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Abstract

Acoustic components have been extensively studied supposing perfectly rigid behavior. Although some works
have been performed for the radiated sound in the case of a flexible element, an important lack of information exists
concerning transmission loss analysis. The current investigation proposes the study for a generic flexible expansion
chamber. The analysis has been performed using two different methods: a resolution in the time domain, using a Finite
Volume discretization for the fluid domain and a Finite Element discretization for the solid domain, and an approach
in the frequency domain, using a Finite Element discretization for both fluid and solid. After studying the rigid case
in order to tune up the simulation, the study of the flexible case shows a good agreement among both methods. The
comparison of rigid and flexible expansion chambers shows the importance of accounting for these phenomena when
the frequency content of the acoustic signal excites the natural modes of the structure.

Keywords: silencer, muffler, expansion chamber, finite element method, finite volume method, flexibility,
deformation, acoustics, vibroacoustics, fluid structure interaction, 2 way FSI

1. Introduction1

Reduction of noise emissions is currently an important area of interest because of its practical importance. A2

document of the World Health Organization for the European Union [1] showed that near 40% of citizens of the3

EU experience road noise of about 55 dB(A). A 30% of European population experiences road noise over 55 dB(A)4

during night.5

Recent regulations focus their application on an effective reduction of noise [2]. In order to comply with regulation6

without jeopardizing engine performance, various noise control methods have been developed. These kind of control7

methods can be categorized as passive or active systems [3].8

Active noise techniques allow obtaining a very high reduction of observer perceived noise. However, this kind of9

control is associated with some issues of cost and reliability. Currently, their application on the transport industries10

is not approachable. For instance, Linus et al. [4] demonstrated that the performance of active-noise cancelling11

headphones is dependent on the noise environment. Under some circumstances, they showed how its performance12

could be unacceptable. In the automotive field it is necessary for a control mechanism to be useful on the whole range13

of operation making the use of this kind of devices currently out of scope.14

Due to these limitations, passive noise control is nowadays the principal engineering solution. A general cate-15

gorization of passive elements can be split as dissipative or reflective. Dissipative noise control allows a high noise16

reduction. For example, Hwang et al. [5] showed how using dissipative viscoelastic materials allows an effective noise17

control. However, porous absorption materials lose acoustic performance for low frequencies. When the frequency18

is low, the thickness of a porous absorber is less than one quarter of the acoustic wavelength and absorption becomes19

inappreciable [6].20

For reactive noise abatement techniques, part of the sound wave is reflected towards the source, or back and forth21

among the elements. Some examples of these elements are: expansion chambers, Helmholtz resonators, Herschel22

Quinke tubes, etc. These elements allow dealing with low frequency noise [7].23
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Traditionally, reactive elements have been extensively considered as infinitely rigid, i.e. wall displacement and/or24

velocity is supposed to be negligible from the fluid behavior point of view. This is effectively true in most of the25

current applications in the automotive industry. However, very low density-low rigidity materials are becoming of26

interest. As an example it could be useful to refer to the works of Aydemir and Ebrin [7], Nunes et al. [8] and Hu et al.27

[9].28

Some flexible components have been proposed in the field of passive sound attenuation. For example, Huang [10]29

analyzed a drumlike silencer, which is a strongly coupled fluid-structure component. It was shown how the coupling30

of the structural eigenfrequencies with the flow leads to a kind of “storage” of kinetic energy, yielding to an increase31

of the Transmission Loss (TL) through the main duct.32

Some approximations have been made in this context for some academic problems. For example, Fan et al. [11]33

used numerical methods to compute the fluid-structure interaction of a flexible panel immersed in a fluid flow; Lawrie34

[12] , Ramamoorthy et al. [13] and Ko [14] analytically approached the behavior of canonical cases. Gautier et al. [15]35

performed measurements on the vibroacoustic phenomena appearing on a flexible rubber tube. Practical geometries36

have been studied less extensively, but some references could be cited: Venkatesham et al. [16] developed an analytical37

prediction for the radiated sound from a rectangular flexible expansion chamber; Wang et al. [17] studied the radiated38

sound from a rectangular cavity through an elastic panel.39

Nevertheless, there exists an important lack of information about the influence of structural phenomena on the40

transmission properties, being of vital importance the quantification of the transmission loss and/or transfer matrix41

coefficients. For example, Munjal and Thawani [18] analytically showed how transmission loss should increase42

when decreasing the rigidity of the wall material. Cummings [19] developed a theoretical model describing acoustic43

attenuation in a flexible walled duct passing through a reverberant space.44

Due to the mentioned lack of information, in the present work numerical modelling has been applied to a typical45

circular-section expansion chamber. This geometry was characterized via the component acoustic transfer matrix [6]46

for the rigid case and for various flexible materials.47

The expansion chamber studied during this work consists on a cylindrical geometry with only one flexible wall.48

