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An algebraic approach to the structural
properties of positive state control systems

B. Ricartea and S. Romero-Vivóa∗

In this paper we deal with discrete-time linear control systems in which the state is constrained to lie in the positive

orthant Rn+ independently of the inputs involved, that is, the inputs can take negative values. Such (positive state) systems

appear, for example, in ecology models where the removal of individuals from a population is described. Controllability

and reachability are fundamental properties of a system that show its ability to move in space, which are analyzed from

an algebraic point of view throughout the text, paying special attention to the single-input case. Copyright c© 2017 John

Wiley & Sons, Ltd.
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1. Introduction

In many biological processes, for instance, metabolism and drug ingestion, the state and input variables must be nonnegative

values. The need to understand the properties of these kinds of systems induced the development of positive systems theory,

which is well documented in the bibliography both from a control point of view and from an algebraic point of view [1, 6, 8, 15].

Nevertheless, there are many applications where it is not necessary to be so restrictive, and only the states must be nonnegative.

For example, in several economic models [2, 14], or in population ecology where to describe the removal of individuals from

a population, it is required that the control can take negative values ([4, 9, 13]). These processes can be represented by the

(n-dimensional) discrete-time linear system with n states and m inputs

x(k + 1) = Ax(k) + Bu(k), k ∈ N0, (1)

where A ∈ Rn×n and B ∈ Rn×m are nonnegative matrices, the state x(·) ∈ Rn is a nonnegative vector and without restrictions

for the control vector u(·) ∈ Rm, which is said to be positive state system according to reference [10]. From now on, let us

denote them by (A,B)ps ≥ 0.

Differently from positive systems, only few authors have contributed to this emerging topic. It is worth mentioning Guiver et al.

[10] who dealt with the controllability property of these systems, which was termed positive state controllability. It is understood

that (A,B)ps ≥ 0 is positive state controllable in finite time if every nonnegative initial state x0 can be transferred to any other

nonnegative final state xf in a finite number of steps and additionally the nonnegativity of the states involved is maintained.

This property is equivalent to reachability (x0 = 0) and null-controllability (xf = 0) with positive state, which we briefly call

positive state reachability and positive state null-controllability, respectively (or simply, reachability and null-controllability in this

context).

Guiver et al. have demonstrated that under certain specific assumptions the problem of positive state controllability is

equivalent to positive input controllability of a related positive system. Moreover, the authors give a characterization of positive

state reachability in finite time in terms of the reachability matrix of the corresponding closed-loop system. However, in order

to avoid the calculations of the reachability matrix, canonical forms representing all the pairs of matrices guaranteeing a certain

structural property should be found. This algebraical approach would provides us with an effective way to check such a property

avoiding both the aforementioned assumptions and the need to construct a related system, that is, directly into the open-

loop system. In this work, after some preliminary results for a general positive state system where reachability and monomial

reachability are connected, the general case for single-input positive state systems is characterized, and some examples from
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economy and population ecology models are presented. Finally, a multiple-input system showing the difficulty to extend the

obtained results to these more complex systems is introduced.

The authors want to emphasize that apart from the analysis of these properties and of others as observability and stability of

positive state systems, some interesting problems could be addressed in the future such as the study of reachability algorithms,

of a canonical form by means of an appropriated positive similarity as well as the analysis of some property under feedback,

among others.

This manuscript has been organized as follows: Section II examines some notations and basic definitions. In Section III, the

preliminary results on positive state reachability are presented. Canonical forms for positive state controllability and reachability

are given in the single-input case in Section IV. Later on, several applications are introduced both for single-input (Section V) and

for multi-input model (Section 6) showing the great differences between both cases. Finally, in Section 7, the main contributions

of this article are commented.

2. Notions and basic definitions

From now on, let us write x > 0 if x ≥ 0 but it is not equal to 0. We recall that a positive i-monomial vector (or simply,

i-monomial vector) is a positive multiple of the canonical vector ei of R
n. Similarly, a monomial matrix is a nonsingular matrix

having a unique positive entry in each row and column. Besides that, a monomial matrix whose nonzero entries are all unitary

is called permutation matrix.

