.

[103] Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. Camp: A mag-

netic poetry interface for end-user programming of capture applications for

the home. UbiComp 2004, pages 143–160, 2004.

[104] T. Dean Hendrix, II James H. Cross, Saeed Maghsoodloo, and Matthew L.

McKinney. Do visualizations improve program comprehensibility? experi-

ments with control structure diagrams for java. SIGCSE Bull., 32(1):382–386,

2000.

September 15, 2008

Bibliography 93

[105] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.

Computer, 39(2):25–31, 2006.

[106] J. Hess W. Novak K. Kang, S. Cohen and S. Peterson. Featureoriented domain

analysis (foda) feasibility study. technical report cmu/sei-90-tr-21. Technical

report, Software Engineering Institute, Carnegie Mellon University, November

1990.

[107] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating feature modeling

with the rseb. In ICSR ’98: Proceedings of the 5th International Conference

on Software Reuse, page 76, Washington, DC, USA, 1998. IEEE Computer

Society.

[108] Detlef Streitferdt Matthias Riebisch and Ilian Pashov. Modeling variability

for object-oriented product lines. In ECOOP 2003Workshop Reader, volume

3013 of Lecture Notes in Computer Sciences. SpringerVerlag, 2004.

[109] Simon Helsen Krzysztof Czarnecki and Ulrich Eisenecker. Formalizing

cardinality-based feature models and their specialization. In Software Pro-

cess: Improvement and Practice, 10(1):729, 2005.

[110] Michal Antkiewicz and Krzysztof Czarnecki. Featureplugin: feature modeling

plug-in for eclipse. In eclipse ’04: Proceedings of the 2004 OOPSLA work-

shop on eclipse technology eXchange, pages 67–72, New York, NY, USA, 2004.

ACM.

[111] Robert Spence. Information visualization. Addison-Wesley., Harlow, England,

2000.

[112] B. A. Myers. Visual programming, programming by example, and program

visualization: a taxonomy. SIGCHI Bull., 17(4):59–66, 1986.

[113] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. Principled taxonomy of

software visualization. Journal of Visual Languages and Computing, 4(3):211–

266, June 1993.

September 15, 2008

Bibliography 94

[114] Pure Systems. Pure::Variant website. http://www.pure-systems.com/.

[115] Big Lever. Gears. http://www.biglever.com/solution/solution.html.

[116] Michalis Demetriou and Roberto E. Lopez-Herrejon. Feature designer - a

feature modeling tool for .net. In 1st International Workshop onVisualisation

in Software Product Line Engineering, 2007.

September 15, 2008

Appendix A

MOSKitt Feature Modeler

A good notation can make models more comprehensible [104]. In order to handle

models effectively, tool support should be provided. Tools should support an ad-

equate notation providing facilities for the representation, creation and edition of

models. In addition, editors should provide mechanisms to manage the complexity

when models start to grow. This becomes a must when modeling complex systems.

In the present work, we are particularly interested in Feature Models. Different

notations and tools exist for this kind of models. However, tool support for the

edition of Feature Models has some limitations referring to complexity handling.

When models become populated with many features, the readability of models is

affected. This hinders the use of such tools for modeling large-scale systems. In

addition, these tools usually lack customization support, so the user preferences are

not considered.

We propose some visualization techniques to make editors scale as the model

grows, considering also user customization. We have analyzed the particular visual-

ization needs demanded by Feature Modeling to detect some points of improvement.

Finally we have developed Moskitt Feature Modeler (MFM), a graphical editor that

addresses the detected limitations offering editing capabilities suitable for the fea-

ture modeling of large systems. In addition, the developed tool has been integrated

in a tool set for the support of software development process.

The remainder of the appendix is structured as follows. In Section A.1 partic-

ular requirements to support complexity handling in feature Models are detected.

95

A.1. Requirements for Feature Visualization 96

Section A.2 introduces MFM where we have applied visualization techniques to han-

dle complex models. Section A.3 presents the interoperability capabilities of MFM.

Related work is presented in Section A.4. Finally, Section A.5 presents conclusions

and further work.

