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Abstract 22 

BACKGROUND: A new Beauveria bassiana-based Attract and Infect Device (AID) to 23 

control Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) was developed. 24 

The virulence and persistence of the fungal formulation used in the AID was evaluated 25 

in laboratory. Semi-field and field trials were carried out to validate results and evaluate 26 

the efficacy of the devices.  27 

RESULTS: In laboratory conditions, an LT50 of 4.33 days was obtained when adults (7-28 

10 day-old) were exposed to the Inoculation Tunnel (IT) containing 1 × 1010 conidia/g 29 

in an oil-based fungal formulation. This formulation maintained conidia viability at 50 30 

% for up to 2 months. Moreover, when adults were exposed to 2.5-month field aged ITs 31 

mortality still reached 50% 40 days after exposition. In addition, no differences were 32 

observed between ITs aged in early-spring or those aged in summer suggesting that 33 

fungal formulation is not strongly affected by environmental factors in Mediterranean 34 

basin conditions. Semi-field assays showed that the device allowed an easy transit of 35 

weevils through the IT, which effectively became attracted and infected. Using one AID 36 

per ha in 4-ha plot field trials a reduction of more than 50% on the percentage of 37 

infested sentinel palms was obtained compared to plots treated with mass trapping, also 38 

installed at 1 trap per ha. 39 

CONCLUSIONS: Based on the reported results in efficacy and persistence of this new 40 

AID in the field and on its potential in reducing R. ferrugineus populations and palm 41 

infestation, this device showed potential as a tool for the management of R. ferrugineus.  42 
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1 INTRODUCTION 46 

In the last 10 years, the red palm weevil Rhynchophorus ferrugineus Olivier 47 

(Coleoptera: Curculionidae) has become the most destructive pest of palms in the world, 48 

particularly in the Mediterranean basin.1-2 In this region the Canary Islands Date palm, 49 

Phoenix canariensis Hort ex Chabaud, is widely used as ornamental, whereas the date 50 

palm, P. dactylifera, is mostly grown for its fruit in the southern countries of this basin.3 51 

This weevil, native to south Asia and Melanesia, previously colonized most of 52 

southwestern Asia, the Arabian Peninsula in the mid-1980s, and Middle East and Egypt 53 

at the beginning of 1990s.4 Later on, it was detected in other regions including the 54 

Canary Islands, the Caribbean, and southern China.1 This pest is multivoltine and 55 

depending on climatic conditions, it can have from one single generation per year (i.e, 56 

Northern Mediterranean basin countries) to several overlapping generations in warmer 57 

climates.5 58 

Control methods against R. ferrugineus are based on regular preventive treatments 59 

because early detection is not easy because of the hidden habits of most of its life 60 

cycle.6 Pesticides, such as imidacloprid or chlorpyrifos, or entomopathogenic 61 

nematodes, are usually applied by spraying on the crown using different devices.7-8 62 

However, as the effect does not last for more than 1.5-2 months, at least 5-7 treatments 63 

per year may be required.8-9 Systemic insecticides (mainly neonicotinoids and 64 

avermectins) can be applied by stipe injection. Although the efficacy of this technique 65 

has improved by use of low-pressure injectors,2 the number of applications required is 66 

still high.  67 

Some alternatives to chemical control are the use of entomopathogenic nematodes7 or 68 

fungi. Several strains of Beauveria bassiana (Bals.-Criv.) Vuill. and Metarhizium 69 

anisopliae (Metchn.) Sorokin (Hypocreales: Clavicipitaceae) have been isolated from 70 



wild R. ferrugineus populations.10-14 These entomopathogenic fungi have been tested 71 

against R. ferrugineus by direct injection,15 application of fungal spores to the crown or 72 

stipe by spray or painting,11 release of R. ferrugineus adults contaminated with spores15-73 

16 or by a combination of these techniques with, i.e., mass trapping.17 The use of attract 74 

and infect devices could be, probably, the most efficient way to spread the inoculum of 75 

the fungus by horizontal transmission to other individuals, including those in already 76 

infested palms. Several authors have tried to develop this kind of devices against R. 77 

ferrugineus.18-19 However, none of them has demonstrated their efficacy in field trials 78 

yet. The main objective of this study has been (1) to develop an effective 79 

autoinoculation system and (2) to evaluate the efficacy of this attract and infect device 80 

(AID) in field conditions.  81 

 82 

2 MATERIALS AND METHODS 83 

2.1 Entomopathogenic fungus 84 

The B. bassiana strain used in the experiment was isolated from an infected pupa 85 

originally collected in a date palm grove near the town of Catral, Spain, and belongs to 86 

the fungal collection of the Departamento de Ciencias y Recursos Agrícolas y 87 

Forestales of the University of Córdoba (Spain) with the reference code EABb 07/06-88 

