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Preface

This document is a masters thesis for the program Inteligencia Artificial,
Reconocimiento de Formas e Imagen Digital submitted to the Departamento
de Sistemas Informáticos y Computación at the Universidad Politécnica de
Valencia. In this masters program the thesis could be either oriented to
research or it could be professionally oriented. Although I am working on
research which in the future will lead to my Ph.D. thesis, this masters the-
sis has been professionally oriented so that it somewhat complements my
ongoing education.





Abstract

Face recognition is currently a very active research topic due to the great
variety of applications it can offer. Moreover, nowadays it is very common
for people to have mobile devices such as PDAs or mobile phones which
have an integrated digital camera. This gives the opportunity to develop
face recognition applications for this type of devices. This thesis treats the
problem of face analysis and recognition in mobile devices. The problem is
discussed and analysed, observing which are the difficulties that are encoun-
tered. Some algorithms for face recognition are analysed and optimised so
that they are better suited for the resource constrains of mobile devices. An
implementation of the algorithms in Java ME are presented, and these are
used to create a demonstration application that works in commercial phones.
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Chapter 1

Introduction

Biometrics is the study of methods for recognising humans based on some
intrinsic physical or behavioural trait. These methods have proved to be very
useful for different tasks which are common in the current society. Among
the different modalities used on biometric systems, face images are very pop-
ular because it is an unobtrusive method, well tolerated by users, and with a
wide range of applications. Moreover, nowadays it is very common for people
to have mobile devices such as PDAs or mobile phones which have an inte-
grated digital camera. This gives the opportunity to develop face recognition
applications for this type of devices.

The main objective of this work was to develop a face verification appli-
cation which worked on commercial mobile devices. However the idea was
not only to have a working software, but also to consider the difficulties that
needed to be addressed. The basic problem that face recognition has is that
it generally requires a lot of computational resources, something which is not
common to have on a mobile device. In this work, some algorithms for face
recognition are analysed, and some optimisations for these are proposed. The
proposed optimised algorithms were implemented and an extensive empirical
analysis was performed.

The thesis is organised as follows. The next chapter is a review of the
work that has been done on the area of biometrics and face recognition on
resource constrained devices. This review includes the research publications
that are related to this topic and some of the products that are currently
available. Chapter 3 describes the face recognition algorithms considered in
the work and the respective proposed optimisations. Followed by this, the
chapter 4 presents an empirical analysis of the algorithms. The results first
show the effectiveness of the proposed optimisations, followed by an estimate
of how well the algorithms will perform in such circumstances and what is
the amount of resources that is actually required. The final demonstration
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2 CHAPTER 1. INTRODUCTION

applications developed to work on mobile devices that support Java ME are
described in chapter 5. The final chapter states the conclusions, making
emphasis on which objectives were fully reached and which are the areas
that need further improvement.



Chapter 2

Review of Related Work

The current demand for security and surveillance systems, and the ever in-
creasing computing power that makes room for new applications, are some of
the reasons that have resulted in a large amount of research on face recogni-
tion and biometrics. A complete literature review on this subject would take
several pages, which is not the current objective. For more detailed literature
surveys refer to [ZCRP03, TEBEH06, LJ04]. This chapter is intended to be
a short summary of the most important aspects in face recognition research
followed by a more specific review of research related to face recognition in
mobile or resource constrained devices.

The amount of research on face recognition can be observed on several
important conferences specialised on this subject like the International Con-
ference on Biometrics (ICB) and the International Conference on Automatic
Face and Gesture Recognition (FG). Also on more general conferences about
pattern recognition, computer vision or image processing, there are generally
many papers related to face recognition. Apart from the numerous pub-
lications available, over the last few years there have been a several face
recognition competitions, to name a few there are some competitions using
the XM2VTS and BANCA databases and also the important NIST competi-
tions, the Face Recognition Grand Challenge (FRGC), the Face Recognition
Vendor Test (FRVT) and the upcoming Multiple Biometrics Grand Chal-
lenge (MBGC).

In the computer science literature the term face recognition is generally
used to encompass the two subjects face verification and face identification.
Face verification, also known as face authentication, is the task of deciding
if a given face truly belongs to a certain claimed identity. That is, it is only
decided if the face belongs or it does not belong to a claimed identity. On the
other hand, face identification is the task of deciding among several known
identities which, if any, is the one that corresponds to a certain input face.

3



4 CHAPTER 2. REVIEW OF RELATED WORK

Although the term face recognition generally refers to face verification
and face identification, the research on face recognition involves a lot more
of topics. Among these topics the first one that must be mentioned is face
detection, or face tracking if an image sequence is involved. Other topics on
face recognition are extraction of different types of information from a face
image. Some examples can be the identification of gender, ethnicity, state of
emotion, age, etc.

