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THE CESÀRO OPERATOR IN WEIGHTED ℓ1 SPACES

ANGELAA. ALBANESE, JOSÉ BONET, WERNER J. RICKER

Abstract. Unlike for ℓp, 1 < p ≤ ∞, the discrete Cesàro operator C
does not map ℓ1 into itself. We identify precisely those weights w such
that C does map ℓ1(w) continuously into itself. For these weights a com-
plete description of the eigenvalues and the spectrum of C are presented.
It is also possible to identify all w such that C is a compact operator in
ℓ1(w). The �nal section investigates the mean ergodic properties of C in
ℓ1(w). Many examples are presented in order to supplement the results
and to illustrate the phenomena that occur.

1. Introduction

The discrete Cesàro operator C is de�ned on the linear space CN (con-
sisting of all scalar sequences) by

Cx :=

(
x1,

x1 + x2

2
, . . . ,

x1 + . . .+ xn

n
, . . .

)
, x = (xn)n∈N ∈ CN. (1.1)

The operator C is said to act in a vector subspace X ⊆ CN if it maps X
into itself. Of particular interest is the situation when X is a Banach space.
Two fundamental questions in this case are: Is C : X → X continuous and,
if so, what is its spectrum? Amongst the classical Banach spaces X ⊆ CN

where answers are known we mention ℓp (1 < p < ∞), [9], [17], and c0, [17],
[21], both c, ℓ∞, [1], [17], as well as cesp, p ∈ {0} ∪ (1,∞), [12], the spaces
of bounded variation bv0, [20], and bvp, 1 ≤ p < ∞, [2], and the Bachelis
spaces Np, 1 < p < ∞, [11]. For C acting in the weighted Banach spaces
ℓp(w), 1 < p < ∞, and c0(w) we refer to [4], [5]. There is no claim that this
list of spaces (and references) is complete; see also [8].
One aim of this paper is to investigate the two questions mentioned above

for C acting in the weighted Banach space ℓ1(w). Unlike for the setting of
ℓp(w), 1 < p < ∞, where the corresponding paradigm space for C is ℓp,
1 < p < ∞, the �paradigm space� ℓ1 is not available as a guideline for C
in ℓ1(w) because C does not act in ℓ1. Hence, it is unclear what to expect
when C acts in ℓ1(w).

Key words and phrases. Cesàro operator, weighted l1 space, spectrum, compact operator,
mean ergodic operator.
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So, let w = (w(n))∞n=1 be a sequence, always assumed to be bounded and
strictly positive. De�ne the vector space

ℓ1(w) :=

{
x = (xn)n∈N ∈ CN :

∞∑
n=1

w(n)|xn| < ∞

}
,

equipped with the norm ∥x∥1,w :=
∑

n∈N w(n)|xn|, for x ∈ ℓ1(w). Then
ℓ1(w) is isometrically isomorphic to ℓ1 via the linear multiplication operator
Φw : ℓ1(w) → ℓ1 given by

x = (xn)n∈N 7→ Φw(x) := (w(n)xn)n∈N.

Accordingly, ℓ1(w) is a weakly sequentially complete Banach space with the
Schur property, [19, pp.218�220]. Its dual space (ℓ1(w))

′ is the Banach space
ℓ∞(u) with the norm ∥x∥∞,u := supn∈N u(n)|xn|, for x = (xn)n∈N ∈ ℓ∞(u),
where u(n) := w(n)−1 for n ∈ N. The closed subspace{

x = (xn)n∈N ∈ CN : lim
n→∞

u(n)|xn| = 0
}

of ℓ∞(u) is denoted by c0(u) and the restriction of the norm ∥ ·∥∞,u to c0(u)
is written as ∥ · ∥0,u. Of course, the bidual c0(u)

′′ = ℓ∞(u) and the dual
c0(u)

′ = ℓ1(w). Clearly, the Banach spaces ℓ∞(u) and c0(u) are also de�ned
and have the above mentioned properties for every strictly positive sequence
u = (u(n))n∈N, not just for u = w−1. The canonical vectors ek := (δkn)n∈N,
for k ∈ N, form an unconditional basis in ℓ1(w). Consequently, whenever C
does act in ℓ1(w), then it is necessarily continuous (via the Closed Graph
Theorem). If infn∈Nw(n) > 0, then ℓ1(w) = ℓ1 with equivalent norms and
so we are in a space in which C does not act. Accordingly, we are only
interested in the case when infn∈N w(n) = 0. Of course, Φw is also de�ned
on all of CN in which case it is a vector space isomorphism of CN onto itself.
For any Banach space X, let I denote the identity operator on X and

L(X) the vector space of all continuous linear operators from X into itself.
The spectrum and the resolvent set of T ∈ L(X) are denoted by σ(T )
and ρ(T ), respectively, [13, Ch. VII]. The set of all eigenvalues of T , also
called the point spectrum of T , is denoted by σpt(T ). The spectral radius

r(T ) := sup{|λ| : λ ∈ σ(T )} always satis�es r(T ) ≤ ∥T∥, [13, p.567]. The
ideal of compact operators from X into a Banach space Y is denoted by
K(X, Y ). If X = Y , we simply write K(X). The dual Banach space of X
is denoted by X ′ and the dual operator of T ∈ L(X) by T ′ ∈ L(X ′).
In Section 2 we identify all weights w such that C acts in ℓ1(w); see

Proposition 2.2(i). Necessarily infn∈Nw(n) = 0 (cf. Remark 2.4(i)) but this
condition is far from su�cient; see Examples 2.5(i), (iii). Moreover, this
necessary condition cannot be replaced by w ∈ c0; see Remark 2.4(ii). Even
if w is a rapidly decreasing sequence it still need not follow that C acts in
ℓ1(w); see Remark 2.7(ii). The compactness of C in ℓ1(w) is characterized
in Proposition 2.2(ii). A useful su�cient condition for w, ensuring the



THE DISCRETE CESÀRO OPERATOR IN WEIGHTED ℓ1 SPACES 3

compactness of C in ℓ1(w), is the requirement that

lim sup
n→∞

w(n+ 1)

w(n)
∈ [0, 1); (1.2)

see Proposition 2.9. Applications of (1.2) to particular weights are given
in parts (i)-(iv) of Examples 2.10. On the other hand, the weights given in
(v), (vi) of Examples 2.10 show that the condition (1.2) is not necessary for
the compactness of C in ℓ1(w). A comparison type result for compactness
(and also for continuity) is presented in Proposition 2.13. The usefulness of
this criterion is illustrated via Example 2.14. Somewhat surprisingly, there
exist rapidly decreasing weights w for which C acts in ℓ1(w) but, fails to be
compact; see the weight v in Example 2.12(ii).
Section 3 investigates the spectrum of C, provided that C acts in ℓ1(w);

for brevity we indicate this by writing C(1,w) for C or C(1,w) ∈ L(ℓ1(w)).
Relevant for determining σ(C(1,w)) are the sets

Rw := {t ∈ R :
∞∑
n=1

ntw(n) < ∞} and Sw(1) := {s ∈ R : sup
n∈N

1

nsw(n)
< ∞}.

Whenever Rw ̸= R (resp. Sw(1) ̸= ∅) we de�ne t0 := supRw (resp. s1 :=
inf Sw(1)). Useful connections between t0, s1, the sets Rw, Sw(1) and the
condition that w is rapidly decreasing are presented in Propositions 3.4
and 3.5. These propositions are needed to establish the two main results
of the section. Theorem 3.7 characterizes σ(C(1,w)) and identi�es the point
spectrum σpt(C

(1,w)). It turns out that σpt(C
(1,w)) = ∅ precisely when w ̸∈

ℓ1 (cf. Remark 3.8(iii)). Whenever C(1,w) ∈ L(ℓ1(w)) and Sw(1) ̸= ∅,
necessarily s1 > 0 and{

λ ∈ C :

∣∣∣∣λ− 1

2s1

∣∣∣∣ ≤ 1

2s1

}
∪
{
1

n
: n ∈ N

}
⊆ σ(C(1,w));

see Proposition 3.9. In particular, C(1,w) cannot then be compact. This
includes such weights as wα := ( 1

nα )n∈N for all α > 0 (cf. Example 3.13)

and others. On the other hand, if C(1,w) is compact, then

σpt(C
(1,w)) =

{
1

n
: n ∈ N

}
and σ(C(1,w)) = {0} ∪ σpt(C

(1,w)) (1.3)

and the weight w is necessarily rapidly decreasing. The converse is not
valid in general, i.e., there exist rapidly decreasing weights w such that
C(1,w) ∈ L(ℓ1(w)), the spectra of C(1,w) are given by (1.3) but, C(1,w) is not
compact; see Example 3.15. For each k ∈ N there exists a weight w such
that σpt(C

(1,w)) = { 1
n
: 1 ≤ n ≤ k}; see Example 3.13.

The �nal section treats various mean ergodic properties of C(1,w). Also
relevant is the power boundedness of C(1,w), i.e., supn∈N ∥(C(1,w))n∥ < ∞,
and the weaker condition of Cesàro boundedness (cf. Section 4 for the de�-
nition). We record a few sample results. For instance, if C(1,w) ∈ L(ℓ1(w)),
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then C(1,w) is power bounded if and only if the sequence of its iterates
{(C(1,w))n}n∈N is convergent in the strong operator topology of L(ℓ1(w))
to the projection onto the null space Ker(I − C(1,w)); see Theorem 4.6(i).
Moreover, the power boundedness of C(1,w)implies that w ∈ ℓ1 (cf. Lemma
4.2). It is also established that C(1,w) is mean ergodic if and only if it is
Cesàro bounded (cf. Theorem 4.6(ii)). Such results do not hold for general
Banach space operators; see Remark 4.8. Intimately related to the uniform
mean ergodicity of C(1,w) (indeed, for any Banach space operator) is the
closedness of the range of I − C(1,w) in ℓ1(w). Under the natural restriction
that w ∈ ℓ1, this property is equivalent to the requirement

sup
m∈N

1

mw(m+ 1)

∞∑
n=m+1

w(n) < ∞; (1.4)

see Proposition 4.11. The condition (1.4) also su�ces for C(1,w) to be both
power bounded and uniformly mean ergodic (cf. Proposition 4.12). Ac-
cording to Proposition 4.14, the compactness of C(1,w) always implies that
(1.4) is satis�ed; the converse is not true in general (cf. Example 4.16).
An e�ort has been made to present many and varied examples, both to

supplement the results and to illustrate the phenomena that occur.

2. Continuity and compactness of C in ℓ1(w)

Given two strictly positive sequences v = (v(n))∞n=1 and w = (w(n))∞n=1,
let Tv,w : CN → CN denote the linear operator de�ned by

Tv,wx :=

(
w(n)

n

n∑
k=1

xk

v(k)

)
n∈N

, x = (xn)n∈N ∈ CN. (2.1)

Observe that ΦwC = Tv,wΦv as linear maps on CN. Hence, the Cesàro
operator C = Φ−1

w Tv,wΦv maps ℓ1(v) continuously (resp., compactly) into
ℓ1(w) if and only if the restricted operator Tv,w ∈ L(ℓ1) (resp., Tv,w ∈ K(ℓ1)).
In this regard the following result will be useful, [16, p.11], [21, Lemma 2],
[22, p.220].

Lemma 2.1. Let A = (amn)m,n∈N be a matrix with entries from C and

T : CN → CN be the linear operator de�ned by

Tx :=

(
∞∑
n=1

amnxn

)
m∈N

, x = (xn)n∈N,

interpreted as Tx ∈ CN exists for x ∈ CN. Then T ∈ L(ℓ1) if and only if

sup
n∈N

∞∑
m=1

|amn| < ∞.

In this case, the operator norm of T is given by ∥T∥ = supn∈N
∑∞

m=1 |amn|.
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An immediate application is the following result.

Proposition 2.2. Let v = (v(n))∞n=1 and w = (w(n))∞n=1 be two bounded,

strictly positive sequences.

(i) C maps ℓ1(v) continuously into ℓ1(w) if and only if

Mv,w := sup
n∈N

1

v(n)

∞∑
m=n

w(m)

m
< ∞. (2.2)

In this case, ∥C∥ = Mv,w.

(ii) C maps ℓ1(v) compactly into ℓ1(w) if and only if

lim
n→∞

1

v(n)

∞∑
m=n

w(m)

m
= 0. (2.3)

Proof. (i) By the remark prior to Lemma 2.1 we only need to show that the
operator Tv,w ∈ L(ℓ1) if and only if (2.2) is satis�ed.
Now, Tv,w = ΦwCΦ

−1
v is de�ned via the matrix A := (amn)m,n∈N where,

for each m ∈ N, amn := w(m)
mv(n)

for 1 ≤ n ≤ m and amn := 0 otherwise.

According to Lemma 2.1, Tv,w ∈ L(ℓ1) if and only if

sup
n∈N

1

v(n)

∞∑
m=n

w(m)

m
< ∞,

i.e., if and only if (2.2) is satis�ed, in which case ∥Tv,w∥ = Mv,w < ∞.
So, assume now that Mv,w < ∞, in which case ∥Tv,w∥ = Mv,w. Then the

identity C = Φ−1
w Tv,wΦv together with the fact that both Φv and Φ−1

w are
isometric isomorphisms, implies that ∥C∥ = Mv,w.
(ii) Assume �rst that C ∈ K(ℓ1(v), ℓ1(w)). In particular, C is also contin-

uous and so (2.2) is satis�ed withMv,w < ∞. The claim is that the operator
A : c0(w

−1) → c0(v
−1) de�ned by Ay :=

(∑∞
m=n

ym
m

)
n∈N, for y ∈ c0(w

−1), is

then continuous and its dual operator A′ is precisely C : ℓ1(v) → ℓ1(w). To
establish continuity, �x y ∈ c0(w

−1). Let ε > 0. Select n0 ∈ N such that
|yn|w(n)−1 < ε/Mv,w for all n ≥ n0. It follows, for every n ≥ n0, that

1

v(n)

∣∣∣∣∣
∞∑

m=n

ym
m

∣∣∣∣∣ ≤ 1

v(n)

∞∑
m=n

|ym|
w(m)

w(m)

m
<

ε

Mv,w

1

v(n)

∞∑
m=n

w(m)

m
≤ ε.

Accordingly, Ay ∈ c0(v
−1). Moreover, for each n ∈ N we have that

1

v(n)

∣∣∣∣∣
∞∑

m=n

ym
m

∣∣∣∣∣ ≤ 1

v(n)

∞∑
m=n

|ym|
w(m)

w(m)

m
≤ ∥y∥0,w−1

1

v(n)

∞∑
m=n

w(m)

m
≤ Mv,w∥y∥0,w−1 ,

which yields ∥Ay∥0,v−1 ≤ Mv,w∥y∥0,w−1 . But, y ∈ c0(w
−1) is arbitrary, and

so A is continuous with ∥A∥ ≤ Mv,w. It is routine to check that A′ = C.
Since C ∈ K(ℓ1(v), ℓ1(w)) and C is the dual operator of A, Schauder's

theorem implies that A ∈ K(c0(w
−1), c0(v

−1)), [19, Theorem 3.4.15], [23,
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p.282]. In particular, A ∈ L(c0(w−1), c0(v
−1)) is necessarily weakly com-

pact. Hence, its bidual operator A′′ = C′ ∈ L(ℓ∞(w−1), ℓ∞(v−1)) actually
maps ℓ∞(w−1) into c0(v

−1), [19, Theorem 3.5.8]. But w ∈ ℓ∞(w−1) and so

C′w ∈ c0(v
−1), that is, limn→∞

(C′w)(n)
v(n)

= 0. Since C′w =
(∑∞

m=n
w(m)
m

)
n∈N

,

we obtain that limn→∞
1

v(n)

∑∞
m=n

w(m)
m

= 0, that is, (2.3) is satis�ed.

