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Abstract This study introduces a method to quantify the conditional predic-
tive uncertainty in hydrological post-processing contexts when it is cumber-
some to calculate the likelihood (intractable likelihood). Sometimes, it can be
difficult to calculate the likelihood itself in hydrological modelling, specially
working with complex models or with ungauged catchments. Therefore, we
propose the ABC post-processor that exchanges the requirement of calculat-
ing the likelihood function by the use of some sufficient summary statistics
and synthetic datasets. The aim is to show that the conditional predictive
distribution is qualitatively similar produced by the exact predictive (MCMC
post-processor) or the approximate predictive (ABC post-processor). We also
use MCMC post-processor as a benchmark to make results more comparable
with the proposed method. We test the ABC post-processor in two scenarios:
i) the Aipe catchment with tropical climate and a spatially-lumped hydrolog-
ical model (Colombia) and ii) the Oria catchment with oceanic climate and
a spatially-distributed hydrological model (Spain). The main finding of the
study is that the approximate (ABC post-processor) conditional predictive un-
certainty is almost equivalent to the exact predictive (MCMC post-processor)
in both scenarios.

Keywords Free-likelihood approach · probabilistic modelling · uncertainty
analysis · hydrological forecasting · summary statistics

Jonathan Romero-Cuellar* (corresponding author) and Félix Francés
Research Institute on Water and Environmental Engineering, Universitat Politècnica de
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1 Introduction

Making unbiased, accurate and reliable streamflow predictions has regularly
been one of the main goals for hydrologists. These hydrological predictions
are valuable for risk assessment, water resources management, and ecological
issues. Characterizing, quantifying, reducing, and communicating the uncer-
tainty of predictions is essential for decision-making and water management
under anthropogenic conditions (Butts et al., 2004; Liu and Gupta, 2007).
Uncertainty is everywhere and is impossible to avoid it (Lindley and Smith,
1972). Indeed, uncertainty is a fact of hydrology (Wilby and Harris, 2006).
Generally speaking, uncertainty analysis is a crucial part of hydrological mod-
elling process (Schoups and Vrugt, 2010). It is particularly useful for modelling
comparison and selection (Schoups et al., 2008), improving model predictions,
supporting decision-making (Reichert et al., 2015) and advancing towards re-
liable measurement systems. Most significantly, uncertainty analysis plays a
considerable role in applications and the dialogue with decision-makers (Mon-
tanari and Koutsoyiannis, 2012). Some sources of uncertainty include input
errors (e.g. rainfall sampling, low gauge density, interpolation method), epis-
temic errors (e.g. model parameters, model structure), and output errors (e.g.
associated with rating curve errors). The propagation of confidence bounds
from different uncertainty sources to model output is crucial for hydrologic
modelling (Liang et al., 2012). Applying statistical post-processing methods is
a useful approach to quantify the joint effect of these uncertainties. Hydrologic
post-processors are statistical models that relate observed variables of interest
(streamflow, water level) to predictors derived from deterministic hydrologic
model outputs (Ye et al., 2014). The hydrologic post-processing aim is to re-
duce biases and quantify the uncertainty of deterministic predictions (Wentao
et al., 2017).

In the context of conditional predictive uncertainty, which means fixed hy-
drological predictions, several techniques have been developed to quantify total
uncertainty. Early works included methods as Model Output Statistics (MOS)
(Glahn and Lowry, 1972) and Hydrological Uncertainty Processor (HUP)
(Krzysztofowicz and Kelly, 2000). More recent literature used the Bayes’s
theorem-based methods, such as Bayesian Model Average (BMA) (Raftery
et al., 2005; Vrugt and Robinson, 2007), Model Conditional Processor (MCP) (To-
dini, 2008; Coccia and Todini, 2011) and Bayesian Joint Probability (BJP) (Wang
et al., 2009). Moreover, there exists a variety of regression-based models, in-
cluding a meta-Gaussian approach (Montanari and Brath, 2004; Montanari
and Grossi, 2008), quantile regression (Weerts et al., 2011) and General Linear
Model Post-Processor (GLMPP) (Zhao et al., 2011). Also, many other meth-
ods have been proposed, including non-parametric post-processor (Brown and
Seo, 2010), machine learning (Solomatine and Shrestha, 2009), data-driven re-
sampling techniques (Sikorska et al., 2015), Bayesian neural networks (Zhang
and Zhao, 2012) and post-processing with error model (Evin et al., 2014).
Several copula models have been proposed like a BMA-copulas (Madadgar
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and Moradkhani, 2014), pair-copulas in a multi-model ensemble (Klein et al.,
2016) and ensemble copula coupling (Schefzik et al., 2013).

