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THE CESARO OPERATOR IN WEIGHTED /¢, SPACES
ANGELA A. ALBANESE, JOSE BONET, WERNER J. RICKER

ABSTRACT. Unlike for £,, 1 < p < oo, the discrete Cesaro operator C
does not map ¢; into itself. We identify precisely those weights w such
that C does map ¢; (w) continuously into itself. For these weights a com-
plete description of the eigenvalues and the spectrum of C are presented.
It is also possible to identify all w such that C is a compact operator in
£1(w). The final section investigates the mean ergodic properties of C in
¢1(w). Many examples are presented in order to supplement the results
and to illustrate the phenomena that occur.

1. INTRODUCTION

The discrete Cesaro operator C is defined on the linear space CY (con-
sisting of all scalar sequences) by

( T+ X9 X1+ ...+x,
Cx = [ 21, e
2 n

,) , &= (Tn)nen €CY. (1.1)

The operator C is said to act in a vector subspace X C CN if it maps X
into itself. Of particular interest is the situation when X is a Banach space.
Two fundamental questions in this case are: Is C: X — X continuous and,
if so, what is its spectrum? Amongst the classical Banach spaces X C CV
where answers are known we mention £, (1 < p < 00), 9], [17], and ¢, [17],
[21], both ¢, l, [1], [17], as well as ces,, p € {0} U (1,00), [12], the spaces
of bounded variation bvy, [20], and bv,, 1 < p < oo, [2], and the Bachelis
spaces NP, 1 < p < oo, [11]. For C acting in the weighted Banach spaces
l,(w), 1 < p < oo, and ¢o(w) we refer to [4], [5]. There is no claim that this
list of spaces (and references) is complete; see also [8].

One aim of this paper is to investigate the two questions mentioned above
for C acting in the weighted Banach space ¢;(w). Unlike for the setting of
ly(w), 1 < p < oo, where the corresponding paradigm space for C is ¢,
1 < p < o0, the “paradigm space” ¢; is not available as a guideline for C
in ¢1(w) because C does not act in ¢;. Hence, it is unclear what to expect
when C acts in 41 (w).

Key words and phrases. Cesaro operator, weighted l; space, spectrum, compact operator,
mean ergodic operator.
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So, let w = (w(n))$e, be a sequence, always assumed to be bounded and
strictly positive. Define the vector space

l(w) == {x = (Tn)nen € CN: Zw(n)|xn| < oo} )

equipped with the norm [|z[/1. = >, cyw(n)|z,|, for € £1(w). Then
(1 (w) is isometrically isomorphic to ¢; via the linear multiplication operator
O, : ((w) — ¢4 given by

T = (Tn)nen = Pu(z) = (W(N)Tn)nen-

Accordingly, ¢ (w) is a weakly sequentially complete Banach space with the
Schur property, [19, pp.218-220]. Its dual space (¢1(w)) is the Banach space
loo(u) with the norm ||z]| s = sup, ey u(n)|z,|, for = (z,)nen € loo(u),
where u(n) := w(n)~! for n € N. The closed subspace

{x = (2 )nery € C: T u(n) || = o}

of £ (u) is denoted by c¢o(u) and the restriction of the norm || ||oc. to co(u)
is written as || - |o... Of course, the bidual cy(u)” = ¢ (u) and the dual
co(u) = £1(w). Clearly, the Banach spaces ¢ (u) and co(u) are also defined
and have the above mentioned properties for every strictly positive sequence
u = (u(n))nen, not just for u = w~!. The canonical vectors e;, := (Opn)nen,
for £ € N, form an unconditional basis in ¢;(w). Consequently, whenever C
does act in £;(w), then it is necessarily continuous (via the Closed Graph
Theorem). If inf,cyw(n) > 0, then ¢;(w) = ¢, with equivalent norms and
so we are in a space in which C does mot act. Accordingly, we are only
interested in the case when inf,cyw(n) = 0. Of course, ®,, is also defined
on all of CY in which case it is a vector space isomorphism of CN onto itself.

For any Banach space X, let I denote the identity operator on X and
L(X) the vector space of all continuous linear operators from X into itself.
The spectrum and the resolvent set of T € L(X) are denoted by o(T)
and p(T), respectively, [13, Ch. VII|. The set of all eigenvalues of T, also
called the point spectrum of T, is denoted by o,(T"). The spectral radius
r(T) := sup{|\|: A € o(T)} always satisfies 7(T") < ||T|, [13, p.567|. The
ideal of compact operators from X into a Banach space Y is denoted by
K(X,Y). If X =Y, we simply write (X). The dual Banach space of X
is denoted by X’ and the dual operator of T' € L(X) by T" € L(X).

In Section 2 we identify all weights w such that C acts in ¢;(w); see
Proposition 2.2(i). Necessarily inf,cy w(n) = 0 (c¢f. Remark 2.4(i)) but this
condition is far from sufficient; see Examples 2.5(i), (iii). Moreover, this
necessary condition cannot be replaced by w € cp; see Remark 2.4(ii). Even
if w is a rapidly decreasing sequence it still need not follow that C acts in
(1 (w); see Remark 2.7(ii). The compactness of C in ¢;(w) is characterized
in Proposition 2.2(ii). A useful sufficient condition for w, ensuring the



THE DISCRETE CESARO OPERATOR IN WEIGHTED ¢; SPACES 3

compactness of C in ¢;(w), is the requirement that

1
lim sup 22D

msup — o € [0,1); (1.2)

see Proposition 2.9. Applications of (1.2) to particular weights are given
in parts (i)-(iv) of Examples 2.10. On the other hand, the weights given in
(v), (vi) of Examples 2.10 show that the condition (1.2) is not necessary for
the compactness of C in ¢1(w). A comparison type result for compactness
(and also for continuity) is presented in Proposition 2.13. The usefulness of
this criterion is illustrated via Example 2.14. Somewhat surprisingly, there
exist rapidly decreasing weights w for which C acts in ¢;(w) but, fails to be
compact; see the weight v in Example 2.12(ii).

Section 3 investigates the spectrum of C, provided that C acts in ¢1(w);
for brevity we indicate this by writing C%) for C or C2®) € L(4;(w)).
Relevant for determining o(C(1™)) are the sets

- 1
R, = {t e R: Zntw(n) < oo} and Sy,(1) :={s € R: sup < o0}
n=1

neN n5w(n)
Whenever R, # R (resp. S, (1) # 0) we define ty := sup R,, (resp. s1 :=
inf S,,(1)). Useful connections between ty, s, the sets Ry, S, (1) and the
condition that w is rapidly decreasing are presented in Propositions 3.4
and 3.5. These propositions are needed to establish the two main results
of the section. Theorem 3.7 characterizes o(C1*)) and identifies the point
spectrum o,,(C%)). Tt turns out that o,,(CH*)) = @) precisely when w ¢
1 (cf. Remark 3.8(iii)). Whenever C**) € L(/;(w)) and S, (1) # 0,
necessarily s; > 0 and

{)\G(C:

see Proposition 3.9. In particular, C%*) cannot then be compact. This

)\—L < L}U{l nEN} C o(C®)),

2s1| T 28y n

includes such weights as w, := (=5 )nen for all & > 0 (cf. Example 3.13)
and others. On the other hand, if C"*) is compact, then
1
o (CW)) = {—: n e N} and o(C)) = {0} U g, (C)) (1.3)
n

and the weight w is necessarily rapidly decreasing. The converse is not
valid in general, i.e., there exist rapidly decreasing weights w such that
Ctw) € £(¢)(w)), the spectra of C%) are given by (1.3) but, C%*) is not
compact; see Example 3.15. For each £ € N there exists a weight w such
that 0, (CH*)) = {1: 1 <n < k}; see Example 3.13.

The final section treats various mean ergodic properties of C(H%). Also
relevant is the power boundedness of C%) i.e., sup, oy [[(CH)?|| < oo,
and the weaker condition of Cesaro boundedness (cf. Section 4 for the defi-
nition). We record a few sample results. For instance, if C(%%) € L(41(w)),
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then CM*) is power bounded if and only if the sequence of its iterates
{(Cwh)ml oy is convergent in the strong operator topology of L(¢1(w))
to the projection onto the null space Ker(I — C(t™)); see Theorem 4.6(i).
Moreover, the power boundedness of C*)implies that w € ¢; (cf. Lemma,
4.2). Tt is also established that C*) is mean ergodic if and only if it is
Cesaro bounded (cf. Theorem 4.6(ii)). Such results do not hold for general
Banach space operators; see Remark 4.8. Intimately related to the uniform
mean ergodicity of C*) (indeed, for any Banach space operator) is the
closedness of the range of I — C(%*) in ¢ (w). Under the natural restriction
that w € {1, this property is equivalent to the requirement

1

f;%% o n:Zme(n) < 00; (1.4)

see Proposition 4.11. The condition (1.4) also suffices for C*) to be both

power bounded and uniformly mean ergodic (cf. Proposition 4.12). Ac-

cording to Proposition 4.14, the compactness of C(b*) always implies that
(1.4) is satisfied; the converse is not true in general (cf. Example 4.16).

An effort has been made to present many and varied examples, both to

supplement the results and to illustrate the phenomena that occur.

2. CONTINUITY AND COMPACTNESS OF C IN /4 (w)

Given two strictly positive sequences v = (v(n))22; and w = (w(n))>2,,

let T,,,,: CN¥ — C denote the linear operator defined by

_ [w(n) oz B
Ty = (T Z F]’;))EN, T = (Tp)nen € CV. (2.1)

k=1

Observe that ¢,C = T,,®, as linear maps on CN. Hence, the Cesaro
operator C = ®_'T,,,®, maps ¢, (v) continuously (resp., compactly) into
(1 (w) if and only if the restricted operator T, € L({1) (resp., Ty € K(41)).
In this regard the following result will be useful, [16, p.11], |21, Lemma 2],
22, p.220).

Lemma 2.1. Let A = (Gmn)mnen be a matriz with entries from C and
T: CN — CN be the linear operator defined by

Ty = (Z amnxn> , T = (xn>n€N7
n=1

meN
interpreted as Tx € CN exists for x € CN. Then T € L({y) if and only if

oo

Supz |G| < 00

neN m—1

In this case, the operator norm of T is given by ||T|| = sup,en D ey |Gmn)-
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An immediate application is the following result.
Proposition 2.2. Let v = (v(n))22, and w = (w(n))32, be two bounded,
strictly positive sequences.
(i) C maps {1(v) continuously into {1(w) if and only if

1
M, ., :=su < o0. 2.2
TR 2 22
In this case, ||C|| = M, .
(ii) C maps l1(v) compactly into €1(w) if and only if

lim — ) i wfg‘) = 0. (2.3)

n—oo U(’I’L

m=n

Proof. (i) By the remark prior to Lemma 2.1 we only need to show that the
operator T, ,, € L(¢1) if and only if (2.2) is satisfied.
Now, T, = ®,C®; ! is defined via the matrix A := (@mn) p nen Where,

for each m € N, a,,, := ;”7(](7:3) for 1 < n < m and a,,, := 0 otherwise.

According to Lemma 2.1, T, ,, € L£(¢;) if and only if

sup 1)Zw7<7:1)<oo,

nen v(n) £~

i.e., if and only if (2.2) is satisfied, in which case ||} | = My < 00.

So, assume now that M, ,, < oo, in which case ||T} | = M,,,. Then the
identity C = (I)Z_Ulew(I)v together with the fact that both ®, and CI);l are
isometric isomorphisms, implies that ||C|| = M, .