A.1 Requirements for Feature Visualization

CASE tools in Software Engineering help to program in terms of the design intent

rather than the underlying computing platform. However, as stated in [105], many

CASE tools suffer from the inability to scale to handle complex, production-scale

systems in part because their “one-size-fits-all” graphical representations are too

generic and non-customizable.

In the Feature Modeling area, different notations and tools have emerged for the

definition of such models. These tools are focused on giving basic edition support

to a certain notation but they are not suited to large-scale systems. From analyzing

the current state of the art in feature model editors, we have detected some re-

quirements that can improve the complexity handling when feature models become

highly populated. These requirements are detailed below.

A.1.1 Using layout to reflect the structure

When diagramming, the position of the different elements can provide an insight of

the underlying information structure. Elements presented physically close are also

considered “close” in a semantic sense when observed.

It is important to allow users to organize their diagrams according to their own

criteria. However, most of the Feature Models define a hierarchical structure that

can be represented by a tree. It is interesting to allow not only a vision of each branch

in depth –features and their sub-features– but also consider horizontal comparison –

e.g., to check which elements are at the same depth level– and allow an easy detection

of special nodes –e.g.,root or leaf nodes– to better appreciate the topology.

Current tools represent Feature Models using unfoldable nested nodes –normally

an icon accompanied by a text label– such as the folder view most file system

September 15, 2008

A.1. Requirements for Feature Visualization 97

Figure A.1: Foldable node and diagram based editors.

explorers offer –as depicted at the left hand side of Figure A.1–. Although it is

well suited for many uses, a more diagrammatic view is required –illustrated at the

right hand side of Figure A.1–. There is a need for a view that offers an idea of the

overall information structure at a first sight. In order to do so, a two-dimensional

tree representation is proposed. This representation should be balanced and respect

a clear visualization for the elements that are situated at the same depth.

Facilities for the identification of special nodes should be also provided. This

should be done with modifications that do not invalidate the notation constraints

–e.g., changing background color for figures but respecting their shape–.

A.1.2 Nesting capabilities

One of the most common techniques in programming to handle complexity is pack-

aging. Some modeling techniques adopted similar solutions to handle complexity at

modeling level. For example, graphical notations such as UML Class Diagram sup-

port a package concept. In this way, a system where sub-systems are detected can

be described in a modular way. This improves the understandability of the system

since it can be seen at different levels of detail –from an overview of the system to

a detailed view of each part–.

In Feature Models, some features can be considered sub-features –as we stated

before, these kind of models usually are structured as a tree–, thus mechanisms

should be offered to allow nesting capabilities for features.

Hiding the children of some features can be useful to reduce detail when diagram-

ming. However, some feedback should be provided to (1) indicate that a feature is

September 15, 2008

A.1. Requirements for Feature Visualization 98

collapsed, and (2) give an intuitive idea of the number of hidden elements.

Feature Editors, since they are commonly based on foldable nodes, provide a

homogeneous support for nesting –all nodes can be nested– but they do not offer

feedback about the number of hidden nodes. However, for the construction of a

diagrammatic editor to define feature models, this requirement should be faced.

A.1.3 Support for multiple notations

In the Feature Modeling community, several graphical notations have been proposed.

Although these notations can be considered equivalent to some extent, depending

on the desired detail level, some notations can be preferred to others.

Different notations provide different representations for features and their rela-

tionships. Each notation provides a different amount of information. Some notations

represent cardinalities in relationships by means of graphical elements, some nota-

tions use text labels indicating cardinality boundaries using numbers, and other

notations do not represent cardinalities at all.

By choosing an adequate notation, the amount of information displayed in a

diagram can be managed. A notation with much detail can provide very useful

information but it can also lead to cluttered diagrams that difficult the overall

model understandability.

In order to manage how much information is exposed in diagrams in order to

handle complexity, a tool for the definition of feature models should support different

notations. In this way, the tool can offer the detail a specific user or project needs.

A.1.4 Customization

The role the user plays in the above requirements should be empowered. The user

should be in control of the applied layout, how features are nested and which notation

is in use.