Although there are many approaches to improve hydrologic predictions by
reducing uncertainties, they have not been standardized (Wagener and Gupta,
2005; Montanari and Koutsoyiannis, 2012; Wentao et al., 2017; van Oijen,
2017), and less attention has been paid in presence of intractable likelihood.
The Approximate Bayesian Computation (ABC) (Nott et al., 2011; Vrugt and
Sadegh, 2013; Fenicia et al., 2018; Kavetski et al., 2018) method deals with
inferential problems with intractable likelihood. By intractable likelihood, we
mean that the likelihood function is unavailable in closed form or by numer-
ical derivation (Robert, 2016). In this context and for the sake of simplicity,
we use a monthly error model that is useful for water resources management
applications. To our best knowledge, up to now, this is the first study that has
proposed a hydrological post-processor based on approximate Bayesian com-
putation (ABC). This study introduces a method to quantify the conditional
predictive uncertainty in hydrological post-processing contexts when it is cum-
bersome to calculate the likelihood (intractable likelihood). Sometimes, it can
be difficult to calculate the likelihood itself in hydrological modelling, spe-
cially working with complex models or with ungauged catchments. Therefore,
we propose the ABC post-processor that exchanges the requirement of calcu-
lating the likelihood function by the use of some sufficient summary statistics
and synthetic datasets. The aim is to show that the conditional predictive
distribution is qualitatively similar produced by the exact predictive (MCMC
post-processor) or the approximate predictive (ABC post-processor). We test
the ABC post-processor in two scenarios: i) The Aipe catchment (poor pre-
dictions) and ii) the Oria catchment (good predictions). Deterministic and
probabilistic verification frameworks are used to compare the performance of
the ABC post-processor with the Markov Chain Monte Carlo (MCMC) ap-
proach (Gelman et al., 2013), that works when the likelihood is tractable.
The rest of the paper is structured as follows. The theory and methods are
described in Section 2, applications in Section 3, followed by discussion and
conclusions in Section 4.

2 Theory and methods

Biased, inaccurate, and unreliable predictions in hydrology are mainly conse-
quence of several sources of uncertainties. A hydrologic post-processor is an ap-
proach to deal with uncertainties from deterministic hydrologic model outputs
propagated from all upstream sources. Applying statistical post-processing
methods is useful to quantify these uncertainties. In this section, we describe
the theory of hydrologic post-processing focussing both on algorithms deal-
ing with intractable likelihood (ABC post-processor) and tractable likelihood
(MCMC post-processor). These two post-processors are compared through
verification metrics to assess their performance.
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2.1 Monthly streamflow post-processor

Let ys = (ys1, . . . , y
s
T )> be the output of a deterministic hydrological model

and yo = (yo1, . . . , y
o
T )> the observations. The hydrologic post-processor works

by relating model outputs (e.g., streamflow) to corresponding observations
through a statistical model (Ye et al., 2014). It serves the purpose of removing
model biases from all upstream uncertainty sources. In this paper, we assume
a linear model between yo and ys

yo = β0 + β1y
s + ε, (1)

where the vectors yo and ys are expressed in m3s−1, β0 and β1 are statisti-
cal parameters and ε is a random variable that represents the error term in
the statistical model. The three components on the right-hand side symbolise
three distinct sources of estimation errors. The first term, β0, represents con-
stant deviation and can be called the displacement error. The second term,
with an error parameter β1, denotes a scale error or dynamic-range error. The
third term is a random error, which is assumed as independent and identically
distributed, with zero mean value and a standard deviation of σ. The first
two terms describe a deterministic relationship between yo and ys, and they
characterise the systematic or epistemic error with β0 and β1. The error term
expresses random fluctuations due to the effect of factors out of our control or
measurement, and it is assumed that εi ∼ N(0, σ2), identical independent dis-
tributed (i.d.d.). This assumption is the most common, but it can be relaxed in
favour of more general cases (e.g. Schoups and Vrugt (2010)). The linear model
and the assumption of normality on the error term can be too restrictive for
hydrological post-processors. Nevertheless, the linear error model is our first
approximation although it is not always appropriate. We know that some cir-
cumstances require non-linear error models, but this linear error model worked
for our water resources management application. In fact, Tian et al. (2016)
proved that a linear model and three parameters are sufficient to fully cap-
ture the characteristic error of monthly predictions. The ABC is not strongly
influenced by the model and the assumptions, since it is based on a distance
measure between summary statistics of the observed and simulated data. This
point will be clarified in Section 2.3. To complete the error assumptions (ε),
the observed and simulated streamflows are transformed to the Normal space
previously applying the Normal Quantile Transformation procedure (NQT).
Waerden (1953) described the theory behind the NQT, and Krzysztofowicz
and Kelly (2000) demonstrated its application in hydrology. Figure 1 shows
the steps we used to derive the conditional predictive uncertainty distribution.