(ii) Assume first that C € K(¢1(v), ¢1(w)). In particular, C is also contin-
uous and so (2.2) is satisfied with M, ,, < co. The claim is that the operator
A cow™) = co(v™!) defined by Ay := (3o_, %), for y € co(w™), is
then continuous and its dual operator A’ is precisely C: ¢1(v) — ¢1(w). To
establish continuity, fix y € co(w™"). Let € > 0. Select ny € N such that

[yn|w(n)~t < e/M,,, for all n > ng. It follows, for every n > ng, that

> m  [— m| w(m 1 <= wim
> < S e < W X <

Accordingly, Ay € ¢o(v™!). Moreover, for each n € N we have that

Im < < - < Moolollos,
2 S 2 wimy = Wy 2 =07 S Mawlylo

which yields || Ayllo.,-1 < Myullyllow-1. But, y € co(w™?) is arbitrary, and

so A is continuous with ||A| < M, . It is routine to check that A’ = C.
Since C € K(¢1(v),¢,(w)) and C is the dual operator of A, Schauder’s

theorem implies that A € K(co(w™),co(v™1)), [19, Theorem 3.4.15], |23,

b
v(n)

b
v(n)

m=n
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p.282|. In particular, A € L(co(w™"),co(v™)) is necessarily weakly com-
pact. Hence, its bidual operator A" = C € L(Uo(w™), Lo (v™h)) actually
maps {o(w™') into co(v1), [19, Theorem 3.5.8]. But w € £ (w™') and so

C'w € co(v™h), that is, lim,, Cw)m) _ g Gipce Cluw = <ZOO w(m)> ,
eN

v(n) m=n m

we obtain that lim,,_, @ . % =0, that is, (2.3) is satisfied.
Conversely, suppose that (2.3) holds. Then also (2.2) is valid and so
C € L(l1(v),¢1(w)) by part (i) of this Proposition. Consequently, C' €

L((loo(w™), oo (v71)). Observe, for every x € lo(w™?), that

1 x 1 |Tm| w(m) 1 w(m)
E E < 1 g N.
n) &= w(m) m = oo m ' "

v(n) | &= m v(n)

Hence, by (2.3) it follows that lim,, ﬁ >, 2| =0, that is, C'z €

co(v™h). Accordingly, C' actually maps £o(w™!) into co(v™'). That is, the
restriction A := C' |CO ~1), which is continuous from cy(w™") C lo(w™)
into co(v™!) C loo(v™h), has the property that A” = C’ is continuous from
loo(w™) into loo(v!) and maps lo(w™?t) into co(v™!). Accordingly, A is
weakly compact, [19, Theorem 3.5.8|, and hence, also C = A’ is weakly
compact from ¢;(v) into ¢;(w), [19, Theorem 3.5.13|. Since the compact
and weakly compact subsets of ¢1(w) ~ ¢, coincide, [19, p.255], it follows
that C maps ¢;(v) compactly into £;(w). O

m=n

If v = w we denote M, ,, simply by M,,. In the event that M, < oo, the
corresponding (continuous) Cesaro operator C: ¢1(w) — ¢1(w) is denoted
by C%). As indicated in Section 1, we also write C%) € L(4;(w)).

The following simple fact will be used on several occasions.

Lemma 2.3. Let § > 0. Then

[ee)

> L L 2,
nttd = §(m —1)% = omd’ -

n=m

Proof. Fix m > 2. Then

o0

> 1 /°° L S 20
pits = | | xl+d o S(m — 1) = dmod’

n=m

O

Remark 2.4. Let w = (w(n)),eny be a bounded, strictly positive weight

such that C2) € L4, (w)).
(i) Necessarily « := inf,eyw(n) = 0. Otherwise, for n € N, we have
R | 1 < w(m) I & w(m)

L N < M, < oo,
1)7;:1m—w(1) m w(1)Z m >

m=1 m=1

which is impossible.
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(ii) The condition « := inf,eyw(n) = 0, necessary for the continuity
of Cin ¢;(w), cannot be replaced with w € ¢y. To see this, define w by
w(n) :=1if n = 2% for k € N, and w(n) := L otherwise. Surely w & cq.
Set a,, := ﬁ S @ for n € N. If n = 2* for some k € N, then

w=3 ey Yy

Clearly, a = Y ov_ ) < 372 L 457 L <= 4+ 1. Finally, for fixed

m=1 m m=1 m?2

k € N, if 28 < n < 25! then Lemma 2.3 implies that

angn<z s ) (+2—1k>§4.

j= k+1

[\

S0, SUp, ey an < 00, i.e., CH¥) € L(¢(w)); see Proposition 2.2(i).
(iii) Observe that ||ey]|1., = w(1) and [[CE®ey ||y, = S, 2 g4

m=1"m
ctw) - R
HC(l,w)H > “ € _ Z w(m) =14+ w(m) > 1
lex]]1. w(l) &= m w(l) f= m

Fix 1 < p < oo. For every strictly positive, decreasing sequence w =
(w(n))nen (i-e., w(n + 1) < w(n) for n € N) the corresponding Cesaro
operator C”*) maps ¢, (w) continuously into itself and

I < p, (2.4)

where the constant p’ = }% is independent of w, [4, Proposition 2.2|. Ex-

ample 2.5(ii) below shows that this is surely not the case for p = 1. Here,

oo 1/p
lp(w) = x € CV: [|z] o i= <Z|xn|pw(n)> < 00

n=1

which is a Banach space for the norm || - ||, (even if w is not necessarily
decreasing). Remark 2.4(i) indicates we only need to consider decreasing
weights w € cy.

Examples 2.5. (i) Fix v € (0,1]. Define w by w(1) := 2 and w(n) :=
for n > 2. Then w | 0. Moreover, Ce; = (%)%N with

Toey

o0

Lw = Z logn (2:9)

:2

By the integral test the series (2.5) is divergent and so Ce; & ¢1(w). Hence,
C does not act in £;(w).
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(i) For o > 0 define the decreasing weight w,(n) := - for n € N. Then
Lemma 2.3 implies that

o

1 We (M) N 1
Wa(N) — m - " n;lmaﬂ

e

1
an—1)* «
< 2% Via Proposition 2.2(i) we

Hence, M,,, = SUP,eN ﬁ(n) Z%":n waém)

have C%e) € £(¢,(w,)). Observe that w, € ¢, if and only if o > 1.
On the other hand, for each fixed n € N we have

I G wa(m) = 1 L1 1
wa(n)ﬂ;1 m ;ma-&-l = n /n 5a+1d5_5'
Accordingly,
1
|Cw)|| = M, > =, Va>D0. (2.6)
a

That is, there is no constant K > 0 such that ||[C»%)|| < K for all decreasing
weights w | 0 satisfying C%) € L(¢;(w)).
(iii) Let now 7 > 1. Define w by w(n) := m for n € N. Unlike in

(i) above, the integral test reveals that now > is convergent.

n=1 n(log(n+1))7
Nevertheless, C is still not continuous from ¢;(w) into itself. To see this, let
g(x) := z(log(x + 1)), for x > 0. Then g is a strictly increasing, positive,
differentiable function in (0, 00) with ¢'(z) = (log(x + 1))” + 755 (log(z +
1)1 > 0 for all z > 0. Accordingly, f(z) := $ is strictly decreasing,

positive, and continuous in (0,00). So, for fixed n € N, we have

o0

1 0 1 > 1
mog(m + 1)) = /n (g + 1)) z/n @+ D(log(@ + 1))
1
(v — L)(log(n + 1))t

m=n

It follows that

> (log(n+1))” = :
w(m) 2= = OB G g T
Accordingly, sup,,cy ﬁ S % = oo and so C fails to map ¢;(w) into

itself; see Proposition 2.2(i).

Examples 2.5(i), (iii) show if w | 0 “too slowly”, then C may fail to act
in 1(w). On the other hand, Example 2.5(ii) indicates if w | 0 “somewhat
faster” than in Examples 2.5(i), (iii) (note there that even w, € ¢, for all
a > 1), then C1%) may be continuous in ¢;(w). Unfortunately, no rate of
decay for w | 0 can be specified apriori to ensure that C acts in £;(w).

dx
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Given two bounded, strictly positive sequences v, w satisfying v(n) <
w(n) for all n € N we simply write v < w.

Proposition 2.6. Let v be any bounded, strictly positive sequence satisfying
infeyv(n) = 0.
(1) There ezists a decreasing, strictly positive sequence w < v such that
w € ¢o and C does not act in {1 (w).
(ii) There exists a decreasing, strictly positive sequence u < v such that
Ch%is a compact operator in £1(u).

Proof. (i) Define ¢(n) := min{v(k): 1 < k < n} for n € N. Then ¢ is
strictly positive, decreasing, satisfies ¢ < v and ¢ € ¢.
Since lim,, Zzlzk % = 00, for all £ € N, there exists a strictly increas-
ing sequence (k;) ey in N (with &y := 1) satisfying
kj1 1

Y —>j jeN (2.7)

m=k;+1 m
Define w(1l) := 1 and w(n) = ¢(kj41) for n € {k; +1,...,kj11} and
each 7 € N. Since ¢ is decreasing, so is w. In addition, for 7 € N and
kj+1<n < kj we have w(n) = p(k;j11) < ¢(n), that is, w < ¢ < v with
w € cg. For each 5 € N we have

1 i w(m) S 1 If w(m) S ’% 1 S
— = — = — ']
w(k; +1) mety i1 w(k; +1) mek 1 mek 1

and hence, supneNmZij:ij @ = 00. Then Proposition 2.2(i)

shows that C does not act in ¢;(w).
(ii) Set u(1) := v(1). Inductively, for n € N with u(1),...,u(n) already
specified, define

u(n + 1) := min {v(n +1), M} .

n+1

Then u satisfies 0 < u < v with u decreasing and u(n + 1) < Z(—fl) for

all n € N. Accordingly, lim,, . “EZ:)I) = 0 and hence, by Proposition 2.9

below, we have that CM% € IC(¢1(u)). O

Remark 2.7. (i) In the statement of Proposition 2.6 no assumption is
made on v as to whether or not C acts in ¢;(v). The behaviour exhibited in
Proposition 2.6 in relation to C acting in ¢;(w) or not acting in ¢;(w) (even
when w | 0) has no counterpart in the spaces ¢,(w), 1 < p < oco. Indeed,
in these spaces, for every decreasing sequence w the Cesaro operator C is
automatically continuous; see the discussion prior to Examples 2.5. The
difference is that for ¢;(w) the continuity condition (2.2) need not respect
existing monotonicity properties of w.
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(ii) A sequence z = (z,)nen € CV is rapidly decreasing if (n*x,)nen € 0
for every k € N. The space of all such sequences is denoted by s. Let v € s
be arbitrary. Proposition 2.6(ii) implies that there always exists a strictly
positive weight u < v (hence, u € s) with C»%) € KC(¢;(u)). By applying
Proposition 2.6(i) to w it follows that there exists another strictly positive
sequence w < u (hence, also w € s) such that C does not act in ¢;(w).

(iii) The inequality (2.6), together with (2.3) when v = w, provides a
class of weights w, | 0, for a > 0, such that Cw) € £(¢;(wy)) but, Cwa)
fails to be compact.

We now exhibit a large class of weights w | 0 for which C*) s compact.

Lemma 2.8. Let r € (0,1). Then

1 o7
lim — — =0. 2.8

Proof. Clearly (2.8) follows from the following inequalities

1 =7 l <, L m 1
R N S JR— r = = 3 n c N
rm m ~ nre nre (1—r) n(l—r)

m=n m=n

0

Proposition 2.9. Let w be a bounded, strictly positive sequence such that
limsup,, ., 2 —. 1 € [0,1). Then CE®) € K(4y (w)).

w(n)
Proof. Let r satisfy | < r < 1. Then there exists ng € N such that

SUP,, >, wgzz)l) < r and hence, w(n + 1) < rw(n) for all n > ny. It fol-

lows, for a fixed n > ng, that w(m) < ™ "w(n) for all m > n. So, for all
n > ng, we can conclude that

1 & w(m) = Mw(n) 1 rm
< _ N
w(n)mz:n m _w(n)mz:n m rnmz;m
Then Lemma 2.8 shows that (2.3) holds, i.e., C%) € (41 (w)). O

Examples 2.10. (i) Let w(n) := n®r", for r € (0,1) and 8 > 0 fixed and
for all n € N. Then lim,, wgz:) =r e (0,1).
(ii) Let w(n) = - for n € N. Then

lim w(n—+1) = lim ! n = 0.
n—oo  w(n) nsoomn +1 \n+1
(iii) Fix a > 0. Let w(n) = % for all n € N. Then
1
lim M — lim —~

—

0.