The reason of selecting this kind of geometry is mainly due to its simplicity and, thus, to the possibility of inferring49

general behaviors for more complex geometries. As it will be shown later, due to the inherently stiffness of this50

geometry, the material must have a very low Young modulus in order to show fully coupled fluid structure interactions51

under acoustic loads. The main aim of this work is to prove how, when structural modes are excited, it is necessary52

to consider couplings and to provide appropriate methodologies to predict the behavior of the acoustic element under53

these circumstances.54

The present work is structured as follows: first, in section 2 the theoretical background is analyzed, both for55

the fluid and the solid domain; then, section 3 provides a complete description of the domain studied, in order to56

ensure that present simulations are completely reproducible, while section 4 provides a complete description of the57

modelling performed (meshes, fluid, etc.). Then, the results obtained for the rigid and the flexible expansion chamber58

are described and analyzed in sections 5 and 6, respectively, and finally section 7 summarizes the most important59

conclusions deduced from the present study.60

2. Theoretical Background61

For the solution of this problem, two different zones must be considered: A fluid zone, where sound waves62

propagate, and a solid zone, which experiences deformations and accelerations as a response to flow characteristics.63

In order to study the transmission characteristics with flexible walls, a full coupled case must be studied, i.e. as64

a consequence of wave propagation the solid walls will experience an unsteady deformation which in turn will also65

have an effect on the unsteady flow field [20]. In this section, the governing equations for each region are summarized.66

2.1. Solid continua equations67

2.1.1. General equations68

The equations governing fluid flow and structural solid displacement are essentially the same as those presented69

in the work of Zienkiewicz et al. [21]. The unsteady governing equations for the solid media can be written in vector70

form as follows:71
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ρ
∂2~w
∂2t

= ∇ · σ − ~b (1)

Here, ~w is the vector representing the displacement field of the solid body, measured from an inertial reference72

frame; ~b represents the volume forces (as gravity or dissipation); ρ is the material density and σ is the Cauchy stress73

tensor [22], which complies with:74

σ = σT (2)

The closure of the solid displacement equation can be obtained by means of the so-called strain-stress relation-75

ships. Let the solid strains be defined as:76

εi j =
1
2

(
∂wi

∂x j
+
∂w j

∂xi

)
(3)

Then, the strain-stress equation allows to set a relationship between strain and stress for a given material. For77

instance, in the case of a linear-homogeneous solid material:78

σi j = λ δi j εi j + 2 µ εi j (4)

where δi j is the Kronecker delta and λ and µ are the first and second Lamé parameters, respectively. They are usually79

expressed as a function of the Young modulus, E , and Poisson ratio, ν, as follows:80

λ =
E ν

(1 + ν) (1 − 2ν)
µ =

E
2 (1 + ν)

(5)

Once the equations are closed and suitable boundary and initial conditions are prescribed, the resulting linear81

problem can be efficiently solved by means of the Finite Element Method (FEM) [21].82

2.1.2. Free vibration equations83

The set of discrete equations describing the solid structural domain can be obtained by means of the FEM [21]84

and is written simply as:85

[M]{ẅ} + [C]{ẇ} + [K]{w} = { f ext} (6)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, { f ext} is the vector of nodal forces86

and {w} is the vector of nodal displacements.87

The free vibration problem consists in solving the following problem (with {w} = {W} e jωt):88

−ω2[M]{W} + jω[C]{W} + [K]{W} = 0 (7)

The values of ω that satisfy the previous equation are the so-called eigenfrequencies. Any excitation with this89

frequency can lead to very high values in the displacement. As it will be seen later, eigenfrequencies must be computed90

because of their great importance when analyzing fluid-structure interaction (FSI) harmonic acoustic problems.91

2.2. Fluid motion equations92

2.2.1. General equations93

In this study the propagation of a velocity/pressure pulse through a fluid domain has been modelled. The most94

straight-forward derivation of the equations governing this system is based on applying the equation of state in con-95

junction with the mass, momentum and energy equations [23], which are given by the following expressions:96 

p = ρ R T
∂ρ
∂t + ∇ · (ρ~u) = 0

ρ
(
∂~u
∂t + ~u · ∇~u

)
= ∇ · τ + ρ ~fm

ρ
(
∂h
∂t + ~u · ∇h

)
=

∂p
∂t + ~u · ∇p + ∇(k∇T ) + φv + Q
dh = cp dT

(8)
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2.2.2. Euler Equations97

For the propagation of low to moderate wave amplitudes the flow can be considered to behave as non-viscous98

(µ ≈ 0) and heat-transfer dissipative effects can also be neglected (k ≈ 0). Also body forces and heat generation will99

be neglected (see [24] and [25]).100

After considering those assumptions, the Euler equations are obtained. These are given by:101 

p = ρ R T
∂ρ
∂t + ∇ · (ρ~u) = 0
∂~u
∂t + ~u∇~u = −

∇p
ρ

ρ
(
∂h
∂t + ~u · ∇h

)
=

∂p
∂t + ~u · ∇p

dh = cp dT

(9)

For the FSI-coupled case, a morphing mesh scheme is adopted and the wall-velocity inviscid boundary condition102

can be expressed simply by:103 (
~u f luid · ~n

)
wall

= ~uwall · ~n (10)

The previous equation simply states that fluid and solid must have the same normal velocity components at the104

interface.105

2.2.3. Wave equation106

In the context of wave motion, it is usual to assume that the flow characteristics can be determined as an unper-107

turbed component and a perturbation as follows:108

ρT (~x, t) = ρ0(~x, t) + ρ(~x, t)
pT (~x, t) = p0(~x, t) + p(~x, t)
~uT (~x, t) = ~u0(~x, t) + ~u(~x, t)