For any given positive state system (A,B)ps ≥ 0 described by equation (1), its solution is given by:

x(k) = Akx(0) +

k−1
∑

i=0

A
k−1−i

Bu(i) = Akx(0) + [B AB A2B · · ·Ak−1B]















u(k − 1)

u(k − 2)

u(k − 3)
...

u(0)















, (2)

where the matrix

Rk(A,B) = [B AB A
2
B · · ·Ak−1B] k = 1, 2 . . . (3)

is called the reachability matrix in k steps, k = 1, 2, . . .. This matrix allows us to study the system states x(k) that can be

reached in a finite number of steps. Concretely, we are interested in the controllability property in order to be able to transfer

any given dynamic system under control input from its initial state to any final desirable state, which is defined as follows.

Definition 1 A positive state system (A,B)ps ≥ 0 is said to be positively state controllable if for any pair of states, initial

x0 = x(0) and final xf , there exists k ∈ N and a control sequence u(0), u(1), . . . , u(k − 1), that steer the system states from

the initial state x0 to xf at time k, i.e x(k) = xf , through nonnegative states x(0), x(1), . . . , x(k − 1).

Generally, two more definitions related to the previous one can be found: controllability from the origin or reachability and

controllability to the origin or null-controllability.

Definition 2 A positive state system (A,B)ps ≥ 0 is said to be positively state reachable if for any final state xf there exists

k ∈ N and a control sequence u(0), u(1), . . . , u(k − 1), such that steer the system state from the origin at zero instant, that is

x(0) = 0, to xf at time k through nonnegative states x(0), x(1), . . . , x(k − 1). In this case, xf is said to be reachable at finite

time k.

Additionally, it is said that a system (A,B)ps ≥ 0 is positively monomial-state reachable (see for example [17]) if every monomial

vector of Rn+ (equivalently, every canonical vector ei , i = 1, 2, . . . , n of R
n
+) is reachable for some finite time. Finally,

Definition 3 A positive state system (A,B)ps ≥ 0 is said to be positively state null-controllable if for any initial state x0 there

exists k ∈ N and a control sequence u(0), u(1), . . . , u(k − 1), such that steer the system states from x0, at zero instant, to the

final state xf = 0, at time k through nonnegative states x(0), x(1), . . . , x(k − 1). In this case, x0 is said to be null-controllable

at finite time k.

For standard discrete-time systems, definitions 1 and 2 are equivalent, but not definition 3 (see [6]). Similarly to the positive

case, these concepts are no longer equivalent in the positive state case as commented before, but there are many more positively

state reachable systems than under positive constrains. All these differences are analyzed throughout the paper.

2 Copyright c© 2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 00 1–10
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3. Preliminary results

Although from a theoretical point of view, any timing, finite or infinite, is possible to reach a state, the next results are always

under conditions of finiteness to be useful in real-life practice. The next theorem states that it is enough to study if the canonical

vectors of Rn+ are reachable at some finite time (positive monomial-state reachability) to achieve reachability.

Theorem 1 Considering a positive state system (A,B)ps ≥ 0, then the pair (A,B) is positively monomial-state reachable in

finite time N if and only if the same pair is positively state reachable in finite time N.

Proof ⇒) To simplify notation, let us define the following vectors:

v1 = B, v2 = AB, v3 = A
2B, . . . , vN = A

N−1B

ui(k) = ui ,N−k , k = 0, 1, . . . , N − 1, N ∈ N.