Rf.11 This strain was deposited with accession No. CECT- 20752 on May 13, 2009, 89 

following the Budapest Treaty, in the Spanish Collection of Culture Types (CECT) at 90 

the University of Valencia (Spain). 91 

2.2 Stock colonies 92 

Adult weevils collected in the province of Valencia in traps baited with ferrugineol (the 93 

male R. ferrugineus aggregation pheromone) dispensers and plant kairomones (ethyl 94 



acetate and pieces of palm fronds) were used in some of our assays (see below) and also 95 

to start our stock colonies. These colonies were established in 2007 and have been 96 

periodically supplemented with the introduction of additional wild specimens. Adult 97 

weevils were reared in a controlled environment cabinet at 25 ± 1 ºC, 75 ± 5% R.H. and 98 

a 16 h light photoperiod in perspex cages (30 × 30 × 45 cm depth) with a density of 99 

100-120 weevils per cage.20 100 

2.3 Experimental insects 101 

Both laboratory-reared and wild specimens were used in our assays. Seven to ten day-102 

old laboratory-reared adult R. ferrugineus were used in the laboratory assays to assess 103 

both the virulence of the fungus and its capacity to be horizontally transmitted to 104 

healthy adults when formulated as when used in the AID. The same type of insects was 105 

used in semi-field experiments. On the other hand, wild adults were used to assess the 106 

performance of the inoculation tunnels (IT) after several field ageing times because not 107 

enough laboratory-reared insects were available. In this case, trap-collected adults were 108 

maintained in our insectary and periodically examined during two to three weeks before 109 

the onset of the assay to discard weak, presumably unhealthy specimens. 110 

2.4 Plant material 111 

For both field and semi-field assays, 5-year old potted P. canariensis palms obtained 112 

from an officially inspected nursery, and therefore considered as R. ferrugineus-free, 113 

were used. The stipe of these palms was 0.35 to 0.55 m high and 0.30 to 0.40 m wide. In 114 

the semi-field assays, these plants were kept inside a double mesh security enclosure 115 

containing 24 independent cages (4 × 3 × 3 m), under natural light and temperature 116 

conditions, and watered twice per week. In field-assays, palms were watered only once 117 

per week. 118 



2.5 Attract-and-Infect Device (AID) 119 

The commercially available black pyramidal trap Picusan® (Fig. 1A),21 supplied by 120 

Sansan Prodesing SL (Valencia, Spain), was conveniently modified and used in our 121 

assays. This trap consisted of three parts: 1) a cylindrical base (25 cm in diameter, 6 cm 122 

height); 2) a rough (1 mm between grooves) black pyramid with a 66% slope and a 123 

funnel inserted onto the upper side; and 3) a green cover on the top leaving a 4-cm 124 

opening between the upper side of the pyramid and the top. This cover had a small 125 

basket inserted in its center where a 1-g ferrugineol dispenser (Pherosan RF, Sansan 126 

Prodesing SL) was set. The main modification of the standard trap consisted of an L-127 

shaped pipeline (2.5 cm in diameter) connected to the funnel and to the base of the 128 

pyramid (Fig. 1B) to allow insects to freely enter and leave the trap. A removable lid 129 

opening outwards protected the exit hole on the pyramid. The lower part of the L-130 

shaped pipeline was transformed into an inoculation tunnel containing the fungal 131 

formulation.  132 

2.5.1 Fungal formulation 133 

The fungal formulation used in the AID was made according to Primo-Yúfera et al.22 134 

with some modifications. Briefly, the B. bassiana strain was cultured in Petri dishes 135 

containing potato dextrose agar (PDA) medium (Difco, BD, Madrid, Spain) 136 

supplemented with yeast extract (1%) (Difco, BD, Madrid, Spain) at 26 °C in dark 137 

conditions. Previously to each experiment, viable germinating conidia were counted 138 

after 24 h of incubation at 26 °C in PDA.23 In all cases, germination of conidia was over 139 

96%. Conidia from 18-20-day-old cultures were suspended in mineral oil and removed 140 

from each dish with a 10-mL pipette. Suspensions from four Petri dishes were 141 

combined in a sterile Falcon tube (50 mL), sonicated during 2 min and filtered through 142 

four layers of cheesecloth to obtain pure conidia. After centrifugation (3000 rpm, 3 min; 143 



Rotina 46, Hettich, Germany), oil exceeding 10 mL was removed. Conidia 144 

concentration, estimated using a haemocytometer (Improved Neubauer chamber), was 145 

adjusted to obtain 2 × 1010 conidia in a final volume of 4 mL. Then, 2 g of a clay carrier 146 

were added and manually stirred to complete homogenization. 147 

2.5.2 Inoculation tunnels (ITs) 148 

The formulation above was spread on a piece of black corrugated plastic (PVC) tube 149 