(iv) Let w be the positive sequence defined by w(1) := 1 and w(n+1) :=
a,w(n) for n € N, where ag), := % and agy_1 == % for p € N. Then, for fixed
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p € N, we have %2;1) = ag, = 5 and % Aop—1 = i. Accordingly,
lim sup,,_, ., wq(ﬂ’z;r)l) =1

According to Proposition 2.9, each of the weights w in (i)-(iv) has the
property that C%) € KC(4;(w)).
(v) Fix 0 < # < 1 and set wg(n) := e~ for n € N. Since

1 _
lim —wﬁ(n—i_ ) = lim " "D = Jim ¢ #/"'77 = 1
n—oo wﬁ(n) n— o0 n—o00

because n — (n +1)? = n?(1 - [1 + g +0(3)]) = —B/n'"F, we see that
Proposition 2.9 is not applicable. However,

1 o0 w m o 6,m5 enﬁ o0 efxﬁ
> )=e”‘32—1£—/ Ll
wg(n) &~ m — mPml=8 — nf [ | xl-h
m=n m=n
J— _ o B
as T+ Smp = ﬁ is decreasing in (0, 00). Since - <—%e‘°"’ﬁ) = &,
B
it follows that [ S do = %e’(”’l)ﬂ and hence, that
oo 1-8
Z wp(m) o 1 s &
- 3¢ - B
—~ m Bn Bn
nliﬁ
But, lim,, 652,7 = 0 and so Proposition 2.2(ii), with v := wg, implies
that C(ws) € L£(¢;(wp)) is compact.
If =1, then ws(n) = e for n € N and so lim,, wfj};:)l) =1<1

wg(n+1)
wg(n)

For $ > 1, observe from above that lim,, . = limy, o0 e """ = 0.

So, for B > 1 the compactness of C:*8) does follow from Proposition 2.9.
(vi) Fix v > 1 and set w,(n) = ¢ "™ for n € N. Tt is shown in

[5, Remark 2.10(ii)| that lim,, % = 1 and so Proposition 2.9 is not

applicable. However,

o _ 24
e~ log7(m)

An — 1 Wy (m) _ elogf’(n) Z

m=n m=n

% ,—log"(2)
< elogy(”)/ ——dx, n>2,
n—1 z

m

e~ log7(v) 1

because x +— is decreasing in (1,00). Accordingly,

T T zlog¥(z)

oo ,—log”(z) o0 _
A, < elogw(”)/ e—dw:elogw(n)/ —}1f/($) dx
n-1 X no1 vlog?" " (x)

6log”(n) 0o ) p elog“’(n)—log”(n—l)
—f(x))dr = ,
vlog" ' (n —1) /n_l( fi@)) vlog” ' (n — 1)
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_ —logY (z
where f(a:) — e—lOg'y(x) (i.e., f’(:zc) _ —log” L(z)elog7( )). But, for n > 27

T

log?(n) —log” ' (n — 1) = ¢'(&,), for some &, € ((n —1),n),

where g(t) := log”(t) satisfies ¢'(t) = M — 0 as t — oo. Hence,

0 < log”(n) —log” *(n — 1) < 1 for all n > M and some M € N with
M > 2. It follows that

A, < -~ Con> M,
vlog" (n — 1)

from which we can conclude that lim, .., A, = 0, i.e., C:¥) € K(¢;(w,))
for all v > 1; see Proposition 2.2(ii).

Remark 2.11. Examples 2.10(v), (vi) also follow from the following fact.
Let w be a bounded, strictly positive sequence with the property that, for
every k € N there exists n(k) € N such that the sequence (nkw(n))f:n(k) is
decreasing. Then C*) € (4, (w)).
To see this, set a, = —— 3" “" for n € N. Fix k € N. Then

w(n) m=n m
oo k. o
ok mrfw(m) 1 A 1
0= D ) e S 2 e 02 (),
because mﬂ:zgnm)) <1 for all m >n. But, Y ~°_ mk1+1 < k(nil)k (see Lemma

2.3) and so a, < ﬁ for n > n(k). Since sup,,s ., ﬁ < 2 for some
m(k) > n(k) it follows, for each k € N, that there exists m(k) € N such
that a, < % for all n > m(k). This condition implies that lim, ., a, = 0

and hence, via Proposition 2.2(ii), that C%) € (¢, (w)).

Let v, w be bounded, strictly positive sequences satisfying v < Aw for
some constant A > 0. Then the natural inclusion ¢;(w) C ¢;(v) is con-
tinuous because |71, < Al|lz|1w, for # € £1(w). Suppose that CL®) €
L(¢1(w)). Then C: ¢y(w) — £,(v) is also continuous with ||C|| < A|/CHw)].
According to Proposition 2.6, C need not have an ¢;(v)-valued continuous
linear extension from ¢;(w) to ¢;(v). Similarly, if C**) € K(¢;(w)) and
C¥) € L£(¢1(v)), then CH*) need not be compact. The following explicit
examples illustrate these features.

Example 2.12. (i) Select a strictly increasing sequence 1 =: ky < ko < ...

in N sa‘gisfying kji1 > 2k; for each j € N and lim;_,, zg:hrk] % = 0 (eg.,
kj == j7). Set v(1) := 1 and, for each j € N, define v(n) := m for
ki +1<n <k;. For fixed j € N it follows that
oo Kj+1 Kj+1
v(k; +1) mek 1 v(k; +1) mek 41 mek 41
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1 (
and hence, supjey ;75 Z;f:kﬁl o
that C does not act in ¢1(v).
On the other hand, define w(n) := 2 for n € N. Given n > 2, select
J € Nsuch that k; +1 <n < kj;;. Then

= o00. Proposition 2.2(i) implies

v(n) _ n < kji1 _ 1
w(n) 22k —ky) T 2k —ky) 201 — )

ki1

<1

and so v < w. Moreover, C%) € L£(¢;(w)); see Examples 2.5(ii).
(ii) Define the decreasing sequence v by v(1) = v(2) := 1 and
1

W’ for 21+1§n§2’+1 and iEN,

v(n) =
and the sequence w := (nn—lﬂ)neN. Given n > 3 select ¢ € N such that
28 +1<n <27t Then

v(n) B n'n (21’-}—1)2”121'4-1

w(n) T 9i9(>i+1)2FL = 9i9(i41)2i+1

= 2.

; (1)
Since wd) =

(22)) = §, it follows that v < 8w. In particular, v € s.

According to Proposition 2.9 (as lim,, w1(1}71(:)1) =0) Cw) is compact. On
the other hand, C**) is continuous (see Fact 2 in Example 3.15 below) but

not compact (see Fact 3 in Example 3.15 below).

We now present a positive comparison result where difficulties such as
those observed in Example 2.12 do not arise.

Prop051t10n 2.13. Let v, w be bounded, strictly positive sequences such

that ( ));’f no 15 @ decreasing sequence for some ng € N.

(i) [fC (Lw) e £(6(w)), then also CHY) € L(4,(v)).
(ii) If CHw) € K41 (w)), then also CHY) € K(4,(v)).

Proof. (i) Define «, := ;’)((Z)) for n € N in which case «, > «,41 for all
n > ng. Proposition 2.2(i) implies that M,, < oo; see (2.2). Moreover,
I <= v(m) I oy w(m) I & w(m)
- Gm < < M,, (29
v(n) Z m w(n) mZ:% a, m  ~ wn) Z m (2:9)

m=n m=n

for all n > ng. In particular, via (2.9),

> (k) Lk 1 = vk

k=1 k=1 0/ k=no

For each n € {1,...,ny—1} it follows that ﬁ < ( and hence,

.,U(HOA_H}}@O.

o S
= A
» = Sup ZU(WT <maX{Mw,max{U(1 .

’U
neN m—n,

)
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Accordingly, C%) € L(4;(v)).
(ii) Let ng be as in the statement of the proposition. Let e > 0. Since
Ch®) is compact, there exists n(e) > ng such that

see (2.3). It then follows from (2.9) that also

1 oo
— Z v(m) <€, n>mny(e) > ng.
m

m=n

Accordingly, C'¥) is also compact; see Proposition 2.2(ii). OJ

Example 2.14. (i) For w := (=5 )nen with a > 0, Examples 2.5(ii) shows

that C%) € L£(¢1(w)). Define v(n) := W(nﬂ)’ n € N, with § > 0.

Then » is a decreasing sequence and so Proposition 2.13(i) implies that
Chv) e L(4(v)).

(ii) Let w(n) = m, n € N, with # > 1, in which case Ct¥) ¢
L({1(w)) by part (i). Also, via Examples 2.5(ii), v := (25 )nen satisfies

Chv) e L(41(v)). Consider the sequence £ = (bgﬁ(%l))nel\;. The derivative

of the function f(x) := logﬁ(TxH) for x > 1 is given by
o) = (Bx — (= + 1) log(z + 1)) log”*(x + 1)
B z2(z+1)

and hence, f is decreasing on ((e’ —1),00). So there exists ng € N such that
(&myeo g decreasing. Since C) is not compact (by Remark 2.7(iii)), it

w(n)/n=no

follows from Proposition 2.13(ii) that C(%*) also fails to be compact.

Remark 2.15. Let v, w be bounded, strictly positive sequences satisfying
Av < w < Asv for positive constants Ay, As. Then ¢1(v) and ¢1(w) are
equal as vector spaces and the norms || - ||, and || - |[1,., are equivalent. Ac-
cordingly, C&%) € L(¢1(w)) (resp. K(¢1(w)) if and only if CH) € L(¢,(v))
(resp. K({1(v)). For instance, let v = (=5)pen with a > 0. Consider
any bounded, strictly positive sequence ¢ satisfying v := inf,cy @(n) > 0.
Then w = (p(n)v(n)),en satisfies Yo < w < ||p||ov. Via Examples 2.5(ii),
Chv) € L£(¢1(v)) and so also C®) € L£(¢;(w)). Remark 2.7(iii) shows that
C) is not compact and hence, also C1®) fails to be compact. Or, suppose
that v < v. Then v < v+ v < 2v and so C-¥) g continuous (resp.
compact) if and only if C1?) is continuous (resp. compact).

3. SPECTRUM OF C(tw)

The aim of this section is to provide some detailed knowledge of the
spectrum of C®). For 1 < p < oo it is known for every strictly positive,
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decreasing weight w that the spectrum of CP%) € L£(¢,(w)) satisfies
o(CPw)y Cc{reC: |\ <7}

With p = 1% a constant independent of w; see (2.4) above and [4, Theorem
3.3(i)]. It will be shown, for p = 1, that no such constant (independent of
) exists; see Example 3.13. The spectrum of C(v%) is characterized in The-
orem 3.7. Further properties of o(C(*)) are exhibited in Proposition 3.9.
Whenever C%) is a compact operator, a complete description of o(CH*))
is given in Proposition 3.11. Several relevant examples are presented.
We begin by recalling the following known fact; see e.g. [3, Proposition
4.1], |6, Propositions 4.3 and 4.4|. For convenience of notation we set ¥ :=
+:m € N} and Yy := X U {0}. Recall that C" is a Fréchet space for the
le-topology of coordinatewise convergence.
Lemma 3.1. (i) The spectrum o(C,CN) = 7,,(C,CN) =
(ii) Fiz m € N. Let 2™ = (xgm))n e CV where 2" == 0 for n €
{(1,...,m—1}, a0 =1 and 2" := % forn>m. Then

the 1-dimensional eigenspace of = -~ 18 gwen by
1
Ker <—I — C) — span{z(™} c CV.
m

Remark 3.2. For A = 1, the corresponding eigenvector for C: CN — CV is
the constant vector 1 := (1),en. Accordingly, if w is any bounded, strictly
positive weight such that C%%) € £(¢,(w)), then 1 € 0,;(CH®)) if and only
if 1 € ¢1(w), i.e., if and only if w € ;.

The following inequalities, [4, Lemma 3.2], [21, Lemma 7|, will be needed.

Lemma 3.3. (i) Let A € C\ Xy and set a := Re(+). Then there exist
constants d > 0 and D > 0 (depending on a) such that

Lo

(ii) For each m € N we have that
(n—1)!
(n—m)!

1—— N. 1
SRR (3.
~n™" 1 for all large n € N. (3.2)

For every bounded, strictly positive weight w = (w(n)),en recall that

w = {t € R: an ) < 00} (3.3)

In case R, # R we define ty := sup Rw.

Proposition 3.4. Let w = (w(n))>2, be a bounded, strictly positive se-
quence. The following conditions are equivalent.
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(i) (n™w(n)), € €1 for all m € N.
(i) w € s.
(iii) Ry, = R.
If, in addition, CH%) € L(¢y(w), then (i)-(iii) are equivalent to
(IV) b g O'pt(c(l’w)).