Mechanisms for changing these aspects –and undoing changes– should be pro-

vided. The user should be able not only to change these parameters, but also to

select the affected parts of the diagram. Facilities should be provided for both, gen-

September 15, 2008

A.2. Moskitt Feature Modeler 99

eral and particular customization. On the one hand, changes should be applicable

simultaneously to all element easily. On the other hand, fine-grained customization

should be allowed.

Current tools offer a limited support for customization. Generally, the layout

is predefined, all nodes are nestable and only one particular notation is supported.

This prevents their use for large projects where different participants with particular

preferences are involved.

A.1.5 User guidance

Some of the previous requirements –such as changes in the layout or the notation–

involve a transition from an existent representation of the model to a new one. In

order to avoid users from “being lost” in this transition, guidance mechanisms should

be provided.

When a visualization changes, finding an element in the new representation, can

suppose an effort for the user. This effort can be alleviated by (1) offering feedback

to the user about the performed operations and (2) performing the operations in a

gradual way.

Tool support should provide guidance support for the user. On the one hand,

feedback about user actions should be provided in an unobtrusive way avoiding

distraction. On the other hand, by making changes gradual, the user can be guided

seamlessly from one representation to the new one.

In graphical terms, feedback can be provide by color changes, and animation

techniques can be used for making operations –such as applying a layout– gradual.

A.2 Moskitt Feature Modeler

Models are valuable documentation assets since they capture relevant information of

a system. However, they can play a more relevant role in the development process of

a system. MDE proposes the use of models as central assets for system development.

Provided that models are defined using precise semantics, they can become

machine-processable. This enables the automatic manipulation of models to ob-

September 15, 2008

A.2. Moskitt Feature Modeler 100

tain new assets –other models, software systems, documents, etc.–. In order to

provide an effective MDE development process, good tool support is required to

handle models.

Feature Modeling has an important role in the software industry. Although

an isolated modeling tool for feature models can be interesting by its own, the

integration with a MDE method and tools for software development provides new

value. We have integrated the presented feature model editor in Moskitt.

Moskitt1 is an open source modular modeling set of tools to support the de-

velopment process defined by the Infrastructures and Transport Ministry of the

Generalitat Valenciana in Spain. The tool is based on Eclipse and provides sup-

port for model management –graphical edition, persistence, cooperative work, etc.–.

It also allows to establish relationships between models –generation of models and

production of traces, dependencies, consistency checks, etc.– and the production of

new assets taking the models as input.

Moskitt supports different kind of models. UML models are supported. These

diagrams are based on the full UML 2.0 metamodel defined by the OMG. In addition

to UML, other models are supported to cover particular needs. Moskitt provides

support for the modeling of relational database schemata –that can be derived from

UML models–. It also provides a Requirements Editor for the generation and main-

tenance of a requirements catalog and support for traceability between requirements

and the rest of models. User Interface and Business Process modeling is also sup-

ported by the tool.

Moskit Feature Modeler (MFM) is the open source feature model editor of

Moskitt. MFM shares several technologies with Moskitt editors and takes advan-

tage of some infrastructure components defined by Moskitt –such as a manager for

model-to-model transformations–. Thanks to the support for defining relationships

among models, Feature models can be used in conjunction with the existing editors

–without modification– to enable their use for Product Line Engineering.

As a result, MFM has been integrated in the Moskitt tool set, providing edition

1http://www.moskitt.org/

September 15, 2008

A.2. Moskitt Feature Modeler 101

Figure A.2: Supported notations in MFM.

capabilities for Feature Models that can be used along the software developent pro-

cess. Therefore, a new opportunity to the MDE community for the development of

new tools and extensions to operate on those models is provided.

Due to Moskitt and MFM are applied in real industrial scenarios, visualization

capabilities takes special importance to handle large feature models. The following

Sections introduces the visualization techniques we have incorporated to MFM to

handle model complexity.

A.2.1 Customizing the Notation Style

In 1990, Kang et al. [106] proposed feature models for the first time. However,

despite years of research, there is no consensus on the modeling artifacts allowed

in feature models and many extensions have been proposed since then. First, the

original feature model notation called FODA [106] was proposed. Later, Feature-

RSEB [107] was presented as a FODA extension with an additional relationship.

Finally, Riebisch et al. [108] and Czarnecki et al. [109]. proposed cardinalitybased

feature models where cardinalities were introduced.