2.1 Face Detection

Irrespectively of the application, as input to a face recognition system there
is always some form of data which can be for example an image, an image
sequence or a three-dimensional image. Therefore the first process to preform
is to find out if in the input there is a face (or faces) present. This process is
achieved by a face detection algorithm. If the input is a sequence of images,
the task is to do face tracking, however the basis is still a face detection
algorithm, the difference is that the positions of the faces in previous frames
and motion estimation are used to assist the detection in the current frame.

The most common approach to face detection is to treat it as a binary
pattern classification task and use a scanning window. Some algorithms
based on this approach are found in [SK00, JKF01, RBK98]. This approach
has the limitation that it is intractable to scan all of the possible scales and
positions in an image, and therefore a discretisation must be introduced.
The most successful scanning window face detection algorithm is the one
introduced by Viola and Jones [VJ04, LM02, RF08]. This algorithm uses a
cascade of classifiers which are based on simple haar-like features which can
be efficiently computed at any scale or position using the so called integral
image.

A different approach to face detection is the one based on image segmen-
tation, or more specifically on skin colour detection. In this approach the
idea is to find the regions of the image that correspond to skin and afterwards
these regions are analysed to decide if they are faces or not. Some examples
of this type of algorithms are [SB02, SR02, JS08] and a good review on this
subject is [KMB07]. Another family of face detection algorithms are the ones
that represent the face as a constellation of feature points. These algorithms
are capable of giving a higher accuracy of the position of the face, however
they need higher resolution images [HKK+05].
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2.2 Face Recognition Algorithms

As was mentioned in the start of the chapter, the abundant research on
face recognition has left in the literature numerous face recognition algo-
rithms. In the survey by Zhao et al. [ZCRP03], they divide the approaches
in three different groups which are holistic approaches, feature based struc-
tural matching approaches and hybrid approaches. The holistic approaches
take into account the whole face, examples of these are eigenfaces [Tur91],
fisherfaces [BHK97], Support Vector Machines (SVM) [JMKL00], Bayesian
face recognition [MJP00] and discriminative common vectors [CNWB05].

The feature based structural matching approaches determine the posi-
tions of different facial features such as nose, mouth, eyes, and use the in-
dividual features for structural matching. Examples of these are Hidden
Markov Models (HMM) [NI98], Active Appearance Models (AAM) [ECT98],
and the Elastic Bunch Graph Method (EBGM) [WFKvdM97]. It is worth
mentioning that Gabor wavelets, play an important role for facial representa-
tion in these graph matching methods. The coefficients of these wavelets are
robust to illumination change, translation, distortion, rotation, and scaling.

Finally the hybrid approaches analyse the entire face as well as its local
features. Although these three groups can be used to categorise most of the
face recognition algorithms, there are others that do not fit perfectly into
any of them. An example of one of these algorithms which gives very good
recognition results is the local features approach [PPJV01]. This approach
uses local information, however the features extracted do not correspond to
predetermined facial features and also the structural information is not used.

2.3 Face Recognition in Mobile Devices

All of the research done on face recognition could be applied to resource con-
strained devices. However the problem lies in the fact that the algorithms
require a significant amount of resources. This problem can make the algo-
rithms too slow for them to be useful in a real application. The research on
face recognition has been aimed more at obtaining low errors and in few oc-
casions the algorithms are analysed by the amount of resources they require.
Unfortunately, there are very few publications specifically dealing with face
recognition on resource constrained devices.

The initial efforts to develop face recognition for mobile devices appli-
cations have the idea that the mobile device is only used to capture the
image used for recognition. This image is then transferred through a wire-
less network to a server which does the actual recognition, so the cost of the
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recognition algorithm is not a concern. These systems commonly target face
identification applications, which for instance can be very useful for law en-
forcement agencies. One example in this direction is the work of [WHH+02]
in developing a face identification system for pervasive computing. Another
example is the work of [ABBAQ05] also for face identification but based on
GPRS. In the work of Hazen the same approach is used, however it includes
the face and speech for doing identification [HWP03].

In this work, the interest is on doing all of the computing on the mobile
device, without depending on a communication network. This is obviously a
harder challenge. In [SHC05] a simple face recognition system based on 2D
PCA is proposed, however it is only a preliminary analysis and it does not
present any results. The work of Schneider [SEKK06], describes a face recog-
nition system developed in C++ for a Symbian platform. It includes a face
detector based on skin colour segmentation and a face recognition algorithm
based on the position of facial features. The paper includes results with very
few images, 21 to assess the face detection and 14 to assess the recognition,
therefore the results are not reliable. In [yHPC+07] a face recognition system
for mobile phones is presented however it requires a special camera because
it is based on Near-Infrared light. The work presented in [NSK05], describes
a system which does face detection using Viola and Jones and recognises
faces by means of correlation filters. A complete analysis is made about the
computation requirements and how much can be gained by using fixed point
arithmetic.