By the definition of a positively monomial-state reachable system, every canonical vector ei , i = 1, 2, . . . , n is positively state

reachable at most in finite time N, then taking into account (2) and (3) (remind that x(0) = 0),

ei = RN(A,B)















ui(N − 1)

ui(N − 2)
...

ui(1)

ui(0)















=

N
∑

j=1

ui jvj (4)

and the different intermediate states xi(0), xi(1), . . . , xi(k − 1) to reach ei are also nonnegative. Consequently,

xi(1) = Bui(0) > 0⇒ v1uiN > 0⇒ uiN > 0 (5)

xi(2) = Bui(1) + ABui(0) ≥ 0⇒ v1ui ,N−1 + v2uiN ≥ 0 (6)

...

xi(N − 1) = Bui(N − 2) + ABui(N − 3) + · · ·+ A
N−3
Bui(1) + A

N−2
Bui(0) ≥ 0

⇒

N−1
∑

j=1

ui ,j+1vj ≥ 0. (7)

Moreover, any vector xf ∈ R
n
+ is a positive combination of ei , i.e., if αi ≥ 0 then

xf =

n
∑

i=1

αiei =

n
∑

i=1

αi

(

N
∑

j=1

ui jvj

)

=

N
∑

j=1

(

n
∑

i=1

αiui j

)

vj .

Therefore, the sequence of controls used to reach xf ∈ R
n
+ is u(k) =

∑n

i=1 αiui ,N−k with k = 0, 1, . . . , N − 1 with u(0) ≥ 0 by

(5).

Additionally, to verify that xf = x(N) is positively state reachable at finite time N we have to prove that every state involved

in the previous steps needed to attain xf is also nonnegative. The first state, x(1) = Bu(0), is obviously nonnegative. Let us

check the other ones:

x(2) = Bu(1) + ABu(0) = v1

n
∑

i=1

αiui ,N−1 + v2

n
∑

i=1

αiui ,N =

n
∑

i=1

αi(ui ,N−1v1 + uiNv2)

is nonnegative by (6), and so on, until the last step

x(N − 1) = Bu(N − 2) + ABu(N − 3) + · · ·+ AN−3Bu(1) + AN−2Bu(0) =

=
N−1
∑

j=1

vj

(

n
∑

i=1

αiui ,j+1

)

=
∑n

i=1 αi

(

∑N−1
j=1 ui ,j+1vj

)

that is nonnegative by (7) too, which concludes the proof.

⇐) The inverse proof immediately follows by the definition of positive state reachability.

The next example illustrates as this characterization facilitate the analysis of the reachability property of a system.

Math. Meth. Appl. Sci. 2017, 00 1–10 Copyright c© 2017 John Wiley & Sons, Ltd. 3
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Example 1 ([11], Example 4.3) Given (A,B)ps ≥ 0 with

A =

[

2 1

1 2

]

, and b =

[

1 1

1 0

]

.

It is simple that the canonical vectors e1 and e2 are reachable in one step using the sequence of controls u1(0) =

[

0

1

]

and

u1(0) =

[

1

−1

]

, respectively. Therefore, this system is positively state reachable in finite time N.

From this theorem we can derive a necessary condition to be a reachable positive state system.

Lemma 1 Let (A,B)ps ≥ 0 be a reachable n-dimensional positive state system in finite time N, then n ≤ Nm, and the rank of

the reachability matrix in N-steps RN(A,B) associated is n, that is,

Rank([B AB A2B · · · AN−1B]) = n.

Proof If (A,B)ps ≥ 0 is positively state reachable then every canonical vector can also be reached, hence using equation (4) for

each canonical vector, it is derived that

In = RN(A,B)U with U =















u1(N − 1) u2(N − 1) · · · un(N − 1)

u1(N − 2) u2(N − 2) · · · un(N − 2)
...

...
. . .

...

u1(1) u2(1) · · · un(1)

u1(0) u2(0) · · · un(0)















where In is de n × n identity matrix. Therefore, by a basic property of the rank of a product of matrices, Rank(In) ≤

min(Rank(RN(A,B)),Rank(U)). Consequently, n ≤ Rank(RN(A,B)) and n ≤ Rank(U).

In addition, RN(A,B) ∈ R
n×mN and U ∈ RmN×n hence Rank(RN(A,B)) ≤ min(n,mN) ≤ n, and Rank(U) ≤ min(n,mN) ≤ n.

Thus, combining both inequalites we obtain that Rank(U) = n and Rank(RN(A,B)) = n, which is what had to be proven.

Besides that, observe that n ≤ mN since Rank(RN(A,B)) = n ≤ min(n,mN) ≤ mN.