(100 mm long × 25 mm diameter), which constituted the contaminant component of the 150 

AID. In all cases, the final fungal concentration in the inoculation tunnel (IT) was 1 × 151 

107 conidia mm-2 (2 x 1010 conidia per IT). The control tunnel was prepared as 152 

described for the ITs but conidia were previously sterilized. In this case, fungal conidia 153 

were harvested in dry conditions by scraping the surface of the culture plate and the 154 

amount (by weight) corresponding to 2 × 1010 conidia was moist heat sterilized (121° C 155 

for 30 min) in an autoclave (Presoclave 15, JP Selecta, Barcelona, Spain). Afterwards, 156 

sterile conidia were poured in a 50 mL-Falcon tube in which mineral oil (up to reach 4 157 

mL) and clay carrier (2 g) were added to complete the formulation of the inactivated-158 

fungus, control tunnel. 159 

2.6 Laboratory bioassays 160 

2.6.1 Infectivity of B. bassiana in the IT 161 

This assay was performed using AIDs without the ferrugineol dispenser. The AID was 162 

placed inside a plexiglass cage (40 × 30 × 40 cm) to easily recover the contaminated 163 

insects. Sixteen 7-15 day-old R. ferrugineus adults, 8 males and 8 females, from the 164 

stock colony were forced to cross the IT by introducing them through the upper part of 165 

the L-shaped pipeline. To ensure that weevils were not able to step back and get out 166 

through the upper part of the trap, or to avoid re-entry of trap-leaving insects, the upper 167 



opening was partially closed once the insects had been introduced into the AID. 168 

Twenty-four hours later insects having crossed the IT once (i.e., those in the cage) were 169 

recovered. These insects were individually introduced into small-aerated plastic cages 170 

(11.0 × 4.5 × 7.5 cm) with a non-treated partner of the opposite sex and left undisturbed 171 

during 24 h to assess horizontal transmission. Then, couples were separated and each 172 

insect was introduced in a new clean cage where they were fed an apple slice and moist 173 

paper (replaced as needed). Survival was assessed daily for 10-12 days in the case of 174 

insects contaminated in the IT, or up to 30 days for those exposed to horizontal 175 

transmission. To confirm mycosis, each dead insect was individually surface-sterilized 176 

by immersion during 1 min in a 0.3% sodium hypochlorite solution (x 2 times). Then, it 177 

was rinsed using sterile distilled water (x 2 times; 1 min each) and individually 178 

incubated in a wet dark chamber at 26ºC for 20 days. Mycosis was assumed when the 179 

sporulated mycelia of the fungus was observed growing from the cadaver. Lethal time 180 

50 (LT50), the time required to kill 50 % of the insects, was estimated according to San 181 

Andrés et al.24 and used as an estimation of fungal virulence. Five assays, each 182 

consisting of two replicated ITs and a control tunnel, were carried out. 183 

Additionally, two couples per assay (a total of 10 couples), treated as above were used 184 

to determine the per capita rate of propagule pick up by either direct exposition to the IT 185 

or by horizontal transmission. Thus, conidia picked up by each insect were recovered by 186 

three successive washes of dichlorometane (5 mL each) which were combined in a glass 187 

tube and concentrated up to 5 mL under gentle nitrogen stream. Conidia concentration 188 

was estimated as described in section 2.5.1.  189 

2.6.2 Field persistence of fungal activity in the IT 190 

Conidia viability in the ITs was evaluated from the moment when AIDs were set in the 191 

field until their removal in (1) Valencia (39°29'02.4"N; 0°20'25.1"W; outdoor 192 



conditions) from 3 February to 24 April, and (2) Sagunt (39°39'51"N; 0°17'31"W) from 193 

14 April to 17 June (spring ITs) and from 24 June to 12 August (summer ITs), in 2014. 194 

Although already replaced in 17 June from the field trial, several spring ITs were 195 

maintained in the field until 12 August for a longer evaluation period. Every two weeks, 196 

a small amount (20-30 mg) of infective material from the IT was taken to the laboratory. 197 

The sample was weighted and 1 mL of mineral oil (the same oil as when preparing the 198 

infective material) was added. The sample was then stirred in a vortex (2 min) and 199 

sonicated (2 min). The suspension was allowed to precipitate the inorganic material and 200 

the oil was transferred to another vial. The remaining solid was washed again with 1 mL 201 

of mineral oil as before and added to the previous oil sample. From this suspension, 10-202 

fold serially diluted oil suspensions were prepared to obtain the colony forming units 203 

(cfu) per mg of infective material. Fifty µL of each suspension were inoculated in a 204 