Although there are few publications on the subject, there are several
systems being developed and offered for face recognition on mobile devices.
Since 2005 the Japanese firm Omron has been offering face authentication
technology for PDAs and mobile phones [ISL06]. Another Japanese company
which offers face recognition technology for mobile phones is Oki Electric
Industry, and this technology has been selected by Vodafone KK for its mobile
devices. On the other hand, Motorola also announced to be incorporating
face recognition on mobile devices, however targeted at face identification for
law enforcement agencies. The software used by Motorola is FaceIt ARGUS
from i-Secure Group of Oakwell Engineering Ltd. These are some examples
that show that for several years several companies have been working on and
offering face recognition technologies for mobile phones. However up to now
this technology has not been widely spread.

An industry that is more rapidly adopting face recognition technology
is the digital camera industry. All of the most important digital camera
producers now have models which incorporate face detection technology. The
face detection is mainly used for automatically adjusting the image so that
the people in the picture appear correctly focused. This application has the
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advantage that if the detection fails, it does not affect much the usability of
the camera.

The software developed for this thesis was programed in the Java language
to be used in mobile phones supporting J2ME. On the Internet there is
some face recognition software available for J2ME. At www.drhu.org there
is an application called J2MEFaceSearch which lets the user select an image
which is uploaded to a server. Afterwards another image can be uploaded to
be recognised. Another application called J2MEFaceMatch is used for user
authentication. These applications do not perform face detection, however
there is a third application, J2MEFaceDetect for doing this. Finally it is
worth mentioning that there is an open source project called JJIL (Jon’s
Java Imaging Library) which is a Java image processing library targeted
towards mobile devices. It includes code for doing object detection using the
Haar cascade models trained with the OpenCV library.

www.drhu.org
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Chapter 3

Face Recognition in Mobile
Devices

This chapter is dedicated to describing in somewhat detail the algorithms
that have been chosen for doing face analysis and recognition in a mobile
device. The first sections describe different algorithms, and for each, the
reasons for choosing this particular algorithm are stated and discussed. The
final section of the chapter gives some modifications, that apply all of the
described algorithms, so that they are optimised for greater speed and less
memory usage and thus are more suited for a mobile device.

3.1 Face Recognition Using Eigenfaces

In the literature the most cited and popular face recognition algorithm is
eigenfaces [Tur91]. Eigenfaces is the first proposed appearance based face
recognition algorithm and lots of work has been based on it. However doing
face recognition using eigenfaces gives very poor results compared to state
of the art algorithms. Nonetheless eigenfaces is still used, most of all as
a reference. In other words eigenfaces is the baseline generally used for
comparing recognition results, and this is the same reason why it is included
in this work.

A common misconception around the eigenfaces is that it is a complete
face recognition algorithm, however it is simply a representation of the face
image information. Because the faces are originally represented as images,
they inherently have a very high dimensionality, although the information
actually lies in a lower dimensional space. What eigenfaces does is to reduce
the dimensionality of the face images using a base learned by Principal Com-
ponent Analysis (PCA) from a set of example face images. After the images

9



10 CHAPTER 3. FACE RECOGNITION IN MOBILE DEVICES

are projected to this low dimensional face space, it is still needed to use some
sort of classifier in order to do face verification or face identification. The key
advantage of the eigenfaces is that by doing dimensionality reduction, any
pattern recognition algorithm may perform better because it helps to deal
with the curse of dimensionality.

From the perspective of face recognition in a resource constrained device,
eigenfaces is very favourable. The low dimensional representation of the face
images is obtained by a simple linear projection. This means that it only
requires simple multiplications, and no other more complex mathematical
functions are used. Also, because the images are projected to a lower dimen-
sional space, the amount of information that the algorithm needs to process
is considerable low.

Eigenfaces can be summarised as the following. As input, it is assumed
to have a face image that has already been detected, cropped and resized to
a predetermined image size W ×H. First the face images are represented as
a vector x ∈ RD were D = WH and each pixel of the image is assigned to a
different dimension of the vector. Afterwards, the vectors are dimensionally
reduced to y ∈ Rd using a projection base Bd ∈ RD×d obtained by PCA. The
sub-index d indicates that the first d principal components are kept. The
resulting vectors are obtained by

y = BT
d (x− µ) . (3.1)

To compute the projection base, a training set of face images is used
X = {x1 . . .xN}. First the face mean, which is estimated by the empirical
mean µ, is computed by

µ =
1

N

N∑
n=1

xn . (3.2)

Afterwards, the covariance matrix Σ is also estimated empirically and is
computed by

Σ =
1

N
XoX

T
o , (3.3)

where Xo = (x1−µ x2−µ . . . xN −µ) ∈ RD×N . Finally the columns of the
projection base are the eigenvectors bi of Σ that correspond to the highest d
eigenvalues λi, that is Σbi = biλi. For more details on eigenfaces and PCA
refer to [Tur91, Fuk90].