Proof. (i)<(ii) follows from the definition of the space s.

(i)« (iii) follows from the definition of R,; see (3.3).

Assume now that C%) ¢ E(ﬁl( ).

(iv)=-(i) Fix m € N. Then —= € 0,,(CH*)) C 7,,,(C, CY) with 2("+V as
its eigenvector in CV; see Lemma 3.1. So, necessarily (™Y € (1 (w), i.e.,
(w(n)zd"),en € £1. But, this happens only if (n™w(n)), € (1; see (3.2).

(i)=(iv) Fix m € N. Then (n™ 'w(n)), € ¢; and so the sequence
(w(n)x%m))neN € (y, ie., 2™ € {(w), where 2™ is as in Lemma 3.1.
As (™ is an eigenvector corresponding to the eigenvalue % for C acting on
CY, it follows that L is also an eigenvalue for C(h). O

Given a strictly positive, bounded sequence w = (w(n)),en, recall that
Sw(l) == {s € R: supneN#(n) < oo0}. In case Sy,(1) # 0 we defined

s1 :=1inf Sy, (1). Since nsﬂf(n) > n5||zlu||oo’ for n € N, it follows that s & S,,(1)
for every s < 0 and hence, S,,(1) C [0,00). Accordingly, s; > 0. If w(n) > «
for all n € N and some a > 0, then C does not act in ¢;(w); see Remark
2.4(i). So, we restrict our attention to weights w with inf,cyw(n) = 0. In
this case - ¢ (. Hence, if S,(1) # 0 and s € S,(1), then necessarily
s > 0 with nM < w(n) for some M > 0 and all n € N. It follows that
[s,00) € S,(1). So, whenever S, (1) # 0 (with L & ¢,) we can conclude
that S, (1) is an interval of the form [s;,00) or (s1,00) with s; > 0.
Concerning R, (see (3.3)), whenever R, # R the quantity t, is finite
with tg > —1 and R, = (—00,1g) or R, = (—00,ty]. Moreover, R,, = () is
impossible as Y " n'w(n) < ||w|le > ey n' < 0o whenever ¢ < —1.

Proposition 3.5. Let w be a bounded, strictly positive sequence.

(i) If Sw(1) # 0, then ty < s1. In particular, R, # R.
(i) If Ry, # R, then S, (1) C [to, 00).
(iii) If w € s, then S, (1) = 0.

Proof. (i) Fix any s > s;. Then for some M > 0, we have —"— ( < M for all

)
n € N and hence, n°w(n) > 4 for n € N. Accordingly, (n w(n))nen € 41,
i.e., s ¢ R,. This implies that (s1,00) C R\ Ry, i.e., to < s1.
(ii) Fix any ¢ < t¢ in which case lim,,_,o, t"w(n) = O. Hence, there exists
K € N such that n! < wL for n > K. So, for any s € R we have (as

L > 0 for n € N) that "—t for all n > K. Hence, if s < t, then

ns nsw(n) =

(g Jnent & Loo and 50 s & S,,(1 ) This implies that S, (1) C [to, 00).
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(iii) Suppose r < 0. Since w € ¢y, there exists L € N such that ﬁ >1

n)
for n > L. Hence, m > % for all n > L and so r € S,(1). Forr >0
fixed, set m := 1+ [r]. Since >~ n™w(n) < oo (see Proposition 3.4),
there is J € N such that ﬁ > n™ for n > J and hence, #(n) > Z—T for

n > J, that is, r € S, (1). O

Remark 3.6. (i) The converse of Proposition 3.5(iii) is not valid. Indeed,
let w = (w(n))nen be the strictly positive weight with w | 0 as given in
[5, Remark 3.2]. It is shown there that there exists a strictly increasing
sequence (n(k))ken in N with the property: for each ¢ € R we have

1
Gt = 7
Hence, t € S, (1) and so S,(1) = 0. It is also shown in [5| that w ¢ s.
(ii) If v, w are bounded, strictly positive sequences with w < v, then = <
L from which it follows that S;(w) C Si(v). Hence, inf S;(v) < inf Sy(w).
Also, it is clear from (3.3) that R, C R,, and so sup R, < sup R,

SEE

We now come to the main results of this section. The following result
characterizes the spectrum of C(h%).

Theorem 3.7. Let w = (w(n))uen be a bounded, strictly positive sequence
such that C) € L(61(w)).
(i) The following inclusions hold:
¥ C %y Co(Ch®). (3.4)

(ii) Let A € Xo and set o« :=Re (5). Then X € p(C™)) if and only if

oo

I S wn) _
Sup > o <0 (3.5)

n=m-+1

(iii) Suppose that R, # R, i.e., ty < co. Then

1 1
{—:mEN, (m—l)ERw}:apt(C(l’“’))g{—:mGN, 1§m§t0+1}.

m m
(3.6)
In particular, o,,(CH®) is a finite subset of ¥ (possibly empty).
If R, =R, then
op(CHW) =3, (3.7)

Proof. The proof is via a series of steps.
(i) The dual operator A := (C1®))" € L({oo(w™)) is given by

Ay = (Z %) s Y= (Yn)nen € log(w ™). (3.8)

neN

Step 1. 0 g O'pt(A).
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If Ay =0, for some y € loo(w™?), then z, := >~ ¥ =0forallneN.
Hence, y, = n(z, — 2,41) = 0, for n € N, and so A is injective.

Step 2. X C Upt(A).

Let A € X, e, A = % for some m € N. Via (3.16) below, the non-zero
vector iy = (Yn)nen defined via y; € C\{0} arbitrary, v, := 1 Z;i (1-5)
for 1 < n < m and y, := 0 for n > m, which clearly belongs to £y (w™!),
satisfies Ay = \y.

Step 3. ¥y C o(Ch),

For every T' € L£(X) with X a Banach space, we have 0, (7") C o(T),
[13, p.581], with o(T') closed in C. By Step 2 we then have ¥y C o(C(hw)).
(ii) Step 4. Fiz A & Xo. Then A € p(CH®)) if and only if (3.5) holds.

To verify this we argue in a similar way as in [4] or [10]. We recall the
formula for (C — AI)~t: CN — CN whenever A\ € 3, [21, p.266]. Namely,
for n € N, the n-th row of the matrix for (C — A\I)~! has the entries

-1
- , 1 <m<n,
n/\2 Hk:m (1 - ﬁ)
n 1
= m=n
IL—nXA LN ’
and all the other entries in row n are equal to 0. So, we can write
_ 1
(C—A)'=D,— EEA’ (3.9)
where the diagonal operator Dy = (dnm)nmen 1S given by d,, := ;_/\ and
dpm = 0 if n # m. The operator E)x = (€um)nmen is then the lower

triangular matrix with ey,, = 0 for all m € N and for every n > 2, with

Cnm = mlfl<m<nandenm.—01fm>n

As A & B, we have d()) := dist(X, Do) > 0 and [dn,| < 5 for n € N.
Hence, for every xz € ¢1(w), it follows that

||D>\ ||1w Z|dnnl’n|w S Z| 71| ( )Hlew

This means that D), € L({;(w)). So, by (3.9) it remains to show that
E\ € L(¢,(w)) if and only if (3.5) is satisfied for o := Re ().

To this end, we note that E) € L(¢;(w)) if and only if the operator
Ey: CN — CN given by E) = ®,Ed., i.e.,

-1

3

(Ex(z

:cm, reCY neN,
m:lw

defines a continuous linear operator on ¢y (see the comments prior to Lemma
2.1). So, the claim is that E, € L£(¢;) if and only if (3.5) is satisfied for
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a :=Re (3). To establish this claim, observe that (3.1) implies

D! d-!
nl_a S |€n1| S nl—IX’ n Z 2,
d D! d-1D’
nl-amo < |6nm’ < nl—oma’ 2<m< n, (310)

for some constants d’ > 0 and D’ > 0 depending on A.
Suppose first that E\ € £(¢1). Then Lemma 2.1 implies that

[e.9]

Z w(n)|enm| < oc.

n=m+1

1
sup
meN W (m)

9) w(n)

By (3.10) we have sup,,cy m Y il mima < 00, i.e., (3.5) is satisfied.

Conversely, if (3.5) is satisfied, then sup,,cy #(m) S wln) < .

n=m+1 nl-o
1 e ¢]

By (3.10) this implies that also sup,,cy == > -~ 1 w(n)|epm| < co. There-

w(m)
fore, via Lemma 2.1, we can conclude that Ey € L(¢1). The claim is proved.

The proof of part (ii) is thereby complete.

(iii) Suppose first that R, # R.

Step 5. Both the equality and the inclusion in (3.6) are valid.

The proof of Step 5 is a routine adaption of the proof of Step 7 in the
proof of Theorem 3.3 in [4]; just substitute p = 1 there. In particular, it
follows that L € 0,,(C)) if and only if (m — 1) € R,,.

The previous observation also allows us to adapt the argument of Step 8
in the proof of Theorem 3.3 in [4] to establish the following (final)

Step 6. Assume that R, =R. Then (3.7) is valid. O

Remark 3.8. (i) Step 1 in the proof of Theorem 3.7 implies that C+*) has
dense range, i.e., 0 belongs to the continuous spectrum of C%),

(i) It is clear from (3.6) that if L € 0,,(C**)) for some M € N, then
also L € 0,,(C) for all m € {1,..., M}.

(iii) It can happen that 0,,(C*)) = ); see Example 3.13 below. In view
of part (i) and Remark 3.2 this is equivalent to 1 & o,,(C*™)) ie., w & £;.

(iv) Suppose v, w are bounded, strictly positive sequences such that
Chw) ¢ £(¢1(w)) and (5((2)));’0:% is decreasing for some ng € N. Proposition
2.13(i) implies that C¥) € L(¢,(v)). Let A € p(CE®))\ X, i.e., (3.5) holds
for o :=Re (). Setting a, := o) for € N it follows, for m > ng, that

- w(n)

1 —~ v(n) 1 - & w(n) 1 w(n)
mv(m) Z nl=a  mew(m) Z o, ni—e Smaw(m) Z nl-o’

n=m-+1
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Hence, (3.5) implies that v := sup,,>,, mxfzmﬂ :f—fl < 00. Set
§:= max{@: 1 <m < ng}. Then, for m e {1,...,n9— 1}, we have

1 = v(n) B 1 v(k) “v(ng) _ 1 = v(n)
mv(m) Z nl=o  mey(m) Z kl—e +m%(m) ngv(ng) Z nt-a

n=m+1 k=m-+1

L <~ vk) | o\ yu(no) - (k)
= v(m) 2 i (E) v(m) S92 gima T rw070(no).

k=m+1 k=1

Accordingly, sup,,cy m% ) ) :1("1 < oo and so Theorem 3.7(ii), ap-

plied to v, shows that A € p(CH) \ 3, that is
o(CE) C o (CI)YU B, C o(CE) U B,.

Of course, if bounded, strictly positive sequences v and w satisfy A;v <
w < Ay for positive constants A;, Ay and C%) € L(4,(w)), then Remark
2.15 implies that o(Ct™®)) = o¢(C). As an application, for fixed a > 1

consider the sequence w given by w(1) = w(2) = 1 and w(n) := = for
2+ 1 <n <2 and i € N. Define v(n) := W for n € N. Then
A <w < Ay (3.11)

for positive constants Ay, As. To establish (3.11), fix n > 3 and select
i € N such that 2° +1 <n < 2!, Then
w(n) nlog®(n+1) S 21 log™(2°)
U(n) o jai—1 = jagi-1

= 2log” 2.

15((11)) = log™®2 and % = 2log® 3 it follows, with A; = 2log® 3 that

the first inequality in (3.11) is satisfied. Concerning the other inequality in
(3.11) observe, still with n and ¢ as above, that

w(n)  nlog*(n+1) < 211 Jog®(2+2) .y <z - 2)aloga2 0> 3
1 T

Since

v(n) o joQi—1 - joQi—1
Since llmz_m# = 1, there exists As > 0 such that w § Ayv.  This
establishes (3.11). It is shown in Example 2.14(ii) that C*¥) € E(@l( )
According to (3.11) and Remark 2.15 also C%) € L(¢;(w)). The above

discussion and (3.11) then imply that
op(CI) = g, (CE)Y and o (CHY)) = o(CL)). (3.12)
Combining Fact 8 of Example 4.17 below with (3.12) yields
31
2

It was noted above that always s; > 0. Note, for w = (m)n@\;, that

s1 = 0 and w | 0. But, C does not act in ¢;(w); see Example 2.5(i). For
weights w with C*) € L£(¢;(w)) this phenomenon cannot occur.

op(CP) = {1} and o(CM) = {)\ eC: ’)\ — %
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Proposition 3.9. Let w be a bounded, strictly positive sequence such that
Chw) € L£(41(w)) and Sy,(1) # 0.

