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Abstract 

 This work reports the development of poly(lactic acid) (PLA) formulations with 

improved toughness by ternary blends with poly(3-hydroxybutyrate) (PHB) and two 

different flexible polyesters derived from succinic acid, namely poly(butylene 

succinate) (PBS) and a copolymer, poly(butylene succinate-co-adipate) (PBSA). The 

main aim of this work is to increase the low intrinsic toughness of PLA without 

compromising the thermal properties by manufacturing ternary blends using 

epoxidized vegetable oils (EVOs) as compatibilizer agents. The ternary blends were 

manufactured by reactive extrusion in a co-rotating extruder and were subjected to 

mechanical, thermal, thermos-mechanical and morphology characterization. The 

obtained results confirm that these two succinic acid-derived polymers, i.e. PBS and 

PBSA positively contribute to increase ductile properties in ternary blends with PLA 

and PHB with a subsequent improvement on impact toughness. In addition, both 

epoxidized vegetable oils, ELO and ESBO are responsible for somewhat 

compatibilization between all three polyesters in blends which gives improved ductile 

properties with regard to uncompatibilized ternary blends. In addition, the 

temperature range in which these materials can be used is broader than ternary blends 

with other flexible polyester such as poly(e-caprolactone), as both PBS and PBSA melt 

at about 100 ºC. These PLA-based materials with improved impact properties offer 

interesting applications in the packaging industry. 

 

Keywords: poly(lactic acid) – PLA; impact toughness; ternary blends; mechanical 

properties; morphology. 
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1. Introduction 

 Poly(lactic acid) (PLA) owns a privileged position in the field of 

biopolyesters due to an excellent combination of mechanical, thermal and 

barrier properties together with a cost-competitive price. For these reasons, PLA 

is widely used in several sectors such as packaging [1-3], medical devices [4, 5], 

3D printing [6, 7], disposable cutlery and tableware [8], automotive [9-11], 

construction and building [12, 13], wood plastic composites [14, 15], and so on. 

Despite this, industrial formulations of PLA have important challenges since 

PLA is a brittle polymer with low impact toughness and this must be improved 

[16]. This is a key factor in some applications which require good balanced 

properties (mechanical, thermal, chemical barrier, etc.) together with good 

resistance to impacts. 

 There are several approaches to overcome or minimize this drawback. It 

has been reported a wide variety of PLA-based copolymers with improved 

properties [17, 18]. Nevertheless, this is an expensive process and despite it is 

technically viable at laboratory scale, it is not the best solution at industrial scale 

due to costs.  

 A second approach is the use of plasticizers to reduce the glass transition 

temperature (Tg). A wide range of plasticizers have been proposed, including 

citrate and adipate esters (acetyl tributyl citrate – ATBC [19, 20], triethyl citrate 

– TEC [21], bis(2-ethylhexyl) adipate – DEHA, diisodecyl adipate – DIA [22]), 

polyglycols: (poly(ethylene glycol) – PEG [23, 24]  and poly(propylene glycol) 

(PPG) [25, 26]), lactic acid oligomers (OLAs) [27, 28], and so on. Recently, it has 
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been reported plasticization properties that modified vegetable oils (epoxidized 

and maleinized) can provide to PLA with a remarkable increase in toughness 

[29]. The use of plasticizers is a cost-effective solution to the above-mentioned 

drawback, but in general, mechanical resistant properties are highly reduced.  

 The third approach consists of physical blends with flexible (or even, 

rubber like) polymers which can contribute to improve PLA performance at a 

cost-competitive way. A wide variety of PLA-based binary blends have been 

proposed to improve toughness of PLA. It is worthy to note the interesting 

properties of PLA blends with poly(-caprolactone) – PCL [30-33], 

poly(hydroxybutyrate) – PHB [1, 34], poly(hydroxybutyrate-co-valerate) – 

PHBV [35-37], thermoplastic starches – TPSs [38, 39], poly(butylene adipate-co-

terephthalate) – PBAT [40], poly(butylene succinate) – PBS [41-43] – PBSA, 

poly(butylene succinate-co-adipate) [44] and so on. As indicated previously, 

rubber or rubber-like polymers have been proposed as impact modifiers in 

polymer and composites systems with remarkable positive effects on overall 

toughness[45]. 

 Another approach is the use of functionalized nanoparticles on PLA or 

PLA blends. It is worthy to note the increasing use of multiwalled carbon 

nanotubes (MW-CNTs)[46], sepiolite needles[47], halloysite nanotubes 

(HNTs)[48], montmorillonite clays[49], among others. All these functionalized 

nanoparticles provide chemical groups that are able to react (or interact) with 

the components of an immiscible polymer blend or directly with PLA, 

providing improved toughness with relatively low nanoparticle loading. 
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 The most relevant problem related to these binary blends is the poor (or 

lack of) miscibility between PLA and most of these polymers which leads to 

poor mechanical properties [50]. This leads to the use of compatibilizers that 

interact with both polymers in the binary blend to give a rise on overall 

properties. A wide variety of compatibilizers have been proposed [51, 52]. 