As mentioned earlier, eigenfaces can be used with several classification
techniques which lead to different face recognition algorithms. A very simple
face verification algorithm which works a bit better than the one originally
proposed by Turk and Pentland [Tur91] would be the following. A set of face
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images from people that are not users of the system is used as a world model.
The images from the world model and the user are dimensionally reduced
using eigenfaces. As a score to verify an image x′, an approximation of the
posterior probability of the nearest neighbour classifier is used

p(c|x′) =
d2(y′,yw,nn)

d2(y′,yw,nn) + d2(y′,yc,nn)
, (3.4)

were yw,nn and yc,nn are the nearest neighbours in the face space of the world
model and the user model respectively.

3.2 Face Recognition Using Fisherfaces

Another very popular appearance based face recognition algorithm is fisher-
faces [BHK97]. Just like with eigenfaces, fisherfaces is not a complete face
recognition algorithm, it is just a method of representing face images in a
low dimensional space. It has the same benefits as eigenfaces, the low dimen-
sional representation is obtained by a simple linear projection, and it does
not require a large amount of data to be stored. The difference is that fish-
erfaces is a discriminative approach, and therefore compared to eigenfaces it
can give better recognition results. However the state of the art algorithms
perform even better than fisherfaces.

Learning the projection base for fisherfaces is very similar to eigenfaces,
the images are also represented as a vector x ∈ RD and are dimensionally
reduced to y ∈ Rd. The main difference is the way the projection base
is computed, which uses a combination of PCA and Linear Discriminant
Analysis (LDA).

First a PCA projection base is computed Pd′ ∈ RD×d′
. Using the pro-

jected training set Z = PT
d′Xo, a second projection base L ∈ Rd′×d is obtained

using LDA.
For doing LDA the between Sb and within Sw scatter matrices are needed

and these are computed by

Sb =
C∑

c=1

Nc(νc − ν)(νc − ν)T , (3.5)

Sw =
C∑

c=1

∑
n∈Nc

(zn − νc)(zn − νc)
T , (3.6)

were C is the number of classes, Nc is the number of vectors of class c and

νc =
1

Nc

∑
n∈Nc

zn . (3.7)
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The vector ν is the global mean of Z, however because of the previous sub-
traction of µ in the PCA projection then ν = 0.

The columns of the LDA projection base are the generalised eigenvectors
aj of Sb and Sw that correspond to the highest d generalised eigenvalues κj,
that is Sbaj = Swajκj. For more details on fisherfaces and LDA refer to
[BHK97, Fuk90].

The two projection bases can be combined to make a single projection
base, this is done by

Bd = Pd′Ld . (3.8)

The first projection by PCA is a necessary because generally the dimen-
sionality of the images is higher than the number of images in the training
set. If this happens, the within scatter matrix is singular and LDA cannot be
performed. Also by first doing dimensionality reduction with PCA a filtering
effect is obtained that removes some of the noise in the images. For this
reason it is a good idea to use the number of dimensions used by PCA as
another parameter which can be varied to optimise the performance of the
algorithm.

Fisherfaces can also be used to develop several face recognition algo-
rithms. For face verification the same methodology as presented in the pre-
vious section for eigenfaces could be used.

3.3 Face Recognition Using Local Features

The only face recognition algorithm which was considered in this work which
has a recognition accuracy comparable with other state of the art algorithms
is the one known as Local Features [PPJV01]. Between the current best face
recognition algorithms, it is very difficult to choose which one is better suited
for a constrained device. All of the algorithms have very high requirements
either in the amount of processing or the amount memory or even both. The
local features algorithm requires lots of processing and memory, however
just like the two previous algorithms described, it is based on a simple linear
projection and distance calculations. Furthermore the amount of resources
required depend completely on a few parameters which can be easily adjusted
making a compromise between performance and computational requirements.

In the local features face recognition algorithm, each image is represented
by a set of feature vectors f = {x1, . . .xF} xf ∈ Rw2

. The set of feature
vectors is obtained from all of the possible regions of the image of a window
size w × w. Depending on the size of the image and the size of the features,
the amount of feature vectors that are extracted can be very large, and this
is normally the case in order to obtain a high recognition accuracy. This
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amount of feature vectors can be reduced by using only the regions spaced
by s pixels, and also by selecting the F highest features according to a certain
criterion, for example the variance of the feature.