(i) It is necessarily the case that sy > 0.

(ii) For the dual operator (C™)) € L(ly(w™)) of CE%) we have

1 1
AeC: A — — ¥ C Clhwly 1
Drec o< fuscoemy ey
and
e (C\scdrec: - < L1 (3.14)
P - 281 - 281
For the Cesaro operator CH%) jtself we have
reC: h— | < L Vus ot (3.15)
251 o 281 -

Proof. (i) Suppose that s; := infS, (1) = 0. Fix any s > 0. Then
w(n) > C(S) for some constant ¢(s) > 0 and all n € N. Hence, S°° 1) >

n=1 nl-s =
¢(s) Y2 ) = which shows that >~ w(l) diverges (for every s > 0).

Fix s > O with s € ¥ and set )\ % € R. By the previous paragraph
Doy Theorem 3.7(ii) implies (put m = 1 in (3.5)) that
A\ & p(C(lw ), i.e., /\ € o(C). So, the unbounded set {: s > 0} \ U is
contained in o(C™)); impossible. Hence, s, > 0.

(ii) We proceed by a series of steps. Denote again by A € L({o(v)) the
dual operator of Cb®), where v := w™".

Step 1. {A € C: ‘)\— —‘ < —} C o,(A).

281

Let A € C\ {0}. Then Ay = Ay is satisfied for some non-zero y € (o (v)
if and only if Ay, = > ",o Y& for all n € N. This yields, for every n € N,
that A(Yn — Yns+1) = 2 and s0 Yns1 = (1 — 1) yn. It follows that

- 1
Ynt1 = U1 H <1 - E) n €N, (3.16)

k=1

with y; # 0. In particular, each eigenvalue of A is simple.
Let now A € C\ X satisfy ‘/\ — 5=

251
note that A # 0. For such a \ the vector Y = (Yn)nen € CN defined by
(3.16) actually belongs to /o (v). Indeed, via Lemma 3.3(i) there exists
¢ = ¢(A\) > 0 such that

< 5 (equlvalently, a:=Re(3) > s1);

n

[1

k=1

1— %‘ < cn’Re(l/’\), n € N.
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It then follows from (3.16) that

n

[ylw(n) ™ = [y w(n) ]

k=1

where the sequence (n~R¢(/Ny(n)~1),en is bounded because Re(1/)) €
Sw(1). That is, y € £ (v). Hence, A € g, (A).

Step 2. 0,0(A) \ = C {)\e(C: ‘)\—ﬁ <

— 287

Fix A € 0,:(A) \ Xo. According to (3.1) there is § = () > 0 such that
k=1

But, as argued in Step 1 (for any y; € C\ {0}) the eigenvector y = (Y, )nen
corresponding to the eigenvalue A of A, which necessarily belongs to £ (v),
i.e., Sup,ey |[Yn|w(n)™! < oo, is given by (3.16). Then (3.17) implies that
also sup,,cy m < 00 (1 e, Re(3) € S,(1)) and so Re (§) > sy, that

L= | < elyfn™ "W Mw(n)

1

1
ViELs n RN e N (3.17)

is, \ € {,u eC: ’u < 5

It is clear that Steps 1-2 above, together with Steps 1 and 2 in the proof
of Theorem 3.7, establish the two containments in (3.13) and (3.14).

For T' e £(X), with X a Banach space, 0,,(1") C o(T), [13, p.581], with

o(T) closed in C. So, (3.15) follows from (3.13). O
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Remark 3.10. The converse of Proposition 3.9(i) is not valid. Indeed,
for every o > 0 the exists a weight w | 0 with s; = « but, C does not
act in {1(w). To see this let (k;)jen € N (with k1 := 1) be a strictly
increasing sequence satisfying (2.7). Define w(1) := 1 and w(n) := (kﬁ;l)a
for each j € Nand k; +1 < n < kj;1. For s := «a observe, if j € N and
:I{Zj +1 S n S kj—i-la then
L U7 o O M (/o D
nsw(n)  n* (ki +1)°
Hence, sup,,cy nsw(n) < oo and so a € Sy, (1), ie., [a,00) C S,(1). On the
other hand, for each j € N and n := k; + 1, we have for each s < a that
1 (kj + 1)
sup =sup ——=- =
jen nfw(n)  jen (kj +1)°

It follows that sup,cy—2—= = oo and so s & S,(1). Hence, we have

w(n)

established that S, (1) = [« oo) ie, s = a Arguing as in the proof of

Proposition 2.6(i) it follows that sup,cy (k 0 S wlm) — 6 and so,

mij+1 m
via Proposition 2.2(i), C does not act in ¢;(w).

According to Proposition 3.5(iii), such weights w (with s; > 0) cannot
exist in s.
The following result should be compared with |4, Proposition 4.1].
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Proposition 3.11. Let w be a bounded, strictly positive weight such that
Cw) € KC(¢1(w)). Then the following properties hold.

(i) op(CE)) =3 and o(CHW)) = 3.

(i) w € s.

Proof. (i) It is clear that 0 & 0,,(C%)) as C: CN — CN is injective. The
compactness of C:%) then implies that o,,(C%)) = o(CH®)\ {0}, [19,
Theorem 3.4.23]. Moreover, Lemma 3.1 reveals that also o,,(Ct%)) C
o,t(C,C) = 3. The two previous facts, together with Theorem 3.7(i), imply
the validity of the two equalities in (i).

(ii) By Theorem 3.7(iii) we must have R, = R. Otherwise, ¢, is finite
and so (3.6) implies that o,,(C1%)) is a finite set. This is a contradiction
to part (i). So, R, = R and hence, w € s; see Proposition 3.4. O

Remark 3.12. (i) If w is a bounded, strictly positive weight such that
Ctw) € £(4(w)) and Sy (1) # 0, then (3.15) implies that Cw) ¢ (¢, (w)).

(i) Recall, for T € £(X) with X a Banach space, that T" is power bounded
if sup,, ey |77 < oo. If w is as in part (i) and 0 < s; < 1, then é > 1.

It follows from (3.15) and the spectral mapping theorem that 0, %] -

o((CE»N™) for all n € N. Then the spectral radius inequality implies
that é < (CO¥N)n|| for all n € N. Accordingly, C1*) cannot be power

w)\n s_l n .
bounded. Since also ”(C(l;l)) I > (1n) for n € N, it follows from the
Principle of Uniform Boundedness that {%} . cannot converge in
ne

L(¢,(w)). In particular, C**) cannot be mean ergodic; see the discussion
prior to Lemma 4.1 below.

It is time for some relevant examples.

Example 3.13. (i) Let wa(n) = =, n € N, for any fixed a > 0. According
to Example 2.5(ii) we have C%) € £(/;(w,)). Tt is routine to check that

Sw, (1) = [@,00) and hence, s; = a > 0. The claim is that
1 1
{)\EC: A——| < —}uz:a(c(lvw). (3.18)

200 T 2«

Indeed, according to (3.15) we have

1 1
A= | < = FUD Co(Chwe)y,
{)\E(C A 5 _ZQ}U Co(C )

To establish the reverse inclusion, fix A € C\ ¥ such that |)\ - i‘ > o
We show that A € p(C(hwa)). To this effect, set 3 := Re (%) Then 8 < a,
that is, (« — #) > 0. Lemma 2.3 implies, for every m € N, that

> wa(n) 1
2w T e S o B

n=m+1 n=m-+1




24 A. A. Albanese, J. Bonet and W. J. Ricker

and so
1 = wa(n) 2" Pme " 227"
sup ——— < sup < .
o () 2 i S R = B+ D7 < a5

Hence, Theorem 3.7(ii) implies that A € o(C%+)), as claimed.

For 0 < oo < 1 we see that 0 < s; < 1 and so Remark 3.12(ii) implies
that C») is not power bounded.

It is clear from (3.18), as alluded to in the beginning of this section, that
there is no constant K > 0 such that

o(CH)y C{NeC: [\ <K}
for all strictly positive, decreasing weights w satisfying C%) € L(¢;(w)).
It is routine to check that R, 6 = (—oo,(a — 1)) and so ty = (o — 1).
For 0 < a < 1 it follows that (m — 1) ¢ R, for all m € N, that is,
0t (Cwa)) = (b; see (3.6). This also follows from the fact that w, ¢ f1;

see Remark 3.2 and Remark 3.8(iii). For & > 1 (in which case w, € £;), it
follows from (3.6) that
m

1
o (CPwe)) = {—: meN, 1<m< a} .

(ii) Let w(n) := 1if n = 2%, for k € N, and w(n) := L otherwise. It is
shown in Remark 2.4(ii) that C**) € £(¢;(w)). The claim is that

1 1
o(CI)=dNeC: A—| <= (3.19)

2 2
Since w ¢ 1, Remark 3.8(iii) shows that Upt((:(1 “)) = (). Let s > 0. Then
m = 5 if n = 2% for k € N, andﬁ(n) — nif 2 < o< 25 for

some k € N. Accordingly, supneNm < oo if and only if s > 1, i.e.,
Sw(1) = [1,00) with s; = 1. According to (3.15) we have that o(C1®)) is
contained in the right-side of (3.19). To establish the reverse inclusion, fix
A € C\ X such that [A — 1| > 1. To verify A € p(C")), set o := Re (3)
and r := 5. Then 1 —a > 0 and r € (0,1).

For m = 2%, k € N, it follows from Lemma 2.3 that

1 00
Tna—mznla 2ak2n1a

n=m+1 n=m+1

s > 1 1 > 1 > .
< . nnl— O¢+Z(2j 1—a>:ﬁ<zm+zrj>

=k n=2k =k

I/\

1 rt 2 1
g—k(l_azkla) (1_7~)>:(1—Oé)2k+<1—7")2k
21a
T T

IN
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On the other hand, if 2¥ < m < 2**! for some k € N, then

1 w(n) ml— - M
mew(m) Z nl-o = Z nl-a

n=m+1 n=2k+41

So, there exists a constant ¢ (depending on r and «) such that

o0

sup; Z w(n)gc

meN mew(m) S nl-o

Hence, Theorem 3.7(ii) implies that A € p(C»*)). So, the right-side of
(3.19) is contained in o(C*)). This completes the argument establishing
(3.19). Finally, (3.19) implies that C*) is not compact.

Before presenting the next example we record the following simple fact.

Lemma 3.14. There exists a constant ¢ > 0 such that

2i+1 1
c< <1, JieN, (3.20)
Jj=2i+1 J
Proof. Fix © € N. Then
gf 1 > /21+1+1 dx g <2i+1 + 1)
jozit1? 2+l 2+1
with lim;_,, log (221?) = log(2). So, there exists K € N with 232;“ i

log( , for all 7 > K, which implies the existence of ¢ > 0 satisfying the first

mequahty in (3. 20) The second inequality in (3.20) follows from

21+1 21+1

2 .
Z Z 2@+1 2Z+1—1’ re N

Jj= 2Z+1 Jj=2041

O

Proposition 3.11 states if C»*) € K(¢1(w)), then necessarily w € s. The
following example shows that the converse is false.
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Example 3.15. There exists a strictly positive, decreasing weight w € s
such that C(%%) € £(¢,(w)), its spectra are given by

U(C(l’w)) =3, and Upt(C(l’w))) =3,

but C®) fails to be compact.
Define the decreasing sequence w = (w(n))en by w(1) = w(2) =1 and

1

W’ f0r2’—|—1§n§21+1andZ€N

w(n) ==
Fact 1. The weight w € s.
Since the sequence (1 )nen clearly belongs to s and w(n) < =5+ for
n € N (see Example 2.12(ii)), it follows that also w € s.
Fact 2. The operator C1%) € L(¢;(w)).
Fix m € N with m > 3. Now choose i € N such that 2 +1 < m < 271,

Using the fact, for each k € N, that £ < whenever 2% +1 <n < 281,
ok+1

= 2k+1

that each sum of the form )~ 2k+1( .) has 2* terms, and that 2k+1 <1,
it follows that
0o w(n) 0o 00 2k+1 1
IR S L CETDYE
n=m n=2141 k=i n=2k+41
< w(2" Z w
k=1 k=1
Due to the definition of w(2* + 1) for k > i we can conclude that
= w(n) = 1 = 1
Z n S Z k9 (k+1)2k+1 < Z 2k9(i+1)2¢+1
n=m k=1 =1
=1 1
- 2(z+1 )2i+1 Z ok — 9(i+12T 9i1
k—i
Since m = W = 21212 "the previous inequality implies that

w(n)

S)—‘
E EMS

Accordingly, sup,,>3 ﬁ S wn < 2. Moreover, both ﬁ > @ <
S>> w(n) < oo and ﬁzm_ win) < g _1 w(n) < oo. So, by (2.2) of
Proposition 2.2(i) we can conclude that Cv) € L(4;(w)).