Conversely, suppose that (2.3) holds. Then also (2.2) is valid and so
C ∈ L(ℓ1(v), ℓ1(w)) by part (i) of this Proposition. Consequently, C′ ∈
L((ℓ∞(w−1), ℓ∞(v−1)). Observe, for every x ∈ ℓ∞(w−1), that

1

v(n)

∣∣∣∣∣
∞∑

m=n

xm

m

∣∣∣∣∣ ≤ 1

v(n)

∞∑
m=n

|xm|
w(m)

w(m)

m
≤ ∥x∥∞,w−1

1

v(n)

∞∑
m=n

w(m)

m
, n ∈ N.

Hence, by (2.3) it follows that limn→∞
1

v(n)

∣∣∑∞
m=n

xm

m

∣∣ = 0, that is, C′x ∈
c0(v

−1). Accordingly, C′ actually maps ℓ∞(w−1) into c0(v
−1). That is, the

restriction A := C′|c0(w−1), which is continuous from c0(w
−1) ⊆ ℓ∞(w−1)

into c0(v
−1) ⊆ ℓ∞(v−1), has the property that A′′ = C′ is continuous from

ℓ∞(w−1) into ℓ∞(v−1) and maps ℓ∞(w−1) into c0(v
−1). Accordingly, A is

weakly compact, [19, Theorem 3.5.8], and hence, also C = A′ is weakly
compact from ℓ1(v) into ℓ1(w), [19, Theorem 3.5.13]. Since the compact
and weakly compact subsets of ℓ1(w) ≃ ℓ1 coincide, [19, p.255], it follows
that C maps ℓ1(v) compactly into ℓ1(w). �

If v = w we denote Mv,w simply by Mw. In the event that Mw < ∞, the
corresponding (continuous) Cesàro operator C : ℓ1(w) → ℓ1(w) is denoted
by C(1,w). As indicated in Section 1, we also write C(1,w) ∈ L(ℓ1(w)).
The following simple fact will be used on several occasions.

Lemma 2.3. Let δ > 0. Then
∞∑

n=m

1

n1+δ
≤ 1

δ(m− 1)δ
≤ 2δ

δmδ
, m ≥ 2.

Proof. Fix m ≥ 2. Then
∞∑

n=m

1

n1+δ
≤
∫ ∞

m−1

1

x1+δ
dx =

1

δ(m− 1)δ
≤ 2δ

δmδ
.

�

Remark 2.4. Let w = (w(n))n∈N be a bounded, strictly positive weight
such that C(1,w) ∈ L(ℓ1(w)).
(i) Necessarily α := infn∈N w(n) = 0. Otherwise, for n ∈ N, we have

α

w(1)

n∑
m=1

1

m
≤ 1

w(1)

n∑
m=1

w(m)

m
≤ 1

w(1)

∞∑
m=1

w(m)

m
≤ Mw < ∞,

which is impossible.
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(ii) The condition α := infn∈N w(n) = 0, necessary for the continuity
of C in ℓ1(w), cannot be replaced with w ∈ c0. To see this, de�ne w by
w(n) := 1 if n = 2k, for k ∈ N, and w(n) := 1

n
otherwise. Surely w ̸∈ c0.

Set an := 1
w(n)

∑∞
m=n

w(m)
m

for n ∈ N. If n = 2k for some k ∈ N, then

a2k =
∞∑

m=2k

w(m)

m
≤

∞∑
m=1

1

m2
+

∞∑
j=k

1

2j
≤ π2

6
+ 1.

Clearly, a1 =
∑∞

m=1
w(m)
m

≤
∑∞

m=1
1
m2 +

∑∞
j=1

1
2j

≤ π2

6
+1. Finally, for �xed

k ∈ N, if 2k < n < 2k+1, then Lemma 2.3 implies that

an ≤ n

(
∞∑

m=n

1

m2
+

∞∑
j=k+1

1

2j

)
≤ n

(
2

n
+

1

2k

)
≤ 4.

So, supn∈N an < ∞, i.e., C(1,w) ∈ L(ℓ1(w)); see Proposition 2.2(i).

(iii) Observe that ∥e1∥1,w = w(1) and ∥C(1,w)e1∥1,w =
∑∞

m=1
w(m)
m

. So,

∥C(1,w)∥ ≥ ∥C(1,w)e1∥1,w
∥e1∥1,w

=
1

w(1)

∞∑
m=1

w(m)

m
= 1 +

1

w(1)

∞∑
m=2

w(m)

m
> 1.

Fix 1 < p < ∞. For every strictly positive, decreasing sequence w =
(w(n))n∈N (i.e., w(n + 1) ≤ w(n) for n ∈ N) the corresponding Cesàro
operator C(p,w) maps ℓp(w) continuously into itself and

∥C(p,w)∥ ≤ p′, (2.4)

where the constant p′ = p
p−1

is independent of w, [4, Proposition 2.2]. Ex-

ample 2.5(ii) below shows that this is surely not the case for p = 1. Here,

ℓp(w) :=

x ∈ CN : ∥x∥p,w :=

(
∞∑
n=1

|xn|pw(n)

)1/p

< ∞


which is a Banach space for the norm ∥ · ∥p,w (even if w is not necessarily
decreasing). Remark 2.4(i) indicates we only need to consider decreasing
weights w ∈ c0.

Examples 2.5. (i) Fix γ ∈ (0, 1]. De�ne w by w(1) := 2 and w(n) :=
1

(logn)γ
for n ≥ 2. Then w ↓ 0. Moreover, Ce1 =

(
1
n

)
n∈N with

∥Ce1∥1,w = 2 +
∞∑
n=2

1

n(log n)γ
. (2.5)

By the integral test the series (2.5) is divergent and so Ce1 ̸∈ ℓ1(w). Hence,
C does not act in ℓ1(w).
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(ii) For α > 0 de�ne the decreasing weight wα(n) :=
1
nα for n ∈ N. Then

Lemma 2.3 implies that

1

wα(n)

∞∑
m=n

wα(m)

m
= nα

∞∑
m=n

1

mα+1

≤ nα

α(n− 1)α
=

1

α

(
n

n− 1

)α

≤ 2α

α
, n ≥ 2.

Hence, Mwα = supn∈N
1

wα(n)

∑∞
m=n

wα(m)
m

≤ 2α

α
. Via Proposition 2.2(i) we

have C(1,wα) ∈ L(ℓ1(wα)). Observe that wα ∈ ℓ1 if and only if α > 1.
On the other hand, for each �xed n ∈ N we have

1

wα(n)

∞∑
m=n

wα(m)

m
= nα

∞∑
m=n

1

mα+1
≥ nα

∫ ∞

n

1

sα+1
ds =

1

α
.

Accordingly,

∥C(1,wα)∥ = Mwα ≥ 1

α
, ∀α > 0. (2.6)

That is, there is no constantK > 0 such that ∥C(1,w)∥ ≤ K for all decreasing
weights w ↓ 0 satisfying C(1,w) ∈ L(ℓ1(w)).
(iii) Let now γ > 1. De�ne w by w(n) := 1

(log(n+1))γ
for n ∈ N. Unlike in

(i) above, the integral test reveals that now
∑∞

n=1
1

n(log(n+1))γ
is convergent.

Nevertheless, C is still not continuous from ℓ1(w) into itself. To see this, let
g(x) := x(log(x + 1))γ, for x > 0. Then g is a strictly increasing, positive,
di�erentiable function in (0,∞) with g′(x) = (log(x + 1))γ + γ x

x+1
(log(x +

1))γ−1 > 0 for all x > 0. Accordingly, f(x) := 1
g(x)

is strictly decreasing,

positive, and continuous in (0,∞). So, for �xed n ∈ N, we have
∞∑

m=n

1

m(log(m+ 1))γ
≥

∫ ∞

n

1

x(log(x+ 1))γ
dx ≥

∫ ∞

n

1

(x+ 1)(log(x+ 1))γ
dx

=
1

(γ − 1)(log(n+ 1))γ−1
.

It follows that

1

w(n)

∞∑
m=n

w(m)

m
≥ (log(n+ 1))γ

1

(γ − 1)(log(n+ 1))γ−1
=

log(n+ 1)

γ − 1
.

Accordingly, supn∈N
1

w(n)

∑∞
m=n

w(m)
m

= ∞ and so C fails to map ℓ1(w) into

itself; see Proposition 2.2(i).

Examples 2.5(i), (iii) show if w ↓ 0 �too slowly�, then C may fail to act
in ℓ1(w). On the other hand, Example 2.5(ii) indicates if w ↓ 0 �somewhat
faster� than in Examples 2.5(i), (iii) (note there that even wα ∈ ℓ1 for all
α > 1), then C(1,w) may be continuous in ℓ1(w). Unfortunately, no rate of
decay for w ↓ 0 can be speci�ed apriori to ensure that C acts in ℓ1(w).
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Given two bounded, strictly positive sequences v, w satisfying v(n) ≤
w(n) for all n ∈ N we simply write v ≤ w.

Proposition 2.6. Let v be any bounded, strictly positive sequence satisfying

infn∈N v(n) = 0.

(i) There exists a decreasing, strictly positive sequence w ≤ v such that

w ∈ c0 and C does not act in ℓ1(w).
(ii) There exists a decreasing, strictly positive sequence u ≤ v such that

C(1,u)is a compact operator in ℓ1(u).

Proof. (i) De�ne φ(n) := min{v(k) : 1 ≤ k ≤ n} for n ∈ N. Then φ is
strictly positive, decreasing, satis�es φ ≤ v and φ ∈ c0.
Since limn→∞

∑n
m=k

1
m

= ∞, for all k ∈ N, there exists a strictly increas-
ing sequence (kj)j∈N in N (with k1 := 1) satisfying

kj+1∑
m=kj+1

1

m
> j, j ∈ N. (2.7)

De�ne w(1) := 1 and w(n) := φ(kj+1) for n ∈ {kj + 1, . . . , kj+1} and
each j ∈ N. Since φ is decreasing, so is w. In addition, for j ∈ N and
kj +1 ≤ n ≤ kj+1 we have w(n) = φ(kj+1) ≤ φ(n), that is, w ≤ φ ≤ v with
w ∈ c0. For each j ∈ N we have

1

w(kj + 1)

∞∑
m=kj+1

w(m)

m
≥ 1

w(kj + 1)

kj+1∑
m=kj+1

w(m)

m
≥

kj+1∑
m=kj+1

1

m
> j

and hence, supn∈N
1

w(kj+1)

∑∞
m=kj+1

w(m)
m

= ∞. Then Proposition 2.2(i)

shows that C does not act in ℓ1(w).
(ii) Set u(1) := v(1). Inductively, for n ∈ N with u(1), . . . , u(n) already

speci�ed, de�ne

u(n+ 1) := min

{
v(n+ 1),

u(n)

n+ 1

}
.

Then u satis�es 0 < u ≤ v with u decreasing and u(n + 1) ≤ u(n)
n+1

for

all n ∈ N. Accordingly, limn→∞
u(n+1)
u(n)

= 0 and hence, by Proposition 2.9

below, we have that C(1,u) ∈ K(ℓ1(u)). �
Remark 2.7. (i) In the statement of Proposition 2.6 no assumption is
made on v as to whether or not C acts in ℓ1(v). The behaviour exhibited in
Proposition 2.6 in relation to C acting in ℓ1(w) or not acting in ℓ1(w) (even
when w ↓ 0) has no counterpart in the spaces ℓp(w), 1 < p < ∞. Indeed,
in these spaces, for every decreasing sequence w the Cesàro operator C is
automatically continuous; see the discussion prior to Examples 2.5. The
di�erence is that for ℓ1(w) the continuity condition (2.2) need not respect
existing monotonicity properties of w.
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(ii) A sequence x = (xn)n∈N ∈ CN is rapidly decreasing if (nkxn)n∈N ∈ ℓ1
for every k ∈ N. The space of all such sequences is denoted by s. Let v ∈ s
be arbitrary. Proposition 2.6(ii) implies that there always exists a strictly
positive weight u ≤ v (hence, u ∈ s) with C(1,u) ∈ K(ℓ1(u)). By applying
Proposition 2.6(i) to u it follows that there exists another strictly positive
sequence w ≤ u (hence, also w ∈ s) such that C does not act in ℓ1(w).
(iii) The inequality (2.6), together with (2.3) when v = w, provides a

class of weights wα ↓ 0, for α > 0, such that C(1,wα) ∈ L(ℓ1(wα)) but, C
(1,wα)

fails to be compact.

We now exhibit a large class of weights w ↓ 0 for which C(1,w) is compact.

Lemma 2.8. Let r ∈ (0, 1). Then

lim
n→∞

1

rn

∞∑
m=n

rm

m
= 0. (2.8)

Proof. Clearly (2.8) follows from the following inequalities

1

rn

∞∑
m=n

rm

m
≤ 1

nrn

∞∑
m=n

rm =
1

nrn
rn

(1− r)
=

1

n(1− r)
, n ∈ N.

�
Proposition 2.9. Let w be a bounded, strictly positive sequence such that

lim supn→∞
w(n+1)
w(n)

=: l ∈ [0, 1). Then C(1,w) ∈ K(ℓ1(w)).

Proof. Let r satisfy l < r < 1. Then there exists n0 ∈ N such that
supn≥n0

w(n+1)
w(n)

< r and hence, w(n + 1) < rw(n) for all n ≥ n0. It fol-

lows, for a �xed n ≥ n0, that w(m) < rm−nw(n) for all m ≥ n. So, for all
n ≥ n0, we can conclude that

1

w(n)

∞∑
m=n

w(m)

m
≤ 1

w(n)

∞∑
m=n

rm−nw(n)

m
=

1

rn

∑
m=n

rm

m
.

Then Lemma 2.8 shows that (2.3) holds, i.e., C(1,w) ∈ K(ℓ1(w)). �
Examples 2.10. (i) Let w(n) := nβrn, for r ∈ (0, 1) and β ≥ 0 �xed and

for all n ∈ N. Then limn→∞
w(n+1)
w(n)

= r ∈ (0, 1).

(ii) Let w(n) = 1
nn for n ∈ N. Then

lim
n→∞

w(n+ 1)

w(n)
= lim

n→∞

1

n+ 1

(
n

n+ 1

)n

= 0.

(iii) Fix a > 0. Let w(n) = an

n!
for all n ∈ N. Then

lim
n→∞

w(n+ 1)

w(n)
= lim

n→∞

a

n+ 1
= 0.

(iv) Let w be the positive sequence de�ned by w(1) := 1 and w(n+1) :=
anw(n) for n ∈ N, where a2p := 1

2
and a2p−1 :=

1
p
for p ∈ N. Then, for �xed
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p ∈ N, we have w(2p+1)
w(2p)

= a2p = 1
2
and w(2p)

w(2p−1)
= a2p−1 = 1

p
. Accordingly,

lim supn→∞
w(n+1)
w(n)

= 1
2
.

According to Proposition 2.9, each of the weights w in (i)-(iv) has the
property that C(1,w) ∈ K(ℓ1(w)).

(v) Fix 0 < β < 1 and set wβ(n) := e−nβ
for n ∈ N. Since

lim
n→∞

wβ(n+ 1)

wβ(n)
= lim

n→∞
en

β−(n+1)β = lim
n→∞

e−β/n1−β

= 1,

because nβ − (n + 1)β = nβ(1 − [1 + β
n
+ o( 1

n
)]) ≃ −β/n1−β, we see that

Proposition 2.9 is not applicable. However,

1

wβ(n)

∞∑
m=n

wβ(m)

m
= en

β
∞∑

m=n

e−mβ

mβm1−β
≤ en

β

nβ

∫ ∞

n−1

e−xβ

x1−β
dx

as x 7→ e−xβ

x1−β = 1

x1−βex
β is decreasing in (0,∞). Since d

dx

(
− 1

β
e−xβ

)
= e−xβ

x1−β ,

it follows that
∫∞
n−1

e−xβ

x1−β dx = 1
β
e−(n−1)β and hence, that

1

wβ(n)

∞∑
m=n

wβ(m)

m
≤ 1

βnβ
en

β−(n−1)β ≃ eβ/n
1−β

βnβ
.