(11)

where ρ
ρ0
� 1 ; p

p0
� 1 and |~u|

|~u|0
� 1. Under those circumstances the Euler equations can be linearized. Also,109

it is possible to consider the flow to be isentropic, allowing one to define a relation between pressure and density110

derivatives, as:111 (
∂p
∂ρ

)
s

=

(
∂p
∂ρ

)
= a2

0 (12)

Where a0 is the unperturbed sound velocity in the flow. Finally, for the case of no mean flow the formulation can112

be further simplified, and a single equation for the perturbation (acoustic) pressure is obtained:113

∇2 p −
1
a2

0

∂2 p
∂2t

= 0 (13)

allowing also to obtain the acoustic velocity, which is related to pressure derivatives as follows:114

∂~u
∂t

= −
1
ρ0
∇p (14)

2.2.4. Helmholtz equation115

Assuming harmonic dependence with time of the acoustics variables (i.e. p = Pe jωt and u = Ue jωt ), it is possible116

to obtain the Helmholtz equation, which can be written as [6]:117

∇2P +
ω2

a2
0

P = 0→ ∇2P + k2
0 P = 0 (15)

and the corresponding relationship between pressure and velocity:118
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~U =
j

ω ρ0
∇P (16)

Eq.(15) can be numerically solved by means of a linear FEM [26]. For the solution of the domain sketched in119

section 3, the commercial package COMSOL was used [27].120

3. Problem Description121

The main aim of this study is to characterize a flexible-wall expansion chamber using time-domain CFD methods,122

and to compare the results with a frequency domain FEM solution. A similar problem was already studied by Broatch123

et al. [28] for the case of an mufflers with rigid walls.124

Due to the geometrical characteristics of the fluid domain, the plane wave condition, f R
a0
� 0.29 is sufficiently125

adequate for the range of frequencies of interest, i.e. 0 < f R
a0

< 0.13. Nevertheless, in order to be able to predict pos-126

sible non-planar wave effects while avoiding the use of a too large domain, only one quarter of a tube was simulated,127

assuming periodicity in the angular coordinate.128

As it will be checked later, the results for this simple case can be considered as practically axisymmetric. Thus, the129

simulation of a quarter of a pipe is considered to be representative enough for representing the whole 3D fluid-structure130

interactions.131

Fig. 1 shows an sketch of the geometry to be studied and characterized. The radius of the expansion chamber is132

R = 0.03 m. The solid wall is supposed to be clamped at the beginning and ending of the expansion chamber. Table 1133

shows the other dimensions.134

In the simulation, the inlet is fed by a known velocity profile. The outlet section of the tube is extruded a distance135

Ldiss = 10 R and at its end a dissipative boundary condition is applied in order to simulate an anechoic termination.136

The time evolution of the inlet velocity profile is given by:137

v(t)
vmax

=

 1
2

(
1 − cos

(
2 π t

Timpulse

))
t ≤ Timpulse

0 t > Timpulse

(17)

Figure 1: Sketch of the geometry

Table 1: Geometry dimensions

Variable Value
Chamber radius R 0.03 m

Inlet/Outlet radius r R/2.4
Inlet length Linlet 10 R/3

Outlet length Loutlet 10 R/3
Chamber length Lmu f f 10 R

Dissipation length Ldiss 10 R
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Due to the non-linearity of the convective term and the isentropic state relationship in Euler equations, high138

values of the velocity or pressure at boundary conditions could lead to a non-linear response. For the current case,139

simulations were performed for excitations up to 10 m/s, where this influence began to be slightly noted at high140

frequencies. Thus, a low velocity excitation of vmax = 0.01 m/s was chosen. This value is high enough to not provide141

numerical inaccuracies and ensures that the response can be considered to be totally linear for the whole spectra.142

The non-dimensional pulse duration is given by T a0
Lmu f f

= 0.3473 in such a way that the signal frequency content is143

high enough to resolve up to the desired frequency.144

(a)

(b)

Figure 2: Time and frequency response of the inlet velocity profile

Figs. 2a and 2b show the time and frequency evolution of the inlet velocity profile. It should be noticed that the145

cut-off frequency at the boundary condition fcut Lmu f f

a0
≈ 4.75 is sufficiently high for the current requirements.146

During next sections, first, acoustic transmission through the rigid expansion chamber are being calculated by147

means of a time-domain CFD simulation, by a FEM wave equation solution and by an analytical calculation. Fur-148

thermore, additional numerical calculations were performed for the case of a flexible expansion chamber, with wall149

thickness δ
R = 1

15 and different Young modulus, E, and solid density, ρ.150

Liu et al. [29] demonstrated for a similar domain that the acoustic properties of the flexible muffler are determined151

by the non-dimensional parameters listed below:152

L∗mu f f =
Lmu f f

R t∗ =
a0·t

Lmu f f
f ∗ =

f ·Lmu f f

a0

p∗ =
p

ρ0a2
0

D∗ = E δ3

12(1−ν2)R3 ρ0 a2
0

m∗ =
ρs δ
ρ0 R

(18)

During the development of this work, unless otherwise specified, a high mass pipe is assumed. Thus the mass153

parameter is assumed to be constant and equal to m∗ = 56.6. This allows for the direct examination of the dependence154

with stiffness.155
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4. Numerical and analytical methods156