Epoxy-styrene acrylic oligomers (ESAO) and ethylene/acrylate copolymers 

give good compatibilizing effects combined with a chain extension effect [53]. 

Recently, epoxidized and maleinized vegetable oils have been successfully used 

as compatibilizers in flexible polymer blends due to the high reactivity of both 

epoxy and maleic anhydride groups towards hydroxyl terminal groups in 

polyester chains [54, 55]. This high reactivity allows using reactive extrusion 

with PLA to overcome and/or minimized its low intrinsic toughness [16, 56]. 

Also, ternary blends have been proposed to reach tailored properties, e.g. 

PLA/PHBV/PBS [57], PLA/PCL/TPS [58], PLA/PCL/cellulose acetate 

butyrate (CAB) [59], among others. 

 In previous works, it was assessed the suitability of poly(-caprolactone) 

in ternary blends of PLA and PHB, modified with modified vegetable oils as 

flexible compatibilizers [60]. PCL has an important effect on increasing ductile 

properties of ternary blends and, subsequently, improving impact toughness. 

Nevertheless, PCL is a low melt temperature polyester (around 60 ºC) and, 

although it contributes to improved toughness, the service temperature range is 

highly reduced due to the softening (or melting) of PCL at moderate 

temperatures. For this reason, the main aim of this work is the use of high melt 
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temperature flexible polyesters to improve the toughness of PLA blends with 

PHB. In particular, two bio-sourced polyesters are used, namely poly(butylene 

succinate) – PBS and poly(butylene succinate-co-adipate), with a melt 

temperature around 100 ºC. Additionally, the effect of two epoxidized 

vegetables oils, namely epoxidized linseed oil – ELO and epoxidized soybean 

oil – ESBO, on overall toughness properties of ternary PLA/PHB/PBS and 

PLA/PHB/PBSA blends is addressed. 

 

2. Experimental 

2.1. Materials 

 The base polymer for ternary blends was a commercial poly(lactic acid) 

(PL) IngeoTM Biopolymer 6201D supplied by NatureWorks (Minnetonka, USA). 

Regrarding poly(3 hydroxybutyrate) (PHB), a commercial grade P226 supplied 

by Biomer (Krailling, Germany). Two succinic acid-derived polymers, 

poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate)(PBSA) 

were supplied by Showa Denko Europe GmbH (Munich, Germany). The 

chemical structure of all four polyesters is shown in Figure 1. Table 1 shows a 

summary of the main properties of the above-mentioned polymers. 
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Figure 1 Schematic representation of the chemical structure of the polyesters 

used for ternary blends. 

 

 Two different compatibilizers were used, both derived from vegetable 

oils (see Figure 2): epoxidized linseed oil (ELO) and epoxidized soybean oil 

(ESBO), supplied by Traquisa S.A. (Barcelona, Spain). 

 

Figure 2 Schematic representation of the chemical structure of the epoxidized 

vegetable oils used as compatibilizers in ternary blends. 
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2.2. Manufacturing of ternary blends 

 All materials were previously dried in a MDEO dehumidifier from 

Industrial Marsé (Barcelona, Spain). The selected drying cycles were 60 ºC/24 h 

for PHB, PBS, PBSA and PLA. Previous drying of polyesters is a key factor for 

further processing as polyesters are highly sensitive moisture which promotes 

hydrolysis, and, consequently, a decrease in overall properties. ELO and ESBO 

were stored in a vacuum desiccator and, heated at 40 ºC for 30 min to reduce 

their viscosity and enhance the pre-mixing process with polyesters. 

 Ternary blends with and without compatibilizers (see Table 2) were 

extruded in a twin-screw co-rotating extruder from Construcciones Mecánicas 

DUPRA S.L. (Alicante, Spain). This extruder is equipped with standard screws 

with a diameter of 25 mm and a length to diameter ratio (L/D) of 24. The 

extrusion rate was set to 24 rpm and the thermal profile was defined as follow: 

165 ºC (hoper), 170 ºC, 175 ºC and 180 ºC (extrusion die). After extrusion, the 

obtained blends were pelletized for further processing by injection molding in a 

Sprinter 11 from Erinca S.L. (Barcelona, Spain). The temperature profile for the 

injection molding process was set to 165 ºC (hoper), 170 ºC, 175 ºC and 180 ºC 

(injection nozzle). 

 

2.3. Morphological characterization 

 The morphology of the fractured samples from impact tests were atudied 

by field emission scanning electron microscopy (FESM) in a ZEISS ULTRA 

microscope from Oxford Instruments (Oxfordshire, United Kingdom). To avoid 
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charging during observation, all samples were covered with a thin metallic 

alloy (Au-Pd) in a high vacuum sputtering process with a Emitech SC7620 

sputter coater from Quorum Technologies Ltd. (East Sussex, United Kingdom). 

The acceleration voltage was 2 kV. 