Petri dish containing B. bassiana CTC selective medium, consisting of PDAY [potato 205 

dextrose agar (Difco; BD) supplemented with 1 g L-1 yeast extract (Difco; BD) + 0.5 g 206 

L-1 chloramphenicol (Sigma-Aldrich, Madrid, Spain) + 0.001 g L-1 thiabendazole 207 

(Sigma) + 0.25 g L-1 cycloheximide (Sigma).25 208 

The number of cfu obtained when the IT were assembled was considered as 100% 209 

viability and subsequent recordings were referred to this result. For each ageing time, 210 

three ITs were analyzed. 211 

2.7 Semi-field assay 212 

A semi-field field trial was carried out in a greenhouse with 6 independent meshed 213 

cages (4 × 3 × 3 meters). An AID was placed in the center of the cage and immediately 214 

after, three R. ferrugineus adult males and nine females were released. Three cages were 215 

provided with an infective AID (treated cages), whereas three additional cages had an 216 

AID with an inactivated fungal formulation (see 1.6 section) (untreated cages). A cotton 217 



bud coated with fluorescein (Sigma-Aldrich, Madrid, Spain) was placed at the exit of 218 

each tunnel to mark the insects going through the AID. Forty-eight hours after trap 219 

placement, three palms with a crown of 0.35 to 0.55 m high and 0.30 to 0.40 m wide 220 

were introduced into each cage and left there with the weevils for 3 additional days. 221 

After this period, weevils were recovered, counted and inspected with a black light 222 

source to check how many of them had walked through the tunnel.  223 

Palms exposed to the weevils were left in the greenhouse for 2 additional months to 224 

allow immature development. After this period, the palms were thoroughly dissected 225 

and the numbers of larvae, pupae and adults were counted. Twenty larvae from each 226 

cage were maintained in a dark wet chamber to record the number of individuals 227 

showing signs of infection. 228 

2.8 Field assays 229 

The field assay consisted of seven replicates, three of them in the province of Valencia 230 

(two in the municipality of Montcada (39°35'20"N; 0°23'55"W) and one in Sagunt 231 

(39°39'51"N; 0°17'31"W)), one in Córdoba (37°55'13"N; 4°43'30"W) and the remaining 232 

three in the island of Ibiza (the municipalities of Sant Carles (39°01'46"N; 1°30'29"E), 233 

Santa Eulària del Riu (38°58'52"N; 1°26'16"E) and Sant Antoni 38°59'16"N; 234 

1°20'23"E). Each trial consisted of two 4-ha plots. One of these paired plots was 235 

supplied with 4 AID set at the corners of a 100 × 100 m square (infective plot with 1 236 

AID ha-1). The other plot received 4 standard Picusan® traps set also at the corners of a 237 

100 × 100 m square (mass trapping plot with 1 trap ha-1). Trap density was chosen 238 

according to conventional mass trapping protocols employed by the Valencian 239 

Community local government. Infective and mass trapping plots of each trial were 240 

separated at least 200 m. Both plots had in the center a standard Picusan® trap, baited 241 

with a 1 g ferrugineol dispenser (Pherosan RF, Sansan Prodesing SL, Náquera, Spain) 242 



and a DDVP strip (Biagro SL, Valencia, Spain) and were used to monitor R. ferrugineus 243 

populations in each plot. Dry traps baited with ferrugineol instead of traps containing 244 

pheromone, water and molasses were used in order to evaluate infection rate in the 245 

captured adults. Although traps baited with water and molasses are more attractive to 246 

weevils, infection rate evaluation would not have been feasible in soaked adults. 247 

Both standard Picusan® traps and AID were placed in field on 14 April 2014 and trials 248 

ended four months later. Inoculation tunnels in AID were replaced once on 24 June, and 249 

ferrugineol dispensers were not replaced during the assay. Weevils captured in all the 250 

central standard Picusan® traps and the four traps of the mass trapping plots were 251 

counted weekly. Moreover, the weevils of the central traps were taken to the laboratory 252 

to ascertain whether they had been infested by B. bassiana. Thus, they were processed 253 

as described above in order to confirm mycosis (see 2.6.1 section). In addition, four 254 

palms were set around the central trap of the infective and mass trapping plots as 255 

sentinel plants in the assays carried out in Montcada, Sagunt and Córdoba. These palms 256 

remained in place for the four months that the trial lasted and were watered weekly. On 257 

12 August they were thoroughly dissected to assess R. ferrugineus attack and the 258 

number of larvae, pupae and adults were counted. Three inoculation tunnels of each 259 

area were also taken to the laboratory at the end of the trials to assess conidia viability 260 

and insecticidal activity against wild R. ferrugineus as above. Insecticidal activity was 261 

measured in 10 adults per tunnel.  262 

2.9 Statistical Analysis 263 

Mortality data in virulence experiments were corrected using Abbott´s formula when 264 

necessary.26 The median lethal time (LT50) value was estimated by probit analysis using 265 

the SPSS v16.0.1 for Windows (SPSS Inc., 2008). Mortality data of insects exposed to 266 



the AID in the laboratory were further used to calculate the Average Survival Times 267 