2.2 MCMC for monthly streamflow post-processor in Bayesian framework

In Bayesian Statistics, parameters are treated as random variables and infer-
ence is based on the posterior parameter distribution. The posterior parameter
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Fig. 1 Flow chart of the process we used to derive the conditional predictive uncertainty
distribution.

distribution of model (1), can be written, from the Bayes theorem, as:

p(θ|yo,ys) =
p(yo|θ,ys)p(θ)∫
p(yo|θ,ys)p(θ) dθ

, (2)

where p(θ) indicates the prior parameter distribution, p(yo|θ,ys) denotes the
likelihood of yo conditional on the parameters θ = (β0, β1, σ

2) and the deter-
ministic output ys. We assume flat uniform priors for θ = (β0, β1, σ

2) and from
the assumptions on model (1) it follows that Yo|θ,ys ∼ N(µ = β0+β1y

s, σ2).
Given the model it is not possible, as most of the time, to compute in closed
form the integral in the denominator of the equation (2). So, we approximate
the posterior distribution (2) by using the MCMC algorithms (Gelman et al.,
2013). Specifically, we use the adaptive Metropolis-Hastings (Haario et al.,
2001) to perform the Bayesian inference. This algorithm has been shown to
perform adequately in hydrologic problems (Marshall et al., 2004). For detail
on the implementation of adaptive Metropolis-Hastings algorithm to hydro-
logic modelling studies, relate to the research stated by Marshall et al. (2004).

In this paper we are most interested in conditional prediction uncertainty.
Let ỹo be a future observation for model (1), then the posterior predictive
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density (which incorporate our uncertainty) of a future observation p(ỹo|ys),
is given by

p(ỹo|ys) =

∫
Θ

p(ỹo|θ)p(θ|yo,ys)d(θ). (3)

In words, the posterior predictive density is an average of conditional pre-
dictions over the posterior distributions of parameters (Gelman et al., 2013),
reflecting both the uncertainty of the model and the uncertainty due to vari-
ability in future observations (Yoon et al., 2010).

2.3 ABC post-processor

The idea behind the ABC approach was introduced in population and evo-
lutionary genetics (Pritchard et al., 1999; Tavaré et al., 1997). Furthermore,
Nott et al. (2011) were the first to introduce the ABC method in hydrology
community. ABC is adequate for inference problems where sampling from the
assumed probability model is much easier than evaluating its probability den-
sity function (e.g., intractable likelihood) (Fenicia et al., 2018). Using the ABC
does not evade the requirement of Bayesian inference to stipulate a probabil-
ity model of the data, but rather exchanges the requirement of calculating the
likelihood function by the requirement of sampling model output realizations
(Kavetski et al., 2018). ABC is a class of sampling methods that bypass exact
likelihood calculations with a simulation of the model that produces synthetic
datasets. The method then relies on some metric (distance) to compare sim-
ulated data to the data that were observed (Turner and Van Zandt, 2012).
Then, the aim is to obtain an estimate of the posterior distribution of the
parameter of the model. Recall that the posterior parameter θ is the distribu-
tion of that parameter conditioned on the observed data and the deterministic
output. Without a likelihood, it is not possible to write down an expression for
this posterior, or to estimate it using Monte Carlo methods. However, we can
simulate data ysim using some θ = θ∗ and retain θ∗ as a sample from the pos-
terior if some pre-defined distance d{ysim,yo} between the observed and the
simulated data is less than some small value ε0. There are three main ABC
algorithms: 1) accepted-rejected (Beaumont et al., 2002), 2) Markov Chain
Monte Carlo ABC (Marjoram et al., 2003), and 3) Sequential Monte Carlo
ABC (Sisson et al., 2007). Although some ABC algorithms are more efficient,
whether the ABC algorithm is optimized (or not), is not relevant to the results;
hence, we use the accepted-rejected algorithm of Beaumont et al. (2002) for
our application. We developed the ABC post-processor in R (R Core Team,
2013) using the package abc (Csillery et al., 2012). The pseudo code for the
ABC is summarized in Algorithm 1.