As can be observed, the information in the extracted local features is
redundant because the features can overlap. Therefore the space required
to store this information is larger than the space required for the original
image. This is somewhat alleviated by using PCA to dimensionally reduce
the local features, however it still requires more space than was originally
required. The PCA base is learned using the extracted local features from
all of the images in a training set, that is the training set would be X =
{x11 , . . .x1F

, . . .xNF
}, were N is the number of images and F the number of

extracted features per image.
The local feature representation can be used for face identification or

face verification, however in this work the only interest is on face verification
algorithms. In the literature the standard approach of doing face verification
using local features is the following [PPJV01, VP07, VPJV08]. A set of face
images from people that are not users of the system are used to construct a
world model which are all of the local features from these images. The user
models are the extracted features from the training images of that particular
subject. When a test image is presented to the system, as a verification score
the following approximation to the posterior probability of the client c given
the image x′ is used

p(c|x′) =
1

F

F∑
i=1

H[d2(y′i,yc,nn)− d2(y′i,yw,nn)] , (3.9)

were yw,nn and yc,nn are the nearest neighbours of the world model and the
user model respectively, and H[] is the Heaviside step function.

3.4 Discriminant Projections and Prototypes

The Learning Discriminant Projections and Prototypes (LDPP) algorithm is
a classifier learning approach which has been recently proposed by the author
of this thesis [VP08]. Although LDPP is a very general pattern recognition
approach, it has been specifically designed so that it works well in the recog-
nition of images.

As was mentioned before in the section on eigenfaces, images have a
very high dimensionality even though the objects that the images represent
will lie in a much lower dimensional space. This leads to a problem while
trying to learn a pattern recognition model, which is the so called curse
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of dimensionality. The curse of dimensionality in the context of machine
learning means that in order to obtain a reliable solution, the number of
parameters that need to be estimated must be low compared to the number
of data samples available. For example if an image has a dimensionality
higher than the number of training samples, then just a model as simple
as a single layer perceptron has more parameters than the number of data
samples.

The LDPP algorithm tries to handle the high dimensionality of the feature
vectors in the following way. Suppose that the input feature vectors have a
dimensionality of D. LDPP simultaneously learns two things, first it learns
a linear projection base B ∈ RD×R for dimensionality reduction, were R is
the number of dimensions of the reduced space. It also learns a reduced
set of prototypes P = {p1,1 . . .p1,M1 ,p2,1 . . .pC,MC

} for nearest neighbour

classification, were C is the number of classes, pc,m ∈ RR and M =
∑C

c=1 Mc

is the total number of prototypes.
Although the matrix B has a size of R times the number of dimensions

of the input vectors, if this matrix is restricted to be orthonormal, then the
actual number of degrees of freedom for this matrix is R. As a result to this
orthonormal restriction, the number of parameters that LDPP estimates is
R(1 + M). Reasonable values for R and M generally give a number of
parameters which is considerably lower than the number of data samples
available.

For more details on the LDPP algorithm refer to [VP08].
This algorithm has been used in this work to learn several recognition

models. One model was learned to do face detection and quality of the de-
tected face. Other models were learned to do face gender recognition and
face expression classification. This algorithm can also be used for face ver-
ification. A projection base is learned using some training images, however
the prototypes obtained are discarded [VP08]. Afterwards it is the same as
for eigenfaces and fisherfaces. The recognition results are similar to the ones
obtained with fisherfaces so there are no results included for this approach.

3.5 Algorithm Optimisations

This section discusses some particular properties of resource constrained de-
vices and how can the algorithms be modified so that they are optimised
for this type of environments. The type of devices that are being consid-
ered in this work are mobile phones, Personal Digital Assistants (PDAs),
digital cameras, or any smaller device, even laptop computers which can
benefit from lower power consumption and longer battery spans. There are
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two key restrictions that mobile devices have which need to be addressed
for improvement of the algorithms. First of all, mobile devices have small
amounts of memory, both for program execution and for storage of program
data. The other restriction is that the processors are slower than the ones
that are found in general purpose computers. Also the processors generally
lack a native floating point arithmetic unit, and therefore the execution of
operations involving real numbers are even slower.

In the previous sections some reasons were given for choosing each of the
algorithms. One common reason for choosing the previous algorithms was
that in the testing phase they all rely on very simple mathematical operations.
Namely the only operations that the algorithms require are multiplications
and additions or subtractions. In fact all the algorithms have in common
that they first perform a dimensionality reduction using a linear projection
base, and afterwards a nearest neighbour search using the euclidean distance
is carried out. These are the two aspects that are going to be optimised both
in speed and in memory requirements, and therefore it improves all of the
algorithms.

