
A Broker based Web Service Allocation Mechanism

21

Chapter 1

Introduction

Replication is a mechanism often used to improve response

time in many fields such as: Operating Systems (OS), File

Systems, and Database Management Systems (DBMS).

Replication could be done for data like it is used mainly in

Database Management Systems and also for functionality like it is

used in distributed operating systems. Many Software

manufacturers provide the ability to replicate Web Services [8].

Regardless how it is used, the main goal of replication is to

achieve better response time.

Even though replication could improve the response time of

a given system, it would be rendered useless if it is not combined

with an allocation algorithm to assign functionality or data to

replicas. However, using replicas in system introduces an extra

overhead for maintenance and data consistency. That is why it is

important to combine the replication with an efficient allocation

mechanism [8,7,6]. Otherwise, introducing replicas in systems

would render the benefit from replication useless when compared

to the gained improvement in the response time.

22

Web Services are becoming a research and industry de-facto

for providing functionality in a distributed manner that is usable

by heterogeneous environments. Simply put, Web Services are

packaged functionality that relies on a set of standards that

facilitate the definition of the methods of the Web Services, its

number of inputs and formats, and its output numbers and formats.

I provide more information about Web Services and its standards

in chapter 2. Like any other fields mentioned above, Web Services

utilize the concept of replication to achieve better response time

and quality of service (QoS). Many big organizations, like Google

and Microsoft, provide replications of their published Web

Services.

It is practical to use Web services as building blocks for an

Internet Database Management System (IDBMS). As legacy

DBMS execute queries against local databases using a set of DB

operators, using IDBMS, we could execute queries against

distributed databases (exposed as Web services) using a set of

Web services that compose DB operators’ functionality. Using this

paradigm, clients issue queries formulated in XML as “Plans”,

which is similar to a normal SQL query. The execution of those

queries will be facilitated using Web services that could be either

A) autonomous Web services which access a Database, or B)

Special operators implemented as Web services which implement

the SQL operators (i.e. SELECT, JOIN,..etc).

A Broker based Web Service Allocation Mechanism

23

1.1 Research Questions

The utilization of replication provide many performance

improvements, however, there are many questions that must be

answered in regards to how to improve the replicas. I present these

questions briefly below, but I will discuss them in more details in

chapter 6

1.1.1 What Replica Allocation algorithm to use?

 This is the most asked question which could make or break

the replication. Given a set of replicas for a certain Web Service

and a set of request with a specific arrival rate, how do you

dispatch requests to replicas resulting in the optimum situation

(which is best response time)? This question is easier said than

answered, since failure to properly address this question could

result in two undesired scenarios:

a) Hotspots formulation: which is the case that results from

allocating requests to a set of Web Service replicas

making them overloaded and hence degrading their

response time, and results in queue formation.

b) Idle replicas: where replicas of Web Services are not

allocated to any, or few request which makes them idle or

underutilized most of the time while other replicas are

overloaded with requests.

24

This question is considered to be the focus of this thesis. It is

not a trivial question since replication is done in different instances

with different hardware and network configurations.

In this thesis, I will present the Least Response Time (LRT)

protocol and show how it is used in a Web Services execution

framework and provide experimental results showing that it is

superior to other allocation algorithms.

1.1.2 Number of replicas?

Nowadays, the cost of processing power (CPUs) and storage

is considered to be cheap, which encourages replication, but at a

certain point, introducing more replicas provide no improvement

in the response time. In some cases, the improvement of the

response time by the introduction of more replicas is not justified

when compared to the added overhead of maintaining replicas and

data consistency. A threshold must be defined to create a balance

that achieves the maximum improvement for the response time

with the minimum, possible, overhead to maintain replicas.

1.1.3 What to replicate ?

Functionality included in Web Services usually requires

access to a database of some kind to provide the desired results

(e.g. Google’s spell checking Web Service). If the functionality

alone is replicated (i.e. just the code) without replicating the

database, this could render the replication useless since that

A Broker based Web Service Allocation Mechanism

25

database management system becomes a bottleneck for all

replicas. However, this is not true in all cases, where the Web

Services are autonomous and provide computations that require

no, or little, access to databases. So, decision makers must decide

whether to replicate the code, databases, or both.

Another related question is whether to replicate the code

with the database together or to replicate each separately. Some

may decide to rely on the database replication algorithms and

strategies already implemented on third party Database

Management Systems (e.g. Microsoft’s MS Sql Server, and Orcale

10g)

1.2 Research Methodology

The methodology of this thesis is done by doing a survey on

the available research material related to the thesis statement

below. I formed a hypothesis and investigated many algorithms,

did experimental study to choose the most efficient one. The

discussion provided in the rest of the thesis provides both

analytical and experimental discussions that explore many aspects

of the chosen algorithm. The chosen allocation algorithm (Least

Response Time) is then included in an execution paradigm

(Proteus, see chapter 5) which is used to investigate further aspects

of the algorithm. Findings from these experiments are provided as

lesson and explained in the conclusion chapter.

1.3 Thesis statement

26

Based on the questions raised above, I could summarize the

contribution of my thesis in the following statement:

“Given a certain amount of Web Service replicas, and given a

query formulated as an XML plan how execute the query and

direct requests to Web services replicas included in the plan to

achieve a better response time“

1.4 Thesis structure

The structure of thesis is defined as follows: in chapter 2, I provide

the necessary background, which includes all required definitions

of standards and technologies related to the thesis. Chapter 3 will

provide a survey of the related work that relates to the scope of the

thesis. Chapter 4 provides a discussion of allocation algorithms

used in the field of replication along with some implementation

algorithms. In chapter 5, I provide an experimental framework to

evaluate the allocation algorithms. The main focus will be the

Broker element which implements the selected allocation

algorithm. Chapter 6 provides the lessons and finding from the

experimental results obtained in chapter 5. Finally, in chapter 7 I

provide the conclusion and future research areas that could

improve the output of this thesis.

A Broker based Web Service Allocation Mechanism

27

Chapter 2

Background

XML Web services are the fundamental building blocks in

the move to distributed computing on the Internet. Open standards

and the focus on communication and collaboration among people

and applications have created an environment where XML Web

services are becoming the platform for application integration.

Applications are constructed using multiple XML Web services

from various sources that work together regardless of where they

reside geographically, the programming language used to

implement them, or the operating system they run at.

There are as many definitions of XML Web Service, Some

of the definitions are:

“A software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described

in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by

its description using SOAP-messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-

related standards” [20]

28

“A Standardized way of integrating Web-based applications using

the XML, SOAP, WSDL and UDDI open standards over an

Internet protocol backbone. XML is used to tag the data, SOAP is

used to transfer the data, WSDL is used for describing the services

available and UDDI is used for listing what services are available.

Used primarily as a means for businesses to communicate with

each other and with clients” [18]

“Web services are software components that employ one or more

of three technologies -- SOAP, WSDL and UDDI -- to perform

distributed computing. Use of any of the basic technologies

constitutes Web services. Use of all of them is not required” [19]

“A Web Service is a software component that is described via

WSDL and is capable of being accessed via standard network

protocols such as but not limited to SOAP over HTTP” [11]

Regardless of the exact definition, almost all definitions have these

things in common:

 XML Web Services expose useful functionality to Web

users through a standard Web protocol. In most cases, the

protocol used is SOAP.

 XML Web services provide a way to describe their

interfaces in enough detail to allow a user to build a client

application to talk to them. This description is usually

provided in an XML document called a Web Services

Description Language (WSDL) document.

A Broker based Web Service Allocation Mechanism

29

 XML Web services are registered so that potential users can

find them easily. This is done with Universal Discovery

Description and Integration (UDDI).

Diverse applications publish the functionalities of their

databases and computations as Web Services. A Web Service is a

network enabled application component with service-oriented

architecture using standard interface description languages and

communication protocols that facilitate easy development and

deployment of data intensive applications. They use standard

XML representations to describe their inputs, outputs, and

available operations. For example, one may use the Google WS to

invoke operations such as: (1) doGoogleSearch with an input

keyword to retrieve the result of an Internet search, and (2)

doSpellSuggestion with an input word to retrieve the correct

spelling(s). Organizations such as the United States National

Institutes of Health (NIH) have and continue to publish the

functionality of their data as WSs, e.g., NCBI’s WS with

operations such as eSearch.

Web services could be used as building blocks for an

Internet Database Management System (IDBMS). Using IDBMS,

clients could issue queries using what is called XML Plans, which

is similar to a normal SQL query, and the execution of those

queries will be carried using Web Services that could be either A)

autonomous Web Services which access a Database, or B) Special

30

Operators implemented as Web Services which implement the

SQL operators (i.e. SELECT, JOIN, Etc.).

 Web Services rely on different technologies and protocols.

A Web Service may expose many functions (sometimes they are

called methods). These functions along with their inputs and

outputs are described using Web Service Definition Language

(WSDL) [36]. Clients invoke a Web Service’s function by passing

an XML message using Simple Object Access Protocol (SOAP)

[37]. SOAP is a protocol specification for exchanging structured

information between the Web Service and the invoking client. A

client could either learn about the Web Service from its owner or

through a Web Service directory that is usually called Universal

Description, Discovery and Integration (UDDI)[31,32]. Due to

their popularity and standardization, Web services become an

essential part of the Plan Execution paradigms, which in turn

required the introduction of what is called WS-Standards (usually

referred to as WS-*). WS-* is collection of specifications

allowing Web Services to interact with each other and route

information between themselves in a secure and reliable manner.

 In this chapter, I will give a brief overview of the

technologies, protocols, and standards mentioned above.

2.1 WSDL

The Web Services Description Language (WSDL) is an XML-

based language that provides a model for describing Web services.