(AST) in days using the Kaplan–Meier survival analysis.27 268 

For the semi-field trial, an ANOVA followed by LSD test (P < 0.05) was conducted 269 

with the total number of insects captured in each treatment. Differences in percentage of 270 

adults captured showing fungal outgrowth in the field trials were analyzed using a t-test. 271 

In this case, data were previously transformed (arcsin(sqrt (x+1))) to meet the 272 

assumptions of ANOVA. Differences in palm infestation in the field assays were 273 

assessed using a Chi square-test. Same as for semi-field trials, the number of R. 274 

ferrugineus per palm was analyzed using ANOVA and LSD test at P < 0.05.  275 

 276 

3 RESULTS 277 

3.1 Laboratory bioassays 278 

Mortality of insects exposed to the AID in the laboratory reached 72 and 92 % five and 279 

nine days after treatment, respectively (Fig. 2). Remarkably, most of these insects did 280 

not move and only reacted if gently touched with a small brush as soon as four days 281 

after treatment. However, mortality data were only recorded when insects definitively 282 

died. The estimated LT50 and AST were 4.33 days (95% fiducial limits: 3.90 and 4.80 283 

days; slope ± standard error: 5.980 ± 0.283; Χ2 = 276.3, df = 18; P ≤0.001) and 6.21 284 

days, respectively. The average conidial load picked up by a single adult weevil when 285 

leaving a freshly-made IT was 2.23 ± 0.46 × 107 conidia. This amount almost halved 286 

(1.02 ± 0.39 × 107 conidia) when the tunnel had already been crossed by 23 individuals. 287 

Interestingly, evidence of horizontal transmission was observed starting 15 days after 288 

pairing with inoculated insects and mortality reached 45 % on day 30 (Fig. 3). The 289 

conidial load of these insects was estimated at 2.16 ± 0.51 × 106 conidia, which is about 290 



10-fold lower than what was observed when insects were directly exposed to the fresh 291 

IT.  292 

3.2 Semi-field assays 293 

More than 88% of the adult weevils recovered in the cages were marked with 294 

fluorescein, and this is indicative that most of them had passed through the ITs. When 295 

palms were dissected two months later, all the palms in both control and treatment cages 296 

were infested. However, the number of R. ferrugineus found in palms exposed to an 297 

AID were significantly lower than in control palms (32.3 ± 3.7 and 51.0 ± 2.4, 298 

respectively; F = 16.78; df = 1, 16; P < 0.001). Furthermore, the infection rate of the 299 

individuals in the cages treated with AID was 4-fold than in the control (28.3 ± 3.9 and 300 

7.1 ± 2.1, respectively; F = 35.84; df = 1, 16; P < 0.001).  301 

3.3 Field assays 302 

The total number of weevils captured in the center of infective and mass trapping plots 303 

and the percentage of these insects that showed fungal outgrowth is shown in Table 1. 304 

No differences in fungal outgrowth were detected between insects captured in plots 305 

treated with mass trapping and plots treated with AIDs. In addition, some weevils 306 

captured in traps located outside the trial areas (500 to 3000 m away) were evaluated for 307 

fungal outgrowth and their rate of infection was significantly lower than what was 308 

observed in the trial areas (same authors, unpublished results).  309 

When infestation of sentinel palms was assessed at the end of the assay, 37.5% of the 310 

palms placed in the infective plots were infested, whereas this percentage increased to 311 

81.3 % of the palms placed in the mass trapping plots (Table 2). Indeed, the mean 312 

number of weevils developing per palm in the mass trapping plots was more than 3-fold 313 

the number found in palms in the infective plots (17.0 versus 5.2, respectively, Table 3). 314 



Therefore, mass trapping at a density of 1 trap ha-1 was not enough to control palm 315 

infestation in 4 ha-plots. However, the same density of infective traps resulted in a 46% 316 

reduction of infested palms. Efficacy of both mass trapping and attract and infect 317 

techniques might be improved by using water and co-attractants as described in 318 

previous research.21  319 

3.4 Laboratory evaluation of both fungal formulation persistence and infective 320 

activity of field-used ITs 321 

The viability of the fungal formulation in the IT evaluated under outdoor conditions 322 

prior to field assays (3 February to 24 April 2014) (Fig. 4) was 70 and 45% 63 and 82 323 

days after field exposure, respectively. Fungal viability measured in parallel with field 324 

assays in Sagunt (Fig. 5A) remained over 50%, 67 days after the start of the test. 325 