Algorithm 1 proceeds in the following way: first, we sample a candidate pa-
rameter value θ∗ from the flat prior distribution. We then use this candidate
to simulate a dataset ysim from the normal model of interest that has the same
number of observations as the observed data yo. Thereafter, we compare the
simulated data ysim to the observed data yo by computing a distance between
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Algorithm 1 ABC accepted/rejected algorithm

1: Sample θ∗i , i = 1, . . . , N from the prior: θ∗ ∼ p(θ)

2: Generate data yi
sim = (yi1, y

i
2, . . . , y

i
T )>, i = 1, . . . , N , from the model, p(·|θ∗i )

3: For 0 ≤ i ≤ N , store θ∗i if:

d{η(yi
sim), η(yo)} ≤ ε0

where η(·) is a vector statistic, d{·, ·} is a distance criterion, and, given N , the tolerance
level ε0 is chosen to be small.

them given by a distance function d{η(ysim), η(yo)} ≤ ε0. For computational
ease, it is often convenient to define d{·, ·} as a distance between summary
statistics S(ysim) and S(yo). Ideally, the summary statistics S(·) should be
sufficient for the parameter θ. In this study, we consider five summary statis-
tics including the sample mean, variance, skewness, kurtosis, and first sample
autocorrelation (Fearnhead and Prangle, 2012) and run the algorithm 1 us-
ing the Euclidean distance between summary statistics and tolerance level
ε0 = 0.01. Algorithm 1 produces the empirical posterior parameter distribu-
tion which we indicate with p∗ε0(θ|η(ysim), η(yo)). Estimates of the parameter
θ can be obtained by calculating the mean, mode or median of this empirical
distribution. However, our interest in the paper is not on these estimates but
on the predictive posterior uncertainty.

The predictive posterior uncertainty is formally defined as

g(ỹo|ys) =

∫
Θ

p(ỹo|θ,yo,ys)p(θ|yo)dθ, (4)

and it is approximated by

g∗(ỹo|ys) =
1

M

M∑
i=1

p(ỹo|θ∗i ,yo),

where M is the number of retained θ∗.
It has been shown that even though the posterior parameter predictive dis-

tribution p∗ε0(θ|η(ysim), η(yo)) is not close to the true posterior distribution
in (2) the posterior predictive distribution g∗(ỹo|ys) under some regularity
conditions can still be valid to approximate the (4) (Marin et al., 2012). In
particular, there are three main regularity conditions: first, the data gener-
ating process (DGP) is correctly specified (probability model); second, both
p∗ε0(θ|η(ysim), η(yo)) and p(θ|yo,ys) are Bayesian consistent for the true value
of θ and large samples. Blackwell and Dubins (1962) and Diaconis and Freed-
man (1986) proved that, if all three regularity conditions are satisfied, then
the g(ỹo|ys) and p(ỹo|ys) yield the same forecasting asymptotically. In other
words, g(ỹo|ys) and p(ỹo|ys) merge asymptotically. Frazier et al. (2019) re-
cently demonstrated theoretically and numerically the previous conclusion in
economic models. Finally, the motivation for the use of ABC in hydrological
models is evident: in cases where the likelihood is not accessible, the paramet-
ric posterior distribution itself is inaccessible and the integral in (3) cannot be
computed via the MCMC methods.
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2.4 Verification metrics

Deterministic and probabilistic verification frameworks are used to assess out-
puts from the proposed ABC post-processor and the MCMC approach. We
examine the accuracies, reliability, and robustness of the proposed method.
These verification metrics are analysed during both the calibration and vali-
dation periods. In general, uncertainty analysis methods could be portrayed
by the 95% uncertainty band that has to be as narrow as possible but still
containing the largest amount of observations. Since verification metrics have
been reported by a large and adequate body of literature, only a brief descrip-
tion of each is presented here.

As deterministic metrics, we include the Nash-Sutcliffe Efficiency (NSE),
and the Kling-Gupta Efficiency (KGE) indices. NSE has been extensively ap-
plied to assess hydrological models. Likewise, KGE was presented as the modi-
fied version of NSE by Gupta et al. (2009). This metric involves the correlation,
bias, and variability. Both NSE and KGE can range from −∞ to 1 with NSE
or KGE = 1 as a perfect fit between observation and simulation. As probabilis-
tic metrics, we include the reliability and precision. Reliability refers to the
statistical consistence of predictions with observed data, and precision refers
to the concentration of the predictive distribution (small uncertainty). Zero is
the worst reliability value while one is the best. To evaluate the reliability and
precision of predictive distributions, Laio and Tamea (2007) suggested the use
of PQQ plots (Thyer et al., 2009). In the PQQ plot context, if the predictive
distribution and observed data are consistent, the corresponding p-value dis-
tribution should be uniformly distributed over the interval [0,1]. We apply the
Kolmogorov-Smirnov test (K-S) to check this uniformity.