3.5.1 Memory Usage Reduction

Because dimensionality reduction using a linear projection base requires the
use of floating point arithmetic, it is common to use 32-bit or 64-bit floating
point variables to store the feature vectors. To optimise the memory usage,
in this work it is proposed to use for each value only one 8-bit signed integer
(byte) to store all of the feature vectors, both for permanent storage and
for storage during program execution. By representing the data using 8-
bit values, in contrast to 32-bit variables the space required to store the
feature data is reduced to a quarter. This improvement is without taking
into account other data that is needed to represent matrices or other more
complex data structures. However it is still a great improvement and it does
make difference not only in the amount of memory needed but also in the
seed of computation, as can be observed in the results in the next chapter.

The decision to store the data using only 8-bit signed integer values ob-
viously has some consequences. The first consequence that comes to mind
is that the precision of the represented values is greatly diminished and this
can affect the recognition performance of the algorithms. In the following
chapter it is shown that at least for the algorithms that were tested, the
performance of recognition is not significantly affected by this reduction of
precision. This is precisely one important contributions of this thesis. The
real question that needs to be answered is how to convert a floating point
value to an 8-bit integer so that the limited precision is well used. This
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question will be answered in the following section.

3.5.2 Dimensionality Reduction Optimisation

If the feature vectors are all stored as 8-bit integers, including the vectors
before and after the dimensionality reduction, then the question remains on
how to perform this process if it requires floating point arithmetic. One
option would be to convert the original vectors to float variables, if it was
necessary, then do the dimensionality reduction and finally convert the result
to 8-bit integers. However this is not an optimal solution, in part because it
requires more computation than it was originally necessary, and also because
using floating point arithmetic is too slow in the resource constrained devices
that are being targeted. The solution that is needed is, to store the input
feature vectors as 8-bit integers, do the dimensionality reduction process
using only integer arithmetic and directly obtain a result that is limited to
the 8-bit integer range.

As input to the algorithms it can expected to have images with 8-bits of
depth per channel. When having as input a face image it is common to do
some type of processing so that the effects of different illumination conditions
are somewhat removed. Some of these techniques give as output real valued
numbers, and in such a case it would be necessary to convert back to 8-bit.
However among the different illumination normalisation techniques, there are
ones that are based on integer arithmetic and perform very well. The best
one is the Local Histogram Equalisation (LHE) [VP05], which it is known to
work well with eigenfaces and fisherfaces. For local features face recognition,
a simple Histogram Equalisation per feature is enough to obtain a good result
[VP07].

Up to now it can be expected to have as input to the dimensionality
reduction 8-bit valued vectors. So the current question is how can the di-
mensionality reduction be performed using integer arithmetic. For this it
is necessary to analyse some of the properties of the projection bases. The
bases obtained from PCA and LDA come from the use of an eigenvalue de-
composition. This assures that the bases are orthonormal. The same can
be said about the base obtained from LDPP because it is being forced to
be orthonormal. The interesting fact that this tells about the bases is that
all of the values are between one and minus one. The actual projection is
done by an inner product of the vector with the base vector. This can be
approximated with integer arithmetic by multiplying the base vector by a
large number K, so that it can be rounded to an integer (but not an 8-bit
integer), and afterwards the result is divided by this factor. In mathematical
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terms, this is

y = BT (x− µ) ≈ round(KBT )(x− µ)

K
. (3.10)

In the previous equation the mean µ has been subtracted even though it is
not necessary because when computing distances between vectors the means
cancel out. The reason to keep the mean is so that when the vectors are
projected, the values will be centred around the origin and thus making
more predictable which will be the output range.

If the input vector x is composed of integer values, which will be the case,
then all of the operations of the projection are done using integer arithmetic.
However even if the input vector is represented by an 8-bit integer, the result
is not guarantied to be in the same range as the input. If the maximum value
of the input is M = max(|xi − µi|) i = 1, 2 . . . D then the maximum value
of a projected component is given by Mp = M

√
D. It can be seen that for

high dimensional vectors Mp can be a lot higher than the original maximum
M . This value could be used for scaling the projected output to the desired
range.

Although Mp is the theoretical projected maximum, it is quite pessimistic
because it is an extreme value that does not necessarily contain relevant
information, in fact it is possible that the data never reaches these values.
A better way to rescale the projected output and take the most advantage
of the limited range is to use the actual training data to choose an optimum
value. The final projection is given by

y′ =
BT

d (x− µ)

2m
≈ fitrange

[
round(2nBT

d )(x− µ)

2n+m

]
, (3.11)

were n and m are positive integers and fitrange is the operation that sets to
the maximum or minimum the values that fall outside the range or otherwise
the values is not modified. Choosing the factors to be powers of two is so
that the operation can be done a bit faster using bit displacement operations.