But, limn→∞
eβ/n

1−β

βnβ = 0 and so Proposition 2.2(ii), with v := wβ, implies

that C(1,wβ) ∈ L(ℓ1(wβ)) is compact.

If β = 1, then wβ(n) = e−n for n ∈ N and so limn→∞
wβ(n+1)

wβ(n)
= 1

e
< 1.

For β > 1, observe from above that limn→∞
wβ(n+1)

wβ(n)
= limn→∞ e−βnβ−1

= 0.

So, for β ≥ 1 the compactness of C(1,wβ) does follow from Proposition 2.9.
(vi) Fix γ > 1 and set wγ(n) := e− logγ(n) for n ∈ N. It is shown in

[5, Remark 2.10(ii)] that limn→∞
wγ(n+1)

wγ(n)
= 1 and so Proposition 2.9 is not

applicable. However,

An :=
1

wγ(n)

∞∑
m=n

wγ(m)

m
= elog

γ(n)

∞∑
m=n

e− logγ(m)

m

≤ elog
γ(n)

∫ ∞

n−1

e− logγ(x)

x
dx, n ≥ 2,

because x 7→ e− logγ (v)

x
= 1

x logγ(x)
is decreasing in (1,∞). Accordingly,

An ≤ elog
γ(n)

∫ ∞

n−1

e− logγ(x)

x
dx = elog

γ(n)

∫ ∞

n−1

−1

γ logγ−1(x)
f ′(x) dx

≤ elog
γ(n)

γ logγ−1(n− 1)

∫ ∞

n−1

(−f ′(x)) dx =
elog

γ(n)−logγ(n−1)

γ logγ−1(n− 1)
,
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where f(x) = e− logγ(x) (i.e., f ′(x) = −γ logγ−1(x)e− logγ (x)

x
). But, for n ≥ 2,

logγ(n)− logγ−1(n− 1) = g′(ξn), for some ξn ∈ ((n− 1), n),

where g(t) := logγ(t) satis�es g′(t) = γ logγ−1(t)
t

→ 0 as t → ∞. Hence,

0 ≤ logγ(n) − logγ−1(n − 1) ≤ 1 for all n ≥ M and some M ∈ N with
M ≥ 2. It follows that

An ≤ e

γ logγ−1(n− 1)
, n ≥ M,

from which we can conclude that limn→∞An = 0, i.e., C(1,wγ) ∈ K(ℓ1(wγ))
for all γ > 1; see Proposition 2.2(ii).

Remark 2.11. Examples 2.10(v), (vi) also follow from the following fact.
Let w be a bounded, strictly positive sequence with the property that, for

every k ∈ N there exists n(k) ∈ N such that the sequence (nkw(n))∞n=n(k) is

decreasing. Then C(1,w) ∈ K(ℓ1(w)).

To see this, set an := 1
w(n)

∑∞
m=n

w(m)
m

for n ∈ N. Fix k ∈ N. Then

an = nk

∞∑
m=n

mkw(m)

nkw(n)
· 1

mk+1
≤ nk

∞∑
m=n

1

mk+1
, n ≥ n(k),

because mkw(m)
nkw(n)

≤ 1 for all m ≥ n. But,
∑∞

m=n
1

mk+1 ≤ 1
k(n−1)k

(see Lemma

2.3) and so an ≤ nk

k(n−1)k
for n ≥ n(k). Since supn≥m(k)

nk

(n−1)k
≤ 2 for some

m(k) ≥ n(k) it follows, for each k ∈ N, that there exists m(k) ∈ N such
that an ≤ 2

k
for all n ≥ m(k). This condition implies that limn→∞ an = 0

and hence, via Proposition 2.2(ii), that C(1,w) ∈ K(ℓ1(w)).

Let v, w be bounded, strictly positive sequences satisfying v ≤ Aw for
some constant A > 0. Then the natural inclusion ℓ1(w) ⊆ ℓ1(v) is con-
tinuous because ∥x∥1,v ≤ A∥x∥1,w, for x ∈ ℓ1(w). Suppose that C(1,w) ∈
L(ℓ1(w)). Then C : ℓ1(w) → ℓ1(v) is also continuous with ∥C∥ ≤ A∥C(1,w)∥.
According to Proposition 2.6, C need not have an ℓ1(v)-valued continuous
linear extension from ℓ1(w) to ℓ1(v). Similarly, if C(1,w) ∈ K(ℓ1(w)) and
C(1,v) ∈ L(ℓ1(v)), then C(1,v) need not be compact. The following explicit
examples illustrate these features.

Example 2.12. (i) Select a strictly increasing sequence 1 =: k1 < k2 < . . .

in N satisfying kj+1 > 2kj for each j ∈ N and limj→∞
∑kj+1

m=1+kj
1
m

= ∞ (eg.,

kj := jj). Set v(1) := 1 and, for each j ∈ N, de�ne v(n) := 1
2j(kj+1−kj)

for

kj + 1 ≤ n ≤ kj+1. For �xed j ∈ N it follows that

1

v(kj + 1)

∞∑
m=kj+1

v(m)

m
≥ 1

v(kj + 1)

kj+1∑
m=kj+1

v(m)

m
≥

kj+1∑
m=kj+1

1

m
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and hence, supj∈N
1

v(kj+1)

∑∞
m=kj+1

v(m)
m

= ∞. Proposition 2.2(i) implies

that C does not act in ℓ1(v).
On the other hand, de�ne w(n) := 2

n
for n ∈ N. Given n ≥ 2, select

j ∈ N such that kj + 1 ≤ n ≤ kj+1. Then

v(n)

w(n)
=

n

2 · 2j(kj+1 − kj)
≤ kj+1

2(kj+1 − kj)
=

1

2(1− kj
kj+1

)
< 1

and so v ≤ w. Moreover, C(1,w) ∈ L(ℓ1(w)); see Examples 2.5(ii).
(ii) De�ne the decreasing sequence v by v(1) = v(2) := 1 and

v(n) :=
1

2i2(i+1)2i+1 , for 2i + 1 ≤ n ≤ 2i+1 and i ∈ N,

and the sequence w := ( 1
nn+1 )n∈N. Given n ≥ 3 select i ∈ N such that

2i + 1 ≤ n ≤ 2i+1. Then

v(n)

w(n)
=

nnn

2i2(i+1)2i+1 ≤ (2i+1)2
i+1

2i+1

2i2(i+1)2i+1 = 2.

Since v(1)
w(1)

= 1 and v(2)
w(2)

= 8, it follows that v ≤ 8w. In particular, v ∈ s.

According to Proposition 2.9 (as limn→∞
w(n+1)
w(n)

= 0) C(1,w) is compact. On

the other hand, C(1,v) is continuous (see Fact 2 in Example 3.15 below) but
not compact (see Fact 3 in Example 3.15 below).

We now present a positive comparison result where di�culties such as
those observed in Example 2.12 do not arise.

Proposition 2.13. Let v, w be bounded, strictly positive sequences such

that ( v(n)
w(n)

)∞n=n0
is a decreasing sequence for some n0 ∈ N.

(i) If C(1,w) ∈ L(ℓ1(w)), then also C(1,v) ∈ L(ℓ1(v)).
(ii) If C(1,w) ∈ K(ℓ1(w)), then also C(1,v) ∈ K(ℓ1(v)).

Proof. (i) De�ne αn := v(n)
w(n)

for n ∈ N in which case αn ≥ αn+1 for all

n ≥ n0. Proposition 2.2(i) implies that Mw < ∞; see (2.2). Moreover,

1

v(n)

∞∑
m=n

v(m)

m
=

1

w(n)

∞∑
m=n

αm

αn

· w(m)

m
≤ 1

w(n)

∞∑
m=n

w(m)

m
≤ Mw, (2.9)

for all n ≥ n0. In particular, via (2.9),

A :=
∞∑
k=1

v(k)

k
=

n0−1∑
k=1

v(k)

k
+ v(n0) ·

1

v(n0)

∞∑
k=n0

v(k)

k
< ∞.

For each n ∈ {1, . . . , n0−1} it follows that 1
v(n)

∑∞
m=n

v(m)
m

≤ A
v(n)

and hence,

Mv = sup
n∈N

1

v(n)

∞∑
m=n

v(m)

m
≤ max

{
Mw,max

{
A

v(1)
, . . . ,

A

v(n0 − 1)

}}
< ∞.
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Accordingly, C(1,v) ∈ L(ℓ1(v)).
(ii) Let n0 be as in the statement of the proposition. Let ϵ > 0. Since

C(1,w) is compact, there exists n1(ϵ) > n0 such that

1

w(n)

∞∑
m=n

w(m)

m
< ϵ, n ≥ n1(ϵ);

see (2.3). It then follows from (2.9) that also

1

v(n)

∞∑
m=n

v(m)

m
< ϵ, n ≥ n1(ϵ) > n0.

Accordingly, C(1,v) is also compact; see Proposition 2.2(ii). �
Example 2.14. (i) For w := ( 1

nα )n∈N with α > 0, Examples 2.5(ii) shows

that C(1,w) ∈ L(ℓ1(w)). De�ne v(n) := 1
nα logβ(n+1)

, n ∈ N, with β > 0.

Then v
w

is a decreasing sequence and so Proposition 2.13(i) implies that

C(1,v) ∈ L(ℓ1(v)).
(ii) Let w(n) := 1

n logβ(n+1)
, n ∈ N, with β > 1, in which case C(1,w) ∈

L(ℓ1(w)) by part (i). Also, via Examples 2.5(ii), v := ( 1
n2 )n∈N satis�es

C(1,v) ∈ L(ℓ1(v)). Consider the sequence v
w
= ( log

β(n+1)
n

)n∈N. The derivative

of the function f(x) := logβ(x+1)
x

for x ≥ 1 is given by

f ′(x) =
(βx− (x+ 1) log(x+ 1)) logβ−1(x+ 1)

x2(x+ 1)

and hence, f is decreasing on ((eβ−1),∞). So there exists n0 ∈ N such that

( v(n)
w(n)

)∞n=n0
is decreasing. Since C(1,v) is not compact (by Remark 2.7(iii)), it

follows from Proposition 2.13(ii) that C(1,w) also fails to be compact.

Remark 2.15. Let v, w be bounded, strictly positive sequences satisfying
A1v ≤ w ≤ A2v for positive constants A1, A2. Then ℓ1(v) and ℓ1(w) are
equal as vector spaces and the norms ∥ · ∥1,v and ∥ · ∥1,w are equivalent. Ac-
cordingly, C(1,w) ∈ L(ℓ1(w)) (resp. K(ℓ1(w)) if and only if C(1,v) ∈ L(ℓ1(v))
(resp. K(ℓ1(v)). For instance, let v = ( 1

nα )n∈N with α > 0. Consider
any bounded, strictly positive sequence φ satisfying γ := infn∈N φ(n) > 0.
Then w := (φ(n)v(n))n∈N satis�es γv ≤ w ≤ ∥φ∥∞v. Via Examples 2.5(ii),
C(1,v) ∈ L(ℓ1(v)) and so also C(1,w) ∈ L(ℓ1(w)). Remark 2.7(iii) shows that
C(1,v) is not compact and hence, also C(1,w) fails to be compact. Or, suppose
that u ≤ v. Then v ≤ u + v ≤ 2v and so C(1,u+v) is continuous (resp.
compact) if and only if C(1,v) is continuous (resp. compact).

3. Spectrum of C(1,w)

The aim of this section is to provide some detailed knowledge of the
spectrum of C(1,w). For 1 < p < ∞ it is known for every strictly positive,
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decreasing weight w that the spectrum of C(p,w) ∈ L(ℓp(w)) satis�es

σ(C(p,w)) ⊆ {λ ∈ C : |λ| ≤ p′}
with p′ = p

p−1
a constant independent of w; see (2.4) above and [4, Theorem

3.3(i)]. It will be shown, for p = 1, that no such constant (independent of
w) exists; see Example 3.13. The spectrum of C(1,w) is characterized in The-
orem 3.7. Further properties of σ(C(1,w)) are exhibited in Proposition 3.9.
Whenever C(1,w) is a compact operator, a complete description of σ(C(1,w))
is given in Proposition 3.11. Several relevant examples are presented.
We begin by recalling the following known fact; see e.g. [3, Proposition

4.1], [6, Propositions 4.3 and 4.4]. For convenience of notation we set Σ :=
{ 1
m
: m ∈ N} and Σ0 := Σ ∪ {0}. Recall that CN is a Fréchet space for the

lc-topology of coordinatewise convergence.

Lemma 3.1. (i) The spectrum σ(C,CN) = σpt(C,CN) = Σ.

(ii) Fix m ∈ N. Let x(m) := (x
(m)
n )n ∈ CN where x

(m)
n := 0 for n ∈

{1, . . . ,m− 1}, x(m)
m := 1 and x

(m)
n := (n−1)!

(m−1)!(n−m)!
for n > m. Then

the 1-dimensional eigenspace of 1
m

is given by

Ker

(
1

m
I − C

)
= span{x(m)} ⊆ CN.

Remark 3.2. For λ = 1, the corresponding eigenvector for C : CN → CN is
the constant vector 1 := (1)n∈N. Accordingly, if w is any bounded, strictly
positive weight such that C(1,w) ∈ L(ℓ1(w)), then 1 ∈ σpt(C

(1,w)) if and only
if 1 ∈ ℓ1(w), i.e., if and only if w ∈ ℓ1.

The following inequalities, [4, Lemma 3.2], [21, Lemma 7], will be needed.

Lemma 3.3. (i) Let λ ∈ C \ Σ0 and set α := Re
(
1
λ

)
. Then there exist

constants d > 0 and D > 0 (depending on α) such that

d

nα
≤

n∏
k=1

∣∣∣∣1− 1

kλ

∣∣∣∣ ≤ D

nα
, n ∈ N. (3.1)

(ii) For each m ∈ N we have that

(n− 1)!

(n−m)!
≃ nm−1, for all large n ∈ N. (3.2)

For every bounded, strictly positive weight w = (w(n))n∈N recall that

Rw := {t ∈ R :
∞∑
n=1

ntw(n) < ∞}. (3.3)

In case Rw ̸= R we de�ne t0 := supRw.

Proposition 3.4. Let w = (w(n))∞n=1 be a bounded, strictly positive se-

quence. The following conditions are equivalent.
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(i) (nmw(n))n ∈ ℓ1 for all m ∈ N.
(ii) w ∈ s.
(iii) Rw = R.

If, in addition, C(1,w) ∈ L(ℓ1(w), then (i)-(iii) are equivalent to

(iv) Σ ⊆ σpt(C
(1,w)).

Proof. (i)⇔(ii) follows from the de�nition of the space s.
(i)⇔(iii) follows from the de�nition of Rw; see (3.3).
Assume now that C(1,w) ∈ L(ℓ1(w)).
(iv)⇒(i) Fix m ∈ N. Then 1

m+1
∈ σpt(C

(1,w)) ⊆ σpt(C,CN) with x(m+1) as

its eigenvector in CN; see Lemma 3.1. So, necessarily x(m+1) ∈ ℓ1(w), i.e.,

(w(n)x
(m+1)
n )n∈N ∈ ℓ1. But, this happens only if (nmw(n))n ∈ ℓ1; see (3.2).

(i)⇒(iv) Fix m ∈ N. Then (nm−1w(n))n ∈ ℓ1 and so the sequence

(w(n)x
(m)
n )n∈N ∈ ℓ1, i.e., x(m) ∈ ℓ1(w), where x(m) is as in Lemma 3.1.