A Broker based Web Service Allocation Mechanism

31

The WSDL defines services as collections of network endpoints,

or ports. The WSDL specification provides an XML format for

documents for this purpose. The abstract definition of ports and

messages are separated from their concrete use or instance,

allowing the reuse of these definitions. A port is defined by

associating a network address with a reusable binding, and a

collection of ports defines a service. Messages are abstract

descriptions of the data being exchanged, and port types are

abstract collections of supported operations (like the example of

Google’s doGoogleSearch). The concrete protocol and data format

specifications for a particular port type constitutes a reusable

binding, where the operations and messages are then bound to a

concrete network protocol and message format. In other words, we

could say that WSDL describes the public interface to the Web

Service. Listing 1 below shows a sample WSDL

<?xml version="1.0"?>

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote.wsdl"

 xmlns:tns="http://example.com/stockquote.wsdl"

 xmlns:xsd1="http://example.com/stockquote.xsd"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

32

 <schema

targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="TradePriceRequest">

 <complexType>

 <all>

 <element name="tickerSymbol" type="string"/>

 </all>

 </complexType>

 </element>

 <element name="TradePrice">

 <complexType>

 <all>

 <element name="price" type="float"/>

 </all>

 </complexType>

 </element>

 </schema>

 </types>

A Broker based Web Service Allocation Mechanism

33

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

 </message>

 <message name="GetLastTradePriceOutput">

 <part name="body" element="xsd1:TradePrice"/>

 </message>

 <portType name="StockQuotePortType">

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput"/>

 <output message="tns:GetLastTradePriceOutput"/>

 </operation>

 </portType>

 <binding name="StockQuoteSoapBinding"

type="tns:StockQuotePortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation

soapAction="http://example.com/GetLastTradePrice"/>

34

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <documentation>My first service</documentation>

 <port name="StockQuotePort"

binding="tns:StockQuoteSoapBinding">

 <soap:address location="http://example.com/stockquote"/>

 </port>

 </service>

</definitions>

Listing 1 Sample WSDL document

As shown in Listing 1, this Web Service exposes an

operation called GetLastTradePrice which receives an input of

type String and is called GetLastTradeInput and produces an

A Broker based Web Service Allocation Mechanism

35

output of type Float and is called GetLastTradeOutput. As shown

in the listing WSDL is designed to be very flexible in both

defining data structures and operations (functions). Each Web

Service must have a WSDL associated with it; otherwise

applications cannot invoke this Web Service properly. WSDL has

helped in simplifying the use of Web Services in such a way that

new development environments (e.g. Microsoft’s Visual Studio)

just requires the URL of the WSDL file and it will automatically

generate the code to invoke the Web Service for the developer.

2.2 SOAP

 SOAP (Simple Object Access Protocol)[37] is a protocol

used for exchanging messages between Web Services and clients

and/or other Web Services. SOAP is basically a header defined in

XML [17]. A SOAP request is passed to the Web Services when

invoking one of its methods and in that case it provides the name

of the method inside the Web Service along with the names and

values of the input parameters. Results of the execution of the

Web Services are also sent using SOAP Response messages and in

that case they just contain the names and values of the output

parameters. Listing 2 below shows an example SOAP request and

Response.

SOAP messages are standardized by using XML, so they are

transport protocol-independent and Operating System-

independent. However, SOAP messages can be transported in

many ways. The most used transport method is over

36

HTTP/HTTPS protocol which is chosen due to its popularity and

support in many environments and operating systems. The SOAP

message is passed in the body part of the HTTP request.

Listing 2 Sample SOAP response and request

2.3 UDDI

Since that WSDL is required for clients to see the functions

included in the Web Service, a client must have a way of obtaining

the WSDL. This is where UDDI comes in place. Universal

Description, Discovery, and Integration (UDDI) [31,32] is a way

for Web service authors and creators to publish their products for

others to use them.

A Broker based Web Service Allocation Mechanism

37

 UDDI could be deployed either privately within a local

network, or publicly in the Internet for everyone to use. For

example, Microsoft, IBM, and SAP had publicly available UDDI

registries but they were closed on 2006. However, several Web

Services discovery mechanisms [2,16] are used to enable the

discovery and usage of Web Service.

2.4 WS-*

 As the Web Services become more popular, people realized

a need to define ways to allow Web Services to interact with each

other in a more reliable and secure manner. This resulted in the

WS-* standards.

 There are many standards defined by many role-players in

the Web Service industry, but in this thesis, I will focus on the

WS-* standards defined by Microsoft [24,27] and I’ll show how I

utilized them to run the experiments and generate the analytical

results. I will show the list of all WS-* standards in this section,

but I will elaborated only on the ones related to scope of this

thesis. The WS-* standards defined by Microsoft are:

• WS-Addressing

• WS-Enumeration

• WS-Eventing

• WS-Transfer

38

• WS-Security: SOAP Message Security

• WS-Security: UsernameToken Profile

• WS-Security: X.509 Certificate Token Profile

• WS-SecureConversation

• WS-SecurityPolicy

• WS-Trust

• WS-Federation

• WS-Federation Active Requestor Profile

• WS-Federation Passive Requestor Profile

• WS-Security: Kerberos Binding

• WS-ReliableMessaging

• WS-Coordination

• WS-AtomicTransaction

• WS-BusinessActivity

• WS-Policy

• WS-PolicyAssertions

• WS-PolicyAttachment

• WS-Discovery

• WS-MetadataExchange

A Broker based Web Service Allocation Mechanism

39

• WS-MTOMPolicy

• WS-Management

• WS-Management Catalog

• WS-ResourceTransfer

In the implementation of the suggested execution paradigm,

we heavily utilize WS-Addressing[12]. So in the rest of this

chapter I will explain how the WS-Addressing works and I’ll show

how to utilize it in the next chapter.

WS-Addressing (Formerly known as WS-Routing) is a way

to facilitate the communication between two (or more) Web

Services. It works by applying an additional header to the SOAP

message that shows the path of the execution between Web

Services. The term EndPoint is used in the WS-Addressing to

describe a Web Service that is included in the path of the plan

execution. A basic WS-Addressing header should include

<was:to> XML element as well as <wsa:ReplyTo> element. A

more sophisticated header will also include one or more <wsa:via>

XML elements to show intermediate Web Services involved in the

plan execution. Listing 3 below shows an example WS-Addressing

Header

40

Listing 3: Sample WS-Addressing Header

WS-Addressing allows a way to define EndPoints and also

specifying the functions to be executed in the intermediated Web

Services. I will show in the next chapters how to utilize this to

facilitate Web Services execution.

A Broker based Web Service Allocation Mechanism

41

Chapter 3

 Related Research

 In this section I will provide some literature related to the

thesis. I will divide the literature in two parts: a) those which talk

about the issue of parallelism and how to utilize it to achieve better

performance (Most of the literature in this subject is done in the

field of Operating Systems and Database Management Systems),

and b) those which talk about distributed query execution using

Web Services.

3.1 Parallelism and Operating Systems

 When talking about parallelism and resource allocation,

attention is automatically drawn to the field of Operating Systems.

Since the beginning of computers, researchers thrived to get more

processing done with better response time. This was achieved by

parallelism and efficient resource allocation. Of course, back in the

day, computers weren’t as cheap, as powerful, or as fast as they

are today. However, as computers advance in terms of speed and

capacity, peoples’ and applications demands increase by requiring

less and less response time for their required computations.

 Even though the subject of this thesis is not related to the

field of Operating Systems, I couldn’t write it without mentioning

42

two points that explains the difference between the work that has

been done in that field and the focus of this thesis:

 In the field of OS parallelism required is usually done on the

same device (server) or, in the case of Distributed

Operating Systems, within several devices connected using

a very high-speed bus for data transmission [1]. However,

when talking about Web Services and the proposed Internet

DBMS systems, we must think of devices and servers that

are located in different geographical areas with connectivity

that is so inferior to the high-speed buses available in

servers. This introduces a factor that complicates the

techniques used to provide better response time in the field

of IDBMS. Network speed and bandwidth did not advance

in the same magnitude that CPU, RAM, and storage have,

this resulted in Network usually being the bottleneck and

the most dominant factor in any response time equation

[30].

 The nature of Operating Systems, allows the usage of

certain techniques for optimization [28,29], such as

Preemptive scheduling where execution of certain jobs

could be stopped to allow execution of others. However, in

the field of Web Services and IDBMS such techniques

cannot be applied. The intuitive explanation is that the

Operating System environment is self-controlled and

homogenous. However, when dealing with Web Services

provided by different organizations, we cannot make such

A Broker based Web Service Allocation Mechanism

43

an assumption because they are usually autonomous and

each organization only has control over its own published

Web Service.

3.2 Distributed Execution Frameworks using

Web Services

Due to the increase of using Web Services as they provide

an easy, efficient, and standardized way to expose Databases, there

has been several research efforts (including this thesis) to explore

how to utilizes these autonomous Web Services and utilize them

into a unified execution framework. The research efforts vary from

defining a generic programming language for this purpose to

actually implementing such frameworks. Below, I will show some

of these efforts. The order I present them has no relevance to the

importance of the research, nor to its precedence. It is just a

personal choice.

3.2.1 Flow­based Infrastructure for Composing Web

Service (FICAS)

FICAS [38] was developed in Stanford University. It

presents a loosely coupled service-composition paradigm. This

paradigm employs a distributed data flow that differs markedly

from centralized information flow adopted by current service

integration frameworks, such as CORBA, J2EE and SOAP.

Distributed data flows support direct data transmission to avoid

44

many performance bottlenecks of centralized processing. In

addition, active mediation is used in applications employing

multiple Web Services that are not fully compatible in terms of

data formats and contents. Active mediation increases the

applicability of the services, reduces data communication among

the services, and enables the application to control complex

computations. FICAS executes queries by separating the control of

the query from the dataflow. It also insures the completion of the

query execution even if some sources required are not Web

service-complaint, by introducing mediators that could handle

different sources of data. The figure below shows a sample control

flow and data flow in FICAS

A Broker based Web Service Allocation Mechanism

45

Figure 1: Sample control flow and Data Flow in FICAS

 While FICAS defines the framework for the distributed

execution, it does not address the issue of response time and how

to allocate replicate if they exist.

3.2.2 XL: Platform for Web Services

XL [13] is a programming model that is designed with Web

services in mind. It provides programmers with a intuitive model

to deal with Web Services in a manner similar to traditional

programming languages.

The XL platform consists of two main components a) the

XML compiler, and b) the XL virtual machine. The compiler

converts the program into a statement graph that is actually a

presentation of Web Services and their interaction. This

representation is optimized and submitted to the XL virtual

machine. Without going into the details of the XL platform, The

virtual machine is responsible of invoking the Web Services and

collecting the results as the output of the program. Figure 2 below

shows the architecture of the XL platform that explains the

interaction between its components.