The case of a simple non-deformable expansion chamber has been extensively studied in the literature: Broatch157

et al. [28] studied expansion and reversing chamber mufflers by using a time-domain CFD method; Barbieri and158

Barbieri [30] applied the Finite Element Method to study a similar problem. A number of references can also be159

found which address the problem analytically (see [6]).160

References [28] and [30] allow to conclude that, for the case of linear duct acoustics when the presence of a mean161

flow is not important, frequency domain FEM provides quite similar results while its computational cost is signifi-162

cantly lower as the time domain does not need to be resolved, being possible to model only the required frequencies.163

For CFD calculations the whole “residence-time” of the wave inside the domain of interest must be solved in order164

to obtain an admissible frequency response. Thus, it is intended here to provide a check of the validity of the current165

methods for later comparison in the flexible case.166

4.1. Analytical formulation167

For the analytical plane wave approach of the model, it can be split into five parts, as shown in Fig. 3:168

Figure 3: Simplified sketch of the geometry

Analytically, each component of the expansion chamber elements can be modelled as an acoustic transfer matrix,169

which relates the acoustic velocity and pressure at the inlet section with those at the outlet. For an arbitrary acoustic170

element it can be stated [6]:171 {
pin

uin

}
= [A]

{
pout

uout

}
=

[
A11 A12
A21 A22

] {
pout

uout

}
(19)

It follows that, for a linear element consisting of n subelements whose transfer matrices are known one can write172

[6]:173

[A] = [A1] [A2] · · · [An] (20)

where [Ai] is the transfer matrix of the i sub-element. The transfer matrix of each one has been extensively analyzed174

in bibliography [6].175

Once the acoustic matrix of a system is known it is possible to predict the its acoustical behavior under any176

harmonic excitation. On the other hand, it is also possible to predict an important acoustic characteristic of the system177

as follows:178

On the other hand, it is also possible to predict the transmission loss (TL) of the system. This parameter represents179

the quantity of sound power which leaves the acoustic element, related to the incident power provided that the outlet180

is anechoic [6]. It is usually expressed in dB, and can be deduced from the elements of the transfer matrix:181
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T L = 10 log10

(
Wout
Win

)
T L = 20 log10

√ S out
S in

∣∣∣∣∣A11+A12·
S in

ρ0a0S out
+A21ρ0a0

S in
S out

+A22

( S in
S out

)2
∣∣∣∣∣

2

 (21)

Where S out represents the outlet section of the element and S in is the inlet section. When S out = S in it can be182

stated:183

T L = 20 log10

(
|pout |

+

|pin|
+

)
(22)

|pout |
+ and |pin|

+ being the progressive pressure wave component at outlet and inlet, respectively.184

4.1.1. Numerical calculation of the transfer matrix185

As it was shown in the previous section, the transfer matrix is composed by 4 coefficients. Thus, in order to186

determine it from a numerical computation two cases have to be calculated. Once the frequency content of the187

acoustic pressure and velocity is known, the value of the matrix components, for a particular frequency f can be188

evaluated as follows:189


A11( f )
A12( f )
A21( f )
A22( f )

 =


(Pout( f ))Case A (Vout( f ))Case A 0 0

0 0 (Pout( f ))Case A (Vout( f ))Case A
(Pout( f ))Case B (Vout( f ))Case B 0 0

0 0 (Pout( f ))Case B (Vout( f ))Case B


−1 

(Pin( f ))Case A)
(Vin( f ))Case A)
(Pin( f ))Case B)
(Vin( f ))Case B)

 (23)

The previous equation can be resolved only when the boundary conditions of cases A and B are linearly indepen-190

dent in the frequency domain.191

4.2. Time domain CFD Model192

In section 2.2.2 the Euler equations were introduced. In order to solve them, a general-purpose commercial193

software, STARCCM+, has been used.194

The fluid considered was air. For the working conditions (i.e. p0 = 101325 Pa and T0 = 300 K), this fluid behaves195

as a perfect gas characterized by a gas constant R = 287.02 J kg−1K−1, an adiabatic index γ = 1.4, an unperturbed196

sound velocity a0 = 347.28 m s−1 and unperturbed density ρ0 = 1.177 kg m−3.197

The selection of a mesh size of the fluid volume-domain must be a compromise between the maximum desired198

frequency resolved (in this case f Lmu f f

a0
= 1.30) and a correct discretization of the circular pipe-domain. In this case199

this size was taken to be R
∆x = 24.200

About the selection of the time-step, as wave propagation is the phenomenon of interest, a low acoustic Courant201

number (CFL) must be set, based on the wave-speed velocity. In this case, it was taken as CFL =
a0 ∆t
∆x < 1→ a0 ∆t

∆x =202

1.2 · 10−3.203

A visualization of the fluid mesh is shown in Fig. 4(a). The coupled solid problem (1) was also solved by using204

the commercial software STARCCM+. Therefore, a FEM mesh was created to model the solid domain.205

Limitations of the time domain solver used during this work lead to the use of second order 3D solid elements206

in order to model the solid domain, making the solution of the structural problem more CPU consuming than if shell207

elements would have been used. Nevertheless, as the number of elements of the flexible wall is much lower that for208

the fluid domain, this element selection will not become a bottleneck. Thus, the solution of a thin walled solid with209