Despite the lack of consensus on feature models, Pierre-Yves et al. have pro-

posed a generic formalization of the syntaxis and semantics of feature model [77].

According with the results of their work, we have incorporate to MFM support

to multiple graphical notations. The MFM tool supports both cardinality and

September 15, 2008

A.2. Moskitt Feature Modeler 102

relationship-decorations notations and also, MFM introduces a simplified notation

for visualization purposes. Users can dynamically change the graphic notation of

feature models.

MFM supports customizing the notation at any time between the following fea-

ture representations (see top of Figure A.2).

1. Feature with Attributes. Features are graphically represented by means of

rectangles. These rectangles are composed of two compartments. The top com-

partment holds the feature name and the bottom compartment holds the fea-

tures attributes. These features attributes follows the pattern: <name>:<type>=<value>.

2. Rounded Feature. Features are graphically represented by means of ellipses.

The feature name is at the ellipse center, whereas feature attributes are not

shown.

3. Fixed Feature. Features are represented as Rounded features which diameter

depends of the feature name length.

4. Simplified Feature. Features are graphically represented by means of el-

lipses. Neither the feature name is visible, nor the feature attributes. The

ellipse diameter is set to a constant.

MFM also supports customizing relationship notation as follows:

1. Cardinality-Graphic Relationship. Relationships are represented by means

of decorated lines and a flotating label. The line decoration indicates the type

of relationship. Optional relationships are decorated with a white ellipse and

mandatory relationships are decorated with a black ellipse. The label follows

the pattern [min, max] to indicate the minimum and maximin cardinality of

the relationship. Both label and decoration are synchronized between them.

2. Graphic Relationship. Relationships are represented by means of decorated

lines.

3. Cardinality Relationship. Relationships are represented by means of lines

and a flotating label.

September 15, 2008

A.2. Moskitt Feature Modeler 103

4. Simplified Relationship. Relationships are represented only by means of

lines.

Customizing in the Large vs Customizing in the Small

MFM enables users to dynamically switch the graphic representation of features and

relationships. At any time, users can select the features and relationships notation

style and MFM changes the elements representation. Generally, users set the no-

tation style according to their preferences and then they apply the style to all the

model elements. This is what we call customizing in the large. However, users

may prefer different representations in particular cases. For example, when feature

notation is set to Rounded Feature the attributes are not visible and the user may

change the notation of a concrete feature to Feature with Attributes with the aim of

editing feature attributes. To support this user behavior, we complement Customiz-

ing in the Large wit Customizing in the Small. Customizing in the small enables

users to change the notation style of individual elements. The combination of both

approach enables users to globally set the the notation style and them configure

individual elements at any time.

Configuring the detail level of models

Feature models provides domain information of model elements and they also provide

holistic information from the elements structure. Some of the notation styles pro-

vide domain information (such as Feature with Attributes and Cardinality-Graphic

Relationships), whereas other notations focus on structure information (such as

Simplified Features and Simplified Relationships).

To help users selecting the notation style best suited to each type of informa-

tion, we have incorporated to MFM a model detail tab which provides an horizontal

slide (see bottom of Figure A.2) This slide defines four predefined states with com-

binations of notations styles. The most-left state highlights domain information,

while the most-right state highlights structure information. The states combine the

notations styles as follows:

1. Feature with Attributes and Cardinality-Graphic Relationship. Feature names,

September 15, 2008

A.2. Moskitt Feature Modeler 104

attributes and cardinalities have a graphic representation. This combination

generates detailed views where the domain information can be edited graphi-

cally. However model complexity can hide model structure.

2. Rounded Feature and Graphic Relationship. This combination hides features

attributes and relationships cardinalities.

3. Fixed Feature and Cardinality Relationship. This representation set the fea-

ture shapes dimension according to the feature name length. When features

with short names are resized, they may be confused with relationships dec-

orations. To avoid this confusion, relationships decorations are replaced by

cardinality based representations.

4. Simplified Feature and Simplified Relationship. This combination hides all the

domain information, highlighting the structure information.