As the authors of the XL platform state “We would like to

high-light three important features of the XL virtual machine.

First, in order to execute statements in parallel, the virtual machine

is multithreaded. Second, the virtual machine is designed to be

46

able to stream the intermediate data between statements;

pipelining is a very important feature of our design. Third, in order

to achieve scalability and high reliability, the XL virtual machine

has been designed to support the migration of processes from one

machine to another machine in a cluster (we expect that the

platform will be installed on a cluster of servers)”. This statement

explains the level of parallelism that XL provides. However, it

does not explain how is it achieved and it does not explain the

allocation process of Web Services replicas if they are introduced

in the system.

3.2.3 Business Process Execution Language for Web

Services (BPEL4WS)

 Business Process Execution Language for Web Services

(BPEL4WS)[22] is an OASIS [11] standard that provides a means

to formally specify business processes and interaction protocols.

BPEL4WS provides a language for the formal specification

of business processes and business interaction protocols. By doing

so, it extends the Web Services interaction model and enables it to

support business transactions. BPEL4WS defines an interoperable

integration model that should facilitate the expansion of automated

process integration in both the intra-corporate and the business-to-

business spaces. Figure 3 below shows a how a Web Service is

implemented in BPEL4WS.

A Broker based Web Service Allocation Mechanism

47

Figure 2: The Architecture of the XL platform

While BPEL4WS describes services composition and

enables composition of replicated Web Services, it does not

incorporate an algorithm to allocate Web Services on the fly.

48

Note: Some efforts like [6] are done. They refer to parts of

the research leading to this thesis done by myself[7].

Figure 3: Web Service implemented as BPEL4WS Process

3.2.4 Web Services Flow Language (WSFL)

 Web Services Flow Language (WSFL) [14] is an XML

Language that enables composition of Web Services. It

incorporates two models, namely, Flow Model and Global Model.

The former describes the overall composition of Web Services into

the execution by specifying the sequence of Web Services along

with the data flow between them. The later, however, describes

how the composed Web Services would interact with each other,

by specifying a set of links with endpoints. Each link defines how

a Web Service at one end point would interact with a method in

another Web Service at the other end.

A Broker based Web Service Allocation Mechanism

49

 As Shown in Figure 4, WSFL is very sophisticated and it

handles patterns like loops, conditional loops, branching, joining,

and exit condition.

Figure 4:Sample flow in WSFL

Similar to BPEL4WS, WSFL does not include a way to

allocate Web Services in the middle of execution. Meaning that

Web Services allocation is done before the execution of the plan

has started and does not address change in the utilization of

allocated Web Services.

Chapter 4

50

Allocation algorithms: Implementation

Alternatives and decisions

 In previous chapters, I introduced the idea of utilizing

Web Services as building blocks for IDBMS and showed the

growing need to do so. In this chapter, I will discuss various

allocation algorithms and discuss various implementation

algorithms including the Least Response Time Allocation

algorithm, which is the main focus on this thesis. The discussion

will not present any experimental results as I will show them in the

proposed framework described in chapter 5. However, the

summary of these discussions will be used and referred to, in the

following chapters.

In chapter 3, I showed many research efforts to provide

specifications and frameworks for distributed query execution

using Web Services as building blocks. All of these frameworks

support, in theory using replicated Web Services; however, not all

of them provide a mechanism for allocating replicas. In other

words, the allocation is done statically and hardcoded in the query

plan. It is important to provide a component, a Broker, which sole

responsibility is to allocate Web Services. The allocation process

must utilize an allocation algorithm that aims for better response

time (if not the best response time) which is the main reason why

A Broker based Web Service Allocation Mechanism

51

these frameworks are developed in the first place [1,3,4]. The

envisioned way of query execution is as follows:

1- The query is formulated as an execution plan. Most of the

surveyed frameworks define the execution plan in XML

format.

2- The query is submitted to the execution engine. The

execution engine is responsible for parsing the plan,

identifying Web Services, and controlling the flow of

data between them. Due to the way the execution engine

works, I will refer to it in the rest of this thesis as the

“coordinator”.

3- Once the execution of the query is completed, the final

results are returned to the coordinator and back to the

user/client application.

The figure below shows a generic design of a query

execution framework that utilizes a coordinator and broker

components

52

Figure 5: Generic Distributed Execution Framework using Web
Services.

 The broker is used by the coordinator when a Web Service

is referenced. The coordinator will pass the Web Service identifier

to the broker which “allocates” a replica of the Web Service and

returns its location to the coordinator to use it in the execution of

the query plan.

In this chapter, I will assume the existence of the broker

component and discuss the following alternatives:

1. Allocation Policy in the Broker

2. Broker Deployment

3. Distributed vs. Centralized Coordinator

4. Intra-Web Services Parallelism vs. No Intra-Web Service

Parallelism

A Broker based Web Service Allocation Mechanism

53

5. Collisions

Later in chapter 6 I will show the real implementation of the

Broker and Coordinator components and present the experimental

results.

4.1 Allocation Policy in the broker

The broker is the brain of the Framework. It tells the

coordinator which Web Service replica to use and when to use it.

The broker decides which replica of a Web Service to allocate

based on an allocation (selection) policy. This policy determines

the performance of the whole system. If the allocation policy is

faulty, the execution of plans will results in some replicas being

over-utilized (hence, slower performance and hotspot formulation)

and other replicas sitting idle serving no requests. The Broker

maintains metadata about the Web Services and their utilization.

This metadata depends on the allocation algorithm and its

requirement. I envision the broker to have a database that has the

Web service ID as its primary key and a set of replica Profiles

(WS_REPLICA_Profile) for each Web Service. The replica

profile contains the information utilized by each allocation

algorithm. I show this information while we examine the

following 4 different allocation policies:

1- Least Recently Used (LRU)

2- Least Recently Allocated (LRA)

3- Least Utilized (LU)

54

4- Least Response Time (LRT)

Below I present an explanation of each policy.

4.1.1 Least Recently Used (LRU)

The WS_REPLICA_Profile for this policy consists of a time

stamp for each copy of a Web Service. This policy allocates the

copy of a Web Service which has been least recently used. The

time stamp is updated every time a WS finishes executing its

currently assigned query. The intuition is to distribute the load

between copies of a WS evenly. The pseudo code for the LRU

algorithm is as follows:

Function LRU (WS_ID) returns WS_URI

{

 WS_CANDIDATES = Lookup (WS_DB, WS_ID) ;

 Sort_Asc (WS_CANDIDATES, TimeStamp);

 // least recently used WS is first on the list

Return WS_CANDIDATES[0].WS_URI;

}

//This method is invoked when a Web Service replica

//finishes execution.

Function Update_TimeStamp (WS_ID, WS_URI)

{

 WS_DB[WS_ID].[WS_URI].TimeStamp = NOW;

}

Listing 4: Logic for LRU allocation Algorithm

A Broker based Web Service Allocation Mechanism

55

A limitation of this policy is its ignorance of the assignment

of WS replicas to nodes. For example, replicas of two different

WSs assigned to the same node might be allocated simultaneously

because both were least recently utilized. An obvious

improvement is to extend LRU to consider the utilization of

participating node.

4.1.2 Least Recently Allocated (LRA)

This is similar to the LRU policy, except that the

WS_REPLICA_Profile consists of a time stamp that is updated

when the operator is allocated, i.e. before starting the execution.

Similar to LRU, LRA does not consider the utilization or service

time of the node and suffers from both inter and intra-WS

collisions. It can also be extended to consider utilization of nodes.

Function LRA (WS_ID) returns WS_URI

{

 WS_CANDIDATES = Lookup (WS_DB, WS_ID) ;

 Sort_Asc (WS_CANDIDATES, TimeStamp);

 // least recently assigned WS is first on the list

 Update_TimeStamp (WS_CANDIDATES[0].TimeStamp, NOW);

Return WS_CANDIDATES[0].WS_URI;

}

Listing 5: Logic for LRA allocation Algorithm

56

4.1.3 Least utilized (LU)

This policy allocates WSs based on the utilization of their

node. It chooses the WS hosted on the least utilized node.

Different plans have different input sizes impacting the utilization

of each node, which is considered by this policy. The Performance

Metadata for this policy includes the utilization of nodes where

copies of a WS are hosted. It is the responsibility of each node to

update its utilization. We envision two ways to do this, namely,

updating the utilization either (1) periodically or (2) updating it

when processing of a request has commenced and completed

(these two events specify node utilization).

Function LU (WS_ID) returns WS_URI

{

 WS_CANDIDATES = Lookup (WS_DB, WS_ID) ;

 Sort_Asc (WS_CANDIDATES, Utilization);

 // least utilized WS is first on the list

Return WS_CANDIDATES[0].WS_URI;

}

Function Update (WS_ID, WS_NODE,New_Utilization)

{

WS_DB[WS_ID].[WS_NODE].Utilization = New_Utilization;

}

Listing 6: Logic for LU allocation algorithm

A Broker based Web Service Allocation Mechanism

57

One may combine LU with either LRU or LRA. These

policies are in synergy because LU considers node usage while the

other two consider WS usage.

4.1.4 Least Response Time (LRT)

This policy estimates the expected service time for each WS

and chooses the WS with the Least Response Time. We define

response time as the elapsed time from allocating the WS until the

WS execution finishes. It is impacted by the hardware speed of the

node hosting the WS (service time), and the number of requests

waiting in the queue of a referenced WS (queuing delays). The

broker in this allocation algorithm maintains Performance

Metadata for each replica. It maintains two important values, Tbusy

and Tst. The Former indicates the estimated time the Web service

replica will be busy till. The later estimates a service time for a

single invocation of the Web Service (I explain how these are

estimated in the next Chapter). In this allocation algorithm, when

the broker receives an allocation request it allocate the Web

Service replica with the least response time (i.e smallest Tbusy

value).