Finally, to gain more insight into the probabilistic metrics and following
Li et al. (2017), we also compute the containing ratio (CR), which is the
percentage of the measurement bracketed by this band, the average bandwidth
of 95% uncertainty band (B) and the average deviation amplitude (D). We use
the 95% prediction interval based on the 5 and 95 percentiles. As a result, an
adequate predictive uncertainty is achieved when the CR is close to 95%. The
smallest values of B and D are preferred. These three indices quantify the
degree of predictions deviating from observations. Our strategy to compute
comparative performance metrics is compatible with others similar studies
such as Shafii et al. (2014); Ye et al. (2014); Khajehei and Moradkhani (2017).

3 Applications

Both methods are applied to monthly streamflows in two scenarios: the Aipe
catchment with poor predictions (Colombia) and the Oria catchment with
good predictions (Spain). By poor and good predictions, we mean that the
NSE < 0.5 and NSE > 0.8 respectively. These scenarios allow a contrast in
hydrology. The essential hydrologic features of both scenario catchments are
summarised in Table 1.



ABC for streamflow post-processing 9

Table 1 Hydrologic features of the two case studies catchments.

Catchment Area P* PET Q Run-off Aridity
(km2) (mm/year) (mm/year) (mm/year) ratio (Q/P) ratio (PET/P)

Aipe 688.9 1922.71 1981.54 706.89 0.377 1.031
Oria 73 1498 733.4 765 0.511 0.489

* P: Mean areal precipitation, PET: potential evapotranspiration, and Q: streamflow.

The first scenario (poor predictions) is the Aipe river catchment in Huila
State, in southern Colombia. Precipitation, potential evaporation and stream-
flow monthly time series are available from 1992 to 2012. The first fourteen
years of data are used for model calibration, while the last six years served
as a validation dataset to assess predictive capability. We used the abcd wa-
ter balance model to simulate streamflows (Thomas, 1981). This model is
a well known conceptual spatially-lumped rainfall-runoff model which trans-
forms precipitation and potential evapotranspiration data to streamflow at
the catchment outlet. The hydrological model is selected for its conceptual
simplicity and general usage. Figure 2 represents the output from the hydro-
logical model. The abcd water balance model implemented in Aipe catchment
is described in detail by Romero-Cuéllar et al. (2018).

Fig. 2 Monthly time series of deterministic streamflow predictions (solid line) and obser-
vations (red dots) from the Aipe river catchment. Scatter plot of simulated versus observed
streamflows. Time series and histogram of the residuals.

The simulated streamflow time series in Fig. 2 shows that deterministic
hydrological predictions overestimate the observed streamflows. Moreover, the
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residuals time series shows high values, and the histogram of errors indicates a
negative bias. The second scenario (good predictions) is the Oria river catch-
ment located in the Basque Country Region, in northern Spain. The hydro-
logical data for this catchment were collected from 1987 to 2000. We used ten
years (i.e., 1990-2000) for calibration process and three years for validation
(i.e., 1987-1990). Daily runoff simulations from the TETIS model aggregated
to monthly values are used to estimate the predictive uncertainty at the C2Z1
Agauntza gauge. The TETIS model is a conceptual spatially-distributed hy-
drological model where each grid cell represents a tank model with six tanks
connected among them. TETIS is a grid-based model, which takes advantage
of all the spatially distributed information available. More details about the
TETIS model and Oria application are in Francés et al. (2007); Vélez et al.
(2009). Figure 3 represents the performance of the hydrological model in the
Oria river.

Fig. 3 Monthly time series of deterministic streamflow predictions (solid line) and obser-
vations (red dots) from the Oria river catchment. Scatter plot of simulated versus observed
streamflows. Time series and histogram of the residuals.

In contrast to the Aipe river, in the Oria river the hydrological model
has better performance. The simulated streamflow time series in Fig. 3 indi-
cates that deterministic hydrological predictions correspond to the observed
streamflows. Moreover, the error histogram is centred in zero. For each of
the case studies, we calibrate a set of hydrological parameters. Calibrated pa-
rameters were achieved through optimisation which minimises the aggregated
differences between simulated and observed streamflow values. Then, we use
outputs from the hydrological model as inputs for the statistical model (hydro-
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logical post-processing). Next, the adaptative Metropolis-Hastings algorithm
is implemented and run until the convergence of the parameter posterior dis-
tribution (statistical model) is achieved. Convergence is determined by both
the visual trace plot evaluation of the posterior chains and the Gelman and
Rubin (1992) R statistic which considers convergence in terms of the variance
with a single chain and the variance between multiple parallel chains. Finally,
we compute the conditional predictive distribution.