Fact 3. The operator C1%) s not compact.
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By (2.3) of Proposition 2.2(ii) we need to verify that <L S M) .
me

w(m) n=m n

does not converge to 0. Fix ¢ € N. Then, for m := 2° + 1, we have

2i+l

1 = w(n) 1 w(n) 2
w(2i+1) Z n Z1(1(2"—1-1) Z T:n;l

n=2141 n=21+1

>c

S|

with ¢ > 0 as in Lemma 3.14. Since <m Y omgiin @) is a subse-
i€N

quence of (L S M) , we are done.
meN

w(m) n=m n

Fact 4. The spectra are given by o(CH®)) = X and 0,,(CH?)) = 3.

According to Fact 1 above we have R,, = R (see Proposition 3.4) and so
Theorem 3.7(iii) implies that o,,(Ct")) = ¥,

To verify that o(C1%)) = 2y we need to show that every A & ¥y belongs
to p(C)). This is achieved by considering the two possible cases. Namely,
when |A — 1| < 1 (equivalent to o := Re () satisfying a > 1) and when
A — 2| > 3 (equivalent to o < 1).

Case (1). Let a > 1 (i.e., (@ — 1) > 0). Then \ € p(CH®)).

Because w € s it is clear that ﬁ(l) Yo, % =", n*lw(n) <

and also that ﬁ@) Yoo, % = 2% o na_lw(ﬁ) < 00. So, fix m e N
with m > 3. Now select i € N with 2/ +1 < m < 27! in which case

0o 2k:+1

S S et = e ) Y e
n=m+1 n n=2i4+1 k—i 2k 11

Since n@~1 < (2F1h)a=1 for 28 41 < n < 2% with 2% terms, we have

2k+1

1
w(zk + 1) Z na—l S U)(Qk 4 1)2k . (2k+1>a—1 _

k k+1\a—1

n=2k+1

1 a1 k+1 1 1\ A
= (02T T | Toa ~ ok+n2Ett T\ g '

It follows that

%) 00 1 1 k+1
3 w(n) ) P — '
n(1=a) = 2o g "\ 2

n=m+1
But, for all £ > 4 we have 2(k+1)(21k+17a> < 2(1.“)(21”17&) and so
o] o] k+1 ;
1 1 2(1+1)a
) wn) 1 Y (5) =g (321)
nd—a) = 9(+1)(2 1 —a) 9 9i . 9(i+1)2

n=m-+1 k=i
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Using ﬁ = 20 . QU2 and — it follows from (3.21) that

= (2z+1)

0o ) i+1)a
— ) win) 1 g 2T 2 1
mew(m) L=t nl=e) = (204 1) 20 . (2

20 \“
= 2¢ , < 2% < .
(2@+1> = o0

Hence, the condition (3.5) in Theorem 3.7(ii) is satisfied, i.e., A € p(Ct®)).

Case (2). Let a < 1. Then A € p(C: ))

Because w € s C /; it is clear that W(l) Yo, % <3 ,w(n) < oo
and also that m Yonsy A < 2% o aw(n) < 0. So, again fix m € N
with m > 3 and select i € N with 2° +1 < m < 2!, As in Case (1),

( ) 00 2k+1 1
w(n f
Z nl-a) < Z’(U(Z + 1) Z nl—a’
n=m+1 k=i n=2k+1

Since (1 —«) > 0 and nll,a < (gkﬁ)l,a for 28 +1 < n < 281 it follows that

w(n) = A 2k = k 2"
Z a2 v+ gy < ;w(z U

1 & g
— ka
Z ok . k+1)2k+1 2T s o(i+1)2i+1 Z (21a> ’

k=i

where the last inequality uses the fact that Q(kﬂl)zkﬁ < 2(i+11)2i+1 forall &k > 1.
Since, with A :=1/(1 — 2°7!), we have

1 X/ 1\ A 1
9(i+1)2i+1 Z 9l-a C 9(i41)2i+! ’ 9(1—a)i’

k=1

we can conclude that

i w) A 1 (3.22)

nl—a) — 9(>i+1)2i+1  9(1-a)i

n=m-+1
Using w(m) = 2. 2(HD2™ and the inequality
1 o1 1
I o, o (9ityla
ma m ~ (2™ (20 +1)

it follows from (3.22) and the inequality ;25 < 1 that

< 00.

1 io: w(n) A 21 (21+1)17a - A217a

mew(m) = p—a) =7 (20 4+ 1) - o0-a)i

Again (3.5) in Theorem 3.7(ii) holds, i.e., A € p(C*)). The proof of Fact
4 and hence, the discussion of this example, is thereby complete.
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To formulate the final result of this section we require some preliminar-
ies. Let w € ¢y be a decreasing, strictly positive sequence. Then, with a
continuous inclusion, we have

l(w) Cep(w), 1<p<oo. (3.23)
For p =1 this is clear. Fix 1 < p < co. For z € {,(w) we have

oo

1/p
|:cn|w<n>1/p=<|xn|pw<n>>1/ps(Z|wm|pw<m>> — allpus mEN.

m=1

Accordingly,
0 < Ja|w(n) = [aa|w(n)Pw(n) 7" < w(n) ¥zl
Since w | 0, it follows that lim, . |z,|w(n) =0, i.e., z € ¢y(w) and
lzllow < W)L |2llpws @ € Ey(w).
For the case w € ¢ with w | 0 we have, with a continuous inclusion, that
ly(w) Cl(w), 1<p<oo. (3.24)

Indeed, define p: 2V — [0, 00) by pu(A) = >, ., w(n), for A C N. Then
is a finite, positive measure and it is well known that L?(u) € L'(u), for
1 < p < oo, with || f]l1 < u(N)Y?||f]|,. Accordingly,

o0 1/’
21w < (Z w(ﬂ)) [Zllpw, @ € Ly(w).
n=1

The containment (3.24) does not always hold. Indeed, let w(n) = \/iﬁ, for
n € N. Fixp € (1,00). Then 2 := (;;5)nen, for any fixed o € (55, 3] satisfies

x € ly(w) but z & 1 (w). Accordingly, ¢,(w) € ¢;(w) for all 1 < p < oo.

Proposition 3.16. Let w € ¢y be decreasing and strictly positive. Then

Utepeacpt (CP™)) C 0 (C)) C 0(C,CY) = 3. (3.25)
Suppose, in addition, that w € ¢, and CH*) € L(¢1(w)). Then
U1<p<000'pt(c(p7w)) - Upt(c(l,w)) - O'pt(c(o’w)) - > (326)

The proof of the previous result is elementary and is therefore omitted.

4. ITERATES OF C(H%) AND MEAN ERGODICITY

For X a Banach space, recall that T' € L£(X) is mean ergodic (respectively,
uniformly mean ergodic) if its sequence of Cesaro averages

1 n
Ty 1= — » T neN, (4.1)
m=1

converges to some operator P € L(X) in the strong operator topology s,
ie., lim, o Tipr = Px for each z € X, [13, Ch.VIII| (respectively, in the



30 A. A. Albanese, J. Bonet and W. J. Ricker

operator norm topology 7). According to [13, VIII Corollary 5.2| there
then exists the direct decomposition

X =Ker(I-T)® (I -T)(X). (4.2)
Moreover, we always have the identities
(I =T) Ty =TT ~T) = (T =T"),  neN,  (43)
and, setting Ty := I, that
%T” R G (4.4)

An operator T' € L(X) is Cesaro bounded if sup,,cy || 1| < oo. Every
mean ergodic operator 7" € L£(X) is necessarily Cesaro bounded (by the
Principle of Uniform Boundedness) and, via (4.4), also satisfies

1
7o — lim =T" = 0. (4.5)

n—oo 1N

It is also clear from (4.4) that if 7" is Cesaro bounded, then sup,,cy @ < o0.
If T'e L(X) is power bounded (cf. Remark 3.12(ii)), then 7" is also Cesaro
bounded and lim,,_, ”T—:H = 0. Condition (4.5) implies that o(T) C D, |13,
p.709, Lemma 1|, where D := {\ € C: |\| < 1}.

To characterize the mean ergodicity of C»*) we require some preliminary

facts.

Lemma 4.1. Let w be a bounded, strictly positive sequence such that C%) €
L(¢1(w)). The following properties are satisfied.

(i) Each basis vector e, € (I — CH) (4 (w)) for r > 2.
(ii) We have the equalities

(I — CAw)(ly(w)) ={z € l1(w): 1 =0} = spanfe,: r > 2}, (4.6)
(iii) The range of I — C") s closed if and only if it coincides with
{z € t1(w): z, = 0}.

(iv) The following three conditions are equivalent.
(a) Ker(I — Chw)) £ {0},
(b) Ker(I — C:»)) = span{1}.
(c) 1 € ly(w), that is, w € ¢5.
If1 & (1(w), then Ker(I — C%)) = {0}.

Proof. (i) This follows from the identities

1 T
er1= (1 — C(l’“’))(eTH - E er), reEN,
k=1

which can be verified by direct calculation.
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(ii) Clearly, {x € ¢1(w): 1 = 0} = span{e,: r > 2}. Part (i) implies
{z € ty(w): 1 =0} C (I — CLW) (44 (w)).

On the other hand, since the 1-st coordinate of C")z is z; for all 2 € £1(w),
we see that

(I — CH) () (w)) C {x € £y(w): x; = 0}.

The previous two containments imply (4.6).

(iii) This is a direct consequence of part (ii) and the fact that the subspace
{z € t1(w): xy = 0} of {1(w) is closed.

(iv) The Cesaro operator C: CY — CN satisfies Ker(I — C) = span{1}.
Hence, Ker(I — C®)) = span{1} if and only if 1 € £, (w).

If 1 & ¢1(w), then (I — CM®) is injective, i.e., Ker(I — C»®)) = {0}. O
Lemma 4.2. Let w be a bounded, strictly positive sequence such that C(H%) e

L6y (w)). If CA%) s Cesaro bounded, then necessarily w € ¢1. In particu-
lar, this is the case whenever CY) s power bounded or mean ergodic.

Proof. It is known that C: CNY — CV is power bounded, uniformly mean
ergodic and satisfies both Ker(I — C) = span{1} and

(I —CO)(CY) ={x € CY: x; = 0} = span{e, },>o; (4.7)
see [3, Proposition 4.1], [6, Proposition 4.3].