Function LRA (WS_ID) returns WS_URI

{

 WS_CANDIDATES = Lookup (WS_DB, WS_ID) ;

//Sort, so the least response time WS is first on the
list

Sort_Asc (WS_CANDIDATES, Tbusy);

 //updating the Tbusy time for the selected replica

58

WS_CANDIDATES[0]. Tbusy += WS_CANDIDATES[0]. Tst

Return WS_CANDIDATES[0].WS_URI;

}

Listing 7: logic of LRT allocation Algorithm

This policy updates the Performance Metadata the same way

as LU. However, due to the nature of information stored in the

Performance metadata, this algorithm requires an accurate

estimation to work properly. I discuss these issues in the next

chapter, when we talk about the execution framework.

4.2 Broker Deployment

 The broker acts as a dispatcher for all client requests.

The broker implements an allocation policy to assign a client

request to a Web Service replica. The broker implements an

allocation algorithm to enable selection of Web Service replicas.

One could envision three alternative deployments for the

broker. Two of these deployments are client neutral because they

assume the client is unaware of the broker’s presence. The third

deployment assumes the client is aware of the broker. I describe

these deployments in turn and compare their advantages and

disadvantages. All three deployments strive to evenly distribute

workload across WS replicas.

A Broker based Web Service Allocation Mechanism

59

4.2.1 Two­Way Transparent Broker (TWTB) deployment

This deployment relies on existing networking standards to

direct all requests to the broker. When a client issues a DNS

lookup to get the WS’s IP address, the DNS server returns the IP

address of the broker. The broker receives the WS invocation

(Step 1 in Figure 6), parses the HTTP header to obtain the name of

the operation requested and then forwards it to the replica selected

by allocation algorithm (Step 2 in Figure 6). The broker modifies

the packet headers setting the from-IP to be the IP of the broker

and the to-IP to be the IP of the selected replica. Once the replica

processes the request, the results are sent back to the broker (Step

3 in Figure 6), which forwards it back to the client (Step 4 in

Figure 6). The broker maintains translation tables, similar to NAT

tables, which map clients to WS replicas, allowing the broker to

remain transparent.

Figure 6: TWTB deployment

60

In this deployment, both requests and responses to and from

the WS are intercepted and processed by the broker. This enables

the broker to submit the next request when its previously issued

request is processed, eliminating collisions (See section 4.4 below)

and providing the broker with precise service time (TST) profile of

each WS replica.

4.2.2 One­Way Transparent Broker (OWTB) deployment

With this deployment, the client obtains the IP address of

the broker in the same way as in the previous deployment. The key

difference is that the broker only modifies the packet’s to-IP to a

Web Service replica’s IP. When the assigned WS replica

completes processing of the request, it forwards its response to the

client directly without contacting the broker (Step 3 in Figure 7).

This minimizes the load in the broker. At the same time, the

broker has imprecise estimate of a replica’s TST. Instead it must

estimate the service time of a Web Service replica. One may

envision a scenario where Web Service replicas provide the broker

with their profiles. Regardless, this deployment may result in an

uneven distribution of the load across Web Service replicas.

4.2.3 Broker­Aware deployment

In this deployment clients invoke a WS implemented in the

broker with: 1) the name of the desired operation to be invoked

A Broker based Web Service Allocation Mechanism

61

(e.g. doGoogleSearch), and 2) the number of client’s invocations,

required for that service. The broker responds with a list of WS

replica URIs and the number of invocations that should be

assigned to each replica. Example clients that benefit from this

deployment are execution frameworks like Proteus [21] and

SANGAM[33] where the coordinator knows the number of

requests in advance.

Figure 7: OWTB deployment

The control of when requests are sent to replicas is pushed

to the client. In this deployment, the broker has no way to measure

the TST of different replicas, since neither the request nor the

response (Steps 3 & 4 in Figure 8) passes through the broker.

62

Figure 8: Broker-aware deployment

4.3 Distributed vs. Centralized Coordinator

The coordinator executes plans by utilizing both the
autonomous Web Services and execution framework operators.
One could envision two types of Coordinators:

 Centralized Coordinator

 Distributed Coordinator

Both types handle plans and autonomous Web Services in the
same manner. The top element from the plan is removed then
execute, with the results of the execution and the remaining of the
plan are passed on to the next Web Service.

The different between the centralized coordinator and
distributed coordinator is the way framework Operators (See
Chapter 5.4) are implemented. In the centralized coordinator, they
are implemented as part of the coordinator’s code (as a linked
DLL libraries), which means that they must be executed from
within the same machine. In the distributed coordinator,
framework Operators are implemented as Web Services, which
means that one could deploy them in different nodes, allowing for

A Broker based Web Service Allocation Mechanism

63

the load to be distributed among different nodes. In addition, in the
case of the distributed coordinator, one could deploy more than
one replica of the framework operator Web Services, and register
them with the broker. This allows the coordinator to choose the
operator replica that provides better performance.

This issue is not covered in depth in this thesis, but I believe it
is worth investigating to find the trade-off between deploying
centralized and distributed versions of the Coordinator.

I could provide hypothetical argument supporting both types of
the coordinator, but only experimental results will show exactly
what to expect from each. For example, one could argue that the
centralized coordinator doesn’t suffer for the extra overhead of
calling the broker and requesting the replica of the Proteus
Operator and then the network overhead to pass the input relations
and wait for the results to come back over the network. But using
the same line of thought, one might argue that even though the
centralized version of the broker doesn’t have the network
overhead, it suffers from the limited extensibility. Meaning that
when many plans are being handled by the coordinator at the same
time, the CPU will become the bottleneck the performance will
degrade.

Again, I don’t have any supporting data to show which type of
coordinator is better and what circumstances it should be used in,
but the subject itself had to be mentioned.

4.3 Intra-Web Service Parallelism (IWSP) vs.

No Intra-Web Service Parallelism (No-IWSP)

64

It is common for Web services execution frameworks to
have many invocations for the same Web Service. For example,
assume a case where you have a query plan that queries the
Yellow pages directory for certain business time (e.g. restaurants)
and then requires a spell check of the restaurant’s name. Executing
such query, requires the framework to invoke the Yellow Pages
Web Service to get a number of records for the resulting
restaurants. Then is must issue a request against Google’s
doSpellSuggestion method for each one of them. For this
operation, frameworks require certain kind of operators that
performs such invocations and collect the results in one set to be
passed to the next operator. In the proposed execution framework
(presented in chapter 5) we will call this operator the “Iterator”.

The issue of IWSP and No-IWSP must be discussed when
designing the Iterator Operator. The Iterator operator is used to
send a set of records to autonomous WSs one record at a time.
This is because an autonomous WS may accept only one XML
element (instead of a set) as input. Iterator invokes Web Services
in two different ways: without Intra-Web Service parallelism (No-
IWSP), and with Intra-Web Service Parallelism (IWSP). No-IWSP
invokes Web Services one record at a time, one replica at a time,
resulting in a completely sequential execution. IWSP, in the other
hand, allows the execution engine to spawn a thread for each
replica of the WS, and each thread invokes a WS replica with
records sequentially

To motivate the need for a broker and a Web Service
allocation policy, consider the Google Web Service that provides,
among others, two operations: (1) Internet search using a
keyword, doGoogleSearch, and (2) spell check of words,
doSpellSuggestion. Assume there are M replicas of this Web
Service with each replica supporting both operations. To simplify
the discussion, assume only a single query is executing in the
system. This might be a simple query that spell-checks N string

A Broker based Web Service Allocation Mechanism

65

tokens. The system may process this plan in two possible ways,
with and without intra-WS parallelism. With the later, no intra-
WS parallelism (no IWSP), the query plan submits each of its N
tokens for processing one at a time. This is the simplest mode of
operation that does not benefit from multiple replicas of a WS.

With intra-WS parallelism (IWSP) and assuming N is larger
than M, the system submits M tokens (out of N) to M different
Google Web Service replicas for processing simultaneously. This
is appropriate when the service time of a Web Service replica
degrades due to multi-threading caused by submitting multiple
tokens to a WS replica simultaneously. To simplify discussion,
the term node refers to a single processor PC (or workstation)
configured with multiple mass storage devices and a networking
card.

We motivate the need for an allocation policy by
considering the scenario where the M WS replicas reside on a
heterogeneous collection of nodes, providing a different service
time. In this case, one node finishes before another. To enhance
response time, the allocation policy should assign the M+1st
request to the first node that finishes processing its request,
keeping all nodes busy until all N requests have been processed.

I will show experimental results in the following chapters
that explain the trade-offs and show the differences between IWSP
and No-IWSP decisions.

4.4 Collisions

The allocation policy must consider scenarios where a query
plan consists of multiple independent branches that may execute
simultaneously, e.g., using the same Google example in 4.3 above,
a query which spell-checks N tokens and retrieves the results of K

66

searches. In this case, the independent branches of the query tree
may compete for the same collection of nodes, resulting in
collisions that degrade response time.

With IWSP, there are two forms of collisions: inter- and
intra-Operation collisions (Note: According to WSDL standard
Operations are defined as functions inside a single Web Service.
Single Web Service may expose more than one operation). Inter-
operation collisions occur when the allocation policy assigns two
invocations referencing two different operations to the same node.
These operations might be implemented by either (a) the same WS
residing on a node (such as doSpellSuggestion and
doGoogleSearch of Google) or (b) different WSs assigned to the
same node (such as Google map [34] Web Service residing on the
same node as the WS implementing the doGoogleSearch). Intra-
Operation collisions occur when two invocations of the same
operation reference the same node and compete for its resources.
An example is two invocations of Google’s doSpellSuggestion
referencing the same replica of Google Web Service.

The ideal situation for execution is to have IWSP with
enough replicas and smart allocation policy in the broker that
collisions do not occur. However, in real life this is almost an
impossible situation since deploying replicas is a costly operation.
I will show in the following chapters that collisions do actually
degrade the performance.

Chapter 5

Proteus: a query execution framework

using Web Services

A Broker based Web Service Allocation Mechanism

67

 I mentioned in the chapter 1, that Web Services could

be used a building blocks for Internet Database Management

System (IDBMS). To facilitate this vision, one must have a

complete framework that could handle the necessary steps starting

from composing the plan, submitting it, executing it, and finally

returning the results back to the client. In chapter 4, I investigated

many design alternatives which include:

- Choice of allocation algorithm

- Broker Deployment

- Intra-Web Service Parallelism

In this chapter I will show a design of the Proteus Runtime

Integration Framework[21], which is a framework for dynamic

composition and execution of plans using Web Services1. I will

use it to analyze the alternatives and derive conclusions with

supporting experimental results.