The results for monthly streamflow forecast are now presented. They are
presented independently for both scenarios catchment and calibration and val-
idation period. In section 3.1 the performance of the Aipe catchment is eval-
uated, while in section 3.2 the performance of the Oria catchment is assessed.
For each of the scenarios, the MCMC algorithm is first applied to estimate the
predictive uncertainty in time series domain, and the ABC algorithm is then
used to assess the predictive uncertainty in summary statistic domain and
free-likelihood function. As mentioned before, this study shows that the pre-
dictive superiority of the exact predictive (MCMC post-processor), over the
approximate (ABC post-processor) using some sufficient summary statistics
and synthetic datasets, is minimal. To achieve this aim, we use MCMC post-
processor as a benchmark to make results more comparable with the proposed
method.

3.1 First Scenario: The Aipe Catchment

Figure 2 represents a general view of hydrological model performance (de-
terministic predictions). Note that the hydrological model does not mimic
observed data quite well, it does not reproduce maximum streamflow events.
In other words, the model over-predicts peak streamflows. Moreover, Fig. 2
shows that the error variance is heteroscedastic, and the error histogram is
not normal. In summary, the hydrological model (deterministic predictions)
has a poor performance. Regarding deterministic metrics, the most consider-
able improvement is the result of post-processing approaches (Table 2). For
example, when post-processing is used, the NSE increases in as many as 74.63%
for the calibration and 25.84% for the validation period. The acceptable range
for NSE is considered to be above 0.5 (Moriasi et al., 2007); therefore, results
in Table 2 point that the deterministic prediction does not have a satisfy-
ing skill as compared with the post-processing approaches, which frequently
guides to valid performance metrics because they work directly to improve
the errors in model outputs (Ye et al., 2014). Visible improvements are also
inspected concerning KGE; for instance, KGE increases in as many as 30.3%
for the calibration and 16% for the validation period (improvements are not
as pronounced as for NSE).

Regarding probabilistic metrics, the predictive PQQ plot of the MCMC
(upper-right) and ABC (lower-right) post-processing is presented in Fig. 4
during the calibration period. Fig. 4 shows realistic narrow predictive bounds
because only some peak flows are not bracketed, and all low streamflows are
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Table 2 Deterministic and probabilistic performance metrics of the raw prediction, MCMC
and ABC post-processor for the Aipe catchment.

Calibration Validation
Performance Deterministic Post-processing Deterministic Post-processing

metric prediction MCMC ABC prediction MCMC ABC
NSE 0.165 0.669 0.671 0.571 0.777 0.773
KGE 0.527 0.769 0.764 0.637 0.757 0.744

Reliability - 0.996 0.996 - 0.993 0.993
Precision - 2.403 2.306 - 2.581 2.500

K-S test (p-value) - 0.465 0.750 - 0.132 0.223
B (m3/s) - 14.95 15.64 - 25.78 26.86
CR (%) - 88.33 88.89 - 94.44 95.83

D (m3/s) - 6.82 6.92 - 12.23 12.42

bracketed. It is important to notice that the upper and lower predictive un-
certainty appearing in the Fig. 4 are almost identical. Besides, it is clear from
these figures that the curves closely follow the bisector. This means that the
predictive distributions of post-processed streamflows are reliable. We also see
that reliability indexes are close to one, further confirming that predictions
are reliable (Table 2).

Fig. 4 Conditional predictive uncertainty from MCMC (upper) and ABC (lower) post-
processor on the Aipe catchment. PQQ-plot of the conditional predictive distribution (right).
Dots indicate observations, line indicates median prediction and grey region indicates 90%
uncertainty.

Generally speaking, we do not find crucial differences between the MCMC
and ABC post-processing approaches. Reliability and precision metrics are
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practically equal for both post-processing methods in calibration and vali-
dation periods (Table 2). Additionally, both techniques pass the K-S test.
In the calibration period, the B and D metrics of ABC post-processor are
slightly higher than the MCMC post-processor. Table 2 further reports the
coverage rate (CR) for testing the sharpness of the conditional predictive un-
certainty. Perfect predictive distribution would expect that the CR close to the
assumed 90% prediction level. In the calibration period, the CR for the two
post-processors are quite similar. In general, all verification metrics of both
methods deteriorate in the validation period except for the CR that improves
slightly. These results suggest that the ABC post-processor which uses just
some sufficient summary statistics and a free-likelihood function may have
similar performance to the MCMC post-processor that uses a likelihood func-
tion. Therefore, the ABC post-processor has a satisfactory performance. The
second scenario (section 3.2) investigates whether these findings would hold
for good hydrological predictions.