 

 

2.4. Thermal characterization 

 Thermal characterization was carried by differential scanning 

calorimetry (DSC) in a 821 calorimeter from Mettler-Toledo (Schwerzenbach, 

Switzerland). An average sample weight of about 5-6 mg was subjected to the 

following thermal program: first heating from -50 ºC to 200 ºC; cooling from 200 

ºC to -50 ºC and a second heating program from -50 ºC up to 300 ºC. The first 

heating cycled did not exceed 200 ºC to avoid possible degradation of 

polyesters. The second heating cycle was conducted until degradation up to 300 

ºC to see potential degradation processes. The heating rate was 10 ºC min-1 for 

all three stages and the atmosphere was nitrogen (66 mL min-1). Standard sealed 

aluminum crucibles with a volume of 40 mL were used. The thermal stability of 

the developed ternary blends was evaluated by means of thermogravimetric 

analysis (TGA) in a TGA/SDTA 851 thermobalance from Mettler-Toledo 

(Schwerzenbach, Switzerland). Samples with a weight ranging from 5 to 6 mg 

were placed in standard alumina crucibles (70 L) and were subjected to a 

dynamic heating program from 30 ºC to 700 ºC. The selected atmosphere was 

air and the heating rate was 20 ºC min-1. 
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2.5. Mechanical characterization 

 Mechanical properties, i.e. tensile modulus (Et), elongation at break (%b) 

and tensile strength (t) were obtained in a universal test machine ELIB 50 from 

S.A.E. Ibertest (Madrid, Spain) following the guidelines of ISO 527-1:2012. All 

the tests were carried out using a 5 kN load cell and the crosshead speed was 

set to 5 mm min-1. On the other hand, Shore D hardness values were obtained in 

a mod. 676-D durometer from J. Bot Instruments (Barcelona, Spain) as 

recommended by ISO 868:2003. The impact strength was obtained by the 

Charpy method in a 1 J pendulum from Metrotec on notched samples (“V” type 

notch and a radius of 0.25 mm) as indicated in ISO 179:2010. At least five 

samples were tested and the average values and standard deviation of the 

corresponding parameters were calculated. All mechanical tests were carried 

out at room temperature. 

 

2.6. Thermomechanical characterization 

 Mechanical-dynamical thermal analysis (DMTA) was carried out in 

DMA1 from Mettler-Toledo (Schwerzenbach, Switzerland). Samples with a size 

of 10x7x1 mm3 were subjected to a temperature sweep from -90 ºC up to 80 ºC 

working in single cantilever mode with a maximum deformation of 10 m. The 

selected frequency was 1 Hz and the heating rate was set to 2 ºC min-1. 

 In addition, the Vicat softening temperature (VS) and the heat deflection 

temperature (HDT) were obtained in a VHDT 20 dual (VST/HDT) station from 

Metrotec S.A. (San Sebastián, Spain). VST tests were carried out following ISO 

306. The applied method was the B50 method by using a load of 50 N and a 
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heating rate of 50 ºC h-1. With regard to the HDT, the heating rate was set to 120 

ºC h-1 as specified in ISO 75-1. Samples with dimensions 80x10x4 mm3 were 

subjected to three point conditions with a distance between support of 60 mm 

and a load of 320 g. 

 Finally, the dimensional stability was studied by thermomechanical 

analysis (TMA) in a Q400 thermoanalyzer from TA Instruments (Delaware, 

USA). Samples with dimensions of 10x10x4 mm3 were subjected to a heating 

program from -90 ºC up to 80 ºC with a constant heating rate of 2 ºC min-1. The 

supported load was 20 mN. The coefficient of linear thermal expansion (CLTE) 

was calculated from the dimensional change as a function of temperature (slope 

of TMA curves). 

 

3. Results and discussion 

3.1. Mechanical properties of PLA/PHB blends with PBS or PBSA and 

different vegetable oil-based compatibilizers 

 The main results regarding tensile tests are gathered in Table 3. As 

expected, both PBS and PBSA lead to a remarkable improvement on ductile 

properties with regard to neat PLA. Neat PLA (as described in previous 

works)[61] has a very low elongation at break of 7.87% while its tensile 

modulus is relatively high (around 3.6 GPa). Its tensile strength is located at 

58.2 MPa. As reported previously, the ternary blend with PHB and PCL 

(PLA60PHB10PCL30) gives a remarkable increase in elongation at break up to 

values of 15.3% With regard to the tensile modulus, it goes down to 2.0 GPa 
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and the tensile strength also drops down to 48.4 MPa [60]. This previous work 

also reported the excellent compatibilizing effect that epoxidized soybean oil 

(ESBO) can give to this ternary blend. The most important effect of ESBO is an 

increase in elongation at break up to values of 130.0%. This plasticization effect 