3D elements requires at least three elements across the thickness [31]. Therefore, the surface was modeled by using210

second order hexahedral elements of side R
∆x = 10. Fig. 4(b) shows a representation of the solid mesh. It should211

be noted that, as already mentioned, the use of shell elements could improve the computational effort with negligible212

effects in the accuracy of the results.213
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(a) Finite Volume mesh (b) Finite Element mesh

Figure 4: STARCCM+ mesh visualisation

4.2.1. Description of cases for the numerical determination of the transfer matrix coefficients using CFD214

As previously shown, in order to get the values of the transfer matrix coefficients, resolution of variables for two215

different cases must be performed. These cases are hereinafter referred to as “Case A” and “Case B”. Description of216

each case is given below.217

Case A. For the first case the inlet velocity history is assumed to be known as shown in Equation (17). The outlet of218

the pipe is set to be anechoic, so that no pressure reflections are found in this boundary.219

Case B. For the second case the inlet velocity history is supposed to be known as shown in Equation (17) until220

the velocity pulse is introduced into the domain. Once the pulse is introduced, this boundary condition is set to be221

anechoic, so that not pressure reflections are found in the inlet.222

The outlet boundary condition was set to be as a rigid wall, so at this section the velocity history is supposed to be223

known and equal to vout(t) = 0.224

4.3. Frequency domain FEM Model225

In section 2.2.4, the Helmholtz Equation was introduced. In order to solve it, the general-purpose commercial226

software COMSOL was used. Compromise between geometry and frequency mesh size requirements can be achieved227

by using a uniform mesh size which could be excessive from the frequency point of view, but adapts well to the228

geometry [32].229

Compared with the CFD model, and due to the linearity of the solved equation, the mesh requirements are signif-230

icantly lower for the FEM case. Thus, for this case mesh size was taken to be R
∆x = 6 for the whole domain, using231

quadratic elements. Fig. 5 shows a representation of the FEM mesh. As a disadvantage it can be cited that only linear232

effects are computed.233
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Figure 5: COMSOL Fluid domain mesh

The solid domain was modelled using a zero-thickness shell approximation, which allows lower CPU time con-234

sumption with no significant loss of accuracy, as it was mentioned before. This kind of model allows to account for235

the whole thickness in the case of thin walls by only using one surface element.236

4.3.1. Description of cases for the numerical determination of the transfer matrix coefficients using FEM237

As previously shown, in order to get the value of the transfer matrix coefficients, solution of variables for two dif-238

ferent cases must be performed. Again, these cases are hereinafter referred to as “Case A” and “Case B”. Description239

of each case is given below.240

Case A. For the first case the inlet pressure is supposed to be harmonic, evolving in accordance with:241

pin(t) = Pin e jωt Pin = 1 Pa (24)

The outlet face is assumed to be anechoic. Thus, the acoustic impedance is known, with value:242

Zout = Z0 = ρ0 a0 (25)

It should be recalled that, due to the linearity of the Helmholtz equation, the selection of the inlet pressure is243

completely arbitrary, because it will have no influence on the quantification of the acoustic element features.244

Case B. Case B uses the same inlet conditions as does Case A. The outlet section is again assumed to behave as a245

rigid wall. Thus, the acoustic normal velocity is known, with value:246

vout = 0 (26)

5. Results for the rigid expansion chamber247

5.1. CFD time domain results248

When the maximum inlet velocity is set to vmax = 0.01 ms−1, the maximum value of the inlet pressure pulse can be249

found to be pmax = 4.081 Pa. For a correct time domain CFD simulation, the calculation must be run until the whole250

inlet pulse leaves the domain through the non-reflecting boundary conditions. For the present case all the simulations251

were performed until a final time of t a0
Lmu f f

= 100. This value ensures that all the energy supplied at the inlet leaves the252

domain.253
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In order to obtain the transmission characteristics of the system it is necessary to perform a computation of both254

pressure and velocity at the inlet and the outlet for each case studied (Case A and Case B). These values are shown in255

Fig. 6.256

Figure 6: Time evolution of the pressure and velocity at domain boundaries

In order to obtain the frequency characteristics of the expansion chamber, a Discrete Fourier Transform must be257

applied to the boundary data. It is thus supposed that a function x(t) can be approximated by a Fourier Series, as258

indicated by the following expression:259

Xk =

N−1∑
n=0

xn e− j 2·π·k·n
N (27)

where xn is the pressure at sampling time n, N is the number of samples and Xk is the frequency response for the260

kth frequency. Applying this concept to the computed time signals the frequency response for each of the cases are261

obtained. These are shown in Fig. 7. Sampling time is taken to be Ts = 1.2 · 10−3∆x/a0:262
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Figure 7: Frequency response of pressure and velocity at domain boundaries

It should be noticed that, as expected, the frequency response of the velocity at the inlet for case A is the same as263

that shown in Fig. 2 but it differs for Case B. The reason of this discrepancy is that, for Case B, the inlet boundary264

condition is assumed to be anechoic, so that the velocity components must be calculated and, for t > Timpulse, Equation265