3.2 Second Scenario: The Oria Catchment

In the second scenario, we analyse an oceanic climate and spatially-distributed
hydrological model. In contrast to the first catchment, the hydrological model
(deterministic predictions) has a good performance as seen in verification met-
rics in Table 3.

Table 3 Deterministic and probabilistic performance metrics of the raw prediction, MCMC
and ABC post-processor for the Oria catchment.

Calibration Validation
Performance Deterministic Post-processing Deterministic Post-processing

metric prediction MCMC ABC prediction MCMC ABC
NSE 0.875 0.910 0.911 0.939 0.955 0.956
KGE 0.918 0.903 0.910 0.891 0.909 0.917

Reliability - 0.995 0.995 - 0.982 0.982
Precision - 2.950 2.870 - 2.280 2.190

K-S test (p-value) - 0.972 0.923 - 0.868 0.872
B (m3/s) - 1.47 1.51 - 1.34 1.37
CR (%) - 86.07 86.07 - 77.78 80.56

D (m3/s) - 0.85 0.86 - 0.66 0.67

In general, post-processing approaches improve performance forecasts. Nev-
ertheless, improvements are not as pronounced as for the first scenario. For
instance, when post-processing is used, the NSE increases barely 3.9% for the
calibration and 1.8% for the validation period. Furthermore, we do not find
improvements regarding the KGE. Concerning probabilistic metrics, Fig. 5
shows time series and predictive PQQ plots for streamflows predictions using
the MCMC (upper) and ABC (lower) post-processing during the calibration
period. As is evident in the Fig. 5, the exact (MCMC) and the approximate
(ABC) conditional predictive uncertainty are seen to be an extremely close
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match. In particular, prediction uncertainty bands supply an adequate de-
scription of observed values. The predictive PQQ plots in Fig. 5 confirm that
predictions under post-processing are providing adequate representation of
observed streamflows, as PQQ plots follow the bisector. This means that the
predictive distributions of post-processed streamflows are reliable. Besides, we
can confirm this by the reliability index (Table 3).

Fig. 5 Conditional predictive uncertainty from MCMC (upper) and ABC (lower) post-
processor on the Oria catchment. PQQ-plot of the conditional predictive distribution (right).
Dots indicate observations, line indicates median prediction and grey region indicates 90%
uncertainty.

As is consistent with the first scenario, the approximate (ABC) conditional
predictive uncertainty is almost equivalent to the exact predictive (MCMC)
(Fig. 5). Reliability and K-S test metrics are practically equal for both post-
processing approaches in calibration and validation periods. Only a tiny dif-
ference is identified in the precision metric (Table 3). This finding is not sur-
prising as the ABC uses summary statistics. Regularly summary statistics
are linked with loss of information. This loss of information may be unde-
sired for predicting objectives. Nevertheless, this problem could be avoided by
using a set of sufficient summary statistics. In particular, during the calibra-
tion and validation periods, the B and D metrics of ABC post-processor are
slightly higher than the MCMC post-processor, indicating wider predictive
uncertainty bounds than the MCMC post-processor. For this reason, ABC
method has 2% more of the observed samples in the 90% predictive uncer-
tainty than the MCMC post-processor during the validation period (Table
3). Finally, a performance comparison between the scenarios based predictive
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uncertainty shows that, the scenario 2 gave narrower prediction uncertainty
bands than scenario 1. This is due to the quality of hydrological predictions
influences the conditional predictive uncertainty. Contrary to scenario 1, the
CR for both post-processors deteriorate in the validation period. To sum up, in
both scenarios there is little visual distinction between the approximate (ABC
post-processor) and the exact (MCMC post-processor) conditional predictive
uncertainty.

4 Discussion and Conclusions

The main aim of this study is to show that the conditional predictive distri-
bution is qualitatively similar produced by the exact predictive (MCMC post-
processor) or the approximate predictive (ABC post-processor) using some
sufficient summary statistics and synthetic datasets. To achieve this aim, we
use MCMC post-processor as a benchmark to make results more comparable
with the proposed method. We apply both methods (ABC and MCMC) to two
scenarios: the Aipe catchment (Colombia) and the Oria catchment (Spain).
The advantage of the proposed method (ABC post-processor) is highlighted
in the inferential problems with intractable likelihood. Sometimes, it can be
difficult to calculate the likelihood itself in hydrological modelling, specially
working with complex models or with ungauged catchments.