of ESO has been previously reported for PLA with a subsequent improvement 

on toughness [62]. Nevertheless, the service temperature range in which these 

ternary blends can find applications is relatively narrow due to the low melt 

temperature of PCL. As it can be seen in Table 3, both PBS and PBSA have a 

positive effect on elongation at break of ternary PLA/PHB/PBS blends up to 

values of 49.3% and 62.9%, respectively. These values are remarkably higher 

than typical values of neat PLA and, even more, they are higher than those 

offered by the PLA ternary blend with PHB and PCL. These findings are 

interesting since from a mechanical point of view, ternary blends containing 

PBS and PBSA are comparable to similar blends with PCL but with the 

advantage of the melt temperature of both PBS and PBSA which is close to 100 

ºC. Another important finding is the clear compatibilizing effect that both 

epoxidized vegetable oils can provide. For example, the ternary blend 

PLA60PHB10PBS30 shows an elongation at break of 49.3% and this is noticeably 

increased up to values of 115.2% and 160.4% by the addition of 5 phr ELO or 

ESBO respectively. The same tendency can be observed for the ternary blend 

with PBSA. Nevertheless, as expected, PBSA is more flexible than PBS and this 

contributes to higher elongation at break values. Another important conclusion 

is the better compatibilizing effect of ESBO compared to ELO. This could be 
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related to the number of reactive points present in ELO and ESBO. ELO 

possesses an average number of epoxide rings per triglyceryde of 6 while ESBO 

is characterized by a lower number of oxirane groups per molecule (about 4). 

This could be a key issue to explain the better performance of ESBO-

compatibilized blends. ELO, with more reactive points can establish more 

interactions with all three polyesters thus leading to a combined effect of chain 

extension, plasticization and compatibilization, all these, having a positive 

effect on increased elongation at break and other ductile properties. With 

regard to ESBO, it shows less reactive points so that, its interactions with all 

three polyesters are similar to ELO but lower in number. Therefore, ESBO-

compatibilized blends show more flexibility. 

 Regarding mechanical resistant properties, as expected, both PBS and 

PBSA are responsible for a decrease in both tensile strength and tensile 

modulus. This decrease is more pronounced in ELO- and ESBO-compatibilized 

blends. Nevertheless, these mechanical properties are still similar or even 

higher to most commodity plastics. Therefore, these ternary blends can clearly 

compete with commodity plastics in terms of mechanical performance. 

 The study of the morphology of the developed ternary blends with PBS 

and PBSA can be useful to support the previous results. Figure 3 gathers the 

FESEM images corresponding to the uncompatibilized and compatibilized 

ternary blend PLA/PHB/PBS. Although it has been reported some miscibility 

between PLA and PHB (especially with low molecular weight PHB), Figure 3a 

and Figure 3b show a clear phase separation thus indicating poor miscibility. 
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As PLA and PBS are the main components (they represent 90 wt%), it can be 

inferred that the matrix is a PLA-rich phase in which PBS-rich spherical 

domains are finely dispersed. It has been reported the poor miscibility between 

PLA and PBS with clear phase separation which is improved by addition of 

compatibilizers [42, 63].  PHB could also appear as a dispersed phase but it 

seems that its partial miscibility towards PLA and, possible towards PBS leads 

to the observed spherical shapes with a high number of small holes. It can be 

detected an important gap between the PLA-rich phase and the dispersed 

spherical domains which is representative for poor miscibility. Addition of 5 

phr ELO (PLA60PHB10PBS30/ELO5) leads to significant changes in morphology 

as it can be seen in Figure 3b and Figure 3c. The dispersed spherical domains 

seem to be wetted by the surrounding matrix although phase discontinuity is 

still detectable. This increase in the wetting behavior could due by the reaction 

of epoxy groups in ELO with hydroxyl terminal groups in all three polyesters 

thus leading to compatibilization thorough several mechanisms such as chain 

extension, branching, crosslinking, among others [64]. All these phenomena 

have been reported by reactive extrusion with dicumyl peroxide in a binary 

PLA/PBAT blend [65]. Despite interesting effects of ELO on elongation at 

break, ESBO provides better compatibilization to the ternary blend as it can be 

observed in Figure 3e and Figure 3f. Although full continuity is not detected, 

the morphology of the fractured surface shows that dispersed phase is 

embedded into the PLA-rich matrix which indicates more intense interactions 

between all three polyesters. Despite full miscibility is not detected, ESBO 
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increases the wettability of the dispersed phase and this has a positive effect on 

load transfer and subsequently, the cohesive properties are improved. 

 

Figure 3 Field emission scanning electron microscopy (FESEM) images at 

different magnifications (left column – 1000x; right column – 2000x) 

corresponding to poly(lactic acid) (PLA) blends with poly(3-hydroxybutyrate) 

(PHB) and poly(butylene succinate) (PBS) with different epoxidized vegetable 

oils (EVOs), a) & b) PLA60PHB10PBS30, c & d)  PLA60PHB10PBS30/ELO5, e & f) 