From the aforementioned lemma it is deduced that a system may be reachable in time 1 only if the matrix B has at least as

many columns as the matrix A, that is, n ≤ m. Similarly, a single-input positive state system (m = 1) may be reachable only if

n ≤ N. Furthermore, it is clear that, in the same way that for standard reachability and positive reachability (see [7]), any state

that can be reached in a finite number of steps can also be reached within n steps with an appropriate choice of inputs. Thus,

let us sum up these conclusions with the following proposition.

Proposition 1 Let the pair (A,B)ps ≥ 0 be reachable in finite time, then every nonnegative state x(k) ∈ R
n
+ can be reached in

at most n steps. Besides that, if m = 1, the number of steps needed to reach every nonnegative state is exactly n.

Corollary 1 Let (A,B)ps ≥ 0 be a reachable n-dimensional positive state system in finite time, then the rank of the reachability

matrix in n-steps Rn(A,B) is n.

Example 2 Let (A, b)ps ≥ 0 with

A =









∗ 1 0

∗ 0 1

∗ 0 1









, and b =





0

0

1



 ⇒ R3(A, b) =





0 0 1

0 1 1

1 1 1





with ∗ a nonnegative entry.

Clearly, canonical vector e3 can be reached in one step. In the same way, canonical vector e2 (e3) in two steps (three steps)

using the sequence of controls u(0) = 1, and u(1) = −1 (u(0) = 1, u(1) = −1, andu(2) = 0), which maintains the nonnegativity

of every state in each previous step. Therefore, (A, b)ps ≥ 0 is reachable. Observe that in this case the rank of the reachability

matrix R3(A, b) is 3 and that this same system is not positively reachable (using only nonnegative inputs).

The next example illustrates that a condition on the rank of the reachability matrix in n-steps is not a sufficient condition to

guarantee the reachability property of the system.

4 Copyright c© 2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 00 1–10
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Example 3 Let (A, b)ps ≥ 0 be a system given by the pair

A =









∗ 1 0

∗ 1 1

∗ 1 1









, and b =





0

0

1



 ⇒ R3(A, b) =





0 0 1

0 1 2

1 1 2





with ∗ a nonnegative entry.

Its reachability matrix R3(A, b) has rank equal to 3 but it is not positively state reachable because the sequence of controls

to attain e1 is u(0) = 1, u(1) = −2 and u(2) = 0, which has previously steered the initial state to the non-positive state

x(2) = [0 0 − 1]T in two steps.

4. Single-Input Positive State Systems

A generalization of the structure given by the matrices involved in example 2 provides us with a class of reachable positive state

systems. We have proved that a single-input positive state system may be reachable only if the input vector b have a specific

structure.

Theorem 2 Let (A,B)ps ≥ 0 be a positive state system. If it is positively state reachable then the control matrix b is a monomial

vector.

Proof We prove this result by reduction ad absurdum. Let us suppose that b = b1ei1 + b2ei2 + . . .+ breir , with r ≥ 2, bj > 0,

for j = 1, 2, . . . , r . Since (A,B)ps ≥ 0 is positively state reachable hence all canonical vectors ei1 , ei2 , . . . , eir are positively

state reachable. Let kj , j ∈ {1, 2, . . . , r} the number of steps needed to reach the corresponding canonical vector eij , then for

j = 1, 2, . . . , r :

eij = buij (kj − 1) + Abuij (kj − 2) + · · ·+ A
kj−2buij (1) + A

kj−1buij (0)

with uij (0) > 0. Note that, since b is not a monomial vector, kj > 1, for all j = 1, 2, . . . , r .