Proteus consists of many components, namely:

1. The mediator

2. The Coordinator

3. The Broker

4. A set of Proteus Operators

1 Proteus was built in University of Southern California’s Database Laboratory and I am

a key member of the team who built it

68

In the remaining of this chapter I will explain each one of these

components and explain how they interact with each other.

5.1 The mediator

 A Framework that provides dynamic execution of

plans must allow users or clients to issue their queries in many

formats. Some of the suggested formats are SQL[SQL_REF], Web

Service Flow Language(WSFL) [14], XL[13]. However, Proteus

Framework (like any other framework) requires plan to be defined

in a specific format called Proteus XML Plan. The mediator is the

component of the system that receives the user/client query and

translates it from its original language to the Proteus XML Plan. A

sample Proteus XML plan should look like the following

A Broker based Web Service Allocation Mechanism

69

Listing 8: Sample Proteus XML Plan

As shown in Listing 8, the plan consist of a

<ProteusMessage> element which is the main XML element. It

holds a set of <Service> and <Relation> elements. <Service>

elements specify the Web Services that are required for the

execution of the plan, where <Relation> element specifies the

format of the data exchanged between Web Services included in

the plan. One can envision <Relation> element as the database

70

structure of all the datasets used during the execution life cycle.

Each <Service> contains <InputRelations> and

<OutoputRelations> elements, showing the inputs and outputs of

each Web Service. Both <InputRelations> and <OutputRelations>

are mapped to a <Relation> element separately. This is used

mainly to facilitate means of parameter matching to insure that the

output of a certain Web Service can be plugged as an input in the

next Web Service. It allows for count-matching (number of

parameters) and type-matching (insuring that a parameter is of the

same type as the Web Service expects).

A specific type of the <Service> element is the Proteus

Operators themselves (I explain the Proteus Operators below). In

that case the XML element must contain other sub-elements that

control the flow of data and control the operation of the operator.

For example, when SELECT operator is used, the select condition

must be included in the XML Plan. When JOIN operator is used,

the join condition must be indicated in the plan and so on.

5.2 The Coordinator

The coordinator represents the start and end points of the

plan execution. The Proteus XML plan is passed to the coordinator

as a SOAP envelope, where the header contains the plan and the

body contains the relations. It consumes the XML plan submitted

by the mediator, which is specified as a list of XML elements.

A Broker based Web Service Allocation Mechanism

71

Each element specifies the Proteus Operator or a Web Service and

its input and output relation(s). The coordinator executes the XML

plan by traversing it. It recursively removes that top element of the

XML plan, executes it, places its output in the body of the

resulting SOAP envelope, and then executes the remaining

elements. Proteus operators are implemented as linked-in libraries

into the coordinator. Each is implemented as a function that

accepts a SOAP envelope and produces one or more SOAP

envelopes (see below).

During the execution and when the coordinator reaches an

autonomous Web Service in the plan, it contacts the broker with

the name of the Web Service (which is used as an ID for the Web

Service) and the number of invocations to that Web

Service(represented by the number of the records in the input

relation). The broker replies with a list of URLs of replicas and the

number of invocation for each.

If the coordinator does not have the proxy for a specific

replica, it contacts the broker requesting its WSDL. Upon

receiving the WSDL, the coordinator compiles it at runtime and

uses it to invoke the Web Service. Dynamically generated proxies

are stored for future references. The coordinator utilizes the

Iterator operator to invoke Web Services. I explain how Iterator

operator works in section 5.4.

The last step of execution is when all <Service> elements

are completely consumed, and the Coordinator then returns the

72

output of execution in XML format for the client that submitted

the query in the first place.

5.3 The Broker

According to W3C standards for Web Services, each WS

has a set of operations. The broker stores Performance Metadata

(PM) at the operation level. For example, Google’s Web Service

has, among others, doGoogleSearch and doSpellSuggestion

operations. Despite the fact that they are implemented in the same

Web Service, the former operation is more resource consuming

that the latter, since it requires searching Google’s database that

contains billions of pages. That is why it is unrealistic to allocate

request to the two operations assuming they are identical, even

they are hosted in the same Web Service.

The broker is a repository that contains the lists of Web

Service replicas and their PM profiles. The broker component

allows the service providers to register replicas of their Web

Services. The service provider provides the broker with the WSDL

URL of each Web Services replica. The broker downloads the

WSDL and then asks the service provider for permission to build a

performance profile for the replicas. The performance profiles are

used by the broker to, intelligently, allocate requests to replicas.

The broker allocates Web services intelligently when requested by

the coordinator. The broker allocates replicas using the Least

A Broker based Web Service Allocation Mechanism

73

Response Time (LRT) policy (in the following chapter I will show

why LRT was chosen). To describe LRT, we must first provide a

precise definition of response time (RT). We define response time

as the elapsed time from when a client invokes the WS replicas till

it obtains the results. This includes the network time, processing

time, and possible queuing delays at the broker and WS replica.

The current implementation deals with cases where replicas are

hosted in the same network subnet which means the network part

of the RT equation is identical for all replicas and hence is not

considered. Future research eliminates the assumption that all

replicas are within the same subnet and incorporate network delay

in the RT equation.

The broker has two phases: registration phase and mid-flight

phase.

5.3.1 Registration Phase

 The registration phase occurs when the service provider

submits their Web Services replicas’ information with the broker.

The information contains the Web Service name, its URL, and its

WSDL (which contains the definition of the operations in the Web

Service along with their inputs and outputs and their types). It is

during this phase the broker asks permission to build the

performance profile for each WS replica. This process is detailed

below.

The broker utilizes a PM profile to facilitate intelligent

allocation for Web services. The profiling process is directed

74

toward examining the effect of concurrent invocations of Web

Services on the throughput and response time measures for that

Web Service. Throughput is defined as the number of requests

processed by a Web Service replica per unit of time. We must

distinguish between average and median response times and chose

the median response time as an indication of the Web Service

response time. Median response time give a more accurate

indication of the average response time because it excludes

extreme cases where the response time is either too high or too

low. These cases can be caused by uncontrollable factors. For

example delays observed in the operating system and different

network layers. Operating system delays are the result of context

switches between different threads of the RDBMS clients when

concurrent invocations occur.

The profiling process in the broker simulates concurrent

invocations by spawning a thread for each concurrent request. It

repeatedly increases the number of concurrent invocations, i.e,

threads, and observes how it impacts the throughput and the

response time. Increasing the number of concurrent invocations

results in increased throughput. However, this does not hold

indefinitely. The profiler reaches a point where the throughput

levels and increasing the number of concurrent invocations results

in reduced throughput. This is attributed to the fact that context

switching [25] overhead becomes dominant.

A Broker based Web Service Allocation Mechanism

75

It is at the end of the profiling process where the Broker

estimates the response time of a Web Service replica and uses it

for allocation purposes. This response time is identified as TST in

section 4.1.4

For certain applications, another mean of optimization could

be accomplished by utilizing the Split operator (described below)

to access partitioned data sources by routing SOAP envelopes to

different replicas based on some selection criteria. This allows the

service provider to partition their databases without reducing the

ease-of-use of their Web Services.

5.3.2 Mid­Flight phase

In the mid-flight phase, the broker receives queries from the

coordinator and provides WS allocation based on the performance

profiles created at the registration phase.

76

Figure 9: broker structure

5.4 Proteus Operators

To guarantee a complete execution of the plan, Proteus

utilizes two classes of Operators (Implemented as Web Services):

1. Standard relational algebra operators:

1.1. SELECT,

1.2. PROJECT,

1.3. JOIN, and

1.4. UNION

2. Operators that control flow of the data and control between

Web Services included in the plan. These operator are:

2.1. Branch,

2.2. Split, and

2.3. Iterator,

Each of these operators is explained in details below.

5.4.1 SELECT

The select operator is used to retrieve a set of tuples from a

relation that satisfy the selection criteria. The selection criteria

contains a comparison method based on the type of the data in the

relation. For example, numerical data usually employ comparison

like <, >, =, !=, while string data usually utilize comparison like

substring and string inclusion. For example, assume querying a

A Broker based Web Service Allocation Mechanism

77

Yellow Page Web Service and obtaining a list of businesses with

the type of “Restaurant”. One could do a select operator for those

with ZipCode =’90025’

Figure 10: SELECT operator

5.4.2 PROJECT

The PROJECT operation is used to select a subset of the

attributes of a relation by specifying the names of the required

attributes. For example assuming a relation that contains

information about a person, one might use the PROJECT operator

to extract the first name attribute. This operator is used mainly to

get around the parameter mismatch problems where the output of

one Web Service contains more attributes than the input of the

next one, in that case, the project operator is used to filter out

unnecessary attributes.

78

Figure 11: Project Operator

5.4.3 JOIN

JOIN is used to combine related records from two relations.

While in its simplest form the JOIN operator is just the cross

product of the two relations, it could become more complex

resulting in records being removed within the cross product to

make the result of the join more meaningful. Usually JOIN allows

evaluating a join condition between the attributes of the relations

on which the join is undertaken.

Figure 12: JOIN operator

A Broker based Web Service Allocation Mechanism

79

5.4.4 UNION

UNION operator allows records from two relations to be

combined with the duplicate elimination. It is required that the two

relations to contain the same number and type of attribute for the

UNION operator to be executed. This operator is helpful in case of

parallelism, where multiple requests are sent to different replicas,

and after they are finished, they are combined together using the

union operator.

Figure 13: Union Operator

5.4.5 Branch

Branch operator allows the coordinator to send the same

relation as input to two, or more, different Web Services at the

same time. This is utilized when the plan contains two independent

paths of execution, in which case the execution could be carried on

parallel, allowing for better performance.

80

Figure 14: BRANCH operator

Notice that the parallel paths must be combined at some part

of the plan before the end of execution. Combining the branches is

done using either the JOIN or UNION operators.

5.4.6 Split

Split operator works in a similar manner as the branch

operator. The only difference is that the Branch operator sends the

same relation to all branches, while the split operator employs a

mechanism to separate the tuples (records) in the relation and send

different records to different Web Services in parallel paths.