PLA60PHB10PBS30/ESBO5. 
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 The PLA ternary blend with PHB and PBSA shows important differences 

in morphology. As it has been reported, PLA and PBSA are immiscible [66], but 

the spherical domains are lower in size than those observed in the ternary 

PLA/PHB/PBS blend (Figure 3) as it can be seen in Figure 4a and Figure 4b, 

which correspond to the uncompatibilized PLA60PHB10PBSA30 blend. This 

particular morphology could be directly related to the higher ductile properties 

achieved with PBSA in comparison to PBS as above-mentioned. The effects of 

ELO are not as evident as in ternary blends (Figure 4c and Figure 4d) with PBS 

but in a similar way, ELO reacts with all three polyesters to form a 

compatibilized structure with improved elongation at break. The best 

mechanical response of ternary blends with PBSA was obtained with ESBO as 

compatibilizer agent. As it can be seen in Figure 4e and Figure 4f, the 

morphology of the fractured surface shows high continuity. In fact, the drop-

like structure almost disappears thus leading to improved cohesion, which in 

turn, is responsible for the high elongation at break values observed. 
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Figure 4 Field emission scanning electron microscopy (FESEM) images at 

different magnifications (left column – 1000x; right column – 2000x) 

corresponding to poly(lactic acid) (PLA) blends with poly(3-hydroxybutyrate) 

(PHB) and poly(butylene succinate-co-adipate) (PBSA) with different 

epoxidized vegetable oils (EVOs), a) & b) PLA60PHB10PBSA30, c & d)  

PLA60PHB10PBSA30/ELO5, e & f) PLA60PHB10PBSA30/ESBO5 

 



18 
 

 The impact toughness is directly related to the energy absorption during 

the deformation/fracture process. This property is highly sensitive to the 

cohesion of the material and, in turn, it depends on both ductile and resistant 

properties. Neat PLA is characterized by an extremely low impact strength 

value (Charpy test on notched samples) of about 1.63 kJ m-2. In previous works, 

a remarkable increase in impact strength was observed on PLA ternary blends 

with PBH and PCL. In fact, the blend with a composition PLA60PHB10PCL30 

showed an impact strength of 5.06 kJ m-2. This value was increased up to twice 

by using a compatibilizer agent [60]. Substitution of PCL by PBS leads to similar 

impact strength values of about 5.94 kJ m-2 (see Table 4). The presence of the 

compatibilizer increases the impact strength up to values of 8.63 kJ m-2 and 9.41 

kJ m-2 for ELO- and ESBO-compatibilized blends respectively. Although it 

seems ESBO gives higher impact strength values in comparison to ELO, it is 

important to remark that the standard deviation is approximately 0.6 kJ m-2, so 

that, the difference is not significant and fits within the standard deviation, so 

that, both ELO and ESBO give a qualitative improvement on impact strength up 

to values of about 9 kJ m-2.  With regard to ternary blends with PBSA, the 

uncompatibilized blend (PLA60PHB10PBSA30) gives a noticeably high impact 

strength of 8.40 kJ m-2 which is in accordance with the morphology observed by 

FESEM as ternary blends with PBSA seem to offer more cohesion than blends 

with PBS (in addition, PBSA is remarkably much flexible than PBS due to the 

log adipate chain segments). Addition of compatibilizers improves the impact 

strength to values of 12.58 kJ m-2 and 10.40 kJ m-2 for the ELO- and ESBO-
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compatibilized ternary blends respectively. It is evident both modified oils give 

increased impact strength values but the obtained results suggest ELO 

contributes to higher impact strength values as even considering the standard 

deviation, it gives higher values than the ESBO-compatibilized system. Despite 

the use of ESBO as compatibilizer gives the highest elongation at break, the 

higher number of interactions that ELO can contribute to a slightly higher 

tensile strength. As the impact strength combines both mechanical ductile and 

resistant properties, it seems that the ELO-compatibilized ternary blend gives 

the best results in terms of impact energy absorption. With regard to Shore D 

hardness, the slight changes are almost negligible but it can be observed the 

same tendency, i.e. PBSA gives more flexible materials and ESBO-

compatibilized blends offer the lowest values in the corresponding blend. 

 

3.2. Thermal and thermomechanical properties of PLA/PHB blends with PBS 

or PBSA and different vegetable oil-based compatibilizers 

 Figure 5 gathers the DSC thermograms. Conventional DSC is helpful to 

see the main thermal properties. Nevertheless, as it does not use a modulated 

signal, it cannot separate some overlapped processes. Two clear melting peaks 

can be identified in each DSC curve. The melt peak located at about 170 ºC 

corresponds to the melting process of the crystalline PLA and remains at this 

temperature in all the ternary blends thus indicating that the different co-

blending materials do not affect its melt peak temperature. It is important to 

remark that this melt peak overlaps with the melt process of PHB. Nevertheless, 

as PHB represents only a 10 wt%, its contribution is highly diluted and does not 
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affect the overall melting process of PLA. A second melt peak can be identified 

in all the ternary blends at lower temperatures. This peak is located at about 95 