As x(m) is an eigenvector corresponding to the eigenvalue 1
m
for C acting on

CN, it follows that 1
m

is also an eigenvalue for C(1,w). �

Given a strictly positive, bounded sequence w = (w(n))n∈N, recall that
Sw(1) := {s ∈ R : supn∈N

1
nsw(n)

< ∞}. In case Sw(1) ̸= ∅ we de�ned

s1 := inf Sw(1). Since
1

nsw(n)
≥ 1

ns∥w∥∞ , for n ∈ N, it follows that s ̸∈ Sw(1)

for every s < 0 and hence, Sw(1) ⊆ [0,∞). Accordingly, s1 ≥ 0. If w(n) ≥ α
for all n ∈ N and some α > 0, then C does not act in ℓ1(w); see Remark
2.4(i). So, we restrict our attention to weights w with infn∈N w(n) = 0. In
this case 1

w
̸∈ ℓ∞. Hence, if Sw(1) ̸= ∅ and s ∈ Sw(1), then necessarily

s > 0 with M
ns ≤ w(n) for some M > 0 and all n ∈ N. It follows that

[s,∞) ⊆ Sw(1). So, whenever Sw(1) ̸= ∅ (with 1
w
̸∈ ℓ∞) we can conclude

that Sw(1) is an interval of the form [s1,∞) or (s1,∞) with s1 ≥ 0.
Concerning Rw (see (3.3)), whenever Rw ̸= R the quantity t0 is �nite

with t0 ≥ −1 and Rw = (−∞, t0) or Rw = (−∞, t0]. Moreover, Rw = ∅ is
impossible as

∑∞
n=1 n

tw(n) ≤ ∥w∥∞
∑∞

n=1 n
t < ∞ whenever t < −1.

Proposition 3.5. Let w be a bounded, strictly positive sequence.

(i) If Sw(1) ̸= ∅, then t0 ≤ s1. In particular, Rw ̸= R.
(ii) If Rw ̸= R, then Sw(1) ⊆ [t0,∞).
(iii) If w ∈ s, then Sw(1) = ∅.

Proof. (i) Fix any s > s1. Then, for someM > 0, we have 1
nsw(n)

≤ M for all

n ∈ N and hence, nsw(n) ≥ 1
M

for n ∈ N. Accordingly, (nsw(n))n∈N ̸∈ ℓ1,
i.e., s ̸∈ Rw. This implies that (s1,∞) ⊆ R \Rw, i.e., t0 ≤ s1.
(ii) Fix any t < t0 in which case limn→∞ tnw(n) = 0. Hence, there exists

K ∈ N such that nt ≤ 1
w(n)

for n ≥ K. So, for any s ∈ R we have (as
1
ns > 0 for n ∈ N) that 1

nsw(n)
≥ nt

ns for all n ≥ K. Hence, if s < t, then

( 1
nsw(n)

)n∈N ̸∈ ℓ∞ and so s ̸∈ Sw(1). This implies that Sw(1) ⊆ [t0,∞).
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(iii) Suppose r < 0. Since w ∈ c0, there exists L ∈ N such that 1
w(n)

≥ 1

for n ≥ L. Hence, 1
nrw(n)

≥ 1
nr for all n ≥ L and so r ̸∈ Sw(1). For r ≥ 0

�xed, set m := 1 + [r]. Since
∑∞

n=1 n
mw(n) < ∞ (see Proposition 3.4),

there is J ∈ N such that 1
w(n)

≥ nm for n ≥ J and hence, 1
nrw(n)

≥ nm

nr for

n ≥ J , that is, r ̸∈ Sw(1). �
Remark 3.6. (i) The converse of Proposition 3.5(iii) is not valid. Indeed,
let w = (w(n))n∈N be the strictly positive weight with w ↓ 0 as given in
[5, Remark 3.2]. It is shown there that there exists a strictly increasing
sequence (n(k))k∈N in N with the property: for each t ∈ R we have

1

(n(k))tw(n(k))
≥ k, k > t.

Hence, t ̸∈ Sw(1) and so Sw(1) = ∅. It is also shown in [5] that w ̸∈ s.
(ii) If v, w are bounded, strictly positive sequences with w ≤ v, then 1

v
≤

1
w
from which it follows that S1(w) ⊆ S1(v). Hence, inf S1(v) ≤ inf S1(w).

Also, it is clear from (3.3) that Rv ⊆ Rw and so supRv ≤ supRw.

We now come to the main results of this section. The following result
characterizes the spectrum of C(1,w).

Theorem 3.7. Let w = (w(n))n∈N be a bounded, strictly positive sequence

such that C(1,w) ∈ L(ℓ1(w)).
(i) The following inclusions hold:

Σ ⊆ Σ0 ⊆ σ(C(1,w)). (3.4)

(ii) Let λ ̸∈ Σ0 and set α := Re
(
1
λ

)
. Then λ ∈ ρ(C(1,w)) if and only if

sup
m∈N

1

mαw(m)

∞∑
n=m+1

w(n)

n1−α
< ∞. (3.5)

(iii) Suppose that Rw ̸= R, i.e., t0 < ∞. Then{
1

m
: m ∈ N, (m− 1) ∈ Rw

}
= σpt(C

(1,w)) ⊆
{

1

m
: m ∈ N, 1 ≤ m ≤ t0 + 1

}
.

(3.6)
In particular, σpt(C

(1,w)) is a �nite subset of Σ (possibly empty).
If Rw = R, then

σpt(C
(1,w)) = Σ. (3.7)

Proof. The proof is via a series of steps.
(i) The dual operator A := (C(1,w))′ ∈ L(ℓ∞(w−1)) is given by

Ay =

(
∞∑
k=n

yk
k

)
n∈N

, y = (yn)n∈N ∈ ℓ∞(w−1). (3.8)

Step 1. 0 ̸∈ σpt(A).
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If Ay = 0, for some y ∈ ℓ∞(w−1), then zn :=
∑∞

k=n
yk
k
= 0 for all n ∈ N.

Hence, yn = n(zn − zn+1) = 0, for n ∈ N, and so A is injective.
Step 2. Σ ⊆ σpt(A).
Let λ ∈ Σ, i.e., λ = 1

m
for some m ∈ N. Via (3.16) below, the non-zero

vector y = (yn)n∈N de�ned via y1 ∈ C\{0} arbitrary, yn := y1
∏n−1

k=1

(
1− 1

λk

)
for 1 < n ≤ m and yn := 0 for n > m, which clearly belongs to ℓ∞(w−1),
satis�es Ay = λy.
Step 3. Σ0 ⊆ σ(C(1,w)).
For every T ∈ L(X) with X a Banach space, we have σpt(T

′) ⊆ σ(T ),
[13, p.581], with σ(T ) closed in C. By Step 2 we then have Σ0 ⊆ σ(C(1,w)).
(ii) Step 4. Fix λ ̸∈ Σ0. Then λ ∈ ρ(C(1,w)) if and only if (3.5) holds.
To verify this we argue in a similar way as in [4] or [10]. We recall the

formula for (C − λI)−1 : CN → CN whenever λ ̸∈ Σ0, [21, p.266]. Namely,
for n ∈ N, the n-th row of the matrix for (C− λI)−1 has the entries

−1

nλ2
∏n

k=m

(
1− 1

λk

) , 1 ≤ m < n,

n

1− nλ
=

1
1
n
− λ

, m = n,

and all the other entries in row n are equal to 0. So, we can write

(C− λI)−1 = Dλ −
1

λ2
Eλ, (3.9)

where the diagonal operator Dλ = (dnm)n,m∈N is given by dnn := 1
1
n
−λ

and

dnm := 0 if n ̸= m. The operator Eλ = (enm)n,m∈N is then the lower
triangular matrix with e1m = 0 for all m ∈ N and for every n ≥ 2, with
enm := 1

n
∏n

k=m(1− 1
λk)

if 1 ≤ m < n and enm := 0 if m ≥ n.

As λ ̸∈ Σ0, we have d(λ) := dist(λ,Σ0) > 0 and |dnn| ≤ 1
d(λ)

for n ∈ N.
Hence, for every x ∈ ℓ1(w), it follows that

∥Dλ(x)∥1,w =
∞∑
n=1

|dnnxn|w(n) ≤
1

d(λ)

∞∑
n=1

|xn|w(n) =
1

d(λ)
∥x∥1,w.

This means that Dλ ∈ L(ℓ1(w)). So, by (3.9) it remains to show that
Eλ ∈ L(ℓ1(w)) if and only if (3.5) is satis�ed for α := Re

(
1
λ

)
.

To this end, we note that Eλ ∈ L(ℓ1(w)) if and only if the operator
Ẽλ : CN → CN given by Ẽλ = ΦwEΦ−1

w , i.e.,

(Ẽλ(x))n = w(n)
n−1∑
m=1

enm
w(m)

xm, x ∈ CN, n ∈ N,

de�nes a continuous linear operator on ℓ1 (see the comments prior to Lemma
2.1). So, the claim is that Ẽλ ∈ L(ℓ1) if and only if (3.5) is satis�ed for
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α := Re
(
1
λ

)
. To establish this claim, observe that (3.1) implies

D−1

n1−α
≤ |en1| ≤

d−1

n1−α
, n ≥ 2,

d′D−1

n1−αmα
≤ |enm| ≤

d−1D′

n1−αmα
, 2 ≤ m < n, (3.10)

for some constants d′ > 0 and D′ > 0 depending on λ.
Suppose �rst that Ẽλ ∈ L(ℓ1). Then Lemma 2.1 implies that

sup
m∈N

1

w(m)

∞∑
n=m+1

w(n)|enm| < ∞.

By (3.10) we have supm∈N
1

mαw(m)

∑∞
n=m+1

w(n)
n1−α < ∞, i.e., (3.5) is satis�ed.

Conversely, if (3.5) is satis�ed, then supm∈N
1

mαw(m)

∑∞
n=m+1

w(n)
n1−α < ∞.

By (3.10) this implies that also supm∈N
1

w(m)

∑∞
n=m+1w(n)|enm| < ∞. There-

fore, via Lemma 2.1, we can conclude that Ẽλ ∈ L(ℓ1). The claim is proved.
The proof of part (ii) is thereby complete.
(iii) Suppose �rst that Rw ̸= R.
Step 5. Both the equality and the inclusion in (3.6) are valid.

The proof of Step 5 is a routine adaption of the proof of Step 7 in the
proof of Theorem 3.3 in [4]; just substitute p = 1 there. In particular, it
follows that 1

m
∈ σpt(C

(1,w)) if and only if (m− 1) ∈ Rw.
The previous observation also allows us to adapt the argument of Step 8

in the proof of Theorem 3.3 in [4] to establish the following (�nal)
Step 6. Assume that Rw = R. Then (3.7) is valid. �

Remark 3.8. (i) Step 1 in the proof of Theorem 3.7 implies that C(1,w) has
dense range, i.e., 0 belongs to the continuous spectrum of C(1,w).
(ii) It is clear from (3.6) that if 1

M
∈ σpt(C

(1,w)) for some M ∈ N, then
also 1

m
∈ σpt(C

(1,w)) for all m ∈ {1, . . . ,M}.
(iii) It can happen that σpt(C

(1,w)) = ∅; see Example 3.13 below. In view
of part (i) and Remark 3.2 this is equivalent to 1 ̸∈ σpt(C

(1,w)), i.e., w ̸∈ ℓ1.
(iv) Suppose v, w are bounded, strictly positive sequences such that

C(1,w) ∈ L(ℓ1(w)) and ( v(n)
w(n)

)∞n=n0
is decreasing for some n0 ∈ N. Proposition

2.13(i) implies that C(1,v) ∈ L(ℓ1(v)). Let λ ∈ ρ(C(1,w))\Σ0, i.e., (3.5) holds

for α := Re
(
1
λ

)
. Setting αn := v(n)

w(n)
for n ∈ N it follows, for m ≥ n0, that

1

mαv(m)

∞∑
n=m+1

v(n)

n1−α
=

1

mαw(m)

∞∑
n=m+1

αm

αn

· w(n)
n1−α

≤ 1

mαw(m)

∞∑
n=m+1

w(n)

n1−α
.
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Hence, (3.5) implies that γ := supm≥n0

1
mαv(m)

∑∞
n=m+1

v(n)
n1−α < ∞. Set

δ := max{ 1
w(m)

: 1 ≤ m < n0}. Then, for m ∈ {1, . . . , n0 − 1}, we have

1

mαv(m)

∞∑
n=m+1

v(n)

n1−α
=

1

mαv(m)

n0∑
k=m+1

v(k)

k1−α
+

nα
0 v(n0)

mαv(m)
· 1

nα
0 v(n0)

∞∑
n=n0+1

v(n)

n1−α

≤ 1

v(m)

n0∑
k=m+1

v(k)

k1−α
+
(n0

m

)α γv(n0)

v(m)
≤ δ

n0∑
k=1

v(k)

k1−α
+ nα

0 δγv(n0).

Accordingly, supm∈N
1

mαv(m)

∑∞
n=m+1

v(n)
n1−α < ∞ and so Theorem 3.7(ii), ap-

plied to v, shows that λ ∈ ρ(C(1,v)) \ Σ0, that is

σ(C(1,v)) ⊆ σ(C(1,v)) ∪ Σ0 ⊆ σ(C(1,w)) ∪ Σ0.

Of course, if bounded, strictly positive sequences v and w satisfy A1v ≤
w ≤ A2v for positive constants A1, A2 and C(1,w) ∈ L(ℓ1(w)), then Remark
2.15 implies that σ(C(1,w)) = σ(C(1,v)). As an application, for �xed α > 1
consider the sequence w given by w(1) = w(2) = 1 and w(n) := 1

iα2i−1 for
2i + 1 ≤ n ≤ 2i+1 and i ∈ N. De�ne v(n) := 1

n logα(n+1)
for n ∈ N. Then

A1v ≤ w ≤ A2v (3.11)

for positive constants A1, A2. To establish (3.11), �x n ≥ 3 and select
i ∈ N such that 2i + 1 ≤ n ≤ 2i+1. Then

w(n)

v(n)
=

n logα(n+ 1)

iα2i−1
≥ 2i logα(2i)

iα2i−1
= 2 logα 2.

Since w(1)
v(1)

= logα 2 and w(2)
v(2)

= 2 logα 3 it follows, with A1 = 2 logα 3 that

the �rst inequality in (3.11) is satis�ed. Concerning the other inequality in
(3.11) observe, still with n and i as above, that

w(n)

v(n)
=

n logα(n+ 1)

iα2i−1
≤ 2i+1 logα(2i+2)

iα2i−1
= 4

(
i+ 2

i

)α

logα 2, n ≥ 3.

Since limi→∞
i+2
i

= 1, there exists A2 > 0 such that w ≤ A2v. This

establishes (3.11). It is shown in Example 2.14(ii) that C(1,v) ∈ L(ℓ1(v)).
According to (3.11) and Remark 2.15 also C(1,w) ∈ L(ℓ1(w)). The above
discussion and (3.11) then imply that

σpt(C
(1,v)) = σpt(C

(1,w)) and σ(C(1,v)) = σ(C(1,w)). (3.12)

Combining Fact 8 of Example 4.17 below with (3.12) yields

σpt(C
(1,v)) = {1} and σ(C(1,v)) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
.