Let us consider, without loss of generality, that 1 < k1 ≤ k2 ≤ . . . ≤ kr ≤ n. In this case, every canonical vector can be

rewritten as:

eij = αj0b + αj1Ab + · · ·+ αjkj−1A
kj−1b + αjkj A

kj b + · · ·+ αjn−1A
n−1
b, with

αjs =

{

uij (kj − 1− s) if 0 ≤ s ≤ kj − 1

0 if kj ≤ s ≤ n − 1
, being αjkj−1 = uij (0) > 0. (8)

Therefore,

b =
∑r

j=1 bj(αj0b + αj1A+ · · ·+ αjkj−1A
kj−1 + αjkj A

kj b + · · ·+ αjn−1A
n−1b) =

= b(b1α10 + b2α20 + · · ·+ brαr0) + Ab(b1α11 + b2α21 + · · ·+ brαr1) + · · ·+ A
n−1b(b1α1n−1 + b2α2n−1 + · · ·+ brαrn−1).

If, for s = 0, 1, . . . , n − 1, we define

βs = b1α1s + b2α2s + · · ·+ brαrs (9)

then it is easy to see that

(β0 − 1)b + β1Ab + · · ·+ βn−1A
n−1
b = 0.

Moreover, observe that by construction (see equations (8) and (9)), at least βs > 0 for s = k1 − 1, k2 − 1, . . . , kr − 1. But by

Corollary 1, the set {b, Ab, . . . , An−1b} is linearly independent, hence β0 = 1, and β1 = . . . = βn−1 = 0, which is a contradiction.

Consequently, vector b must be monomial.

Theorem 3 Let (A, b)ps ≥ 0 be a single-input positive state system. If (A, b)ps ≥ 0 is reachable, then there exists a permutation

matrix P such that

P
T
AP =























∗ + 0 · · · 0

∗ 0 + · · · 0

...
...
...
. . .

...

∗ 0 0 · · · +

∗ ∗ ∗ · · · ∗























, and P Tb =























0

0

...

0

+























(10)

with + a positive entry and ∗ a nonnegative entry.

Math. Meth. Appl. Sci. 2017, 00 1–10 Copyright c© 2017 John Wiley & Sons, Ltd. 5
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Proof Applying Theorem 2, we derive that b is a monomial vector, that is, b = αej1 , α > 0, for some j1 ∈ {1, . . . , n}. Let

us check that for every canonical vector ejr ∈ R
n
+ with jr ∈ {1, 2, . . . , n}, and jr 6= j1, there exists a column sr of A such that

colsr (A) = αrejr + βrej1 , for αr > 0, βr ≥ 0.

Assuming reachability, every canonical vector ejr is reachable. Since x(1) is a j1-monomial vector and jr 6= j1 then there exists

a k ∈ N such that the canonical vector ejr (a jr -monomial vector) is reached in k + 1-steps, that is:

ejr = x(k + 1) = bu(k) + Ax(k) (11)

where x(k) ≥ 0,∀k.

Note that, on the one hand, x(k) should be nonzero (x(k) > 0) since it is assumed that jr 6= j1 and, on the other hand,

u(k) ≤ 0 since otherwise the above equality is impossible. Moreover, if u(k) = 0 then ejr = Ax(k), and it is only possible if A

has at least one column that is an jr -monomial vector, which proves the previous affirmation for βr = 0.

Assuming that u(k) < 0, then

Ax(k) = ejr − αu(k)ej1 6= 0

with Ax(k) > 0 being a nonnegative linear combination of some columns of A (combining those columns corresponding to

the nonnegative entries of x(k)). It forces that there exists at least a column sr of A such that colsr (A) = αrejr + βrej1 , for

αr > 0, βr ≥ 0.

Is is obvious that we have determined n − 1 different columns of A, one column for each canonical vector. Note that the

remaining column of A can also be in the same way that those columns already determined, that is the addition of a js -monomial

vector with a j1-monomial vector, or alternatively one of the following types, col(A) = 0, col(A) = βej1 with β > 0, or a column

with at least two different positive entries of the position j1.

Now, let us observe that the system is reachable depending on the result of the product of A with b. Since b is j1-monomial

then A · b = colj1A. If colj1A = 0 or colj1(A) = βej1 with β > 0 then clearly,

rank
[

b | Ab | · · · | An−1b
]

≤ 1

and therefore the system cannot be reachable.