Figure 15: SPLIT operator

A Broker based Web Service Allocation Mechanism

81

5.4.7 Iterator

While Proteus operators accept a set of records (tuples),

autonomous Web Services may only accept one input at a time.

The Iterator operator is used to send a set of records to

autonomous WSs one record at a time. This is because an

autonomous Web Services may accept only one XML element

(instead of a set) as input. Iterator invokes Web Services in two

different ways: without Intra-Web Service parallelism (No-IWSP),

and with Intra-Web Service Parallelism (IWSP). No-IWSP

invokes Web Services one record at a time, one replica at a time,

resulting in a completely sequential execution.

Figure 16: ITERATOR operator

IWSP, in the other hand, allows the execution engine to

spawn a thread for each replica of the Web Service, and each

82

thread invokes a Web Service replica with records sequentially. I

will highlight the impact of IWSP and No-IWSP in the next

chapter.

5.5 Plan Composition GUI

While it is not an essential component of the Proteus

Framework, a Graphical User Interface (GUI) for Plan

composition is considered to be a recommended addition to the

framework. In this section, I will describe the Proteus GUI which

allows the user to: a) easily define and add Web Services, b)

compose a plan using an easy-to-use interface, c) submit the initial

input, and d) finally submit the plan along with the inputs to the

coordinator to carry on the execution and obtain the results.

A Broker based Web Service Allocation Mechanism

83

Figure 17: Plan Composition GUI

The plan generator provides the user with the capability to

integrate Web Services and to generate an XML plan based on the

query specified. The plan generator provides a drag-n-drop

interface to allow the user to generate Web Service integration

plans. The user creates a workflow diagram, which is essentially a

graphical query involving the autonomous Web Services and

Proteus operators and invokes the coordinator to execute it.

84

Figure 18: Selection of Operators or Web Services in
Proteus

The user can register a new Web Service with the interface

by specifying the URL of the Web Service. The tool extracts the

operations specified in the WSDL and exposes them to the user.

The user is required to select an operation for a Web Service

(Figure 18).

The user can also save plans to their hard drive and recall

them later for execution. In case the user has unregistered a Web

Service from the interface, the software takes care to see that the

A Broker based Web Service Allocation Mechanism

85

execution of saved plans that reference the unregistered Web

Services is not impacted.

Figure 19: Mapping metadata between Web Services

The tool allows for signature matching between Web

Services. Signature mismatching happens when the number and/or

the data type of the input and output flow for the Web Services in

consideration does not match. PROJECT operator is used between

the two Web Services to circumvent this problem. In order to

solve the problem where the XML element names of one Web

Service does not match with the XML element names of the next

Web Service, the tool asks the user for the mapping information

(see Figure 19)

86

Figure 20: Showing the results of Plan execution

A Broker based Web Service Allocation Mechanism

87

Once the plan execution is completed, the GUI tool allows

the user to view the result of the plan execution as a list (extracted

from the resulting XML relation). This is shown in figure 20

88

Chapter 6

Analysis and Evaluation

In the previous chapters, we discussed the design of Proteus

plan execution framework and provided many alternatives and

decision and discussed them. In this chapter I will utilize this

framework for experimental purposes and provide findings. Most

of the issues investigated are presented as discussion in chapter 4.

First I will explain the experimental environment setup and

then I will explain the assumptions made and, finally, provide the

observations and lessons.

6.1 Experimental Environment

The framework and its components are developed using

Microsoft .NET environment [23]. For the experiments, I will be

using three data sources, namely:

1- Yahoo yellow pages (YP): This Web Service contains

business information obtained from Yahoo!’s Yellow

Pages service. The information consist mainly of the

A Broker based Web Service Allocation Mechanism

89

name of the business, its address (City, street address, zip

code), and phone number.

2- GeoCoder (GC): This is a Web Service developed in

Information Science Institute (ISI) and it performs the

conversion of a street address to its corresponding GPS

identifiers (Longitude and Latitude)

3- Tigerlines (TL): This is a Web Service that extends the

information provided by GC by providing extra GPS

information which is the Longitude and Latitude of the

start and the end of the street.

Each of the three data sources is exposed as a Web Service

with operations allowing querying of their database. It is important

to notice that the nature of the Web Services and the information

provided by each are irrelevant to the experiment. However, I

chose them because a) I have access to them and can provide them

in a controlled lab environment, and b) they present realistic, large

data which makes the finding of the experiments apply to real-life

applications.

 I will also use three types of queries. Each query will help

in investigating the aspects I discussed in chapter 4. The queries

are described as follows:

1- Query 1 (Q1): This query extends information provided

by YP with the longitude and latitude information of the

business address, obtained from GC. The client uses this

information to show the location of the business on an

90

aerial map obtained from any Map service like Google

Maps[34] or Microsoft Bing Maps[35].

2- Query 2 (Q2): This query extends Q1 by employing TL

to add the street information (start and end longitude and

latitude) to the result.

3- Query 3 (Q3): This query is the same as the Q2 with one

difference. The TigerLine database is fragmented so that

each US state information is deployed in a standalone TL

Web Service. This means the plan must query each TL

individually and union their output.

Each query plan employs Proteus specific WSs that serve as

the glue between the autonomous WSs. These are categorized into

two groups. The first corresponds to standard relational algebra

operators: select, project, join, etc. The second implements data-

flow-and-control operators such as Branch and Split (Please see

Chapter 5 for more detailed description of Proteus and its

operators). These resemble simpler versions of the Exchange

operator and Eddies [15,26]. The Branch WS constructs k copies

of its XML formatted input data and forwards a copy to a different

pre-specified WS. The Split WS is provided with a selection

clause and a destination Web Services for the qualifying XML

elements. It consumes its XML formatted input, applies the

selection clause, and forwards all the qualifying elements to the

specified target WS. Figure 21 shows three different query plans.

A Broker based Web Service Allocation Mechanism

91

The first employs a geo-coder to show the location of the business

on the map. It employs the Branch operator in combination with

Project because the GC Web Service accepts only the street

address, city, state and zip of the business, i.e. phone number and

other information cannot pass through. The second plan repeats

the same with TL because it accepts only the same address

information as GC. The third query employs the split operator to

send each address to the TL Web Service in the corresponding

state. The results of all states are combined together using the

Union Web Service which performs duplicate elimination.

92

Figure 21: Three queries used to evaluate the four policies:
Small (Query1), medium (Query2) and large (Query3) queries

6.2 Experiment preparation

In order to reach the observations I present in this chapter, I

did the experiment in two phases. The first phase was a simulation

phase and the second phase was an experiment in a controlled lab

environment. The two phases complement each other, and the

results from the first one is used, as well as validated, in the

second.

6.2.1 Phase 1: Simulation

Examining the allocation policies requires experiment with

larger number of servers (up to 40) to host Web Service replicas

and flexibility to change the parameters of experiments. Due to the

difficulty on achieving this level of control, the decision is made to

use a simulated environment.

To obtain an accurate and realistic estimation of service

times, the Proteus implementation is used to execute the three

queries in a small lab environment where only one copy of a WS is

present. For each experiment, more than 1000 queries are executed

and service times for the invoked Web Services are recorded (The

mean service time is chosen). The queries were executed for

A Broker based Web Service Allocation Mechanism

93

machines with different CPU/Memory configuration to allow

capturing the aspects of homogeneous and heterogeneous

environments. both homogeneous and heterogeneous

environments were both considered. The homogeneous

environment consists of machines with 2.0 GHz processors. The

heterogeneous environment consists of a uniform mix of 5

different processor speeds: 1.4, 1.6, 2.0, 2.4, 3.0 GHz. The service

times observed from these experiments are plugged into the

simulator and used to compare the different combinations of

allocation and scheduling policies. We Assume fully connected

network topology with fixed delay between any two nodes.

There are two forms of collisions in our environment. The

first, termed intra-WS collisions, occurs when the same copy of a

Web Service (say GeoCoder) is utilized simultaneously, resulting

in formation of queues. The second, termed inter-WS collision,

refers to the scenario where requests reference different WSs (e.g.,

GeoCoder and Yahoo Web Services) hosted on the same node

(resulting on requests competing for the machine resources). A

collision is further categorized as either inter-plan or intra-plan.

With inter-plan collisions, different plans compete for the same

node. With intra-plan collisions, branches of the same plan might

compete for the same node at the same time. All four possible

collision types are captured by the simulator.

94

An open simulation model is employed, where requests

arrive at a pre-specified rate () using a Poisson distribution.

Where request probability is define as :

 Since Proteus is a distributed system, a naïve policy that

results in many plans colliding on the same node (due to inter and

intra-WS/plan collisions) will cause that node to become a

bottleneck at a certain arrival rate. This node becomes fully

utilized with many queued up requests while other nodes sit idle

waiting for work. At this point, the observed execution times are

dependent on the implementation of the employed random number

generator and are un-reproducible. This simulation state is termed

undesirable. A technique that supports the highest arrival rate

prior to the simulator becoming undesirable is superior.

A plan might be scheduled either statically or dynamically.

With a static allocation, the Web Services referenced in a plan are

allocated when the plan is submitted for execution and before the

execution starts(i.e. once the plan stars execution, no reference to

the broker is made). This makes plan execution simpler, since

intermediate Web Services do not participate in node allocation.

However, this reduces the efficiency of Web Service allocation

criteria because the information used to make the decision might

A Broker based Web Service Allocation Mechanism

95

be outdated after the execution of the plan starts (which is

observed easily in higher arrival rates).

 With a dynamic allocation, the Web Services are allocated

on demand by conceptualizing a producer/consumer relationship

between Web Services. A consuming Web Service is allocated

before a producing Web Services finishes execution. This requires

intermediate nodes to participate in selecting the copy of next Web

Services (for example, in Q1, after YP Web Service produces its

results it queries the broker for the replica of GC Web Service to

send its results to). Requiring intermediate Web Services to

participate in the allocation process is an overhead, but the

allocation decisions are more accurate and up-to-date, since the

information in the lookup directory might have been updated after

the plan execution started.