Observe that the sequence {Cpyje1 }ren converges to 1 in CV. Indeed, we
have e; =1 — (0,1,1,1,...) and, since C € L(C") is power bounded, that
(I-CO)(CY)={zeC": lim Cyz =0},

n—oo
[23, Chap.VIII, §3, Theorem 1|. Hence, the sequence
C[n]el = Cn]]_ C[n](O,l,l,l,...) C[n](O,l,l,l,. ), n € N,
converges to 1 in CN as n — oo because (0, 1,1,...) € (I —C)(CY) by (4.7).
We now proceed to verify that w € ¢;. By assumption C*) is Cesaro
bounded and so {C&]’w)el}neN is a bounded subset of ¢;(w). By Alaoglu’s
theorem all norm closed balls of ¢;(w) are o(¢;(w), co(w™1))- compact (i.e.,

weakly* compact) and, equipped with the topology o (¢1(w), co(w™')), they
are metrizable because co(w™!) is a separable Banach space, [19 Corollary

2.6.20]. Therefore, there is a subsequence {C el}keN of {C in] )el}neN and

w)

a vector u € ¢1(w) such that Cfl(k e; — u for the topology o (¢1(w), co(w™1))
as k — 0o. Since the topology 0(61 (w), co(w™1)) is finer than the topology
of coordinatewise convergence in ¢;(w), we can conclude that C[l(l,:)]el =
Cinyer — u in CY as k — co. The previous paragraph then implies that
u=1and so 1 € ¢;(w). In other words, w € /. O
Remark 4.3. If 0 < a < 1, then the weight w, = (n%)neN satisfies

Wy ¢ ¢1. By Lemma 4.2, C(hwa) ig not Cesaro bounded. The same is true
for the weight w in Remark 2.4(ii).
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Lemma 4.4. Let w be a bounded, strictly positive sequence such that w € {;
and C4) € L(¢,(w)). Then

6 (w) = Ker(I — CM)) @ (I — CAw) (4 (w)). (4.8)

Proof. Set fi := 1 and define f; := f; — ch;ll e for j > 2. Since w € /4,
we have {f;};en € £1(w). Moreover, (4.6) reveals that

{fi}iz2 C{z € l1(w): 1 =0} = span{e,: r > 2}.
In particular, this implies that
er = (f1 — fo) € span{ f1} @ span{e,: r > 2}.
Since {e, },en is a basis for ¢;(w), it follows that
0y (w) = span{ f1} ® span{e,: r > 2}.

The conclusion now follows from Lemma 4.1(ii), (iv). O

Let m € N. According to [15, Sect. 11.12], C™ is the moment difference

operator for the measure on [0, 1] given by du = f,,(t) dt, with
1 1
fm(t) = —logm_l <_> RS (07 1]

(m—1)! t
Therefore, the identities

n

(C™a)n = ( Z: i ) a:k/o A=) fL () dt, neN, (4.9)

k=1
hold for all z € CN; see also [17, p.125].

Lemma 4.5. Let w be a bounded, strictly positive sequence such that w € {4
and C) € L(0(w)). Then, for each r > 2, the sequence {(CH))™e, }en
converges to 0 in l1(w).

Proof. Fix r > 2. By (4.9), for each m € N, we have ((C%)™¢,), = 0 for
1<n<rand

(CHhyme,),, = < Z:} ) /Olt"l(l — )" T fu(t)dt, n>r. (4.10)
Proceeding as in the proof of [14, Theorem 1], define ¢,,(0) := 0, g (t) :=
tfm(t) for 0 <t <1 and

Ay, = sup{gm(t): t €[0,1]}, m eN.
For each m € N we obtain that |((C*))™e,),| < 2= for all n € N. Hence,
w(n)an,
r—1"~

w(n>|((c(1’w))mer>n| < n c N,
from which it follows that

am
(€Ll < ol =22, m e N,
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According to [14, Lemma 1| we have lim,, ,o ¢, = 0, which implies the
desired conclusion. O

We can now establish the first main result of this section.
Theorem 4.6. Let w be a bounded, strictly positive sequence such that
Chw) ¢ £(01(w)).
(i) CB®) s power bounded if and only if {(CL¥))™},.cn converges in
L (L1 (w)) to the projection onto Ker(I—CH™) along (I — CHLw))(£1(w)).

In this case, C5%) is necessarily mean ergodic.
(ii) C®) is mean ergodic if and only if CY") is Cesaro bounded.

Proof. (i) Assume that C%*) is power bounded. Then w € ¢; by Lemma
4.2. Tt follows from Lemma 4.4 that (4.8) holds and from Lemma 4.1 that
Ker(I — C%)) = span{1} and (I — C:w))(¢,(w)) = Span{e, },>2. So, by
(4.8), for x € 4;(w) we have z = y + 2 with y € Ker(/ — C1%)) and
z € (I — Cw) (4 (w)). Then, for each m € N, it follows that

(COmyma = (CO)my 4 (COM)mz =y (COW)ma (411)

Moreover, for each 7 > 2, lim,, o (CH*))™e, = 0 in 1 (w); see Lemma 4.5.
Since C+*) is power bounded and span{e, },>» is dense in (I — CL®))(¢; (w))
(cf. Lemma 4.1(ii)), it follows that lim,, .. (CH*))™z = 0 in £, (w) for each
z € (I — CLw)(¢;(w))). Hence, lim,, o (CH™)) "z =y in £, (w); see (4.11).

The assumption of the reverse implication implies, in particular, that
{(CHwhymy | converges in Ly(¢1(w)) and so, by the Principle of Uniform
Boundedness, C(%*) is power bounded.

If a sequence in a locally convex Hausdorff space (briefly, lcHs) is conver-
gent, so is its sequence of averages (to the same limit). Hence, the conver-
gence of {(Chw))™Y v in the IcHs L,(¢1(w)) := (L(¢1(w)), 7,) implies the
convergence of {Cfrll]’w)}neN in L,(¢1(w)), i.e., C1%) is mean ergodic.

(ii) If C**) is mean ergodic then, as noted before, C1*) is also Cesaro
bounded.

Assume now that C%*) is Cesaro bounded, in which case w € ¢; (cf.
Lemma 4.2). Again by Lemma 4.4 we see that (4.8) holds. We need to

verify that {C%’w)}neN is a convergent sequence in Ls(¢1(w)). This follows
from an argument similar to the one in part (i). O

The following result should be compared with Lemma 4.5.

Corollary 4.7. Let w be a bounded, strictly positive sequence such that
Chw) ¢ £(01(w)) is power bounded. Then limy, o (CH¥))me; =1,

Proof. Lemma 4.2 implies that 1 € ¢;(w). According to Theorem 4.6(i)
there exists u € Ker(I — C%*)) such that

lim (CPN)™e; = u in 44 (w). (4.12)

m—00
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Since Ker(I — Ct®)) = span{1}, there exists A € C such that u = A\1. But,
the 1-st coordinate of (C(*))™e; equals 1 for every m € N and so it follows
from (4.12) that A = 1. O

Remark 4.8. Theorem 4.6 is special for the Cesaro operator acting in ¢ (w)
and is not valid for a general Banach space operator T' € £(X).

Indeed, concerning part (i) of Theorem 4.6, the proof shows that whenever
{T"}en converges in L;(X), then T is necessarily power bounded. To see
that the converse is false in general, consider the Banach space X = C(]0, 1])
equipped with the sup-norm || - ||oc and define ' € L(X) by T'f := ¢f for
f € X, where ¢(t) :=t for t € [0,1]. Since T"f = o™ f for f € X, with
|™]|o < 1forallm €N, it is clear that T'is power bounded. However, if 1
is the function constantly equal to 1 in [0, 1], then the sequence T™1 = ™,
m € N, converges pointwise on [0, 1] to the discontinuous function (3. In
particular, {T™1},,en cannot be a convergent sequence in X.

Concerning part (ii) of Theorem 4.6, the mean ergodicity of an operator
always implies its Cesaro boundedness. To see that the converse is false in
general, let X and T be as in the previous paragraph. Since T' is power
bounded, it is Cesaro bounded. But, T is not mean ergodic. Indeed,

1 n
Tul=-3"¢o" neN
i n;w n

Since (£ 300,y ™) (1) = Lt for t € [0,1) and (2300, ¢™) (1) =1, for
all n € N, it is clear that {7},)1},en converges pointwise on [0, 1] to the dis-
continuous function xg}. In particular, {7f,)1},en cannot be a convergent
sequence in X and so 7' is not mean ergodic.

Given a bounded, strictly positive sequence w, for the remainder of this
section we use the notation

Xi(w) :=A{z € {(w): z, =0},

which is always a closed subspace of ¢;(w). In the event that C%) ¢
L(¢,(w)), the subspace X;(w) is clearly invariant for Cv*): see (1.1).

Lemma 4.9. Let w be a bounded, strictly positive sequence such that w € {4
and C) € L(¢y(w)). Then

(1 = ) (f(w)) = (I = CH) (X (w)). (4.13)

Proof. Clearly, (I — CH)) (X (w)) C (I — CHW) (4 (w)).
To verify the reverse inclusion, we proceed as in the proof of |5, Lemma
4.5]. First observe, via (1.1), that for each z € ¢;(w) we have

(4.14)

(1 — iy, — (0,@_ T1 + T Lﬁxs)

9 T 3
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and, in particular, for each y € X;(w) that

([— C(l’w))y = (0;%73/3 - y2—§y373/4 - v2 +?{43+y47> . (415)

Fix z € {1(w). We apply (4.14) to conclude that

1 1 = |

is the j-th coordinate of the vector (I — C*)x. Set y; := x; — o1 for
all ¢ € N. Then the vector y := (y;)ien belongs to X;(w) because w € ¢,
implies that (0,1,1,1,...) € {;(w). We apply (4.15) to conclude that the
j-th coordinate of (I — C(4))y is given by (4.16) for j > 2. Hence,

(I —Cg = (I - C)y e (I — CH)) (X (w)).

U
Remark 4.10. The equality (4.13) fails whenever w ¢ ¢; and C%) ¢
L(¢;(w)). Indeed, in this case Lemma 4.1(iv) implies that (I — CL%)) is

injective. This implies that x := (I — C*))e; cannot belong to (I —
CHw) (X, (w)). So, the containment

(I = CHN) (X1 (w)) G (I = C) (4 (w))

is proper whenever w ¢ ;. For the existence of weights w ¢ /¢; such
that C%) € L£(¢;(w)) see Remark 2.4(ii) and also Examples 2.5(ii) with
O0<a<l.

Given a bounded, strictly positive weight w = (w(n))nen, we introduce
the associated quantity

oo

1 - 1
o3 S0 1), 2 ) = S g 2 ) (4D

n=r

It turns out that U, is useful for determining certain mean ergodic and
related properties of C*). As a sample, it is clear that U, < oo implies
w € {1. Moreover, U,, < 0o also implies that C(»*) € L£(¢(w)). This follows
directly from Proposition 2.2(i) and the inequality

1 = w(n) 1 =
- < . meN.
w(m+ 1) n:Z:mH n ~ mw(m+1) n;mﬂw(n) m

The following result characterizes the condition U, < oco.

Proposition 4.11. Let w be a bounded, strictly positive sequence such that
w € 0y and CH) € L(41(w)). The following conditions are equivalent.
(i) The range of I — CH) js closed in £1(w).
(i) (1 = CH)(ly(w)) = X1 (w).
(i) (7 — CO™) (X, () = X (w).
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(iv) The quantity U, < oo.

Proof. (i)<(ii) follows from Lemma 4.1(iii) and the definition of X;(w).

(ii)<(iii) is clear from Lemma 4.9.

(iii) <> (iv). First observe (via (1.1)) that (I — C:*)) maps X, (w) into it-
self, and that the restriction (I —C*™): X (w) — X, (w) is both continuous
and injective. The injectivity follows from Lemma 4.1(iv) as 1 ¢ X (w).

According to the previous paragraph, condition (iii) is equivalent to the
restricted operator (I — C): X (w) — X;(w) being bijective (i.e., sur-
jective). By the Open Mapping Theorem this, in turn, is equivalent to
(I — CH%)): X (w) — X;(w) having a continuous inverse.

So, (iii)<(iv) is equivalent to showing that (iv) holds if and only if the
operator (I —C1®)): X (w) — X(w) is bijective with a continuous inverse.
To do this we first note, with @w(n) := w(n 4 1) for n € N, that the linear
shift operator S: X;(w) — ¢1(w) defined by

S(x) = (rg,3,...), =€ Xi(w),
is an isometric isomorphism of X (w) onto ¢;(w). So, it suffices to verify
A= So (I = CM)|x )0 S € L(L(w)),

which is given by the formula

r = nx, — Zxk . x € li(w), (4.18)
(n + 1 ( k=1 neN

with zg := 0 (see the purely algebraic calculations in the proof of Lemma
4.5 in [5]), is bijective with a continuous inverse if and only if (iv) holds.