Now, let us see that if colj1A has at least two positive entries two different positive entries of the position j1, that is,

colj1A = α1ejr1 + α2ejr2 + w with jr1 , jr2 6= j1, αr1 > 0, αr2 > 0 and w ≥ 0 then the system is not reachable. Let us calculate

x(2):

x(2) = Abu(0) + bu(1) = colj1Au(0) + bu(1) = (αr1ejr1 + αr2ejr2 )u(0) + A · w + bu(1).

We recall that u(0) > 0 thus, although we take u(1) < 0 satisfying A · w + bu(1) ≥ 0, x(2) has at least two positive entries two

different positive entries of the position j1, too. Thus, in 2-steps no monomial vectors can be reached.

Moreover, by the structure of the columns of A, the vector Aαr1ejr1 + Aαr2ejr2 has at least two different positive entries of

the position j1, and in the same way x(3) since

x(3) = Ax(2) + bu(2) = (αr1Aejr1 + αr2Aejr2 )u(0) + A
2 · w + Abu(1) + bu(2)

with A2 · w + Abu(1) ≥ 0. Therefore, no monomial vectors can be reached in 3-steps and so consecutively for k = 4, . . . , n-steps.

In this case, the system is not reachable again.

As a consequence, if the system is reachable then colj1A = α2ej2 + β2ej1 , for α2 > 0, β2 ≥ 0. Hence, the j2-monomial vector

can be reached in 2-steps since

x(2) = Abu(0) + bu(1) = α2ej2 + β2ej1 + bu(1)

is a j2-monomial vector for a suitable choice of u(1) ≤ 0.

Reasoning as in the case of x(1) (a j1-monomial vector) but for x(2) (a j2-monomial vector), we can reach in k-steps a

jk -monomial vector for k = 3, 4, . . . , n satisfying that A · ejk = αk+1ejk+1 + βk+1ej1 , αk+1 > 0, and βk+1 ≥ 0. Thus, constructing

the permutation matrix Q such that jk is assigned to n + 1− k, for k = 1, . . . , n, we obtain the similar system (12) by taking P

the transpose of Q.

Moreover, the inverse implication is true too.

Lemma 2 The positive state system (A, b)ps ≥ 0 where

A =























∗ + 0 · · · 0

∗ 0 + · · · 0

...
...
...
. . .

...

∗ 0 0 · · · +

∗ ∗ ∗ · · · ∗























, and b =























0

0

...

0

+























with + a positive entry and ∗ a nonnegative entry is positively state reachable.
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Proof From Theorem 1, it suffices to prove that every canonical vector is positively state reachable to verify that the positive

state system (A,B)ps ≥ 0 is positively state reachable. Note that b is proportional to the last canonical vector, i.e. b = αen
with α > 0 hence it is straightforward to obtain en in one step since x(1) = bu(0) = en. The following canonical vectors can be

reached in successive steps. From (1), in the second step we get:

x(2) = Ax(1) + bu(1) = Aen + bu(1)

where Ax(1) is the n-th column of A, with pattern [0, . . . , 0,+, ∗]T , and bu(1) is a vector proportional to the last canonical

vector, with pattern [0, . . . , 0,+]T . Therefore, there exists a control u(1) ≤ 0 such that it is possible to attain the canonical

vector en−1 and thus x(2) = en−1. Working in that way, we obtain the remaining canonical vectors until getting the fist canonical

vector at step n because

x(n) = Ax(n − 1) + bu(n − 1) = Ae2 + bu(n − 1)

where Ax(n − 1) is the second column of A, with structure [+, 0, . . . , 0, ∗]T , and bu(1) is a vector proportional to en. Then,

there exists a control u(n − 1) ≤ 0 such that it is possible to reach the canonical vector e1, which finishes the proof.

Therefore, we can sum up the preceding results as follows.

Theorem 4 Let (A, b)ps ≥ 0 be a single-input positive state system, then (A, b)ps ≥ 0 is reachable if and only if there exists a

permutation matrix P such that

P
T
AP =























∗ + 0 · · · 0

∗ 0 + · · · 0

...
...
...
. . .

...

∗ 0 0 · · · +

∗ ∗ ∗ · · · ∗























, and P Tb =























0

0

...