Although most of these tunnels were replaced by newly-made ITs at that date, some of 326 

them were allowed to further age in the field for a longer evaluation period (white bars 327 

in Fig. 5A). Viability decreased to almost 30 and 12% after 3 and 4 months of aging, 328 

respectively. Interestingly, the viability decrease observed was similar for both the 329 

initial and replaced ITs up to 50 days of aging, even though they had been exposed to 330 

different environmental conditions: spring (Fig. 5A) and summer (Fig. 5B). At the end 331 

of both periods, three ITs per plot were taken to the laboratory to evaluate both their 332 

infective activity and fungal viability. The spring ITs (aged in the field for 2.5 months) 333 

caused 50% mortality in approximately 45 days (Fig. 6A). Mortality in the ITs from the 334 

Ibiza trials was higher than in those from Valencia (63.3 versus 35.6% at day 34). 335 

However, mortality in the Ibiza trial remained the same until the end of the assay. At 336 

that time (2.5 months ageing), fungal viability was 35.26 ± 1.46% and 30.62 ± 1.28% 337 

for Ibiza and Valencia trials, respectively. At the end of the second period (Fig. 6B), 338 

mortality was slightly higher than in the first one. Mean mortality was about 60% by 339 



day 40. However, the ITs from both locations showed a more homogenous response 340 

(86.83 ± 1.48% and 81.21 ± 3.06 % fungal viability, respectively). The mean viability 341 

of the ITs, which were allowed to remain in the field until the first week of September 342 

in Ibiza (ageing period of 70 days) was 43.32 ± 0.49%. 343 

 344 

4 DISCUSSION 345 

The use of entomopathogenic fungi in attract and infect traps has been developed for 346 

several pests including dipterans, such as fruit flies,28-29 leafminer30 and tsetse flies,31 347 

coleopterans, such as palm weevils,19 and lepidopterans.32 Our work describes an AID 348 

for controlling R. ferrugineus. According to Vega et al.,33 insects are attracted to the 349 

infective source in the device, become infected, leave the source and then disseminate 350 

the pathogen to other members of the target population. Similar attract and infect traps 351 

used against Triatominae have demonstrated a high efficacy in reducing pest 352 

populations and a 52.4% population mortality.34 When infective traps were applied in 353 

houses, infection rate was reduced up to 85%, and a significant reduction in fertility and 354 

fecundity of infected females was obtained.35 355 

Entomopathogenic conidia are, in many cases, very sensitive to weather conditions,36 356 

which is a key point of the system’s efficacy together with the horizontal transmission 357 

of the pathogen.31 Therefore, the main objective of this research was to develop a device 358 

and a formulation protecting spores from adverse environmental conditions for as long 359 

as possible and which, at the same time, should be effective for weevil attraction and 360 

infection. 361 

The fungal strain used in this study had previously shown promising activity results 362 

against R. ferrugineus. Dembilio et al.11 tested the virulence of this strain against 363 



laboratory-reared and field-collected adults by immersion in eight conidial aqueous 364 

suspensions ranging from 5.16 × 106 to 6.73 × 109 conidia mL-1, reporting that adults 365 

survived around 16 days on average when dose was 5.16 × 109 conidia mL-1 and 366 

mortality was null with doses below 5.16 × 108 conidia mL-1. Following these reported 367 

conditions, we subsequently proved that a single weevil treated with the most effective 368 

dose (5.16 × 109 conidia mL-1) was able to acquire a fungal load of 6.7 ± 0.9 × 107 369 

conidia (unpublished results). Based on these results, the fungal dose required in the IT 370 

to ensure that crossing weevils acquire between 2 and 6 × 107 conidia was 1.0 × 1010 371 

conidia g-1 of solid carrier (2 × 1010 conidia IT-1). was established to be used in our 372 

studies because 1) the maximum amount of free oil that could be used to suspend about 373 

6.0 × 107 conidia without provoking oil-toxicity effects when applied on a R. 374 

ferrugineus adult was 6 µl and, 2) from an economic point of view, it was a relatively 375 

high but commercially feasible concentration to be used. According to the present work, 376 

the oil-based formulation of the fungus used in ITs showed an LT50 of 4.33 days with an 377 

average load of 2.2 × 107 conidia per weevil, which is 3-fold less conidia than the 378 

amount gained by a weevil being immersed in a conidial aqueous suspension of 5 x 109 379 

conidia mL-1. These results suggest that the fungal oil-based formulation enhances 380 

virulence, as a 3-fold lower fungal load reduced the time required to kill insects by 381 

approximately 4 times compared to Dembilio et al.11 The enhancement of fungal 382 

virulence with oil formulations had been previously reported.36-37 This is attributed to an 383 