It was noted above that always s1 ≥ 0. Note, for w = ( 1
log(n+1)

)n∈N, that

s1 = 0 and w ↓ 0. But, C does not act in ℓ1(w); see Example 2.5(i). For
weights w with C(1,w) ∈ L(ℓ1(w)) this phenomenon cannot occur.
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Proposition 3.9. Let w be a bounded, strictly positive sequence such that

C(1,w) ∈ L(ℓ1(w)) and Sw(1) ̸= ∅.
(i) It is necessarily the case that s1 > 0.
(ii) For the dual operator (C(1,w))′ ∈ L(ℓ∞(w−1)) of C(1,w) we have{

λ ∈ C :

∣∣∣∣λ− 1

2s1

∣∣∣∣ < 1

2s1

}
∪ Σ ⊆ σpt((C

(1,w))′) (3.13)

and

σpt((C
(1,w))′) \ Σ ⊆

{
λ ∈ C :

∣∣∣∣λ− 1

2s1

∣∣∣∣ ≤ 1

2s1

}
. (3.14)

For the Cesàro operator C(1,w) itself we have{
λ ∈ C :

∣∣∣∣λ− 1

2s1

∣∣∣∣ ≤ 1

2s1

}
∪ Σ ⊆ σ(C(1,w)). (3.15)

Proof. (i) Suppose that s1 := inf Sw(1) = 0. Fix any s > 0. Then

w(n) ≥ c(s)
ns for some constant c(s) > 0 and all n ∈ N. Hence,

∑∞
n=1

w(n)
n1−s ≥

c(s)
∑∞

n=1
1
n
which shows that

∑∞
n=1

w(n)
n1−s diverges (for every s > 0).

Fix s > 0 with s ̸∈ Σ and set λ := 1
s
∈ R. By the previous paragraph∑∞

n=1
w(n)
n1−s diverges. Theorem 3.7(ii) implies (put m = 1 in (3.5)) that

λ ̸∈ ρ(C(1,w)), i.e., λ ∈ σ(C(1,w)). So, the unbounded set {1
s
: s > 0} \ Σ is

contained in σ(C(1,w)); impossible. Hence, s1 > 0.
(ii) We proceed by a series of steps. Denote again by A ∈ L(ℓ∞(v)) the

dual operator of C(1,w), where v := w−1.

Step 1.
{
λ ∈ C :

∣∣∣λ− 1
2s1

∣∣∣ < 1
2s1

}
⊆ σpt(A).

Let λ ∈ C \ {0}. Then Ay = λy is satis�ed for some non-zero y ∈ ℓ∞(v)
if and only if λyn =

∑∞
k=n

yk
k
for all n ∈ N. This yields, for every n ∈ N,

that λ(yn − yn+1) =
yn
n
and so yn+1 =

(
1− 1

λn

)
yn. It follows that

yn+1 = y1

n∏
k=1

(
1− 1

λk

)
, n ∈ N, (3.16)

with y1 ̸= 0. In particular, each eigenvalue of A is simple.

Let now λ ∈ C\Σ satisfy
∣∣∣λ− 1

2s1

∣∣∣ < 1
2s1

(equivalently, α := Re
(
1
λ

)
> s1);

note that λ ̸= 0. For such a λ the vector y = (yn)n∈N ∈ CN de�ned by
(3.16) actually belongs to ℓ∞(v). Indeed, via Lemma 3.3(i) there exists
c = c(λ) > 0 such that

n∏
k=1

∣∣∣∣1− 1

λk

∣∣∣∣ ≤ cn−Re(1/λ), n ∈ N.
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It then follows from (3.16) that

|yn|w(n)−1 = |y1|w(n)−1

n∏
k=1

∣∣∣∣1− 1

λk

∣∣∣∣ ≤ c|y1|n−Re(1/λ)w(n)−1,

where the sequence (n−Re(1/λ)w(n)−1)n∈N is bounded because Re(1/λ) ∈
Sw(1). That is, y ∈ ℓ∞(v). Hence, λ ∈ σpt(A).

Step 2. σpt(A) \ Σ0 ⊆
{
λ ∈ C :

∣∣∣λ− 1
2s1

∣∣∣ ≤ 1
2s1

}
.

Fix λ ∈ σpt(A) \ Σ0. According to (3.1) there is β = β(λ) > 0 such that
n∏

k=1

∣∣∣∣1− 1

λk

∣∣∣∣ ≥ β · n−Re(1/λ), n ∈ N. (3.17)

But, as argued in Step 1 (for any y1 ∈ C \ {0}) the eigenvector y = (yn)n∈N
corresponding to the eigenvalue λ of A, which necessarily belongs to ℓ∞(v),
i.e., supn∈N |yn|w(n)−1 < ∞, is given by (3.16). Then (3.17) implies that
also supn∈N

1
nRe(1/λ)w(n)

< ∞ (i.e., Re
(
1
λ

)
∈ Sw(1)) and so Re

(
1
λ

)
≥ s1, that

is, λ ∈
{
µ ∈ C :

∣∣∣µ− 1
2s1

∣∣∣ ≤ 1
2s1

}
.

It is clear that Steps 1-2 above, together with Steps 1 and 2 in the proof
of Theorem 3.7, establish the two containments in (3.13) and (3.14).
For T ∈ L(X), with X a Banach space, σpt(T

′) ⊆ σ(T ), [13, p.581], with
σ(T ) closed in C. So, (3.15) follows from (3.13). �
Remark 3.10. The converse of Proposition 3.9(i) is not valid. Indeed,
for every α > 0 the exists a weight w ↓ 0 with s1 = α but, C does not

act in ℓ1(w). To see this let (kj)j∈N ⊆ N (with k1 := 1) be a strictly
increasing sequence satisfying (2.7). De�ne w(1) := 1 and w(n) := 1

(kj+1)α

for each j ∈ N and kj + 1 ≤ n ≤ kj+1. For s := α observe, if j ∈ N and
kj + 1 ≤ n ≤ kj+1, then

1

nsw(n)
=

(kj + 1)α

nα
≤ (kj + 1)α

(kj + 1)α
= 1.

Hence, supn∈N
1

nsw(n)
< ∞ and so α ∈ Sw(1), i.e., [α,∞) ⊆ Sw(1). On the

other hand, for each j ∈ N and n := kj + 1, we have for each s < α that

sup
j∈N

1

nsw(n)
= sup

j∈N

(kj + 1)α

(kj + 1)s
= ∞.

It follows that supn∈N
1

nsw(n)
= ∞ and so s ̸∈ Sw(1). Hence, we have

established that Sw(1) = [α,∞), i.e., s1 = α. Arguing as in the proof of

Proposition 2.6(i) it follows that supj∈N
1

w(kj+1)

∑∞
m=kj+1

w(m)
m

= ∞ and so,

via Proposition 2.2(i), C does not act in ℓ1(w).

According to Proposition 3.5(iii), such weights w (with s1 > 0) cannot
exist in s.
The following result should be compared with [4, Proposition 4.1].
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Proposition 3.11. Let w be a bounded, strictly positive weight such that

C(1,w) ∈ K(ℓ1(w)). Then the following properties hold.

(i) σpt(C
(1,w)) = Σ and σ(C(1,w)) = Σ0.

(ii) w ∈ s.

Proof. (i) It is clear that 0 ̸∈ σpt(C
(1,w)) as C : CN → CN is injective. The

compactness of C(1,w) then implies that σpt(C
(1,w)) = σ(C(1,w)) \ {0}, [19,

Theorem 3.4.23]. Moreover, Lemma 3.1 reveals that also σpt(C
(1,w)) ⊆

σpt(C,C) = Σ. The two previous facts, together with Theorem 3.7(i), imply
the validity of the two equalities in (i).
(ii) By Theorem 3.7(iii) we must have Rw = R. Otherwise, t0 is �nite

and so (3.6) implies that σpt(C
(1,w)) is a �nite set. This is a contradiction

to part (i). So, Rw = R and hence, w ∈ s; see Proposition 3.4. �
Remark 3.12. (i) If w is a bounded, strictly positive weight such that
C(1,w) ∈ L(ℓ1(w)) and Sw(1) ̸= ∅, then (3.15) implies that C(1,w) /∈ K(ℓ1(w)).
(ii) Recall, for T ∈ L(X) with X a Banach space, that T is power bounded

if supn∈N ∥T n∥ < ∞. If w is as in part (i) and 0 < s1 < 1, then 1
s1

> 1.

It follows from (3.15) and the spectral mapping theorem that [0, 1
sn1
] ⊆

σ((C(1,w))n) for all n ∈ N. Then the spectral radius inequality implies
that 1

sn1
≤ ∥(C(1,w))n∥ for all n ∈ N. Accordingly, C(1,w) cannot be power

bounded. Since also ∥(C(1,w))n∥
n

≥ (s−1
1 )n

n
for n ∈ N, it follows from the

Principle of Uniform Boundedness that
{

(C(1,w))n

n

}
n∈N

cannot converge in

L(ℓ1(w)). In particular, C(1,w) cannot be mean ergodic; see the discussion
prior to Lemma 4.1 below.

It is time for some relevant examples.

Example 3.13. (i) Let wα(n) =
1
nα , n ∈ N, for any �xed α > 0. According

to Example 2.5(ii) we have C(1,wα) ∈ L(ℓ1(wα)). It is routine to check that
Swα(1) = [α,∞) and hence, s1 = α > 0. The claim is that{

λ ∈ C :

∣∣∣∣λ− 1

2α

∣∣∣∣ ≤ 1

2α

}
∪ Σ = σ(C(1,wα)). (3.18)

Indeed, according to (3.15) we have{
λ ∈ C :

∣∣∣∣λ− 1

2α

∣∣∣∣ ≤ 1

2α

}
∪ Σ ⊆ σ(C(1,wα)).

To establish the reverse inclusion, �x λ ∈ C \ Σ such that
∣∣λ− 1

2α

∣∣ > 1
2α
.

We show that λ ∈ ρ(C(1,wα)). To this e�ect, set β := Re
(
1
λ

)
. Then β < α,

that is, (α− β) > 0. Lemma 2.3 implies, for every m ∈ N, that
∞∑

n=m+1

wα(n)

n1−β
=

∞∑
n=m+1

1

n1+α−β
≤ 2α−β

(α− β)(m+ 1)α−β
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and so

sup
m∈N

1

mβwα(m)

∞∑
n=m+1

wα(n)

n1−β
≤ sup

m∈N

2α−βmα−β

(α− β)(m+ 1)α−β
≤ 2α−β

(α− β)
.

Hence, Theorem 3.7(ii) implies that λ ∈ σ(C(1,wα)), as claimed.
For 0 < α < 1 we see that 0 < s1 < 1 and so Remark 3.12(ii) implies

that C(1,wα) is not power bounded.
It is clear from (3.18), as alluded to in the beginning of this section, that

there is no constant K > 0 such that

σ(C(1,w)) ⊆ {λ ∈ C : |λ| ≤ K}
for all strictly positive, decreasing weights w satisfying C(1,w) ∈ L(ℓ1(w)).
It is routine to check that Rwα = (−∞, (α − 1)) and so t0 = (α − 1).

For 0 < α ≤ 1 it follows that (m − 1) ̸∈ Rwα for all m ∈ N, that is,
σpt(C

(1,wα)) = ∅; see (3.6). This also follows from the fact that wα ̸∈ ℓ1;
see Remark 3.2 and Remark 3.8(iii). For α > 1 (in which case wα ∈ ℓ1), it
follows from (3.6) that

σpt(C
(p,wα)) =

{
1

m
: m ∈ N, 1 ≤ m < α

}
.

(ii) Let w(n) := 1 if n = 2k, for k ∈ N, and w(n) := 1
n
otherwise. It is

shown in Remark 2.4(ii) that C(1,w) ∈ L(ℓ1(w)). The claim is that

σ(C(1,w)) =

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
. (3.19)

Since w ̸∈ ℓ1, Remark 3.8(iii) shows that σpt(C
(1,w)) = ∅. Let s > 0. Then

1
nsw(n)

= 1
2ks

if n = 2k, for k ∈ N, and 1
nsw(n)

= n
ns if 2k < n < 2k+1 for

some k ∈ N. Accordingly, supn∈N
1

nsw(n)
< ∞ if and only if s ≥ 1, i.e.,

Sw(1) = [1,∞) with s1 = 1. According to (3.15) we have that σ(C(1,w)) is
contained in the right-side of (3.19). To establish the reverse inclusion, �x
λ ∈ C \ Σ such that |λ − 1

2
| > 1

2
. To verify λ ∈ ρ(C(1,w)), set α := Re

(
1
λ

)
and r := 1

21−α . Then 1− α > 0 and r ∈ (0, 1).
For m = 2k, k ∈ N, it follows from Lemma 2.3 that

1

mαw(m)

∞∑
n=m+1

w(n)

n1−α
=

1

2αk

∞∑
n=m+1

w(n)

n1−α

≤ 1

2αk

(
∞∑

n=2k

1

nn1−α
+

∞∑
j=k

1

(2j)1−α

)
=

1

2αk

(
∞∑

n=2k

1

n1+(1−α)
+

∞∑
j=k

rj

)

≤ 1

2αk

(
21−α

(1− α)2k(1−α)
+

rk

(1− r)

)
=

21−α

(1− α)2k
+

1

(1− r)2k

≤ 21−α

(1− α)
+

1

(1− r)
.
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On the other hand, if 2k < m < 2k+1 for some k ∈ N, then

1

mαw(m)

∞∑
n=m+1

w(n)

n1−α
≤ m1−α

∞∑
n=2k+1

w(n)

n1−α

≤ 2(1−α)(k+1)

(
∞∑

n=2k

1

nn1−α
+

∞∑
j=k

1

(2j)1−α

)

≤ 2(1−α)k2(1−α)

(
21−α

(1− α)2k(1−α)
+

1

(1− r)2(1−α)k

)
=

22(1−α)

(1− α)
+

21−α

(1− r)
.

So, there exists a constant c (depending on r and α) such that

sup
m∈N

1

mαw(m)

∞∑
n=m+1

w(n)

n1−α
≤ c.

Hence, Theorem 3.7(ii) implies that λ ∈ ρ(C(1,w)). So, the right-side of
(3.19) is contained in σ(C(1,w)). This completes the argument establishing
(3.19). Finally, (3.19) implies that C(1,w) is not compact.

Before presenting the next example we record the following simple fact.

Lemma 3.14. There exists a constant c > 0 such that

c ≤
2i+1∑

j=2i+1

1

j
≤ 1, i ∈ N. (3.20)

Proof. Fix i ∈ N. Then

2i+1∑
j=2i+1

1

j
≥
∫ 2i+1+1

2i+1

dx

x
= log

(
2i+1 + 1

2i + 1

)

with limi→∞ log
(

2i+1+1
2i+1

)
= log(2). So, there existsK ∈ N with

∑2i+1

j=2i+1
1
j
≥

log(2)
2

, for all i ≥ K, which implies the existence of c > 0 satisfying the �rst
inequality in (3.20). The second inequality in (3.20) follows from

2i+1∑
j=2i+1

1

j
≤

2i+1∑
j=2i+1

1

2i + 1
=

2i

2i + 1
≤ 1, i ∈ N.

�

Proposition 3.11 states if C(1,w) ∈ K(ℓ1(w)), then necessarily w ∈ s. The
following example shows that the converse is false.
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Example 3.15. There exists a strictly positive, decreasing weight w ∈ s
such that C(1,w) ∈ L(ℓ1(w)), its spectra are given by

σ(C(1,w)) = Σ0 and σpt(C
(1,w))) = Σ,

but C(1,w) fails to be compact.
De�ne the decreasing sequence w = (w(n))n∈N by w(1) = w(2) = 1 and

w(n) :=
1

2i2(i+1)2i+1 , for 2i + 1 ≤ n ≤ 2i+1 and i ∈ N.

Fact 1. The weight w ∈ s.
Since the sequence ( 1

nn+1 )n∈N clearly belongs to s and w(n) ≤ 8
nn+1 for

n ∈ N (see Example 2.12(ii)), it follows that also w ∈ s.
Fact 2. The operator C(1,w) ∈ L(ℓ1(w)).
Fix m ∈ N with m ≥ 3. Now choose i ∈ N such that 2i + 1 ≤ m ≤ 2i+1.