The model detail slide provides users with a quickly and intuitive mechanism to

change the whole model representation. Moving the slide form left to right the user

decrease the model detail, highlighting the model structure. On the other hand,

moving the slide form right to left, the user increases the model detail.

A.2.2 Visualizing Model Structure

Previous Section presented the MFM capabilities to dynamically change the no-

tation style. MFM incorporates predefined combinations of notation styles which

helps users to focus on model structure. However, when model complexity increases

to industrial size problems, dealing with model structure requires advanced visual-

ization techniques. This section presents two visualization techniques incorporated

on MFM to highlight model structure on complex feature models.

Users structure elements on models using their own criteria (top of Figure A.3),

but this approach is limited as it neither guarantees any (1) semantic distribution,

nor follows any (2) standard layout. Semantic distribution (1) uses model elements

distribution in order to provide semantic information instead of only improve model

legibility. For example, features can be distributed on rows with the semantic that

September 15, 2008

A.2. Moskitt Feature Modeler 105

Figure A.3: Colored Features and Semantic 2D Tree Techniques

a in the nth row all its features have (n-1) parent features. A standard layout (2)

promotes several users working with the same model. As long as all users share

a standard layout, they will have facilities to find model elements. For example,

always drawing the root feature on top of all the other features.

However, from the point of view of users, their own structure criteria can be as

important as other semantic or a standard criteria. Therefore, We have introduced

in Moskit Feature Modeler visual techniques to provide users with semantic and

standards distributions. Furthermore, these techniques are applied without loosing

the user structure criteria.

The structure visualization technique creates dynamic views over models to iden-

tify key elements and the inherent model structure. We consider a feature model as

a 2D tree where features are nodes, and relationships (optional, mandatory, or and

alternative) are directed connection between nodes. The root feature of this tree

does not have any incoming connection with other features. The leaf features do

not have any outcoming connection to other features. Finally, each level of the tree

includes features that have the same number of parent features.

September 15, 2008

A.2. Moskitt Feature Modeler 106

To highlight the key elements and structure of the features tree, we have incor-

porated to Moskitt Feature Modeler the following visualization techniques:

• Colored Features. The border color of a feature depends on the role that the

feature plays in the tree (see bottom left of Figure A.3). The root feature has a

red border, while leaf features have a green border. This technique helps users

to identify the root and leafs of a tree meanwhile the user structure criteria is

not affected. However, this technique does not structure features according to

tree levels.

• Semantic 2D Tree. Model elements are graphically redistributed to conform

a tree structure (see bottom right of Figure A.3). A layout algorithm takes

as input a feature model and generates a graphic tree according to the role

that each feature plays in the model. The root feature is always positioned at

the top, while leaf features are positioned at the bottom. Finally, the rest of

features are positioned on aligned rows according to their number of parent

features.

When the layout algorithm is applied, the position of features and relationships

may change at whole. For example, applying this algorithm to the top model of

Figure A.3 generates the bottom right model of the same Figure. Comparing

source the model with the generated model, almost none of the model elements

preserve its position. If this algorithm is applied in an atomic step, the user

may loose the connection between source model elements and generated model

elements. To empower user guidance, the layout algorithm provides a graphical

animation which shows how the model elements are graphically reallocated.

This animation helps users to trace the new position of model elements.

The application of these visualization techniques do not exclude the user criteria

to organize feature models. Colored features can be applied simultaneously with

the user criteria. In the case of Semantic 2D Tree, MFM supports applying this

technique to observe the resulting structure and then undo the changes and go back

to the user model organization.

September 15, 2008

A.2. Moskitt Feature Modeler 107

A.2.3 Feature Explosion with Visual Guidance

Previous Sections describe the capabilities of MFM to work with model structure.

SectionA.2.1 argues the use of detail levels to focus on domain information or struc-

ture information. Then, SectionA.2.2 present visualization techniques to highlight

model structure on complex feature models. In this Section, we introduce Feature

Explosion, a visual technique to structure feature models in submodel, providing

users with another mechanism to handle model complexity.