increase of conidia adhesiveness to the insect cuticle and an interference with its 384 

defensive nature resulting in an acceleration of the fungal outgrowth process in the host 385 

compared to aqueous formulations. Furthermore, oil prevents conidia from drying and 386 

helps increase the fungal agent’s persistence.38  387 



The persistence of the attract and infect device capacities is crucial for the economic 388 

and technical feasibility of this method. These features would be hardly fulfilled if the 389 

device had to be serviced/replaced for less than one month. The device under study 390 

remained infective (over 50% of conidial viability) for 2 months, even during the driest 391 

and warmest seasons in the Mediterranean (summer). Even lower percentages of 392 

viability, as those corresponding to 2.5 ageing months (30-35%), have also been 393 

correlated in the laboratory with 50% mortality, 45 days after adult treatment. This 394 

residual efficacy is especially relevant if we keep in mind that the performance of 395 

treated insects was seriously impaired long before they died. 396 

Previously developed devices maintain its infective capacity for at least 31 days in 397 

tsetse flies39 and for almost 40 days against Ceratitis cosyra (Walker).28 An AID against 398 

Ceratitis capitata (Wiedemann) using the same mesoporous technology employed 399 

herein has been recently reported.28 This AID can remain active for almost 3 months in 400 

the field and only one replacement per year is needed to cover the whole season. 401 

Previous AIDs developed for R. ferrugineus control using conidia inoculated in rice lost 402 

fungal viability to around 40% after 4 weeks.18 Contrarily, the new AID maintains 403 

conidial viability over 50% for at least 8 weeks. More recently, Hajjar and Ajlan19 tested 404 

bucket traps covered with rough sackcloth soaked with a commercial oil-based 405 

formulation of B. bassiana. High infection rates of weevils and horizontal transmission 406 

occurred but only for 13 days. 407 

If we consider the initial load of an IT (2.0 × 1010 conidia) and that of a weevil 408 

crossing it (6.7 × 107 conidia), the maximum number of insects that could be effectively 409 

infected in each AID could reach 900, which is about 30 times higher than weekly 410 

captures in similar infested areas.21 This is obviously a simplification, as the continuous 411 

reduction in infective material swept along by each crossing weevil, or progressively 412 



reducing viability (approx. 50% of fungal viability after 2 months in the field) should be 413 

taken into account. Therefore, further studies are needed to provide real numbers of 414 

insects effectively infected by AID under real field conditions.  415 

The results obtained in the present study show that the new AID is very effective at 416 

attracting and infecting weevils as more than 88% of the insects released in the semi-417 

field assay passed through the IT and this resulted in 95% mortality. Moreover, the 418 

percentage of infested palms in field assays using 1 device ha-1 of the new AID was 419 

reduced by more than 50% compared to mass trapping plots also installing 1 trap ha-1. 420 

Moreover, in some cases, 100% of the sentinel palms used remained uninfested in plots 421 

treated with AIDs. In the particular case of Córdoba, red palm weevil population level 422 

was lower than in Sagunt and Montcada and, consequently, damage in palms was lower. 423 

The only weevil found in this trial was in the mass trapping field and only one palm of 424 

the AID field showed symptoms of affectation but without any larvae, pupa or adult 425 

inside the palm. 426 

Overall results can be taken as evidence of the potential of this method to reduce the 427 

impact of R. ferrugineus. Intriguingly, these values corresponded to the same fungal 428 

outgrowth rates when comparing insects captured in the central traps of infected versus 429 

mass-trapping plots. As our field assays were performed in 4-ha plots, cross-430 

contamination between AID-treated plots and mass-trapping may have occurred and this 431 

may account for the lack of signification of the differences in infection rates recorded 432 

but explain differences in infestation of sentinel palms. Indeed, the autodissemination 433 

potential of strain EABb07/06-Rf, with male-to-female and female-to-male rates of 434 

transmission of 55% and 60% (Dembilio et al., 2010) points on that direction. Insects in 435 

the AID-plots may have received a full load of conidia, which would remain almost 436 

unchanged when infesting neighboring palms but significantly decrease when moving 437 



to the mass-trapping plots. This is a hypothesis, though, that should be properly tested. 438 