ºC and 116 ºC and corresponds to the melt of the crystalline regions in PBSA 

and PBS, respectively. The peak corresponding to the melting process of PBSA 

is remarkably smaller than that of the PBS. This is directly related to their 

chemical structure. PBS can reach a maximum crystallinity of 45% while PBSA 

shows a degree of crystallinity comprised between 20 and 35%. It is important 

to note that the melt peak of both PBS and PBS overlaps with the cold 

crystallization process of PLA. In fact, the cold crystallization of PLA is 

restricted by the presence of PHB [67]. With regard to the glass transition 

temperatures (Tg), it can be identified that corresponding to PLA at about 55 ºC 

but it cannot be clearly seen in all ternary blends. Regarding the Tg of PBS and 

PBSA, located at -35 ºC and -45 ºC respectively, as indicated in the technical 

datasheet, although some evidences of their presence is detectable, these Tgs 

cannot be resolved appropriately by DSC. The most relevant information that 

DSC thermograms provide is the temperature range in which these ternary 

blends could be used. In fact, although a softening occurs at 55-60 ºC (Tg of 

PLA), these materials can be used up to 85-90 ºC without any melting. 
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Figure 5 Differential scanning calorimetry (DSC) thermograms corresponding 

to ternary poly(lactic acid) (PLA) blends with poly(3-hydroxybutyrate) (PHB) 

and poly(butylene succinate) (PBS) or poly(butylene succinate-co-adipate) 

(PBSA) with different epoxidized vegetable oils (EVOs). 

 

 With regard to the thermal stability at high temperatures (decomposition 

conditions), TGA shows interesting findings. Figure 6 gathers the TGA curves 

(Figure 6a) and the first derivative (DTG) curves (Figure 6b). The first 

important finding is that PBS provides more thermal stability than PBSA to 

ternary blends. The onset degradation temperature, measured at a weight loss 

percentage of 5% is 312 ºC for the uncompatibilized PLA60PHB10PBS30 blend 

while the onset for the uncompatibilized PLA60PHB10PBSA30 blend is lower, 
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around 298 ºC. The effect of the compatibilizers, ELO and ESBO shows different 

tendency depending on the presence of PBS or PBSA on ternary blends. On 

ternary blends with PBS, addition of both ELO and ESBO leads to slightly lower 

onset degradation temperatures of 296 ºC and 298 ºC respectively. On the other 

hand, the effect of ELO and ESBO on ternary blends with PBSA is different with 

onset degradation values of 298 ºC and 303 ºC for ELO and ESBO respectively. 

This is related to the lower thermal stability of PBSA compared to that of PBS. 

Anyway, these ternary blends show similar thermal stability than ternary 

blends of PLA, PHB and PCL as PCL is characterized by a similar degradation 

onset to PBS [60]. 
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Figure 6 a) Thermogravimetric (TGA) curves and b) first derivative (DTG) of 

ternary poly(lactic acid) (PLA) blends with poly(3-hydroxybutyrate) (PHB) and 

poly(butylene succinate) (PBS) or poly(butylene succinate-co-adipate) (PBSA) 

with different epoxidized vegetable oils (EVOs). 

 

 Dynamic-mechanical thermal analysis (DMTA) gives simultaneous 

information about the mechanical performance as a function of temperature in 

dynamic conditions. In particular, the evolution of the storage modulus (E’) and 

the damping factor (tan ) are useful to identify the effects of PBS and PBSA on 

ternary blends as well as the effects of the vegetable oil-based compatibilizers. 

Figure 7a gathers the DMTA curves for all ternary blends containing PBS or 

PBSA. The uncompatibilized blend with PBS (PLA60PHB10PBS30) shows the 

highest storage modulus, E’ which is in total accordance with the previous 
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results on mechanical properties. The effect of both ELO and ESBO is a 

flexibilization that can be observed by a shift of the characteristic curve towards 

lower E’ values. These results agree with those obtained by tensile tests which 

showed the maximum elongation with ESBO addition. For this reason, the 

ternary blend with PBS compatibilized with ESBO shows the lowest E’ values, 

compared to ELO-compatibilized and uncompatibilized ternary blend. Similar 

tendency can be found for the PBSA-based ternary blends. As indicated 

previously, PBSA is more flexible than PBS, therefore, the PBSA-based ternary 

blend shows its characteristic storage modulus below that of the PBS-based 

ternary blend. The effects of both ELO and ESBO are similar as those observed 

for the PBS-based ternary blend. 

 An observation of the damping factor (Figure 7b) allows to clearly 

identify the characteristic glass transition temperatures of the main 

components, PLA and PBS or PLA and PBSA, since PHB only represents a 10 

wt% and its contribution to the damping factor is very low. The Tg value of the 

PLA-rich phase in uncompatibilized ternary blend (PLA60PHB10PBS30) with PBS 

is 71 ºC and is slightly moved to 69 ºC with the addition of 5 phr ESBO. 

Addition of ELO gives the same Tg for PLA-rich phase. This is representative 

for low miscibility between the three polyesters. With regard to the PBSA-based 

ternary blend (PLA60PHB10PBSA30), uncompatibilized blend shows a Tg of 67 

ºC, thus corroborating somewhat more miscibility as shown by FESEM 

characterization. This Tg value is slightly moved to 68 ºC with presence of both 

ELO or ESBO. The effect of ELO and ESBO on the Tg values of PBS and PBSA is 
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also negligible. In fact, the Tg of the PBS-rich phase is maintained at about -27 ºC 

while the Tg for the PBSA-rich phase is close to -38 ºC. These values are slightly 

higher to those observed in the technical datasheet thus indicating slight 

miscibility with PHB and/or PLA which moves Tg to upper values. It is 

important to remark that the damping factor represents the ratio between the 

stored energy and the lost energy as observed in composite materials[68, 69]. 