For choosing the value of m from the training data, a further analysis
of the projection base must be made. In PCA the first component is the
one that captures most of the variance of the data, this means two things.
First, that all the other components will have lower values, and second that
the first component is the most important one to represent the whole vector.
For LDA the situation is a bit different, the first component is the one that
maximises the between scatter and minimises the within scatter. Anyhow
for both techniques, the first component is the most important one, so it is
a good choice to use only this component to find an optimal value for m.
For the bases obtained from LDPP there is no information about which is
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the most important component, so in this case the component which has the
most variance in the training data is used. In the experiments, the value of
m was chosen so that three standard deviations of the chosen component are
kept within the range.

3.5.3 Efficient Nearest Neighbour Search Optimisation

In the previous sections it was proposed that in order to optimise the amount
of memory needed, the features should be stored and used as 8-bit signed
integers. After the dimensionality reduction, the next step in the algorithms
is to do a nearest neighbour search using the euclidean distance. Going on
with the idea that the computations should be done using integer arithmetic
and the feature vectors in 8-bit integers, then the same must be done for
the nearest neighbour search. Other metrics different from the euclidean
distance could give better recognition results, however this would make it
more difficult to optimise.

To find the nearest neighbour using the euclidean distance it is actu-
ally only necessary to compute the square euclidean distance. This is very
convenient because the computation of a square root is a much slower op-
eration. This way it is straight forward to compute the distance using only
integer arithmetic because it only requires subtractions multiplications and
additions. Furthermore given that the input are integer valued vectors, the
squared euclidean distance is always an integer.

The approach could be to use brute force and compute the distance to
all of the reference vectors and find the smallest one. However the nearest
neighbour search can be done a lot more efficiently using a kd-tree structure.
To build a good kd-tree from some feature vectors, it is necessary to use
floating point arithmetic however the structure can be represented using only
integer values.

For the local feature face recognition algorithm, it is sufficient to have
an approximate nearest neighbour search. Therefore the nearest neighbour
search can be performed by a fast approximate nearest neighbour search
algorithm which also uses a kd-tree structure to store the set of features
from the training objects. In [AMN+98], the concept of (1 + ε)-approximate
nearest neighbour query is introduced. A point p is a (1 + ε)-approximate
nearest neighbour of q if the distance from p to q is less than (1 + ε) times
the distance from p to its nearest neighbour. This concept works exactly the
same if the features are composed of integer values, and there is no need to
use floating point arithmetic for doing the nearest neighbour search.



Chapter 4

Results

One of the main objectives of this work was to assess if the optimisations pro-
posed in the chapter 3 result in a significant performance improvement and
how much is actually gained. With this aim, in this chapter some analytical
and experimental results are presented.

To be able to assess the proposed optimisations, all of the algorithms were
implemented in Java using for the feature vectors 64-bit and 32-bit floating
point variables (double and float) and 32-bit, 16-bit and 8-bit signed integers
(int, short and byte). The results for 64-bit floating point and in some places
the 32-bit integers variables were omitted because it did not contribute any
meaningful results.

4.1 Effect of Optimisations on Recognition

Performance

This section presents the results of an experiment aimed at showing how much
is the recognition performance of the algorithms affected by doing an integer
based dimensionality reduction and an integer based approximate nearest
neighbour search. In this experiment the XM2VTS multi-modal database
was used [MMK+99]. This database is composed of eight images for each of
the 295 subjects, which were taken at four sessions distributed over a period
of four months (two shots per session). This database is mainly intended
to assess the performance of identity verification algorithms, for which the
Lausanne protocol has been defined. This protocol specifies the performance
measures to be used and two different configurations that indicate which
images are to be used as training, evaluation and test. For more details on
the Lausanne protocol, refer to [LM98]. The experiments were carried out
only for configuration 1 of this protocol.

19
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Table 4.1: Total error rates (%) for face verification on the XM2VTS database
with the Lausanne protocol configuration I for different data types.

Algorithm float short byte
eval test eval test eval test

Eigenfaces 24.3 19.0 24.3 19.0 24.0 19.1
Fisherfaces 15.0 11.0 15.0 11.0 15.0 11.0

Local Features 3.9 4.7 3.9 4.7 3.9 4.8

Each of the face verification algorithms presented in the chapter 3 was
tested. The results for float, short and byte can be observed in the table
4.1. There is a difference between the results for short and byte because for
short the fitrange operation is not needed for approximating the projection,
therefore it was not applied.