Figure A.4 compares Feature Explosion with the classic feature modeling ap-

proach. Top of Figure introduces the OpenOffice.org (OOo) example that we use

to compare both approaches. OOo is an open-source office software suite for word

processing, spreadsheets, presentations, graphics, databases and more. According to

the OOo installation wizard, we notice that OOo is structured on Program Modules

(such as Word, Calc, Draw...) and Optional Components common to all Program

Modules (such as spell checker languages). Furthermore, each one of the program

modules features its specific optional components. For example, the Calc Module

have specific components such as Euro Tool, Solver or Formula Analyzer.

Following the classic feature modeling approach, the whole OOo example is rep-

resented using a single feature model. Program Modules and Optional Components

are modeled as children of the OpenOffice.org root feature (see the middle of Figure

A.4). Specific components are also represented in the same model as children of

their Program Module For example, the specific components of the Draw and Calc

Program Modules are remarked with a grey area on Figure A.4. However, gartering

all this information in a stand alone model affects model compressibility and manip-

ulation. The more complex models are, the more important become visualization

techniques.

To handle model complexity, we introduce the Feature Explosion technique com-

plemented with visual feedback. The goal of Feature Explosion is structure models

by means of submodels. Every Feature can be exploited on a submodel with its

children features. For instance, in the OOo example we identify Program modules

(such as Word, Calc or Draw) as good candidates to be exploited on submodels.

As a consequence of using Feature Explosion technique, several submodels can

September 15, 2008

A.2. Moskitt Feature Modeler 108

Figure A.4: Feature Explosion Technique

September 15, 2008

A.2. Moskitt Feature Modeler 109

be open at the same time. To enhance model-submodel connection, we apply visu-

alization techniques at both models and submodels:

• Submodel Connection. Each submodel is automatically created with a

clone of the exploited featured which generated the submodel. This clone

acts as the root of the submodel and all other submodel features are proxy’s

children. The clone is created with visualization purposes only, it is a logic

element which has not persistence. For example, Feature Draw is exploited on

Submodel C, which has a Draw clone playing the role of submodel root. All

Draw subfeatures are modeled as clone children in the Submodel C.

• Model Connection. This technique complements exploited features with

summarized information about its children. This information is related with

feature submodel population and it is expressed by means of changes in feature

visual representation.

– Feature with submodel. The graphic representation differentiates ex-

ploited features of non-exploited features. Non-exploited features are

represented using a solid border shape, whereas exploited features are

represented using a discontinued border shape. The aim of this differen-

tiation is help users to notice which features are associated to submodels

and which are not. For example, at bottom of the Figure A.4 the features

Calc and Draw of model A are represented using a discontinued border

shape.

– Submodel cardinality. Exploited features differentiate of non exploited

by means of the graphic representantion. Furthermore, the graphic rep-

resentation reflects the submodel cardinality of exploited features. The

shape fill color changes its intensity according to the submodel popula-

tion. Initially, exploited features are render using a light blue color. The

more more elements have the feature submodel, the more dark becomes

the fill color. For example, at bottom of the Figure A.4 the features of

model A are rendered with different color intensities. The Calc feature

(which have three submodel elements) is filled with a lighter color than

September 15, 2008

A.3. MFM-FMP Interoperability 110

Figure A.5: MFM-FMP Model Comparison

Draw feature (which have seven submodel elements).

Feature Explosion can be simultaneously applied with the visualization techniques

presented in previous sections. All these techniques and their possible combinations

enable users to have a better understanding for feature models, specially of complex

models.

A.3 MFM-FMP Interoperability

The Feature Modeling Plug-in [110] (FMP) is an Eclipse plug-in for editing and

configuring feature models. FMP can be used standalone, in Eclipse, or in Rational

Software Modeler or Rational Software Architect. Since September 2006, FMP is

open source under Eclipse license, however the project has been completed and the

tool is no longer maintained.

MFM can export feature models that are compatible with FMP. The Moskitt

trnasformation engine incorporates a Model to Model (M2M) transformation which

takes as input MFM models and generates FMP models. The resulting FMP models

are compliant with FMP metamodel and they can be edited using FMP plugin.

The M2M rules have been implemented using the INRIA ATL [81] transformation

language and tools. These rules are also available as an ATL standalone file and the

September 15, 2008

A.4. Related work 111

rules file can be downloaded from the MFM web site.