0

+























(12)

with + a positive entry and ∗ a nonnegative entry.

This canonical form allows us to deduce a new canonical form for the positively state controllable single-input case.

Proposition 2 Considering a positive state single-input system (A,B)ps ≥ 0, this system is positively state completely

controllable if, and only if, there exists a permutation matrix P such that

P
T
AP =























0 + 0 · · · 0

0 0 + · · · 0

...
...
...
. . .

...

0 0 0 · · · +

∗ ∗ ∗ · · · ∗























, and P Tb =























0

0

...

0

+























(13)

with + a positive entry and ∗ a nonnegative entry.

Proof The positive state controllability is equivalent to positive state reachability and null-controllability. Thus, from reachability

and Theorem 4, there exists a permutation matrix P such that the structure of matrices P TAP and P TB are fully determined

by canonical form (12). This implies that positive state null-controllability is only possible if the zero vector is reached from a

initial vector x0 > 0 in exactly n-steps, but furthermore it is simply to prove that it is only possible if and only if P
TAP and P TB

has the structure given in equation (12) under permutation similarity.

It is important to recall that null-controllability under positive constrains implies that A is nilpotent (see [16]). However, clearly

by its structure, the state matrix of a positively state null-controllable system has not to necessarily be nilpotent.

5. Applications of single-input positive state systems

5.1. Management of a production chain

Typical examples of positive state system in economy are the production chains. Let us see an example ([2]) where we consider

the industrial system formed by the following three compartments:
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• x1(k): amount of raw material stored at instant k and used by the primary industry to produce simple objects.

• x2(k): amount of raw material contained in the objects of the primary production at instant k. A fraction pi of it is used

for a secondary production of more sophisticated objects and another fraction ri + ci is bought by consumers who can

recycle (ci) these kinds of objects as new raw material after its usage or not (so that it leaves the production chain (ri)).

• x3(k): amount of raw material contained in the more sophisticated objects of the secondary production at instant k, which

again a fraction of it is recycled after usage and another one is lost.

This system can be represented by a discrete-time system given by the equations:







x1(k + 1) = (1− p1)x1(k) + c2x2(k) + c3x3
x2(k + 1) = (1− p2 − r2 − c2)x2(k) + p1x1(k)

x3(k + 1) = (1− r3 − c3)x3(k) + p2x2(k).

Let us suppose that we are interesting in selling a fraction of the raw material to another production chain, but ensuring that

the original production chain has the supply it needs. That situation implies that the system has a negative control but the state

must be nonnegative. That is, we have a positive state system (1) with

A =





1− p1 c2 c3

p1 1− p2 − r2 − c2 0

0 p2 1− r3 − c3



 and b =





1

0

0





and similar to

A =





1− r3 − c3 p2 0

0 1− p2 − r2 − c2 p1

c3 c2 1− p1



 and b =





0

0

1





using the permutation matrix

P =





0 0 1

0 1 0

1 0 0



 .

Note that, by Proposition 2, this production chain is a positively state controllable system only if 1− p2 − r2 − c2 = 0 and

1− r3 − c3 = 0, which implies that the material in step i for i = 2, 3 only depends on the material in the previous step i − 1,

i = 2, 3.

5.2. Epidemiology

In [8], a system is introduced describing the process of ascertaining in a medical center whether an individual is affected by

a certain disease or not by using a test consisting of blood drawn followed by an analysis (positive, negative or ambiguous).

Namely, the state equations of the systems are:









x1(k + 1)

x2(k + 1)

x3(k + 1)









=









0 r 0

1 0 a

0 p c

















x1(k)

x2(k)

x3(k)









+









1

0

0









u(k)

where u(k) are individuals presenting some symptoms of such a disease, supervised by a general practitioner, going to perform the

test during the week k, x1(k), x2(k) and x3(k) represent the number of individuals waiting for a test, the number of individuals

performing the test and the number of individuals under treatment (ill individuals), respectively. In addition, p is the probability

that the test is positive, r the probability that the test has to be repeated (because initial test is ambiguous), a certain percentage

a of individuals under treatment need to perform the test once more, and a certain percentage c of individuals remain under

treatment.