Using the fact, for each k ∈ N, that 1
n
≤ 1

2k+1
whenever 2k + 1 ≤ n ≤ 2k+1,

that each sum of the form
∑2k+1

n=2k+1(. . .) has 2
k terms, and that 2k

2k+1
≤ 1,

it follows that

∞∑
n=m

w(n)

n
≤

∞∑
n=2i+1

w(n)

n
=

∞∑
k=i

w(2k + 1)
2k+1∑

n=2k+1

1

n

≤
∞∑
k=i

w(2k + 1)
2k

2k + 1
≤

∞∑
k=i

w(2k + 1).

Due to the de�nition of w(2k + 1) for k ≥ i we can conclude that

∞∑
n=m

w(n)

n
≤

∞∑
k=i

1

2k2(k+1)2k+1 <

∞∑
k=i

1

2k2(i+1)2i+1

=
1

2(i+1)2i+1

∞∑
k=i

1

2k
=

1

2(i+1)2i+1 · 1

2i−1
.

Since 1
w(m)

= 1
w(2i+1)

= 2i2(i+1)2i+1
, the previous inequality implies that

1

w(m)

∞∑
n=m

w(n)

n
≤ 2.

Accordingly, supm≥3
1

w(m)

∑∞
n=m

w(n)
n

≤ 2. Moreover, both 1
w(1)

∑∞
n=1

w(n)
n

≤∑∞
n=1w(n) < ∞ and 1

w(2)

∑∞
n=2

w(n)
n

≤
∑∞

n=1w(n) < ∞. So, by (2.2) of

Proposition 2.2(i) we can conclude that C(1,w) ∈ L(ℓ1(w)).
Fact 3. The operator C(1,w) is not compact.
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By (2.3) of Proposition 2.2(ii) we need to verify that
(

1
w(m)

∑∞
n=m

w(n)
n

)
m∈N

does not converge to 0. Fix i ∈ N. Then, for m := 2i + 1, we have

1

w(2i + 1)

∞∑
n=2i+1

w(n)

n
≥ 1

w(2i + 1)

2i+1∑
n=2i+1

w(n)

n
=

2i+1∑
n=2i+1

1

n
≥ c

with c > 0 as in Lemma 3.14. Since
(

1
w(2i+1)

∑∞
n=2i+1

w(n)
n

)
i∈N

is a subse-

quence of
(

1
w(m)

∑∞
n=m

w(n)
n

)
m∈N

, we are done.

Fact 4. The spectra are given by σ(C(1,w)) = Σ0 and σpt(C
(1,w)) = Σ.

According to Fact 1 above we have Rw = R (see Proposition 3.4) and so
Theorem 3.7(iii) implies that σpt(C

(1,w)) = Σ.
To verify that σ(C(1,w)) = Σ0 we need to show that every λ ̸∈ Σ0 belongs

to ρ(C(1,w)). This is achieved by considering the two possible cases. Namely,
when |λ − 1

2
| ≤ 1

2
(equivalent to α := Re

(
1
λ

)
satisfying α ≥ 1) and when

|λ− 1
2
| > 1

2
(equivalent to α < 1).

Case (1). Let α ≥ 1 (i.e., (α− 1) ≥ 0). Then λ ∈ ρ(C(1,w)).

Because w ∈ s it is clear that 1
1αw(1)

∑∞
n=2

w(n)

n(1−α) =
∑∞

n=2 n
α−1w(n) < ∞

and also that 1
2αw(2)

∑∞
n=3

w(n)

n(1−α) = 1
2α

∑∞
n=3 n

α−1w(n) < ∞. So, �x m ∈ N
with m ≥ 3. Now select i ∈ N with 2i + 1 ≤ m ≤ 2i+1 in which case

∞∑
n=m+1

w(n)

n(1−α)
≤

∞∑
n=2i+1

nα−1w(n) =
∞∑
k=i

w(2k + 1)
2k+1∑

n=2k+1

nα−1.

Since nα−1 ≤ (2k+1)α−1 for 2k + 1 ≤ n ≤ 2k+1, with 2k terms, we have

w(2k + 1)
2k+1∑

n=2k+1

nα−1 ≤ w(2k + 1)2k · (2k+1)α−1 =
1

2k2(k+1)2k+1 · 2k · (2k+1)α−1

=
1

2(k+1)2k+1 ·
(
2α−1

2α

)k+1

=
1

2(k+1)2k+1 ·
(
1

2

)k+1

.

It follows that

∞∑
n=m+1

w(n)

n(1−α)
≤

∞∑
k=i

1

2(k+1)(2k+1−α)
·
(
1

2

)k+1

.

But, for all k ≥ i we have 1

2(k+1)(2k+1−α)
≤ 1

2(i+1)(2i+1−α)
and so

∞∑
n=m+1

w(n)

n(1−α)
≤ 1

2(i+1)(2i+1−α)

∞∑
k=i

(
1

2

)k+1

=
2(i+1)α

2i · 2(i+1)2i+1 . (3.21)
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Using 1
w(m)

= 2i · 2(i+1)2i+1
and 1

mα ≤ 1
(2i+1)α

it follows from (3.21) that

1

mαw(m)

∞∑
n=m+1

w(n)

n(1−α)
≤ 1

(2i + 1)α
· 2i2(i+1)2i+1 · 2(i+1)α

2i · 2(i+1)2i+1

= 2α
(

2i

2i + 1

)α

≤ 2α < ∞.

Hence, the condition (3.5) in Theorem 3.7(ii) is satis�ed, i.e., λ ∈ ρ(C(1,w)).
Case (2). Let α < 1. Then λ ∈ ρ(C(1,w)).

Because w ∈ s ⊆ ℓ1 it is clear that
1

1αw(1)

∑∞
n=2

w(n)

n(1−α) ≤
∑∞

n=2 w(n) < ∞
and also that 1

2αw(2)

∑∞
n=3

w(n)

n(1−α) ≤ 1
2α

∑∞
n=3w(n) < ∞. So, again �x m ∈ N

with m ≥ 3 and select i ∈ N with 2i + 1 ≤ m ≤ 2i+1. As in Case (1),

∞∑
n=m+1

w(n)

n(1−α)
≤

∞∑
k=i

w(2k + 1)
2k+1∑

n=2k+1

1

n1−α
.

Since (1−α) > 0 and 1
n1−α ≤ 1

(2k+1)1−α for 2k +1 ≤ n ≤ 2k+1 it follows that

∞∑
n=m+1

w(n)

n(1−α)
≤

∞∑
k=i

w(2k + 1)
2k

(2k + 1)1−α
≤

∞∑
k=i

w(2k + 1)
2k

(2k)1−α

=
∞∑
k=i

1

2k · 2(k+1)2k+1 · 2kα ≤ 1

2(i+1)2i+1

∞∑
k=i

(
1

21−α

)k

,

where the last inequality uses the fact that 1

2(k+1)2k+1 ≤ 1

2(i+1)2i+1 for all k ≥ i.

Since, with A := 1/(1− 2α−1), we have

1

2(i+1)2i+1

∞∑
k=i

(
1

21−α

)k

=
A

2(i+1)2i+1 · 1

2(1−α)i
,

we can conclude that
∞∑

n=m+1

w(n)

n(1−α)
≤ A

2(i+1)2i+1 · 1

2(1−α)i
. (3.22)

Using 1
w(m)

= 2i · 2(i+1)2i+1
and the inequality

1

mα
= m1−α · 1

m
≤ (2i+1)1−α · 1

(2i + 1)
,

it follows from (3.22) and the inequality 2i

2i+1
< 1 that

1

mαw(m)

∞∑
n=m+1

w(n)

n(1−α)
≤ A · 2i

(2i + 1)
· (2

i+1)1−α

2(1−α)i
≤ A 21−α < ∞.

Again (3.5) in Theorem 3.7(ii) holds, i.e., λ ∈ ρ(C(1,w)). The proof of Fact
4 and hence, the discussion of this example, is thereby complete.
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To formulate the �nal result of this section we require some preliminar-
ies. Let w ∈ c0 be a decreasing, strictly positive sequence. Then, with a
continuous inclusion, we have

ℓp(w) ⊆ c0(w), 1 ≤ p < ∞. (3.23)

For p = 1 this is clear. Fix 1 < p < ∞. For x ∈ ℓp(w) we have

|xn|w(n)1/p = (|xn|pw(n))1/p ≤

(
∞∑

m=1

|xm|pw(m)

)1/p

= ∥x∥p,w, n ∈ N.

Accordingly,

0 ≤ |xn|w(n) = |xn|w(n)1/pw(n)1/p
′ ≤ w(n)1/p

′∥x∥p,w.
Since w ↓ 0, it follows that limn→∞ |xn|w(n) = 0, i.e., x ∈ c0(w) and

∥x∥0,w ≤ ∥w∥1/p′∞ ∥x∥p,w, x ∈ ℓp(w).

For the case w ∈ ℓ1 with w ↓ 0 we have, with a continuous inclusion, that

ℓp(w) ⊆ ℓ1(w), 1 < p < ∞. (3.24)

Indeed, de�ne µ : 2N → [0,∞) by µ(A) :=
∑

n∈Aw(n), for A ⊆ N. Then µ
is a �nite, positive measure and it is well known that Lp(µ) ⊆ L1(µ), for
1 < p < ∞, with ∥f∥1 ≤ µ(N)1/p′∥f∥p. Accordingly,

∥x∥1,w ≤

(
∞∑
n=1

w(n)

)1/p′

∥x∥p,w, x ∈ ℓp(w).

The containment (3.24) does not always hold. Indeed, let w(n) = 1√
n
, for

n ∈ N. Fix p ∈ (1,∞). Then x := ( 1
nα )n∈N, for any �xed α ∈ ( 1

2p
, 1
2
] satis�es

x ∈ ℓp(w) but x ̸∈ ℓ1(w). Accordingly, ℓp(w) ̸⊆ ℓ1(w) for all 1 < p < ∞.

Proposition 3.16. Let w ∈ c0 be decreasing and strictly positive. Then

∪1<p<∞σpt(C
(p,w)) ⊆ σpt(C

(0,w)) ⊆ σpt(C,CN) = Σ. (3.25)

Suppose, in addition, that w ∈ ℓ1 and C(1,w) ∈ L(ℓ1(w)). Then
∪1<p<∞σpt(C

(p,w)) ⊆ σpt(C
(1,w)) ⊆ σpt(C

(0,w)) ⊆ Σ. (3.26)

The proof of the previous result is elementary and is therefore omitted.

4. Iterates of C(1,w)
and mean ergodicity

ForX a Banach space, recall that T ∈ L(X) ismean ergodic (respectively,
uniformly mean ergodic) if its sequence of Cesàro averages

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N, (4.1)

converges to some operator P ∈ L(X) in the strong operator topology τs,
i.e., limn→∞ T[n]x = Px for each x ∈ X, [13, Ch.VIII] (respectively, in the



30 A.A. Albanese, J. Bonet and W. J. Ricker

operator norm topology τb). According to [13, VIII Corollary 5.2] there
then exists the direct decomposition

X = Ker(I − T )⊕ (I − T )(X). (4.2)

Moreover, we always have the identities

(I − T )T[n] = T[n](I − T ) =
1

n
(T − T n+1), n ∈ N, (4.3)

and, setting T[0] := I, that

1

n
T n = T[n] −

(n− 1)

n
T[n−1], n ∈ N. (4.4)

An operator T ∈ L(X) is Cesàro bounded if supn∈N ∥T[n]∥ < ∞. Every
mean ergodic operator T ∈ L(X) is necessarily Cesàro bounded (by the
Principle of Uniform Boundedness) and, via (4.4), also satis�es

τs − lim
n→∞

1

n
T n = 0. (4.5)

It is also clear from (4.4) that if T is Cesàro bounded, then supn∈N
∥Tn∥
n

< ∞.
If T ∈ L(X) is power bounded (cf. Remark 3.12(ii)), then T is also Cesàro

bounded and limn→∞
∥Tn∥
n

= 0. Condition (4.5) implies that σ(T ) ⊆ D, [13,
p.709, Lemma 1], where D := {λ ∈ C : |λ| < 1}.
To characterize the mean ergodicity of C(1,w) we require some preliminary

facts.

Lemma 4.1. Let w be a bounded, strictly positive sequence such that C(1,w) ∈
L(ℓ1(w)). The following properties are satis�ed.

(i) Each basis vector er ∈ (I − C(1,w))(ℓ1(w)) for r ≥ 2.
(ii) We have the equalities

(I − C(1,w))(ℓ1(w)) = {x ∈ ℓ1(w) : x1 = 0} = span{er : r ≥ 2}. (4.6)

(iii) The range of I − C(1,w) is closed if and only if it coincides with

{x ∈ ℓ1(w) : x1 = 0}.

(iv) The following three conditions are equivalent.

(a) Ker(I − C(1,w)) ̸= {0}.
(b) Ker(I − C(1,w)) = span{1}.
(c) 1 ∈ ℓ1(w), that is, w ∈ ℓ1.
If 1 ̸∈ ℓ1(w), then Ker(I − C(1,w)) = {0}.

Proof. (i) This follows from the identities

er+1 = (I − C(1,w))(er+1 −
1

r

r∑
k=1

ek), r ∈ N,

which can be veri�ed by direct calculation.
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(ii) Clearly, {x ∈ ℓ1(w) : x1 = 0} = span{er : r ≥ 2}. Part (i) implies

{x ∈ ℓ1(w) : x1 = 0} ⊆ (I − C(1,w))(ℓ1(w)).

On the other hand, since the 1-st coordinate of C(1,w)x is x1 for all x ∈ ℓ1(w),
we see that

(I − C(1,w))(ℓ1(w)) ⊆ {x ∈ ℓ1(w) : x1 = 0}.
The previous two containments imply (4.6).
(iii) This is a direct consequence of part (ii) and the fact that the subspace

{x ∈ ℓ1(w) : x1 = 0} of ℓ1(w) is closed.
(iv) The Cesàro operator C : CN → CN satis�es Ker(I − C) = span{1}.

Hence, Ker(I − C(1,w)) = span{1} if and only if 1 ∈ ℓ1(w).
If 1 ̸∈ ℓ1(w), then (I −C(1,w)) is injective, i.e., Ker(I −C(1,w)) = {0}. �

Lemma 4.2. Let w be a bounded, strictly positive sequence such that C(1,w) ∈
L(ℓ1(w)). If C(1,w) is Cesàro bounded, then necessarily w ∈ ℓ1. In particu-

lar, this is the case whenever C(1,w) is power bounded or mean ergodic.