Figure A.5 shows the non-graphical representation of a feature model using MFM

(left side of Figure). Taking this model as input, the M2M transformation generates

a FMP compliant model. The generated model can be edited using the FMP plugin

(right side of Figure).

This M2M bridge enables users to maintain their current implementations build

on top of FMP metamodel, meanwhile they take advantage of the visualization

techniques incorporated in MFM to manipulate feature models.

A.4 Related work

Graphical modeling tools represent and manipulate models. If we consider models

as data, Information Visualization techniques [111] can be applied to improve the

comprehension of these models. Since models represent systems, and modeling tools

can be used for forward and reverse engineering, the different proposals in the areas

of Visual Programming and Software Visualization should be considered [112].

Many of the aspects that characterize Software Visualization techniques [113]

have been exploited. Formal aspects such as color, animation and multiple views

are used in the tool. Color is used to emphasize –e.g., to indicate the number of

nested elements contained in a feature–, animation is used as a means for guiding

the user –e.g., when layout changes–, and multiple views of models are offered –e.g.,

the foldable-node editor complements the diagrammatic one–. According to Price

criteria, the visualization provided by the tool can be classified as customizable,

since many aspects can be changed by users to adapt the tool to their needs. Support

for interaction aspects such as navigation –e.g, moving from/to nested features in

our editor– and elision –hiding content, as it happens when switching from different

notations–, is also provided.

Improving interaction was one of the main goals of the present work. More

visualization aspects related to interaction than the ones considered by Price are

considered in the present work. For example, Spence in [111] stresses the relevance

of rearrangement of data an aspect specially considered for the layout of our

September 15, 2008

A.4. Related work 112

editor.

Despite the popularity of feature model and the existence of tools to manage

these model, tools have partially deal with the problem of handling complexity in

feature models.

FMP [110] is an open source Eclipse plug-in which supports feature modeling

and configuration. To represent feature models, FMP uses a hierarchical tree where

each feature is represented by an icon followed of a text (see right side of Figure

A.5). However, FMP does no support other organization criteria and it does not

provide specific visualization techniques to handle complexity of feature models.

Pure::Variant [114] (P::V) is a commercial Eclipse plug-in which extends the

Eclipse IDE to support the development and deployment of software product lines.

To represent feature models, P::V uses a tree-view rendering similar to the one

utilized on FMP (see left side of Figure A.1). Like FMP, P::V does not incorporate

visualization techniques to handle model complexity.

Although not directly based on feature modeling, GEARS [115] is another com-

mercial tool for modeling and configuring software variants. GEARS models vari-

ability as sets of parameters, where different parameter types stand for different

kinds of variability. Although the parameters are not arranged into hierarchies as

in feature diagrams, they can be organized into separate modules related by import

statements.

Feature Designer [116] is a Visual Studio Integration Package, whose primary

goal is to support FODA-consistent feature modeling for the .NET platform. Feature

Designer supports cardinalities, specifying concrete configurations, feature compo-

sition and code generation. Feature Designer is implemented as a Domain-Specific

Language in Visual Studio DSL Tools. As represented in the right side of Figure

A.1, Feature designer incorporates a graphical 2D tree editor. However, the editor

does not support customizing the notation style dynamically as MFM does. More-

over, Feature Designer does not incorporate techniques to deal with the graphic

representation of complex models.

September 15, 2008

A.5. Conclusions and Future Work 113

A.5 Conclusions and Future Work

In this appendix, we have proposed some visualization techniques to make feature

editors scale as the model grows, considering also user customization. We have an-

alyzed the particular visualization needs demanded by Feature Modeling to detect

some points of improvement. Finally we have developed the MFM editor that ad-

dresses the detected limitations offering editing capabilities suitable for the feature

modeling of large systems. In addition, MFM has been integrated in the Moskitt

tool set for the support of software development process.

In our future work, we are particularly interested in feature constraints. We plan

to work on visualization techniques to graphically express contrails persevering the

readability, specially on complex feature models.

At http://www.pros.upv.es/labs/projects/mfm the source and binary distribu-

tion of Moskitt Feature Modeler are available. Furthermore, some screencasts and

the MFM-FMP transformation are also available.

September 15, 2008