Now the operator A given by (4.18), when considered from CN to CY, is
bijective and routine calculations show that its inverse map B: CN — CV
is determined by the lower triangular matrix B = (bym)nmen With entries
given by by, = 0if m > n, bnm:”T“ifm:nandbnm:%iflgm<n.
The restriction of the linear map B acts continuously from ¢; () into itself
if and only if D := &30 Bo ®_' belongs to L(¢;), where ®g: (1(w) — {1 is
the isometric isomorphism given by

Q5(2) == (wn+ Dy nen, « € b4(W).

Of course, both &3 and @' can be extended to isomorphisms between CN
(which we denote by the same symbol as no confusion can occur). The
linear operator D (considered from CY into itself) is associated with the

lower triangular matrix (5((2111)) brm)n.men. By Lemma 2.1, D € £(¢;) if and
only if sup,,en >0, % < 00. Since w € 1 and lim,, mT“ =1,

this condition is equivalent to U,, < oo (see (4.17)). This completes the
proof of (iii)<(iv). O

Proposition 4.12. Let w be a bounded, strictly positive sequence such that
U, < 0o. Then C%) is power bounded and uniformly mean ergodic.
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Proof. It was already noted that U, < oo implies w € ¢; and C®) ¢
L(¢1(w)). From the proof of Lemma 4.5 (and its notation) recall that

[(ChwNyme )| < ra—ml’ ncN, (4.19)
for m € N and r > 2. Moreover, a,, > %fm(%) > 0 and lim,,_.o a,, = 0.
Since (C*))™1 = 1 for all m € N and ¢;(w) = span{1} @ X;(w) (by
Lemma 4.1 and Lemma 4.4), to show that C») is power bounded it suffices
to show that sup,,cy [[(CH)™z||1, < oo for each x = (0,29,23,...) €
Xi(w). So, fix such an z € X;(w), in which case z = ) 2, z,e,. Recall
from the proof Lemma 4.5, for each m € N, that (Cv)™e,), = 0 if r > 2
and 1 < n < r. Accordingly, for each n, m € N we have

w)|(CH)"2)a] < w(n) Y Ja] - [(CH)" e, )l

= w(n) Y fa | [(CH) e, )ul.
r=2
Hence, for every m, n € N and z € X;(w) it follows that

ICE D)l = Y wm)(CH)) ),

NE

3
[|
N

NE

w(n) Y far] - [((CH)me,),|

2

3
|

= D wl)ler s S w () e,

< |

1 e @]
A )men || oo || Z]| 1,0 SUp ————— )  w(n),
( ) GNH || ||1, 7‘21; (7” — 1)?1](7") ; ( )
where the last inequality relies on (4.19). An examination of (4.17) now
shows that U, < oo implies that sup,,cy |[[(CH) ™z, < oo for each
x € X;(w). As already noted, this yields that C™) is power bounded.
Using now the fact that C%) € L(¢;(w)) is power bounded, we have
lim,,, o0 D™ — (). Since also the range of 1 —C(1™) is a closed subspace
of ¢1(w) (cf. Proposition 4.11), we can apply a result of Lin, [18, Theorem]|,
to conclude that C*) is uniformly mean ergodic. 0

Remark 4.13. Let w be a bounded, strictly positive sequence such that
Chw) e £(41(w)) and lim,, 0 w = 0. Then C"*) is uniformly mean
ergodic if and only if U, < co. Indeed, by Proposition 4.12 the condition
U,, < oo implies uniform mean ergodicity. On the other hand, if C"®) ig
uniformly mean ergodic (in which case w € ¢; by Lemma 4.2), then Lin’s
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theorem, |18], ensures that I — C%) has closed range in ¢;(w). Hence,
U, < oo; see Proposition 4.11.

Proposition 4.14. Let w be a bounded, strictly positive sequence such that
Chw) ¢ IC(¢1(w)). Then necessarily Uy, < oo.
In particular, CH%) is both power bounded and uniformly mean ergodic.

Proof. Proposition 3.11(ii) shows w € ¢;. Moreover, the compactness of
Ch®) implies that (I —CH®)(¢y(w)) is closed in 1 (w), [19, Lemma 3.4.20).
Now apply Proposition 4.11 to conclude that U, < oco. Hence, C®) is
power bounded and uniformly mean ergodic by Proposition 4.12. 0

Remark 4.15. According to Proposition 2.9, C(%*) is compact whenever
(n+1)

limsup,,_, ww(n) € [0,1). In particular, this is the case for w = (n”7"),en
with 7 € (0,1) and 8 > 0, for w = (= ),en and for w = (%;),en with @ > 0;
see Examples 2.10(i)-(iii). Proposition 4.14 implies in all cases that C(®)
is power bounded and uniformly mean ergodic. By the same reasoning the
Cesaro operator corresponding to each of the weights in (iv), (v), (vi) of
Example 2.10 is power bounded and uniformly mean ergodic.

Example 4.16. (i) Consider w,(n) = (=5 )nen for fixed @ > 0. For a €
(0,1], Remark 4.3 implies that Cwe) € L£(¢;(wy)) is not Cesaro bounded
and hence, is neither mean ergodic nor power bounded. The same is true
for the weight w in Remark 2.4(ii).

On the other hand if @ > 1, then it follows from Lemma 2.3 that
Zzo:m n% S W. r]:‘hllS7 for each m 2 2,

1 - me 2%

< <
= D) 2= S GO < @D

and so U,, < oo. Hence, Proposition 4.12 implies that C»%<) is power
bounded and uniformly mean ergodic. However, C(h%=) is not compact; see
Remark 2.7(iii). Observe that w, € ¢; \ s for a > 1.

(ii) Let w € s be the weight considered in Example 3.15. The claim is
that U, < co. To see this fix n € N with n > 2 and choose 7 € N such that
204+ 1<n<2%! Then

Zw(m)g Z w(m):Z Z w(m).

Since each sum Zij:wﬂ( ..) has 27 terms and w(m) =

2 +1<m < 2% it follows that

>

m=n

1
W for all

o0

—~.; 1 1
wim) < ¥ st = D grre
Jj=t

j=i
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As (n—il) < & and ﬁ — 2i20+12™! "the previous inequality implies

1 = iz 1
- . oio(i+1)2tt -
CENT P R A Y

m=n Jj=t
it e 1 1
(i+1)2+! .
2 D3 e
Jj=t
But, 2(j+1)(;j+1—1> < 2(2.+1)<;+1_1) for all 7 > i and so
i w(m 9(i+1)2tHt 1 i L 2
n _ 1 2(i+1) (211 -1) L4 9j+1 -
=n Jj=t

According to (4.17) we have U,, < 2. Then Proposition 4.12 shows that
Cw) is power bounded and uniformly mean ergodic. But, C™%) is not
compact; see Fact 3 in Example 3.15.

The final example exhibits features different to the previous examples
(eg. U, = 00). Its spectrum is also precisely determined.

Example 4.17. Let a > 1. Define the bounded, strictly positive weight w
by w(l) = w(2) := 1 and w(n) := 75— for 2' 4+ 1 <n < 2! and i € N.
We record various properties of w.

Fact 1. w €y, but w & s.

Define v := <m>neN. It is shown in (3.11) of Remark 3.8(iv)

that Ajv < w < Agv for positive constants Ay, As. The integral test for
convergence of series implies that v € ¢; and hence, also w € ¢;. Clearly,
v & s and so also w ¢ s.

Fact 2. CL%) € L(l1(w)).

This was established in Remark 3.8(iv).

Fact 3. U, =

Fix m > 3 and choose i € N to satisfy 2¢ + 1 < m < 2*1. Then

> 1
Tt 20 2 Gy 2 )

n=

1 27
~ (m—1u(m) Z Z aw: = Tutm) 2

] =i+1 n= 2J+1 Jj=t+1

| V

Since (ml—l) > i and w(lm) = 2271 it follows that

= L g 02! 1
o = Dl ;nw @2 122 W—_DZJ.—Q-

j= 1+1 J=i+1
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But, > i 5w 2 S os = a-nGne=t and so
LY i) > e
—_— w(n :
(m —Dw(m) —~ T (a—=1)(i+ )12 — 1

o i \*t 2
C(a—1) \i+1 2+l 1’

Since lim;_,o (Hil)a_l = 1 and 2”2111 = 2712,1- > %, it follows from the
previous inequality that
1 [o.¢]
Uy =sup —————— Z w(n) = oo.

m>2 (m — 1)w(m)

n=m

Fact 4. C5%) 4s not compact.

This is immediate from Proposition 4.14.

Fact 5. The range of I — C%) s not closed in (1 (w).
See Facts 1 and 2 and Proposition 4.11.

Fact 6. {1(w) = span{1} & (I — CLw)({1(w)).
Follows from Facts 1 and 2 and Lemma 4.4.

Fact 7. Sy,(1) = (1,00) and s; = 1.

Fix s > 0. From the definition of w we have

1 1 1
= 1. —
wekmw(n) { PO <mX n5w<n>> }

1 v 1
= max<{ 1, —, supi®2! max = — .
25" ieN n=2i+1,...2it+1 NS

Since ﬁ <L < Lforall2241<n<2% and i€ N, it follows that

ns — 2si

max 1lsu 17 <su ! < max 1isu li
7 9s? z‘elg) 92s+1 9i(s—1) [ — neII\)I nsw(n) - 7 9s? iell\? 2 9i(s=1) [~

Accordingly, sup,,cy #(n) < oo if and only if s > 1, i.e., S,(1) = (1, 00).
Hence, s; = inf 5,(1) = 1.

Fact 8. 0, (CH) = {1} and o(C*™)) = {A e C: A= 3| < 3}

Since w € {1, we have 1 € 0,,(C*™)); see Remark 3.2. Moreover, s; =
1 and so Proposition 3.5(i) implies that ¢, < 1. Then (3.6) shows that
op(CH®)) C {1,1}. Hence, to establish that o, (C"*)) = {1} it suffices to
show that 1 ¢ 0,,(C")), ie,, that 1 € R,, (see (3.6)). That this is indeed
so follows from the inequalities

o) o) 2i+1 n o) 2i+1 21
1

dontwln) = 2437 Y o =24 ) Y o

n=1 i=1 n=2141 1=1 n=2141
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Hence, the point spectrum o,;(C*)) = {1}.
Since s; = 1, it follows from Proposition 3.9(ii) that

1

1

For the reverse inclusion, let A € C satisfy ‘)\ — %| > % and set J := Re (%)
Then f < 1, ie., (1 =) > 0. Fix m > 3 and select i € N such that
(204 1) <m+1 < 27 (note that also (2 + 1) < m < 2°F!). Then

00 00 co 2itl
Z Z O‘21 1 n1 B
n:m+1 Jj=t n= 2J+1

S‘ince ﬁ = Z'a22_1 with m S (2%) and nl__ﬂ S (2]);1_5 for (2Z —+ ].) S n S
2i+1 it follows that

1 = w(n) _ %2 1 1 :
_ < , — . — <27,
mPw(m) n:ZmH nt—8 — 28 o Jje2i—t (20)1-5

But, *z <1 for all j > ¢ and so, for all m > 3, we have

1 2 wln) a1 ) 218
- - < 9i(1=h) -
mPw(m) n:;rl nt=pF = ; 215 21-F — 1

On the other hand, recalling that w 6 El, we also have ﬁ Yo, :1(—112, <

ZZOZQ w( ) < 00 and 2ﬁw (2) ZZO 3 n1 — 26 Zn 1 w( ) < 0. Accordingly,

1 = wn
wp Y nfém

ek ) 2

and so Theorem 3.7(ii) implies that A € p(C*)). Hence, {\ € C: [A—1| >
1} C p(C)) which implies that (4.20) is an equality.

It would be interesting to know whether or not C-%) (equivalently, Ccv).
see Fact 1) is power bounded.

Concerning the dynamics of a continuous linear operator 7" defined on a
separable Banach space X, recall that 7' is hypercyclic if there exists x € X
such that the orbit {7"x: n € Ny} is dense in X. If, for some x € X, the
projective orbit {\T"z: A € C, n € Ny} is dense in X, then T is called
supercyclic. Clearly, hypercyclicity implies supercyclicity.

Proposition 4.18. Let w be a bounded, strictly positive sequence such that
Cw) € L4 (w)). Then CH) is not supercyclic and so, not hypercyclic.

Proof. By Step 2 in the proof of Theorem 3.7 the infinite set & C a,;((CH®)Y).
By Theorem 3.2 of 7], C*) cannot be supercyclic. O
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