Weevils retaining the full conidial load and being infected by the fungal strain are 439 

expected to have an overall 78% progeny reduction (Dembilio et al., 2010), which 440 

clearly accounts for the infestation reduction in the sentinel palms. As R. ferrugineus is 441 

able to easily move distances of over 100 m in a single flight40 and over 1 km in a flight 442 

mill with some weevils flying distances exceeding 50 km in 24 h,41 the separation 443 

between our plots (200 m) may have been insufficient to preclude this cross-444 

contamination. Based on these recently reported results about R. ferrugineus flight 445 

capacities, optimal results from placing infective traps could be accomplished when 446 

applied to wide areas. Therefore, further studies should be carried out in large areas to 447 

test several infective trap densities as this would allow to ascertain the field efficacy of 448 

this technology and the potential to become an economically viable control method.  449 
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Table 1. Total number of R. ferrugineus captured in the central 597 

traps per location and percentage of weevils showing fungal 598 

outgrowth 599 

Location Treatment N 

Fungal 

outgrowth 

(%)* 

Sagunt and 

Montcada1 

Infective plot 35 45.2a 

Mass trapping plot 34 65.6a 

Ibiza2 
Infective plot 152 69.6a 

Mass trapping plot 611 73.4a 

Córdoba 
Infective plot 8 25.0a 

Mass trapping plot 15 6.7a 

*Percentage fungal outgrowth at the same location followed 600 

with the same letter did not significantly differ in the 2 test 601 

1Total corresponding to the two trials set at Montcada and one at Sagunt (province of 602 
Valencia) 603 
2Total corresponding to the three trials set at the Island of Ibiza  604 



Table 2. Damage assessment results in sentinel palms of the trials carried out 605 

in Sagunt, Montcada and Córdoba. 606 

Location 

Treatment 

Mass Trapping  AIDs 

Weevils/palm 

(Mean ± SE) 

Infested 

palms (%) 
 

Weevils/palm 

(Mean ± SE) 

Infested 

palms (%) 

Sagunt 21.5 ± 11.28 100  7.25 ± 3.57 75 

Montcada A 19.5 ± 6. 26 100  13.5 ± 9.43 50 

Montcada B 26.75 ± 9.44 100  0 0 

Córdoba 0.25 ± 0.25 25  0  0 

Mean* 17.0 ± 6.7a 81.3± 21.7a  5.2 ± 3.8b 31.25 ± 18.6b 

* Mean number of weevils per palm or percentage of affected palms followed by 607 

a different letter were significantly different in the ANOVA test (F = 12.20; df = 608 

1,27; P = 0.002) and the 2 test (2 = 8.13; P = 0,004), respectively.  609 

  610 



Table 3. Mean number of R. ferrugineus weevil stages* found in sentinel palms 611 

depending on treatment (Sagunt, Montcada and Córdoba trials combined) 612 

Weevil stage Mass trapping plot Infective plot 

Larva 14.00 ± 3.27b 4.06 ± 2.06ª 

Pupa 2.44 ± 0.77a 0.88 ± 0.43ª 

Adults 0.56 ± 0.25a 0.19 ± 0.14ª 

*For each weevil stage, values followed by a different letter in the same line were 613 

significantly different in a paired data t-student test (Larva t = 2.71, P = 0.016; Pupa t = 614 

2.04, P = 0.059; Adults t = 1.46, P = 0.164) 615 

  616 



FIGURE CAPTIONS 617 

Fig. 1. (A) Picusan trap with exit hole; (B) bottom view of the infective trap design with 618 
inoculation tunnel; (C) trap sketch with components: (1) pheromone dispenser, (2) trap 619 
entrance with funnel, (3) infective tunnel, (4) exit hole.    620 

Fig. 2. Mortality of insects (N=16) directly exposed to the inoculation tunnel (IT) in the 621 
laboratory. Values are shown as mean and standard error. Solid lines depict the mean (± se) 622 
percentage of dead insects in fungal and control treatments. Bars correspond to mean (± se) 623 
percentage of weevils showing mycosis signs.  624 

Fig. 3. Mortality of insects which have been contaminated by horizontal transmission after 625 
being coupled with insects directly exposed to the inoculation tunnel (IT) in the laboratory. 626 
Values are shown as mean and standard error. Solid lines depict the mean (± se) percentage of 627 
dead insects in fungal and control treatments. Bars correspond to mean (± se) percentage of 628 
weevils showing mycosis signs.  629 

Fig. 4. Mean (± se) persistence of the fungus formulation in the inoculation tunnel (IT) which 630 
has been aged in the field from 3 February to 24 April.   631 

Fig. 5. Fungal persistence in the Attract and Infect Devices (AIDs) during the field trial 632 
conducted in Sagunto (Valencia, Spain) by periodically evaluating conidia viability in (A) initial 633 
placement of inoculation tunnels (from 14 April to 17 June + extended ageing period - white 634 
bars-) and (B) replaced inoculation tunnels (from 24 June to 12 August). Values of bars are 635 
means (± se) of viability in four traps (N=4).  636 

Fig. 6. Laboratory evaluation of the infective activity (mean mortality ± se) of 3 inoculation 637 
tunnels (ITs) (10 adults per tunnel) used in the field during (A) 2.5 months (from mid-April to 638 
late-June) and (B) 40 days (from the third week of June to the first week of August)   639 

 640 