(17) is not valid anymore.266

5.2. FEM frequency domain results267

Helmholtz equation is solved by means of FEM in the frequency domain. That leads to a significant decrease of268

the computational cost, compared with the CFD time domain method.269

Fig. 8 shows the Sound Pressure Level (S PL) in the domain, for different excitation frequencies. S PL is defined270

in as:271

S PL( f ) = 20 log10

(
|P( f )|
Pre f

)
Pre f = 20 µPa (28)
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(g) Qualitative color map

Figure 8: SPL under different excitation frequencies

It can be noted from Fig. 8 that, for the frequencies f Lmu f f

a0
= 0.25 , f Lmu f f

a0
= 0.75 and f Lmu f f

a0
= 1.25 the S PL at272

the outlet is much lower than the S PL at the inlet. As it will be shown later, this corresponds to the frequencies of273

maximum attenuation. For the frequencies f Lmu f f

a0
= 0.50 and f Lmu f f

a0
= 1.00 the muffler enters into a resonance mode274

and no attenuation on the S PL is found. For higher frequencies 3D effects are easier to be observed at the sudden275

section change zone.276

5.3. Characterisation of the rigid muffler features277

In this section the values of the transfer matrix will be obtained and compared using the methods presented in278

previous paragraphs.279

The transfer matrix components are shown in Fig. 9280

Figure 9: Transfer matrix coefficients
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All the previously explained methods coincide very well for low frequencies. Some discrepancies appear when281

quantifying values at higher frequencies. Nevertheless, this is mainly due to the onset of 3D effects, which are not282

taken into account by the analytical method. It will be later shown how those 3D issues barely affect the global283

characteristics of the system, such as Transmission Loss (and Insertion Loss, Velocity Ratio, etc.).284

The Transmission Loss is shown, for each of the methods used, in Fig. 10. Notice how the analytical and the285

Finite Element method are perfectly coincident for the whole frequency range studied. For high frequencies the CFD286

study predicts a slightly higher value of the Transmission Loss. This could be primarily due to non-linear effects,287

which are taken into account in this method but are not in the analytical and FEM approximations.288

Figure 10: Transmission Loss as a function of frequency

These results show a nearly perfect agreement between predictions from a frequency domain FEM and from a289

time domain CFD calculation. This can be taken as a demonstration of the validity of both methods for these kind290

of problems. The following sections make use of these validated methods for the prediction of the particular features291

associated with a flexible expansion chamber.292

6. Results for the flexible expansion chamber293

6.1. Flexible wall eigenfrequencies294

When analyzing the interaction between the acoustic field and the surrounding flexible wall, the excitation of the295

structural modes is of primal interest. It is thus necessary to perform an uncoupled analysis of those values.296

Table 2 shows the first six eigenfrequencies of the quarter pipe, for the case of wall thickness δ = 0.002 m,297

wall density ρwall = 1000 kg m−3 and Poisson ratio ν = 0.33, and for various values of the Young modulus. These298

frequencies were calculated using the commercial software COMSOL Multiphysics for the isolated structure. As will299

be shown later apparition of axisymmetric modal shapes occur for higher values of frequency.300

Fig. 11 shows the structural modal shape corresponding to each eigenfrequency calculated using COMSOL. Red301

colors correspond to maximum absolute values of the displacement while blue colors correspond to duct nodal lines.302
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Table 2: Quarter pipe eigenfrequencies

f Lmu f f /a0

Mode E = 0.1 GPa E = 0.5 GPa E = 1 GPa E = 30 GPa
1 0.103 0.230 0.326 1.784
2 0.178 0.398 0.563 3.084
3 0.286 0.640 0.905 4.956
4 0.409 0.913 1.292 7.076
5 0.426 0.952 1.347 7.376
6 0.436 0.976 1.380 7.558

(a) Modal shape 1 (b) Modal shape 2 (c) Modal shape 3

(d) Modal shape 4 (e) Modal shape 5 (f) Modal shape 6

Figure 11: Structural mode shapes

6.2. CFD time domain results303

As the inlet tube is perfectly rigid, the maximum value of velocity and pressure during the pulse injection is exactly304

the same as in section 5. The inclusion of the FSI interaction leads to a significant increment of the computational305

cost. Thus, as the Transmission Loss is the most significant parameter when evaluating the performance of an acoustic306

element, only Case A was considered in this section. For the present case all the simulations were performed until a307

final time of t a0
Lmu f f

= 100.308

Fig. 12 and Fig. 13 show the time evolution of the pressure field for different time steps for case A (anechoic309

outlet), assuming the expansion chamber as flexible.310

For illustration purposes, a parametric study of the influence of the Young modulus was performed. Fig. 12311

shows the results for the case with E = 30 GPa (pure tin) and Fig. 13 shows results for the case with E = 1 GPa312