Proof. It is known that C : CN → CN is power bounded, uniformly mean
ergodic and satis�es both Ker(I − C) = span{1} and

(I − C)(CN) = {x ∈ CN : x1 = 0} = span{er}r≥2; (4.7)

see [3, Proposition 4.1], [6, Proposition 4.3].
Observe that the sequence {C[n]e1}n∈N converges to 1 in CN. Indeed, we

have e1 = 1− (0, 1, 1, 1, . . .) and, since C ∈ L(CN) is power bounded, that

(I − C)(CN) = {x ∈ CN : lim
n→∞

C[n]x = 0},

[23, Chap.VIII, �3, Theorem 1]. Hence, the sequence

C[n]e1 = C[n]1− C[n](0, 1, 1, 1, . . .) = 1− C[n](0, 1, 1, 1, . . .), n ∈ N,
converges to 1 in CN as n → ∞ because (0, 1, 1, . . .) ∈ (I−C)(CN) by (4.7).
We now proceed to verify that w ∈ ℓ1. By assumption C(1,w) is Cesàro

bounded and so {C(1,w)
[n] e1}n∈N is a bounded subset of ℓ1(w). By Alaoglu's

theorem all norm closed balls of ℓ1(w) are σ(ℓ1(w), c0(w
−1))-compact (i.e.,

weakly∗ compact) and, equipped with the topology σ(ℓ1(w), c0(w
−1)), they

are metrizable because c0(w
−1) is a separable Banach space, [19, Corollary

2.6.20]. Therefore, there is a subsequence {C(1,w)
[n(k)]e1}k∈N of {C(1,w)

[n] e1}n∈N and

a vector u ∈ ℓ1(w) such that C
(1,w)
[n(k)]e1 → u for the topology σ(ℓ1(w), c0(w

−1))

as k → ∞. Since the topology σ(ℓ1(w), c0(w
−1)) is �ner than the topology

of coordinatewise convergence in ℓ1(w), we can conclude that C
(1,w)
[n(k)]e1 =

C[n(k)]e1 → u in CN as k → ∞. The previous paragraph then implies that
u = 1 and so 1 ∈ ℓ1(w). In other words, w ∈ ℓ1. �
Remark 4.3. If 0 < α ≤ 1, then the weight wα :=

(
1
nα

)
n∈N satis�es

wα /∈ ℓ1. By Lemma 4.2, C(1,wα) is not Cesàro bounded. The same is true
for the weight w in Remark 2.4(ii).
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Lemma 4.4. Let w be a bounded, strictly positive sequence such that w ∈ ℓ1
and C(1,w) ∈ L(ℓ1(w)). Then

ℓ1(w) = Ker(I − C(1,w))⊕ (I − C(1,w))(ℓ1(w)). (4.8)

Proof. Set f1 := 1 and de�ne fj := f1 −
∑j−1

k=1 ek for j ≥ 2. Since w ∈ ℓ1,
we have {fj}j∈N ⊆ ℓ1(w). Moreover, (4.6) reveals that

{fj}j≥2 ⊆ {x ∈ ℓ1(w) : x1 = 0} = span{er : r ≥ 2}.
In particular, this implies that

e1 = (f1 − f2) ∈ span{f1} ⊕ span{er : r ≥ 2}.
Since {er}r∈N is a basis for ℓ1(w), it follows that

ℓ1(w) = span{f1} ⊕ span{er : r ≥ 2}.
The conclusion now follows from Lemma 4.1(ii), (iv). �
Let m ∈ N. According to [15, Sect. 11.12], Cm is the moment di�erence

operator for the measure on [0, 1] given by dµ = fm(t) dt, with

fm(t) :=
1

(m− 1)!
logm−1

(
1

t

)
, t ∈ (0, 1].

Therefore, the identities

(Cmx)n =
n∑

k=1

(
n− 1
k − 1

)
xk

∫ 1

0

tk−1(1− t)n−kfm(t) dt, n ∈ N, (4.9)

hold for all x ∈ CN; see also [17, p.125].

Lemma 4.5. Let w be a bounded, strictly positive sequence such that w ∈ ℓ1
and C(1,w) ∈ L(ℓ1(w)). Then, for each r ≥ 2, the sequence {(C(1,w))mer}m∈N
converges to 0 in ℓ1(w).

Proof. Fix r ≥ 2. By (4.9), for each m ∈ N, we have ((C(1,w))mer)n = 0 for
1 ≤ n < r and

((C(1,w))mer)n =

(
n− 1
r − 1

)∫ 1

0

tr−1(1− t)n−rfm(t) dt, n ≥ r. (4.10)

Proceeding as in the proof of [14, Theorem 1], de�ne gm(0) := 0, gm(t) :=
tfm(t) for 0 < t ≤ 1 and

am := sup{gm(t) : t ∈ [0, 1]}, m ∈ N.
For each m ∈ N we obtain that |((C(1,w))mer)n| ≤ am

r−1
for all n ∈ N. Hence,

w(n)|((C(1,w))mer)n| ≤
w(n)am
r − 1

, n ∈ N,

from which it follows that

∥(C(1,w))mer∥1,w ≤ ∥w∥1
am
r − 1

, m ∈ N.
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According to [14, Lemma 1] we have limm→∞ am = 0, which implies the
desired conclusion. �
We can now establish the �rst main result of this section.

Theorem 4.6. Let w be a bounded, strictly positive sequence such that

C(1,w) ∈ L(ℓ1(w)).
(i) C(1,w) is power bounded if and only if {(C(1,w))m}m∈N converges in

Ls(ℓ1(w)) to the projection onto Ker(I−C(1,w)) along (I − C(1,w))(ℓ1(w)).
In this case, C(1,w) is necessarily mean ergodic.

(ii) C(1,w) is mean ergodic if and only if C(1,w) is Cesàro bounded.

Proof. (i) Assume that C(1,w) is power bounded. Then w ∈ ℓ1 by Lemma
4.2. It follows from Lemma 4.4 that (4.8) holds and from Lemma 4.1 that

Ker(I − C(1,w)) = span{1} and (I − C(1,w))(ℓ1(w)) = span{er}r≥2. So, by
(4.8), for x ∈ ℓ1(w) we have x = y + z with y ∈ Ker(I − C(1,w)) and

z ∈ (I − C(1,w))(ℓ1(w)). Then, for each m ∈ N, it follows that

(C(1,w))mx = (C(1,w))my + (C(1,w))mz = y + (C(1,w))mz. (4.11)

Moreover, for each r ≥ 2, limm→∞(C(1,w))mer = 0 in ℓ1(w); see Lemma 4.5.

Since C(1,w) is power bounded and span{er}r≥2 is dense in (I − C(1,w))(ℓ1(w))
(cf. Lemma 4.1(ii)), it follows that limm→∞(C(1,w))mz = 0 in ℓ1(w) for each

z ∈ (I − C(1,w))(ℓ1(w))). Hence, limm→∞(C(1,w))mx = y in ℓ1(w); see (4.11).
The assumption of the reverse implication implies, in particular, that

{(C(1,w))m}m∈N converges in Ls(ℓ1(w)) and so, by the Principle of Uniform
Boundedness, C(1,w) is power bounded.
If a sequence in a locally convex Hausdor� space (brie�y, lcHs) is conver-

gent, so is its sequence of averages (to the same limit). Hence, the conver-
gence of {(C(1,w))m}m∈N in the lcHs Ls(ℓ1(w)) := (L(ℓ1(w)), τs) implies the

convergence of {C(1,w)
[n] }n∈N in Ls(ℓ1(w)), i.e., C

(1,w) is mean ergodic.

(ii) If C(1,w) is mean ergodic then, as noted before, C(1,w) is also Cesàro
bounded.
Assume now that C(1,w) is Cesàro bounded, in which case w ∈ ℓ1 (cf.

Lemma 4.2). Again by Lemma 4.4 we see that (4.8) holds. We need to

verify that {C(1,w)
[n] }n∈N is a convergent sequence in Ls(ℓ1(w)). This follows

from an argument similar to the one in part (i). �
The following result should be compared with Lemma 4.5.

Corollary 4.7. Let w be a bounded, strictly positive sequence such that

C(1,w) ∈ L(ℓ1(w)) is power bounded. Then limm→∞(C(1,w))me1 = 1.

Proof. Lemma 4.2 implies that 1 ∈ ℓ1(w). According to Theorem 4.6(i)
there exists u ∈ Ker(I − C(1,w)) such that

lim
m→∞

(C(1,w))me1 = u in ℓ1(w). (4.12)
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Since Ker(I−C(1,w)) = span{1}, there exists λ ∈ C such that u = λ1. But,
the 1-st coordinate of (C(1,w))me1 equals 1 for every m ∈ N and so it follows
from (4.12) that λ = 1. �

Remark 4.8. Theorem 4.6 is special for the Cesàro operator acting in ℓ1(w)
and is not valid for a general Banach space operator T ∈ L(X).
Indeed, concerning part (i) of Theorem 4.6, the proof shows that whenever

{Tm}m∈N converges in Ls(X), then T is necessarily power bounded. To see
that the converse is false in general, consider the Banach spaceX = C([0, 1])
equipped with the sup-norm ∥ · ∥∞ and de�ne T ∈ L(X) by Tf := φf for
f ∈ X, where φ(t) := t for t ∈ [0, 1]. Since Tmf = φmf for f ∈ X, with
∥φm∥∞ ≤ 1 for all m ∈ N, it is clear that T is power bounded. However, if 1
is the function constantly equal to 1 in [0, 1], then the sequence Tm1 = φm,
m ∈ N, converges pointwise on [0, 1] to the discontinuous function χ{1}. In
particular, {Tm1}m∈N cannot be a convergent sequence in X.
Concerning part (ii) of Theorem 4.6, the mean ergodicity of an operator

always implies its Cesàro boundedness. To see that the converse is false in
general, let X and T be as in the previous paragraph. Since T is power
bounded, it is Cesàro bounded. But, T is not mean ergodic. Indeed,

T[n]1 =
1

n

n∑
m=1

φm, n ∈ N.

Since
(
1
n

∑n
m=1 φ

m
)
(t) = t−tn+1

n(1−t)
for t ∈ [0, 1) and

(
1
n

∑n
m=1 φ

m
)
(1) = 1, for

all n ∈ N, it is clear that {T[n]1}n∈N converges pointwise on [0, 1] to the dis-
continuous function χ{1}. In particular, {T[n]1}n∈N cannot be a convergent
sequence in X and so T is not mean ergodic.

Given a bounded, strictly positive sequence w, for the remainder of this
section we use the notation

X1(w) := {x ∈ ℓ1(w) : x1 = 0},

which is always a closed subspace of ℓ1(w). In the event that C(1,w) ∈
L(ℓ1(w)), the subspace X1(w) is clearly invariant for C(1,w); see (1.1).

Lemma 4.9. Let w be a bounded, strictly positive sequence such that w ∈ ℓ1
and C(1,w) ∈ L(ℓ1(w)). Then

(I − C(1,w))(ℓ1(w)) = (I − C(1,w))(X1(w)). (4.13)

Proof. Clearly, (I − C(1,w))(X1(w)) ⊆ (I − C(1,w))(ℓ1(w)).
To verify the reverse inclusion, we proceed as in the proof of [5, Lemma

4.5]. First observe, via (1.1), that for each x ∈ ℓ1(w) we have

(I − C(1,w))x =

(
0, x2 −

x1 + x2

2
, x3 −

x1 + x2 + x3

3
, . . .

)
, (4.14)
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and, in particular, for each y ∈ X1(w) that

(I − C(1,w))y =

(
0,

y2
2
, y3 −

y2 + y3
3

, y4 −
y2 + y3 + y4

4
, . . .

)
. (4.15)

Fix x ∈ ℓ1(w). We apply (4.14) to conclude that

xj −
1

j

j∑
k=1

xk =
1

j

(
(j − 1)xj −

j−1∑
k=1

xk

)
, j ≥ 2, (4.16)

is the j-th coordinate of the vector (I − C(1,w))x. Set yi := xi − x1 for
all i ∈ N. Then the vector y := (yi)i∈N belongs to X1(w) because w ∈ ℓ1
implies that (0, 1, 1, 1, . . .) ∈ ℓ1(w). We apply (4.15) to conclude that the
j-th coordinate of (I − C(1,w))y is given by (4.16) for j ≥ 2. Hence,

(I − C(1,w))x = (I − C(1,w))y ∈ (I − C(1,w))(X1(w)).

�
Remark 4.10. The equality (4.13) fails whenever w ̸∈ ℓ1 and C(1,w) ∈
L(ℓ1(w)). Indeed, in this case Lemma 4.1(iv) implies that (I − C(1,w)) is
injective. This implies that x := (I − C(1,w))e1 cannot belong to (I −
C(1,w))(X1(w)). So, the containment

(I − C(1,w))(X1(w)) $ (I − C(1,w))(ℓ1(w))

is proper whenever w ̸∈ ℓ1. For the existence of weights w ̸∈ ℓ1 such
that C(1,w) ∈ L(ℓ1(w)) see Remark 2.4(ii) and also Examples 2.5(ii) with
0 < α ≤ 1.

Given a bounded, strictly positive weight w = (w(n))n∈N, we introduce
the associated quantity

Uw := sup
m∈N

1

mw(m+ 1)

∞∑
n=m+1

w(n) = sup
r≥2

1

(r − 1)w(r)

∞∑
n=r

w(n). (4.17)

It turns out that Uw is useful for determining certain mean ergodic and
related properties of C(1,w). As a sample, it is clear that Uw < ∞ implies
w ∈ ℓ1. Moreover, Uw < ∞ also implies that C(1,w) ∈ L(ℓ1(w)). This follows
directly from Proposition 2.2(i) and the inequality

1

w(m+ 1)

∞∑
n=m+1

w(n)

n
≤ 1

mw(m+ 1)

∞∑
n=m+1

w(n), m ∈ N.

The following result characterizes the condition Uw < ∞.

Proposition 4.11. Let w be a bounded, strictly positive sequence such that

w ∈ ℓ1 and C(1,w) ∈ L(ℓ1(w)). The following conditions are equivalent.

(i) The range of I − C(1,w) is closed in ℓ1(w).
(ii) (I − C(1,w))(ℓ1(w)) = X1(w).
(iii) (I − C(1,w))(X1(w)) = X1(w).



36 A.A. Albanese, J. Bonet and W. J. Ricker

(iv) The quantity Uw < ∞.

Proof. (i)⇔(ii) follows from Lemma 4.1(iii) and the de�nition of X1(w).
(ii)⇔(iii) is clear from Lemma 4.9.
(iii)⇔(iv). First observe (via (1.1)) that (I −C(1,w)) maps X1(w) into it-

self, and that the restriction (I−C(1,w)) : X1(w) → X1(w) is both continuous
and injective. The injectivity follows from Lemma 4.1(iv) as 1 ̸∈ X1(w).
According to the previous paragraph, condition (iii) is equivalent to the

restricted operator (I − C(1,w)) : X1(w) → X1(w) being bijective (i.e., sur-
jective). By the Open Mapping Theorem this, in turn, is equivalent to
(I − C(1,w)) : X1(w) → X1(w) having a continuous inverse.
So, (iii)⇔(iv) is equivalent to showing that (iv) holds if and only if the

operator (I−C(1,w)) : X1(w) → X1(w) is bijective with a continuous inverse.
To do this we �rst note, with w̃(n) := w(n + 1) for n ∈ N, that the linear
shift operator S : X1(w) → ℓ1(w̃) de�ned by

S(x) := (x2, x3, . . .), x ∈ X1(w),

is an isometric isomorphism of X1(w) onto ℓ1(w̃). So, it su�ces to verify

A := S ◦ (I − C(1,w))|X1(w) ◦ S−1 ∈ L(ℓ1(w̃)),
which is given by the formula

Ax =

(
1

n+ 1

(
nxn −

n−1∑
k=1

xk

))
n∈N

, x ∈ ℓ1(w̃), (4.18)

with x0 := 0 (see the purely algebraic calculations in the proof of Lemma
4.5 in [5]), is bijective with a continuous inverse if and only if (iv) holds.
Now the operator A given by (4.18), when considered from CN to CN, is

bijective and routine calculations show that its inverse map B : CN → CN

is determined by the lower triangular matrix B = (bnm)n,m∈N with entries
given by bnm = 0 if m > n, bnm = n+1

n
if m = n and bnm = 1

m
if 1 ≤ m < n.

The restriction of the linear map B acts continuously from ℓ1(w̃) into itself
if and only if D := Φw̃ ◦B ◦Φ−1

w̃ belongs to L(ℓ1), where Φw̃ : ℓ1(w̃) → ℓ1 is
the isometric isomorphism given by

Φw̃(x) := (w(n+ 1)xn)n∈N, x ∈ ℓ1(w̃).