6.2.2 Phase 2: Controlled Lab experiments

 In this phase, Proteus framework and autonomous Web

Services (namely, YP, GC, and TL) are deployed in a controlled

lab environment where machines are connected over Gigabit

network switches and the queries are executed to observe the

effects of different setups on a real-life environment where an off-

the-shelf Operating System and DBMS software are used. This

helps in examining and validating the observations made in Phase

1.

96

6.3 Discussion and observations

Note: References made from Figure 22 to Figure 29 are

observations made from Phase 1. The rest are observation made

from Phase2.

Figures 22 to 25 below show LRU is inferior to all other

policies because it becomes unstable at a lower arrival rate. LRT

is superior to all other polices when service time is estimated

accurately (which is done in the preparation phase, see 6.2.1).

When compared with dynamic scheduling, LRT’s performance is

inferior with static scheduling. This is because static scheduling

invokes allocation of all Web Services that constitute a plan before

the plan execution starts. This means that even though a Web

Service is assigned to the plan at time t1, it is not actually used till

time t2 (t2>t1). This increases inter-plan (both inter- and intra-WS)

collisions, making the incurred service time at time t2 higher than

that estimated at t1 due to queuing delays.

I was pleasantly surprised to find LRT performing well as

long as the estimated response time of a Web Service is randomly

distributed along a mean that matches the true service time of the

Web Service. Figure 26 shows LRT’s performance with different

scheduling policies (static and dynamic) for different random

distributions. Given a service time S, a random distribution of

70% corresponds to service times randomly picked from the range

A Broker based Web Service Allocation Mechanism

97

S 0.7S. Note that LRT’s performance is degraded significantly

if the estimated response times are completely random.

 It is also observed that LU performs worse than LRA with

static scheduling. This is because LRA does load balancing in a

similar manner using the timestamps while LU uses the

utilizations measurement which fluctuates frequently (leading to

the frequent appearance and disappearance of temporary

bottlenecks). Compared to LU, LRA does not require any network

communication with broker because it requires no node

characteristics to render a decision. This makes LRA more

desirable than LU.

I also investigated the scalability of these policies and

noticed that introducing more nodes in the system does not always

improve performance. Figures 27 to 29 show the performance

improvement of LRU, LRT and Random for three different

configurations consisting of ten, twenty and forty nodes,

respectively. Similar to prior experiments, Web Services are

replicated across all nodes. LRU performance does not scale

because it results in formation of bottlenecks with a low arrival

rate. While Random is more scalable than LRU, a configuration

deployed with LRT exhibits the best scalability characteristics.

Similar trends are observed with both (1) homogeneous

configurations and (2) static scheduling strategy.

98

Figure 22: Average execution time of Q3 with alternative allocation

policies, heterogeneous configuration using dynamic scheduling.

Figure 23: Average execution time of Q3 with alternative allocation
policies, heterogeneous configuration using static scheduling.

A Broker based Web Service Allocation Mechanism

99

Figure 24: Average execution time of Q3 with alternative allocation

policies, homogeneous configuration using dynamic scheduling.

Figure 25: Average execution time for Q3 with a
homogeneous configuration using static scheduling.

100

Figure 26:Average execution time for Q3 with LRT,
heterogeneous configuration using different random distributions

Figure 27: Scalability of a heterogeneous configuration with
LRU allocation policy and dynamic scheduling

A Broker based Web Service Allocation Mechanism

101

Figure 28: Scalability of a heterogeneous configuration with
LRT allocation policy and dynamic scheduling

 .

Figure 29: Scalability of a heterogeneous configuration with
Random allocation policy and dynamic scheduling.

102

hese graphs above explain the choice made to use LRT as

the allocation policy for the Broker component of Proteus

Framework.

Further investigation is done to see the effect of collisions

on the response time. I ran experiments using different placement

of Web Service replicas across the PCs. Each Web Service

provides only one operation. Hence, intra-operation collisions do

not occur because the Iterator operation implemented by the

centralized coordinator of Proteus does not issue a request for a

Web Service until it has received results for its previously issued

request. Moreover, the branches of a query (such as Query Type

3) do not include paths consisting of multiple sequential

invocations that reference the same Web Service (for example,

GeoCoder is not invoked by different branches of a query tree).

I analyzed a variety of WS assignments across the nodes.

One assignment is to place copies of YP, GC, and TL WSs on

mutually exclusive nodes. This would eliminate the possibility of

inter-operation collisions. This configuration is analyzed in the

context of Observation 1 below (Figures 30 and 31). Another

extreme is to assign a copy of each WS on each node, e.g. with

one replica, they system consists of one node hosting all three

WSs. This results in inter-operation collisions and constitutes the

focus of all three observations presented below. There are other

hybrid placements that were eliminated from this thesis because

A Broker based Web Service Allocation Mechanism

103

they did not provide additional observations beyond the three

presented below.

Note: Observations and lessons discussed in this section

apply to results obtained from experiments with all three query

types. However, to avoid redundancy I present results from

Query3. In other words, the observations presented below hold for

all 3 query types.

Figure 30: Distribution of RT of the query with 4 nodes and

No-IWSP using ideal setup

104

Figure 31: Distribution of RT of the query with 4 nodes and
IWSP using ideal setup

Note: I ran the experiments in a homogeneous lab

environment. I used a zero-load environment where there is only

one query in the system at any given time and issued 1000 queries

for each deployment.

The performance of different policies is compared by

observing the median and distribution of the Response Time (RT)

for 1000 queries submitted one after another. Figures 32 and 33

show the distribution of RT for the two policies deployed in a 4

replica configuration. The X axis shows the observed response

time for Query type 3 and the Y axis shows the number of queries

observing that specific response time. The ideal distribution is

single point graph with zero-sized tails as its distribution. Such a

graph is desirable because it produces a completely predictable

A Broker based Web Service Allocation Mechanism

105

system and insures that the response time observed is the actual,

accurate, one.

This cannot be accomplished in real systems due to

uncontrollable delays observed in the operating system and

different networking layers. Operating system delays are the result

of context switches between different threads of MySQL clients

when Inter-Operation collision occurs. Also, when using IWSP,

the coordinator encounters context switching delays between

Iterator threads accessing different replicas. Network delays are

attributed to delays caused by connection establishment and lost or

erroneous packets.

To make this section readable, I will present obtained results

in the context of three key observations learnt from our

experiments. We focus on Query type 3 because the same

observations are shown with different combinations of query types

and deployments. This query retrieves a zip code that causes the

YP Web Services to produce 16 objects. The observations are as

follows.

6.3.1 Observation 1

 LRT is superior to Random when the service time of Web

Services is either known in advance or can be estimated with a

high accuracy. By superior, I mean that its median response time

is better and the behavior of the system is more predictable

because a larger number of queries observe this median response

time. This is particularly true when using IWSP. Figures 32 and

106

33 show this lesson with Query type 3. In these experiments, we

use a cluster of 4 nodes and assign a replica of each WS on each

node. Even with both IWSP and no-IWSP, LRT outperforms

Random because it minimizes the number of inter-operation

collisions. The impact of this collision is most evident with IWSP,

see Figure 33. Here, Random results in a system that provides a

response time varying from 140 to 200 milliseconds for most

queries. With LRT, more than 80% of queries observe a response

time of 125 milliseconds. The explanation for this is as follows.

With Random, the centralized coordinator assigns a different

number of objects to each Web Service replicas. While these are

processed one at a time avoiding the overhead of multi-threading,

the number of records assigned to each WS replica is not even,

resulting in an unpredictable distribution of work across the WS

replicas. LRT distributes the object requests across WS replicas

based on their service time profiles, approximating an even

distribution of WS invocations.

A Broker based Web Service Allocation Mechanism

107

Figure 32: Distribution of RT of the query with 4 nodes and
No-IWSP

Figure 33: Distribution of RT of the query with 4 nodes and
IWSP

108

To validate the claim that inter-operation collisions are the

cause of discrepancy between LRT and Random, we constructed 4

replicas of each WS (YP, GC, and TL) on mutually exclusive set

of nodes. This experiment uses all the twelve machines in the

cluster and avoids inter-operation collisions. Figures 30 and 31

show the obtained results with both no-IWSP and IWSP. When

compared with the previous configuration, there is an

improvement in the median response time (compare Figures 31

and 33). For example, with LRT and IWSP, the median response

time of 125 milliseconds is reduced to 95 milliseconds, an

improvement of 30%. Random observes the most improvement

with its response time becoming more predictable. Note that LRT

continues to outperform Random because it does a better job of

distributing the 16 invocations evenly across the nodes.

6.3.2 Observation 2

With no-IWSP, multiple replicas of a WS do not enhance

the response time significantly and, hence, the choice of an

allocation policy is not important. Note that this lesson is in the

context of response time for a zero-load system. It will most likely

prove to be false when considering system throughput.

Listing 9 shows this lesson by reporting the median response

time with No-IWSP and IWSP with the alternative allocation

A Broker based Web Service Allocation Mechanism

109

policies. With No-IWSP, the response time is almost the same

with both LRT and Random. Moreover, there is only a negligible

improvement (less than 10%) when we increase the number of WS

replicas from 2 to eight. This improvement is attributed to a lower

number of inter-operation collisions due to a larger number of WS

replicas.

 Listing 9: means for the RT values

6.3.3 Observation 3

With IWSP, while both Random and LRT allocation

policies benefit from a larger number of WS replicas, one should

not expect a linear increase due to serial processing times

independent of the number of WS replicas.

Listing 9 shows that additional replicas have a dramatic

improvement on response time with IWSP. With LRT, there is a

factor of 2.6 improvement in response time as we vary the number

of WS replicas from two to eight. It is a factor of 2.15 with

Random. Figures 34 and 35 show the distribution of response

time with alternative number of replications. Obtained results

show LRT provides a more predictable response time.

110

Figure 34: RT Distribution of query 3 with LRT and IWSP

Figure 35: RT Distribution of query 3 with Random and
IWSP

A Broker based Web Service Allocation Mechanism

111

Both LRT and Random observe an improvement in their

median response time because a larger number of Web Service

replicas results in fewer inter-operation collisions. At the same

time, one should not expect a linear (factor of 4 from two nodes to

eight nodes) improvement in response time with a policy. This is

because the number of Web Service replicas impacts the

processing time of Geo Coder and Tiger Line WSs in Figure 21.