(polypropylene). The deformation field of the thin wall is also shown. Notice that the color-scale is shown in a313

qualitative manner in order to obtain interpretable representation.314

• Fig. 12-13 a: The whole velocity-pressure pulse has been introduced into the domain. Cause the pulse has not315

arrived to the expansion zone, reflections or deformations do not appear yet.316

• Fig. 12-13 b: The pulse reaches the inlet of the expansion chamber. The pressure is affected exactly by the317

same phenomena which were explained in section 5. Now, an axisymmetric deformation field can be observed318

both in the E = 30 GPa and E = 1 GPa being higher in the second case, as expected.319
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• Fig. 12-13 c: The reflected pulse reaches the inlet. The boundary condition v(t) = 0 behaves as a rigid wall,320

so it is reflected again towards the expansion chamber again. In the case E = 30 GPa the deformation-pulse321

propagates together with the pressure pulse in the expansion chamber. In the case E = 1 GPa it can be noticed322

how the low material stiffness leads to an additional wave.323

• Fig. 12-13 d: The primary pulse reaches the outlet of the expansion chamber, and here a new partial reflection324

and transmission are found. The deformation pulse is also reflected. Note the high qualitative difference be-325

tween the E = 30 GPa and E = 1 GPa. In the second case it can be seen that the number of axisymmetric waves326

appearing is significantly higher.327

• Fig. 12-13 e: The primary pulse reaches the outlet domain section. Due to the non-reflective boundary condition328

the outlet behaves as an anechoic termination. The pressure and deformation pulses continue travelling inside329

the expansion chamber, mutually interacting.330

• Fig. 12-13 f: The primary pulse reaches again the inlet of the expansion chamber. Some part of the pulse is331

reflected towards the outlet, and some other passes through to the inlet of the domain.332

(a) t·a0
Lmu f f

= 0.34 (b) t·a0
Lmu f f

= 0.51

(c) t·a0
Lmu f f

= 0.84 (d) t·a0
Lmu f f

= 1.50

(e) t·a0
Lmu f f

= 1.85 (f) t·a0
Lmu f f

= 2.89

(g) Qualitative color map

Figure 12: Time evolution of the pressure and velocity pulse for different time instants and E = 30 GPa
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(a) t·a0
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= 0.34 (b) t·a0
Lmu f f

= 0.51

(c) t·a0
Lmu f f

= 0.84 (d) t·a0
Lmu f f

= 1.50

(e) t·a0
Lmu f f

= 1.85 (f) t·a0
Lmu f f

= 2.89

(g) Qualitative color map

Figure 13: Time evolution of the pressure and velocity pulse for different time instants and E = 1 GPa

Another important result, where differences between the rigid and the flexible cases can be found, is the time333

response of pressure and velocity at the inlet and the outlet. This time response is shown in Fig. 14 and, as it can334

be observed, no differences can be appreciated between the rigid case and the flexible case with E = 30 GPa. For335

cases of Young modulus E < 1 GPa the time response shows significant deviations from the rigid case, specially after336

some reflections. It can be seen how, as a general trend, pressure peaks of reflections are lower as the value of rigidity337

decreases.338
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Figure 14: Time evolution of the pressure and velocity at domain boundaries for Case A. Different material rigidity

Fig. 15 shows the time evolution of deformation at a point located in the mid section of the expansion chamber,339

at a location (Lmu f f /2,R) for different wall rigidities. High differences in the displacement can be observed for the340

different materials. Fig. 15 also shows that the natural modes of the structure remain unattenuated. This is due to341

absence of damping in the model.342

Figure 15: Time evolution of the wall displacement for Case A. Different material rigidity

Fig. 16 shows the frequency content of this radial displacement history. It can be observed that the frequency343

response is identical (except, obviously, in the absolute value) for the cases with E = 30 GPa, E = 1 GPa and E = 0.5344

GPa. For these values of rigidity, two well-differentiated peaks are found at f Lmu f f ler

a0
= 0.75 and f Lmu f f ler

a0
= 1.00, which345

correspond with the chamber resonance frequencies. However, for the case with E = 0.1 GPa a completely different346
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response is obtained. A new, more important peak, appears at f Lmu f f ler

a0
= 0.87, which corresponds to the excitation of347

the first axisymmetric natural mode of the structure.348

Figure 16: Frequency response of the radial wall displacement for Case A. Different material rigidity

6.3. FEM frequency domain results and characterization of the flexible muffler349

Fig. 17 shows the Transmission Loss, calculated using Equation (21), for the flexible case with low Young350

modulus, E = 0.1 GPa. The two traces correspond to a calculation using time-domain CFD and a calculation using351

frequency-domain FEM.352

Fig. 17 allows to demonstrate that, as well as for the rigid case (see Fig. 10), frequency domain FEM and time353

domain CFD provide similar results, with little discrepancies between both methods.354

Figure 17: Transmission Loss as a function of frequency for E = 0.1 GPa. Comparison between time domain CFD model and frequency domain
FEM model
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In order to examine the dependence of the acoustic response on rigidity, Fig. 18 shows the evolution of the355

Transmission Loss response as the Young modulus is decreased. In order to improve the interpretation of the results,356

they all are compared with the perfectly rigid result.357

It can be observed that, for the two first cases (E = 1 GPa and E = 0.5 GPa) non-noticeable differences are358

encountered between the rigid and the flexible cases. Nevertheless, for E ≤ 0.2 GPa (D∗ ≤ 0.04) important differences359

appear. This coincides with the excitation of the first and second axisymmetric modes of the structure (see the location360

of these modes in Table 3). Figure 19 shows the modal shape corresponding to the first four eigenfrequencies.361