Of course, both Φw̃ and Φ−1
w̃ can be extended to isomorphisms between CN

(which we denote by the same symbol as no confusion can occur). The
linear operator D (considered from CN into itself) is associated with the

lower triangular matrix ( w(n+1)
w(m+1)

bnm)n,m∈N. By Lemma 2.1, D ∈ L(ℓ1) if and
only if supm∈N

∑∞
n=1

w(n+1)bnm

w(m+1)
< ∞. Since w ∈ ℓ1 and limm→∞

m+1
m

= 1,

this condition is equivalent to Uw < ∞ (see (4.17)). This completes the
proof of (iii)⇔(iv). �
Proposition 4.12. Let w be a bounded, strictly positive sequence such that

Uw < ∞. Then C(1,w) is power bounded and uniformly mean ergodic.
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Proof. It was already noted that Uw < ∞ implies w ∈ ℓ1 and C(1,w) ∈
L(ℓ1(w)). From the proof of Lemma 4.5 (and its notation) recall that

|(C(1,w))mer)n| ≤
am
r − 1

, n ∈ N, (4.19)

for m ∈ N and r ≥ 2. Moreover, am ≥ 1
2
fm(

1
2
) > 0 and limm→∞ am = 0.

Since (C(1,w))m1 = 1 for all m ∈ N and ℓ1(w) = span{1} ⊕ X1(w) (by
Lemma 4.1 and Lemma 4.4), to show that C(1,w) is power bounded it su�ces
to show that supm∈N ∥(C(1,w))mx∥1,w < ∞ for each x = (0, x2, x3, . . .) ∈
X1(w). So, �x such an x ∈ X1(w), in which case x =

∑∞
r=2 xrer. Recall

from the proof Lemma 4.5, for each m ∈ N, that (C(1,w))mer)n = 0 if r ≥ 2
and 1 ≤ n < r. Accordingly, for each n, m ∈ N we have

w(n)|((C(1,w))mx)n| ≤ w(n)
∞∑
r=2

|xr| · |((C(1,w))mer)n|

= w(n)
n∑

r=2

|xr| · |((C(1,w))mer)n|.

Hence, for every m, n ∈ N and x ∈ X1(w) it follows that

∥(C(1,w))mx∥1,w =
∞∑
n=2

w(n)|((C(1,w))mx)n|

≤
∞∑
n=2

w(n)
n∑

r=2

|xr| · |((C(1,w))mer)n|

=
∞∑
r=2

w(r)|xr|
1

w(r)

∞∑
n=r

w(n)|((C(1,w))mer)n|

≤ ∥(am)m∈N∥∞∥x∥1,w sup
r≥2

1

(r − 1)w(r)

∞∑
n=r

w(n),

where the last inequality relies on (4.19). An examination of (4.17) now
shows that Uw < ∞ implies that supm∈N ∥(C(1,w))mx∥1,w < ∞ for each
x ∈ X1(w). As already noted, this yields that C(1,w) is power bounded.
Using now the fact that C(1,w) ∈ L(ℓ1(w)) is power bounded, we have

limm→∞
∥C(1,w))m∥

m
= 0. Since also the range of I−C(1,w) is a closed subspace

of ℓ1(w) (cf. Proposition 4.11), we can apply a result of Lin, [18, Theorem],
to conclude that C(1,w) is uniformly mean ergodic. �

Remark 4.13. Let w be a bounded, strictly positive sequence such that

C(1,w) ∈ L(ℓ1(w)) and limm→∞
∥(C(1,w))m∥

m
= 0. Then C(1,w) is uniformly mean

ergodic if and only if Uw < ∞. Indeed, by Proposition 4.12 the condition
Uw < ∞ implies uniform mean ergodicity. On the other hand, if C(1,w) is
uniformly mean ergodic (in which case w ∈ ℓ1 by Lemma 4.2), then Lin's
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theorem, [18], ensures that I − C(1,w) has closed range in ℓ1(w). Hence,
Uw < ∞; see Proposition 4.11.

Proposition 4.14. Let w be a bounded, strictly positive sequence such that

C(1,w) ∈ K(ℓ1(w)). Then necessarily Uw < ∞.

In particular, C(1,w) is both power bounded and uniformly mean ergodic.

Proof. Proposition 3.11(ii) shows w ∈ ℓ1. Moreover, the compactness of
C(1,w) implies that (I−C(1,w))(ℓ1(w)) is closed in ℓ1(w), [19, Lemma 3.4.20].
Now apply Proposition 4.11 to conclude that Uw < ∞. Hence, C(1,w) is
power bounded and uniformly mean ergodic by Proposition 4.12. �

Remark 4.15. According to Proposition 2.9, C(1,w) is compact whenever
lim supn→∞

w(n+1)
w(n)

∈ [0, 1). In particular, this is the case for w = (nβrn)n∈N

with r ∈ (0, 1) and β ≥ 0, for w = ( 1
nn )n∈N and for w = (a

n

n!
)n∈N with a > 0;

see Examples 2.10(i)-(iii). Proposition 4.14 implies in all cases that C(1,w)

is power bounded and uniformly mean ergodic. By the same reasoning the
Cesàro operator corresponding to each of the weights in (iv), (v), (vi) of
Example 2.10 is power bounded and uniformly mean ergodic.

Example 4.16. (i) Consider wα(n) = ( 1
nα )n∈N for �xed α > 0. For α ∈

(0, 1], Remark 4.3 implies that C(1,wα) ∈ L(ℓ1(wα)) is not Cesàro bounded
and hence, is neither mean ergodic nor power bounded. The same is true
for the weight w in Remark 2.4(ii).
On the other hand if α > 1, then it follows from Lemma 2.3 that∑∞
n=m

1
nα ≤ 1

(α−1)(m−1)α−1 . Thus, for each m ≥ 2,

1

(m− 1)wα(m)

∞∑
n=m

wα(n) ≤
mα

(α− 1)(m− 1)α
≤ 2α

(α− 1)

and so Uwα < ∞. Hence, Proposition 4.12 implies that C(1,wα) is power
bounded and uniformly mean ergodic. However, C(1,wα) is not compact; see
Remark 2.7(iii). Observe that wα ∈ ℓ1 \ s for α > 1.
(ii) Let w ∈ s be the weight considered in Example 3.15. The claim is

that Uw < ∞. To see this �x n ∈ N with n ≥ 2 and choose i ∈ N such that
2i + 1 ≤ n ≤ 2i+1. Then

∞∑
m=n

w(m) ≤
∞∑

m=2i+1

w(m) =
∞∑
j=i

2j+1∑
m=2j+1

w(m).

Since each sum
∑2j+1

m=2j+1(. . .) has 2j terms and w(m) = 1

2j2(j+1)2j+1 for all

2j + 1 ≤ m ≤ 2j+1, it follows that

∞∑
m=n

w(m) ≤
∞∑
j=i

2j
1

2j2(j+1)2j+1 =
∞∑
j=i

1

2(j+1)2j+1 .
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As 1
(n−1)

≤ 1
2i

and 1
w(n)

= 2i2(i+1)2i+1
, the previous inequality implies

1

(n− 1)w(n)

∞∑
m=n

w(m) ≤ 1

2i
· 2i2(i+1)2i+1

∞∑
j=i

1

2(j+1)2j+1

= 2(i+1)2i+1
∞∑
j=i

1

2j+1
· 1

2(j+1)(2j+1−1)
.

But, 1

2(j+1)(2j+1−1)
≤ 1

2(i+1)(2i+1−1)
for all j ≥ i and so

1

(n− 1)w(n)

∞∑
m=n

w(m) ≤ 2(i+1)2i+1 · 1

2(i+1)(2i+1−1)

∞∑
j=i

1

2j+1
= 2.

According to (4.17) we have Uw ≤ 2. Then Proposition 4.12 shows that
C(1,w) is power bounded and uniformly mean ergodic. But, C(1,w) is not

compact; see Fact 3 in Example 3.15.

The �nal example exhibits features di�erent to the previous examples
(eg. Uw = ∞). Its spectrum is also precisely determined.

Example 4.17. Let α > 1. De�ne the bounded, strictly positive weight w
by w(1) = w(2) := 1 and w(n) := 1

iα2i−1 for 2i + 1 ≤ n ≤ 2i+1 and i ∈ N.
We record various properties of w.
Fact 1. w ∈ ℓ1, but w ̸∈ s.

De�ne v :=
(

1
n logα(n+1)

)
n∈N

. It is shown in (3.11) of Remark 3.8(iv)

that A1v ≤ w ≤ A2v for positive constants A1, A2. The integral test for
convergence of series implies that v ∈ ℓ1 and hence, also w ∈ ℓ1. Clearly,
v ̸∈ s and so also w ̸∈ s.
Fact 2. C(1,w) ∈ L(ℓ1(w)).
This was established in Remark 3.8(iv).
Fact 3. Uw = ∞.

Fix m ≥ 3 and choose i ∈ N to satisfy 2i + 1 ≤ m ≤ 2i+1. Then

1

(m− 1)w(m)

∞∑
n=m

w(n) ≥ 1

(m− 1)w(m)

∞∑
n=2i+1+1

w(n)

=
1

(m− 1)w(m)

∞∑
j=i+1

2j+1∑
n=2j+1

1

jα2j−1
=

1

(m− 1)w(m)

∞∑
j=i+1

2j

jα2j−1
.

Since 1
(m−1)

≥ 1
2i+1−1

and 1
w(m)

= iα2i−1, it follows that

1

(m− 1)w(m)

∞∑
n=m

w(n) ≥ 1

(2i+1 − 1)
iα2i−12

∞∑
j=i+1

1

jα
=

iα2i

(2i+1 − 1)

∞∑
j=i+1

1

jα
.
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But,
∑∞

j=i+1
1
jα

≥
∫∞
i+1

dx
xα = 1

(α−1)(i+1)α−1 and so

1

(m− 1)w(m)

∞∑
n=m

w(n) ≥ iα2i

(α− 1)(i+ 1)α−1(2i+1 − 1

=
i

(α− 1)
·
(

i

i+ 1

)α−1
2i

2i+1 − 1
.

Since limi→∞
(

i
i+1

)α−1
= 1 and 2i

2i+1−1
= 1

2−2−i > 1
2
, it follows from the

previous inequality that

Uw = sup
m≥2

1

(m− 1)w(m)

∞∑
n=m

w(n) = ∞.

Fact 4. C(1,w) is not compact.

This is immediate from Proposition 4.14.
Fact 5. The range of I − C(1,w) is not closed in ℓ1(w).
See Facts 1 and 2 and Proposition 4.11.

Fact 6. ℓ1(w) = span{1} ⊕ (I − C(1,w))(ℓ1(w)).
Follows from Facts 1 and 2 and Lemma 4.4.
Fact 7. Sw(1) = (1,∞) and s1 = 1.
Fix s > 0. From the de�nition of w we have

sup
n∈N

1

nsw(n)
= max

{
1,

1

2s
, sup
i∈N

(
max

n=2i+1,...,2i+1

1

nsw(n)

)}
= max

{
1,

1

2s
, sup
i∈N

iα2i−1

(
max

n=2i+1,...,2i+1

1

ns

)}
.

Since 1
2s(i+1) ≤ 1

ns ≤ 1
2si

for all 2i + 1 ≤ n ≤ 2i+1 and i ∈ N, it follows that

max

{
1,

1

2s
, sup
i∈N

1

2s+1

iα

2i(s−1)

}
≤ sup

n∈N

1

nsw(n)
≤ max

{
1,

1

2s
, sup
i∈N

1

2
· iα

2i(s−1)

}
.

Accordingly, supn∈N
1

nsw(n)
< ∞ if and only if s > 1, i.e., Sw(1) = (1,∞).

Hence, s1 = inf Sw(1) = 1.
Fact 8. σpt(C

(1,w)) = {1} and σ(C(1,w)) = {λ ∈ C : |λ− 1
2
| ≤ 1

2
}.

Since w ∈ ℓ1, we have 1 ∈ σpt(C
(1,w)); see Remark 3.2. Moreover, s1 =

1 and so Proposition 3.5(i) implies that t0 ≤ 1. Then (3.6) shows that
σpt(C

(1,w)) ⊆ {1, 1
2
}. Hence, to establish that σpt(C

(1,w)) = {1} it su�ces to

show that 1
2
̸∈ σpt(C

(1,w)), i.e., that 1 ̸∈ Rw (see (3.6)). That this is indeed
so follows from the inequalities

∞∑
n=1

n1w(n) = 2 +
∞∑
i=1

2i+1∑
n=2i+1

n

iα2i−1
≥ 2 +

∞∑
i=1

2i+1∑
n=2i+1

2i

iα2i−1

= 2 + 2
∞∑
i=1

2i+1∑
n=2i+1

1

iα
≥

∞∑
i=1

2i

iα
= ∞.



THE DISCRETE CESÀRO OPERATOR IN WEIGHTED ℓ1 SPACES 41

Hence, the point spectrum σpt(C
(1,w)) = {1}.

Since s1 = 1, it follows from Proposition 3.9(ii) that{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
⊆ σ(C(1,w)). (4.20)

For the reverse inclusion, let λ ∈ C satisfy
∣∣λ− 1

2

∣∣ > 1
2
and set β := Re

(
1
λ

)
.

Then β < 1, i.e., (1 − β) > 0. Fix m ≥ 3 and select i ∈ N such that
(2i + 1) < m+ 1 < 2i+1 (note that also (2i + 1) ≤ m < 2i+1). Then

∞∑
n=m+1

w(n)

n1−β
≤

∞∑
n=2i+1

w(n)

n1−β
=

∞∑
j=i

2j+1∑
n=2j+1

1

jα2j−1
· 1

n1−β
.

Since 1
w(m)

= iα2i−1 with 1
mβ ≤ ( 1

2i
)β and 1

n1−β ≤ 1
(2j)1−β for (2i + 1) ≤ n ≤

2i+1, it follows that

1

mβw(m)

∞∑
n=m+1

w(n)

n1−β
≤ iα2i−1

2iβ

∞∑
j=i

1

jα2j−1
· 1

(2j)1−β
· 2j.

But, iα

jα
≤ 1 for all j ≥ i and so, for all m ≥ 3, we have

1

mβw(m)

∞∑
n=m+1

w(n)

n1−β
≤ 2i(1−β)

∞∑
j=i

(
1

21−β

)j

=
21−β

21−β − 1
.

On the other hand, recalling that w ∈ ℓ1, we also have 1
w(1)

∑∞
n=2

w(n)
n1−β ≤∑∞

n=2w(n) < ∞ and 1
2βw(2)

∑∞
n=3

w(n)
n1−β ≤ 1

2β

∑∞
n=1w(n) < ∞. Accordingly,

sup
m∈N

1

mβw(m)

∞∑
n=m+1

w(n)

n1−β
< ∞

and so Theorem 3.7(ii) implies that λ ∈ ρ(C(1,w)). Hence, {λ ∈ C : |λ− 1
2
| >

1
2
} ⊆ ρ(C(1,w)) which implies that (4.20) is an equality.

It would be interesting to know whether or not C(1,w) (equivalently, C(1,v);
see Fact 1) is power bounded.
Concerning the dynamics of a continuous linear operator T de�ned on a

separable Banach space X, recall that T is hypercyclic if there exists x ∈ X
such that the orbit {T nx : n ∈ N0} is dense in X. If, for some x ∈ X, the
projective orbit {λT nx : λ ∈ C, n ∈ N0} is dense in X, then T is called
supercyclic. Clearly, hypercyclicity implies supercyclicity.

Proposition 4.18. Let w be a bounded, strictly positive sequence such that

C(1,w) ∈ L(ℓ1(w)). Then C(1,w) is not supercyclic and so, not hypercyclic.

Proof. By Step 2 in the proof of Theorem 3.7 the in�nite set Σ ⊆ σpt((C
(1,w))′).

By Theorem 3.2 of [7], C(1,w) cannot be supercyclic. �
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