As well as Ye et al. (2014), Bogner et al. (2016) and Woldemeskel et al.
(2018) we confirm that post-processing techniques can improve forecasts sig-
nificantly when hydrological model predictions are especially poor (Table 2).
Furthermore, we find through our numerical evidence that the MCMC and
ABC post-processors provide similar predictive performance. This result was
confirmed by Fenicia et al. (2018) and Kavetski et al. (2018), that the shape
of the predictive distribution is qualitatively similar produced by the exact
predictive (MCMC) or approximate predictive (ABC). These findings can be
attributed to the correct specification of the probability model (data gener-
ating process). When the assumed probability model is correctly specified,
just a little information is lost regarding predictive performance. In contrast,
significant differences can appear when the probability model to represent
observed streamflows is inadequate. In addition, Frazier et al. (2019) demon-
strated theoretically that the ABC made forecasts which were asymptotically
similar to those obtained from the exact Bayesian methods when the sample
was large, the data generating process was correctly specified and, if the con-
ditions for Bayesian consistency and asymptotic normality of both the exact
(MCMC) and the approximate (ABC) posteriors were satisfied. Moreover, we
recommend to check Drovandi and Pettitt (2011) for the use of ABC with
synthetically case studies in the presence of intractable likelihood.

In both scenarios, we have proved that the predictive superiority of the
exact predictive (MCMC post-processor) over the approximate (ABC post-
processor) is minimal for hydrological models. There are two significant differ-
ences between this study and the previous works (e.g. Fenicia et al. (2018) and
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Kavetski et al. (2018)). First, they used the ABC method to calibrate jointly
hydrological models and to compute the predictive uncertainty. Instead of
Bayesian calibration of hydrological models, we used the ABC method in hy-
drological post-processing context, so we calculated the conditional predictive
uncertainty, while Kavetski et al. (2018) calculated the predictive uncertainty.
Second, Fenicia et al. (2018) and Kavetski et al. (2018) did not use summary
statistics, which is a tremendous difference with this study. In other words, we
obtained a similar main conclusion but in a different context and method.

Although we used a comparative analysis between MCMC and ABC hy-
drologic post-processors, it should be noted though that this study does not
aim to show that ABC post-processor has a better performance than MCMC
post-processor. Thus, we use MCMC post-processor as a benchmark to make
results more comparable with the proposed post-processor. Moreover, we know
that the MCMC method has proven its ability in hydrological predictions.
In addition, it is true that any comparison can be affected by different fac-
tors, but it must be emphasised the focus of this comparison is between two
post-processors without particular emphasis on the hydrological model per-
formance. Actually, they are just predictions, which are the input for both
post-processors in two scenarios (poor and good predictions).

We also applied the NQT transformation to achieve assumptions of the
error model, but any transformation produces information loss. Besides, we
know that our analysis is conditioned to the linear regression model (hydro-
logic post-processor). In standard linear regression, the average link between
observed and simulated streamflows is summarised with a single slope param-
eter expressing this relationship. However, Diks and Vrugt (2010) pointed out
that a simple regression method could result in improvements equivalent to
more complex methods. Furthermore, our idea is to show that the ABC ap-
proach can be used to compute the conditional predictive uncertainty rather
than to perform a complex post-processor, and therefore, we can tolerate some
of the less realistic assumptions. Although the examples that we have used in
this paper are moderately simple, generally speaking, the ABC post-processor
is highly flexible and can be used for more complex models. Future research
should develop methods that relax any transformation, evaluate the impact
of pre-processing and post-processing and explore the multi-regression model.
We only scrutinize the ABC to compute the approximate conditional predic-
tive uncertainty in hydrological post-processing context, but there are other
approximations, for instance, Bayesian synthetic likelihood (Price et al., 2018),
Bayesian empirical likelihood (Mengersen et al., 2013), variational Bayes (Tran
et al., 2017) and bootstrap methods (Zhu et al., 2016).

The ABC post-processor has potential in areas such as operational hydrol-
ogy, flood protection, drinking water production, risk assessment, irrigation
management, water resources management and ecological issues. Besides, the
ABC post-processor offers the opportunity to improve decision support with
intractable likelihood function, e.g to predict in ungauged basins or evaluate
climate change predictive uncertainty. In summary, we conclude that determin-
istic predictions (no post-processing) perform poorly concerning deterministic
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verification metrics, and the MCMC and ABC post-processors provide simi-
lar predictive performance. Therefore, the approximate Bayesian computation
may then be used as an alternative method to estimate the conditional pre-
dictive uncertainty of hydrological predictions with intractable likelihood.
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