Neat PLA is a highly stiff polymer and this gives a narrow damping factor peak 

with high values due to the high stored energy. Nevertheless, all PLA blends 

show a broader damping factor peak with lower values which means energy 

dissipation (loss) due to friction between different immiscible phases. This 

means ternary blends do not store as energy as neat polymer. The fact of 

blending promotes energy dissipation instead of energy storage. 
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Figure 7 Mechanical-dynamical thermal (DMTA) properties, a) storage 

modulus (E’) and b) damping factor (tan ) of ternary poly(lactic acid) (PLA) 

blends with poly(3-hydroxybutyrate) (PHB) and poly(butylene succinate) (PBS) 

or poly(butylene succinate-co-adipate) (PBSA) with different epoxidized 

vegetable oils (EVOs). 

 

 In addition to dynamic-mechanical properties, other thermomechanical 

properties have been tested. Table 5 gathers information about the Vicat 

softening temperature (VST), heat deflection temperature (HDT) and the 

coefficient of linear thermal expansion (CLTE) at different temperature ranges 

comprised between several Tgs. With regard to VST, once again it is possible to 

see the same tendency as observed in mechanical tests. Uncompatibilized blend 
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with PBS (PLA60PHB10PBS30) shows a VST value of 60.5 ºC which is higher than 

the corresponding value for the uncompatibilized blend with PBSA 

(PLA60PHB10PBSA30), located at 57.4 ºC. The effect of ELO and ESBo on both 

ternary systems is the same. A slight decrease in the corresponding VST values 

can be detected. This decrease is in the 2 – 3 ºC range. The same tendency is 

observed for HDT values. With regard to the CLTE, the same tendency can be 

detected in all three temperature ranges considered for calculations. Obviously, 

the CLTE increases with increasing the temperature range. So that, the PBS-

based ternary blend (PLA60PHB10PBS30) shows a CLTE of 93.5 m m-1 ºC-1 

below Tg1 and increases to values of 113.8 m m-1 ºC-1 at the temperature range 

comprised between Tg1 and Tg2. Finally, above Tg2, its CLTE is 242.4 m m-1 ºC-1. 

As PBSE is more flexible than PBS, the corresponding CLTE values for the 

uncompatibilized PBSA-based ternary blend (PLA60PHB10PBSA30) are 95.4; 

131.1 and 329.0 for the temperature ranges below Tg1; between Tg1 and Tg2 and 

above Tg2, respectively. The effects of both ELO and ESBO can be clearly seen 

by an increase in the corresponding CLTE values. This is specifically 

pronounced above Tg1 since below this temperature, the material is completely 

glassy. 

 

4. Conclusions 

 Ternary blends with constant content of poly(lactic acid) (PLA) – 60 wt%, 

poly(3-hydroxybutyrate) (PHB) – 10 wt% were manufactured with two 

different linear polyesters derived from succinic acid, i.e. poly(butylene 
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succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) with a constant 

content of 30 wt%. Uncompatibilized ternary blends based on PBS and PBSA 

showed a remarkable increase in elongation at break with regard to neat PLA 

and other ternary blends, thus showing the potential of both PBS and PBSA to 

obtain highly toughened PLA-based formulations. These ternary blends show a 

clear phase separation as revealed by field emission scanning electron 

microscopy (FESEM) with PLA-rich phase in which, the other main component 

(PBS or PBSA) is fine dispersed with the typical drop-like structure. FESEM also 

revealed more compatibility in ternary blends with PBSA. Although these 

uncompatibilized blends offer interesting properties, the poor interaction 

hinder the reach of even more improved mechanical properties. For this reason, 

two commercialy available epoxidized vegetable oils, i.e. epoxidized linseed oil 

(ELO) and epoxidized soybean oil (ESBO) were used. In general, both modified 

vegetable oils contribute to a remarkable increase in elongation at break and 

impact toughness and do not compromise in a great extent other mechanical 

properties. In addition, PBS and PBSA represent an alternative to poly(-

caprolactone) (PCL) which is another flexible polyester, widely used to improve 

PLA toughness. PBS and PBSA offer an interesting advantage versus PCL as 

their melt peak temperature are higher (around 100 ºC) to that of PCL which is 

close to 60 ºC.  
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Tables 

 

Polymer Density,   

(g cm-3) 

Melt flow index, 

MFI (g/10 min) 

Glass transition 

temperature, Tg 

(ºC) 

Melt 

temperature, 

Tm (ºC) 

Poly(lactic acid) (PLA) 1.24 15-30 @210 ºC 60 170 

Poly(3-hydroxybutyrate) (PHB) 1.25 10 @180 ºC -5 170 

Poly(butylene succinate) (PBS) 1.26 20-34 @190 ºC -32 114 

Poly(butylene succinate-co-

adipate) (PBSA) 

1.23 20-34 @190 ºC -45 94 

 