The remaining operations are implemented in the centralized

coordinator with a fixed processing time. Amdhal’s law states that

the speedup observed as a function of the number processors

(replicas) is:

S = N ÷ [(B×N) + (1 – B)]

where B is the percentage of algorithm performed serially

and N is the number of processors. If B is zero, S becomes N,

resulting in a linear speedup. In our environment, B is greater than

zero due to the serial processing of the centralized coordinator and

invocation of YP Web Service. With one replica, we measure B to

be 5%. Amdhal’s law estimates a factor of 5.9 improvement with

eight replicas. In practice, we observe a factor of 5 improvement

(compare 390.62 to 78.125). this is attributed to inter-operation

collisions increasing the value of B.

112

Chapter 7

 Conclusion

This thesis discussed a component (named the “Broker”)

that is used to allocate Web Service replicas in a framework for

plan execution to insure better response time. To examine such

component, the thesis outlined the design of the framework,

described its components and showed some alternatives and

decisions that should be considered with such framework.

I could summarize the contribution of the thesis by

providing its main insights:

1. dynamic scheduling is superior to static. Results showed

that dynamic scheduling provides better response time.

This is attributed to the fact that dynamic scheduling uses

more updated in formation in the broker which increases

its accuracy.

2. LRT allocation policy is superior to the other examined

alternatives. LRT incorporate more information in the

Performance Metadata for web services allowing for

better estimation of its utilization and, hence, better

allocation decision.

A Broker based Web Service Allocation Mechanism

113

3. A Web Service allocation policy must consider the

utilization of nodes when multiple copies of different

Web Services are assigned to the same node. In the

experiments, LRU and LRA do not capture this important

detail, providing inferior performance when compared to

other policies (including a Random allocation policy).

4. Intra Web Service parallelism (IWSP) was presented as

the means to enhance response time of a single query

using multiple replicas of the Web Services in the query

plan. The gain in response time does not scale

exponentially as IWSP could result in more collisions

when the request arrival rate is high.

5. LRT strives to minimize two forms of collisions (intra

and inter operation) observed with IWSP in order to both

enhance the median response time and the percentage of

queries that observe this median.

Several assumptions were made to achieve the results in this

thesis. Those assumptions could be eliminated by doing further

research. Some of the future research topics that were not

investigated in details in this thesis are:

1. Including the Network delay in the response time

equation. All results provided in this thesis are done in a

controlled lab environment where network delay is

negligible.

114

2. Introducing more queries in the system and observing

how it affects the performance for LRT and explain those

observations.

3. A mechanism that enables accurate service time

estimation for Web Services while taking background

load into account.

4. Applying improvements on current implementation of

the framework in general and the broker specifically.

Examples are:

a. Making the broker more resilient by incorporating

solutions like Dew[10] to enable continuous

operation in the presence of exceptions.

b. Replicating the Broker’s repository using solutions

like Content Addressable Network (CAN) [9]. This

guarantees data recovery in case of hard disk crash

in some nodes.

The focus of this thesis was to discuss the allocation

mechanism for Web Services to achieve better response time. All

insights and observations we made by implementing the chosen

allocation mechanism in the Broker component in Proteus plan

execution framework and then investigate it using different

experimental setups. However, The allocation mechanism could be

plugged into any similar framework that has the allocation

problem. The current implementation could be easily modified to

define the broker component as a stand-alone component with a

set of APIs defining how it interfaces with any framework.

A Broker based Web Service Allocation Mechanism

115

Furthermore, one could envision the Broker component as a stand-

alone service that is used by several frameworks (including

Proteus) Simultaneously.

Proteus framework could be utilize to provide a “What”-

oriented framework instead of a “How”-oriented. In other words,

the framework could be extended with an additional component

that takes the user query describing “what” he/she wants to

accomplish and convert that query into a formulated XML plan

and submitted to Proteus. This isolates all the technical details of

how the query is formulated and executed from the user.

116

References

[1] Fan Li. Xu Zhang. Fan Zhang. and Yong Shan. Grid-Based

Digital Forestry Platform Dynamic Allocation of Resources to

Web Services Management Research. In ICCMS '10 Proceedings

of the 2010 Second International Conference on Computer

Modeling and Simulation - Volume 03.2010.

[2] Keyvan Mohebbi, Suhaimi Ibrahim, Mojtaba Khezrian,

Kanmani Munusamy and Sayed Gholam Hassan Tabatabaei. A

comparative evaluation of semantic web service discovery

approaches. iiWAS '10 Proceedings of the 12th International

Conference on Information Integration and Web-based

Applications & Services. 2010..

[3] Yash Patel and John Darlington. Average-

BasedWorkload Allocation Strategy for QoS-Constrained Jobs In

A Web Service-Oriented Grid. In EDOCW '06 Proceedings of the

10th IEEE on International Enterprise Distributed Object

Computing Conference Workshops. 2006

[4] Stephen S. Yau and Ho G. An. Adaptive resource allocation

for service-based systems. Internetware '09 Proceedings of the

First Asia-Pacific Symposium on Internetware. 2009

A Broker based Web Service Allocation Mechanism

117

[5] Yuxiong He, Sameh Elnikety, and Hongyang Sun. Tians

Scheduling: Using Partial Processing in Best-Effort Applications.

ICDCS '11 Proceedings of the 2011 31st International Conference

on Distributed Computing Systems. 2011

[6] Marvin Ferber, Sascha Hunold and Thomas Rauber. Load

Balancing Concurrent BPEL Processes by Dynamic Selection of

Web Service Endpoints. ICPPW '09 Proceedings of the 2009

International Conference on Parallel Processing Workshops. 2009

[7] E. Alwagait and S. Ghandeharizadeh, A Comparison of

Alternative Web Service Allocation and Scheduling Policies. IEEE

SCC04, 319:326.

[8] Vladimir Stantchev. Effects of Replication on Web Service

Performance in WebSphere. IBM Technical Report TR-08-003.

March, 2008

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker. A Scalable Content Addressable Network. In ACM

SIGCOMM, 2001.

[10] E. Alwagait and S. Ghandeharizadeh. DeW: A Dependable

Web Services Framework. In 14th International Workshop on

Research Issues on Data Engineering, Boston, MA, March 2004.

[11] OASIS WebService Interactive Applications

http://www.oasis-open.org/

118

[12] WS-Addressing specifications at W3C

http://www.w3.org/Submission/ws-addressing/

[13] D. Kossmann D. Florescu, A. Grnhagen. XL: A Platform for

Web Services. In Conference on Innovative Data Systems

Research (CIDR), January 2003

[14]Web Service Flow Language http://www.ebpml.org/wsfl.htm

[15] R. Avnur and J. Hellerstein. Eddies: Continuously Adaptive

Query Processing. In Proceedings of ACM SIGMOD 2000.

[16] F. Banaei-Kashani, C. Chen, and C. Shahabi. WSPDS: Web

Services Peer-to-Peer Discovery Serivce. In the International

Symposium on Web Services and Applications (ISWS’04), June

2004.

[17] S. Decker, S. Melnik, F. Harmelen, D. Fensel, M. Klein, J.

Broekstra, M. Erdmann and I. Horrocks. The Semantic Web: The

Roles of XML and RDF. IEEE Internet computing, 15(3), 2000.

[18] http://www.webopedia.com/TERM/W/Web_services.html

[19] http://www.gartner.com

[20] World Wide Web Consortium http://www.w3.org/2002/ws/

[21] S. Ghandeharizadeh, C. Knoblock, C. Papadopoulos, C.

Shahabi, E. Alwagait, J. Ambite, M. Cai, C. Chen, P. Pol, R.

Schmidt, S. Song, S. Thakkar, and R. Zhou. Proteus: A System for

Dynamically Composing and Intelligently Executing Web Services.

A Broker based Web Service Allocation Mechanism

119

In the First International Conference on Web Services (ICWS),

Las Vegas, Nevada, June 2003.

[22] J. Klein F. Leymann S. Thatte F. Curbera, Y. Goland and

S.Weerawarana. Business Process Execution Language for Web

Services, Version 1.0. July 2002.

[23] Microsoft Corporation. Microsoft .NET Framework.

[24] Microsoft Corporation. Global XML Web Services

Architecture (GXA), 2002.

[25] B. Albahari, P. Drayton, and B. Merrill. C# Essentials.

O’Reilly, 2001.

[26] F. Tian and D. DeWitt. Tuple Routing Strategies for

Distributed Eddies. In Proceedings of VLDB 2003,

Berlin,Germany, September 2003.

[27] D. Box. Understanding GXA. Microsoft Corporation. URL:
http://msdn.microsoft.com/webservices/understanding/gxa/default.
aspx. July 2002.

[28] Kelvin K. Yue and David J. Lilja. Dynamic Processor

Allocation with the Solaris Operating System. Parallel Processing

Symposium. March 1998.

[29] Regiane Y. Kawasaki, Luiz Affonso Guedes, Diego L.

Cardoso1, Carlos R. L. Francˆes, Glaucio H. S. Carvalho, Jo˜ao C.

W. A. Costa and Nandamundi L. Vijaykumar. A Markovian

120

Performance Model for Resource Allocation Scheduling on

GNU/Linux. ISPA Workshops pp844-853. 2006

[30] S. Ghandeharizadeh, C Papadopoulos, P. Pol, and R. Zhou.
NAM: A Network Adaptable Middleware to Enhance Response
Time of Web Services. In International Journal of Web Services
Research (JSWR), Volume 2, Issue 4, October 2005

[31] UDDI Community. UDDI Version 2.0 Data Structure

Specification. UDDI Organization, June 2001.

[32] UDDI Community. UDDI Version 2.0 Programmer’s API

Specification. UDDI Organization, June 2001.

[33] SANGAM, http://dblab.usc.edu/Sangam

[34] https://maps.google.com

[35] http://www.bing.com/maps/

[36]Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl.

[37]Simple Object Access Protocol (SOAP),
http://www.w3.org/TR/soap12-part1

[38] Flow-based Infrastructure for Composing Autonomous
Services (FICAS). http://eil.stanford.edu/ficas\

A Broker based Web Service Allocation Mechanism

121

122