Although initially this system was considered as a positive system, note that in that case we may find an individual having

to consecutively perform the test if it was always ambiguous. However, this same model can be considered as a positive state

system if those individuals who have no symptoms can be remove from the list of patients waiting for a test by the general

practitioner.

Note that this positive state system is reachable since the control action can quit the individuals having to unnecessarily

repeat the test.
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6. Introduction to multiple-input positive state systems

In [12] a discrete-time system (1) with

A =













0.0995 0 0 0 0

0 0.968 0 0 0

0.005 0.032 0.92 0 0

0 0 0.08 0.267 0

0 0 0 0.733 0.748













and B =













15 0 0 0 0

0 38 0 0 0

0 0 15 0 0

0 0 0 17 0

0 0 0 0 14













is used to control the amount of pollution in the five Great Lakes of North America. Let us suppose now that the incoming

pollutant flows stop and that we implement measures to reduce pollution in each water reservoir. That is, we apply negative

controls instead of the previous positive controls. To guarantee the usefulness of model, we need to ensure that states do

not become negative over time. Otherwise, estimation of pollutant would be incorrect, specifically, it would be underestimated.

Therefore, we can consider this model as a multi-input positive state system. But, note that, although the structure of matrix

A does not hold Theorem 2, it is a monomial positively state reachable system because B is a monomial matrix and hence, by

Theorem 1, it is a positively state reachable system, which allows us to control the amount of pollution in the five Great Lakes.

We can also find the opposite situation. In the multiple-input case, a positive state system (A,B)ps ≥ 0 can be reachable

having some nonmonomial columns in the input matrix B, which are necessary to guarantee such property.

Example 4 Let (A,B)ps ≥ 0 be a system given by

A =









∗ 1 0

∗ 1 0

∗ 1 0









, and B =





0 0

0 1

1 1





with ∗ a nonnegative entry.

It is clear that canonical vectors e3 and e2 can be reached in one step. In the same way, canonical vector e1 in two steps using

the sequence of controls u(0) =

[

0

1

]

, and u(1) =

[

0

−1

]

, which maintains the nonnegativity of the states in each previous

step. Therefore, (A,B)ps ≥ 0 is reachable but it is not positively reachable (using only nonnegative inputs).

The above example reveals the great differences between the single-input case and the multi-input case. This last open-

problem would deserve a special attention in the future. This question may be tackled using digraph theory, more specifically,

using the monomial subdigraphs belonging to a digraph of a reachable pair (A,B)ps ≥ 0 (see [3, 5, 16]).

7. Conclusions

In this article, we have dealt with positive state systems, that is, discrete-time linear control systems in which the state is

constrained to lie in the positive orthant Rn+ independently of the inputs involved. Namely, we have focused on the study of certain

fundamental properties of the system, mainly controllability and reachability, both positive state and positive monomial-state. In

fact, we have verified that if every monomial vector of Rn+ is reachable at some finite time for any given positive state system

then reachability is ensured for such a system. Therefore, positive state reachability is equivalent to positive monomial-state

reachability. Moreover, several examples and results have illustrated the great differences with respect to the positive/standard

case. For the single-input case, the structure of the state and control matrices of the system has been completely characterized.

These results have been applied to the management of a production chain and to an epidemiology problem. Finally, the multi-

input case have been also analyzed through an application to the control of the amount of pollution in the five Great Lakes of

North America.

Acknowledgements

This work has been partially supported by Ministerio de Ciencia e Innovación through Grants DPI-2013-46982-C2-1-R and

MTM-2013-43678-P.

References

1. R. Bru, C. Coll, S. Romero and E. Sánchez, Reachability Indices of Positive Linear Systems, Electronic Linear Algebra, 11 (2004)

88–102.

Math. Meth. Appl. Sci. 2017, 00 1–10 Copyright c© 2017 John Wiley & Sons, Ltd. 9
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences B. Ricarte and S. Romero-Vivó
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