Table 1. Summary of the main properties of poly(lactic acid) (PLA), poly(3-

hydroxybutyrate) (PHB), poly(butylene succinate) (PBS) and poly(butylene 

succinate-co-adipate) (PBSA), used for ternary blends. 
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Code  Blend composition (wt%) Compatibilizer content 

(phr) 

PLA PHB PBS PBSA ELO ESBO 

PLA100 100 - - - - - 

PLA60PHB10PBS30 60 10 30 - - 0 

PLA60PHB10PBS30/ELO5 60 10 30 - 5 - 

PLA60PHB10PBS30/ESBO5 60 10 30 - - 5 

PLA60PHB10PBSA30 60 10 - 30 - - 

PLA60PHB10PBSA30/ELO5 60 10 - 30 5 - 

PLA60PHB10PBSA30/ESBO5 60 10 - 30 - 5 

 

Table 2. Composition and coding of poly(lactic acid) (PLA) ternary blends with 

poly(3-hydroxybutyrate) (PHB) and succinic acid-derived polyesters, 

poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). 
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Code E (MPa) σt (MPa) ℇ(%) 

PLA100 3514 ± 64 57.6 ± 1.2 7.6 ± 0.5 

PLA60PHB10PBS30 1902 ± 87 53.4 ± 1.5 49.3 ± 17.8 

PLA60PHB10PBS30/ELO5 1792 ± 34 43.3 ± 1.1 115.2 ± 35.8 

PLA60PHB10PBS30/ESBO5 1816 ± 46 42.5 ± 2.2 160.4 ± 36.4 

PLA60PHB10PBSA30 1715 ± 53 42.7 ± 2.5 62.9 ± 5.7 

PLA60PHB10PBSA30/ELO5 1660 ± 99 35.6 ± 2.1 132.1 ± 39.8 

PLA60PHB10PBSA30/ESBO5 1701 ± 115  35.1 ± 1.7 168.8 ± 8.2 

 

Table 3. Summary of mechanical properties obtained by tensile tests on ternary 

poly(lactic acid) (PLA) blends with poly(3-hydroxybutyrate) (PHB) and 

poly(butylene succinate) (PBS) or poly(butylene succinate-co-adipate) (PBSA) 

with different epoxidized vegetable oils (EVOs).  
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Code Impact strength (kJ m-2) Shore D hardness 

PLA100 1.59 ± 0.29 75.6 ± 1.3 

PLA60PHB10PBS30 5.94 ± 0.44 75.5 ± 1.4 

PLA60PHB10PBS30/ELO5 8.63 ± 0.65 75.1 ± 1.2 

PLA60PHB10PBS30/ESBO5 9.41 ± 0.59 74.3 ± 1.9 

PLA60PHB10PBSA30 8.40 ± 0.68 73.9 ± 1.9 

PLA60PHB10PBSA30/ELO5 12.58 ± 0.57 74.6 ± 0.7 

PLA60PHB10PBSA30/ESBO5 10.40 ± 0.44 72.9 ± 1.8 

 

Table 4. Summary of mechanical properties obtained by Charpy impact test 

and Shore D hardness of poly(lactic acid) (PLA) blends with poly(3-

hydroxybutyrate) (PHB) and poly(butylene succinate) (PBS) or poly(butylene 

succinate-co-adipate) (PBSA) with different epoxidized vegetable oils (EVOs). 
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Code VST (ºC) HDT (ºC) CLTE (µm m-1 ºC-1) by TMA 

Below Tg 1 Above Tg1 Above Tg2 

PLA100 60.9 ± 0.4 54.9 ± 0.3 - 95.7 ± 0.7 148.5 ± 0.6 

PLA60PHB10PBS30 60.5 ± 0.5 47.4 ± 0.5 93.5 ± 0.3 113.8 ± 0.4 242.4 ± 0.5 

PLA60PHB10PBS30/ELO5 56.6 ± 0.6 45.9 ± 0.4 89.9 ± 0.8 131.0 ± 0.6 266.9 ± 0.9 

PLA60PHB10PBS30/ESBO5 58.8 ± 0.5 46.3 ± 0.5 87.8 ± 1.3 133.5 ± 0.9 253.4 ± 0.5 

PLA60PHB10PBSA30 57.4 ± 0.3 46.8 ± 0.4 95.4 ± 0.9 131.1 ± 0.7 329.0 ± 0.6 

PLA60PHB10PBSA30/ELO5 55.6 ± 0.5 45.6 ± 0.4 83.7 ± 1.2 140.8 ± 1.5 355.3 ± 0.9 

PLA60PHB10PBSA30/ESBO5 56.2± 0.4 46.5 ± 0.3 94.5 ± 0.9 129.0 ± 1.3 262.8 ± 1.6 

 

Table 5. Summary of thermomechanical properties obtained by 

thermomechanical analysis (TMA) on ternary poly(lactic acid) (PLA) blends 

with poly(3-hydroxybutyrate) (PHB) and poly(butylene succinate) (PBS) or 

poly(butylene succinate-co-adipate) (PBSA) with different epoxidized vegetable 

oils (EVOs). 