Under these circumstances it can be found that, just before the axisymmetric mode is excited, the fluid-structure362

coupling leads to an important change in behavior. Around this frequency a high attenuation point is found imme-363

diately followed or preceded by a sharp pass band of abrupt attenuation drop. This sharp behavior is due to the364

strong fluid-structure coupling derived from the excitation of the natural axisymmetric modes of the structure. Similar365

behavior was found in the transfer function studied by Herrmann et al. [33] for the case of thin hydraulic pipes.366

Figure 18: Transmission Loss as a function of stiffness for mass parameter m∗l = 57

Table 3: Axisymmetric modes for different non-dimensional stiffness parameter, D∗

f Lmu f f /a0

Mode D∗ = 0.02 D∗ = 0.04 D∗ = 0.10 D∗ = 0.20
1 0.45 0.64 1.01 1.43
2 0.89 1.25 1.98 2.80
3 1.21 1.71 2.71 3.83
4 1.33 1.89 2.98 4.22
5 1.37 1.94 3.06 4.33
6 1.39 1.96 3.10 4.38
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(a) Axisymmetric modal shape 1 (b) Axisymmetric modal shape 2

(c) Axisymmetric modal shape 3 (d) Axisymmetric modal shape 4

Figure 19: Axisymmetric structural mode shapes

Fig. 20 and Fig. 21 show the frequency response field of Sound Pressure Level and displacement, respectively, for367

the case A with E = 0.1 GPa. It can be observed that, as previously predicted, the cases of minimum acoustic losses368

S LPout ≈ S PLin correspond with the excitation of a structural axisymmetric mode.369

(a)
f Lmu f f

a0
= 0.45 (b)

f Lmu f f
a0

= 0.46

(c)
f Lmu f f

a0
= 0.87 (d)

f Lmu f f
a0

= 0.89

(e)
f Lmu f f

a0
= 1.20 (f)

f Lmu f f
a0

= 1.22

(g) Qualitative color map

Figure 20: SPL under different excitation frequencies for the flexible case
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(c)
f Lmu f f

a0
= 0.87 (d)

f Lmu f f
a0

= 0.89

(e)
f Lmu f f

a0
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f Lmu f f
a0

= 1.22

(g) Qualitative color map

Figure 21: Displacement under different excitation frequencies for the flexible case

Fig. 22 shows the evolution of the strain and kinetic energy stored in the solid. Notice how the maximum peak370

values of both energies correspond to the excitation of the axisymmetric natural modes.371

Figure 22: Stored energy as a function of the frequency for E = 0.1 GPa

7. Conclusions372

A methodology based on CFD-FEM method has been presented for the Transmission Loss calculation of vibro-373

acoustic domains both in time and frequency domain.374

A review of the main different techniques used for the characterization of vibro-acoustic problems has been per-375

formed.376

To fine tune the methodology under consideration, different simulations were performed using both CFD and377

FEM in order to predict the acoustic performance of a perfectly rigid expansion chamber. Results show very good378

agreement between CFD, FEM and analytic cases.379
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Similar methods were later used for the case of an expansion chamber with flexible walls. Again, the presented380

models show good agreement for the studied frequency range.381

Nevertheless, it was observed that computational requirements of the time-domain CFD method are various order382

of magnitude higher than the requirements for the same geometry using a frequency-domain FEM approach.383

General trends of the vibroacoustic response were calculated for a rigid and a flexible expansion chamber. Results384

show that, for the current geometry, the influence of rigidity for a heavy structure is important only for very low385

Young modulus. The effect of the structural vibration becomes important when excitation of the first and second386

axisymmetric natural modes of the structure takes place.387

It was demonstrated that, when the inner flow excites the structure at the frequency of its natural modes, the388

problem suddenly becomes strongly coupled and the influence of the flexible walls should be taken into account.389

Finally, it was illustrated that, for a geometry of the shapes and sizes like the simplified cylindrical expansion390

chamber presented during the current work, the mentioned complete coupling only appears for very low values of the391

Young modulus at the frequencies of interests. As this phenomena is mainly due to the excitation of the natural modes392

of the structure, mufflers with higher modal density should experience this phenomena even for higher values of the393

Young Modulus.394
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Nomenclature452

ρ Density
~w Solid displacement
σ Solid Stress tensor
~b Solid volume forces
~fm Fluid volume forces
Q Fluid volume heat generation
φv Viscous dissipation
ε Solid strain
λ 1st Lamé parameter
µ 2nd Lamé parameter or viscosity (according to context)
E Young modulus
cp Specific heat
ν Poisson ratio
u Fluid velocity
τ Fluid stress tensor
p Pressure
T Temperature
h Enthalpy
cp Specific heat
~n Surface normal vector
t Time
a Sound speed
k Thermal conductivity
k0 Wave number
j Imaginary unit
R Radius or gas constant (according to context)
δ Thickness or Dirac Delta (according to context)
[A] Transfer matrix
T L Transmission Loss
VR Velocity ratio
f Frequency
h Enthalpy
TS Sampling time
[M] Mass matrix

453
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[C] Damping matrix
[K] Stiffness matrix
ω Angular frequency
Lmu f f Expansion chamber length
m∗ Mass ratio
D∗ Stiffness parameter
v Velocity at the boundary conditions
Subscripts and superscripts
0 Unperturbed case
re f Reference data
in Inlet
out Outlet
∗ Non dimensional variable
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