These results for the total error rates could be compared with other al-
gorithms found in the literature [MKS+03, MKS+06], however the results
presented here are not the best ones that can be achieved with the algo-
rithms. The parameters of the algorithms were chosen arbitrarily because
the current objective was not obtain the best result possible but to see the
effect of the approximations.

The results for eigenfaces and fisherfaces were obtained using images of
size 24×24 and globally histogram equalised. For eigenfaces, the images
were reduced to 64 dimensions. For fisherfaces, the images were reduced to
64 dimensions by PCA and afterwards reduced to 48 dimensions by LDA.

For the results with local features, the images were of size 75×75 and
preprocessed using local histogram equalisation for a window of size 5×5
[VP05]. The extracted local features were for a window of size 13×13 with a
sub-sampling of 1 for the training images and 2 for the test images. The 50%
of the features with highest variance were kept. Finally the features were
reduced to 30 dimensions.

As can be observed in the table, there is very little difference between the
results for the different data types. For fisherfaces, the is no difference up to
the second decimal. The differences for all the algorithms are so small that
they are not statistically significant. This result confirms that the proposed
approximations do not make a noticeable negative impact on the recognition
performance of the algorithms.
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Table 4.2: Face verification results on the BANCA database for the Matched
Degraded experiment.

Algorithm TER@EER TER@FAR=0.1% AUC
[%] [%]

Eigenfaces 27.9 57.0 0.932
Fisherfaces 26.9 37.2 0.940

Local Features 48× 48 20.2 29.8 0.970
Local Features 64× 64 13.7 17.8 0.988

4.2 Face Verification on Low Quality Images

In most of the literature related to face verification, the experiments are
done using high quality images taken under controlled illumination. The
idea in this work is to use the algorithms in mobile devices were the cameras
available are of much lower quality and the images are taken in uncontrolled
environments. There are few results published using low quality images and
there is no public database of images taken from mobile devices. However
there is a public database in which the images were taken using a webcam in
a somewhat uncontrolled situation. It is the BANCA database [BBBB+03].
In the BANCA database 208 subjects were recorded in three different scenar-
ios, controlled, degraded and adverse, taken over a period of three months.
The degraded scenario was the one that used the webcam. The associated
BANCA protocol [BBBB+03] defines several experiments for assessing face
verification algorithms.

The experiment in the BANCA protocol that best matches the situa-
tion of recognition in a mobile device is the Matched Degraded, which uses
for training and testing only images from the webcam. This experiment
was used to estimate the face verification performance of the algorithms.
For each of the algorithms the parameters were varied and different illu-
mination normalisation techniques were tried. Three different performance
measures were computed, namely the total error rate at the equal error rate
point (TER@EER), the total error rate at a false acceptance rate of 0.1%
(TER@FAR=0.1%) and the area under the ROC curve (AUC). The results
are reported on the table 4.2.

Since it is common for a verification system to require a low false accep-
tance rate, the parameters of the algorithms are the ones that minimised
the TER@FAR=0.1% in the development sets. The results in the table for
eigenfaces and fisherfaces are for images of size 32×32 using local histogram
equalisation (LHE) for a window of size 4 [VP05]. For eigenfaces the features
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were reduced to 48 dimensions, and for fisherfaces reducing to 96 dimensions
by PCA and to 29 dimensions by LDA.

Two results are presented for local features. The first one is faster and
produces smaller models. The image size was 48 × 48, the feature window
size was 9 pixels extracted every 2, the normalisation was histogram equal-
isation per feature and the dimensionality was reduced to 24. The second
configuration for local features was for images of size 64 × 64, features of
13 pixels extracted every 2, LHE for a window of size 6 and dimensionality
reduced to 24.

As expected, the best results are for local features, followed by fishefaces
and eigenfaces. For the Matched Degraded experiment of the BANCA some
comparable results can be found in [SKKM03]. The best algorithm reported
is for fisherfaces with a support vector machine as classifier which has a
TER@EER of 15.1%. The result obtained here for local features is better,
although it is somewhat an unfair comparison because the parameters here
were optimised for the FAR=0.1% operating point. However the configura-
tion which gives the lower error rate may be unpractical for a mobile device
because it requires a lot of computation. The results in the following sections
for the local features are only for the faster configuration.

4.3 Memory Requirements

In order to reduce the amount of memory required, both for processing and
for storage of data, in the chapter 3 it was proposed to represent all of the
feature vectors using 8-bit integers. Assuming that the baseline alternative is
to represent the feature vectors using 32-bit float variables, then storing them
using 8-bits reduces the space required to one quarter of what was needed.
This is a correct estimate of the reduction of memory needed to store data
such as the user models, nonetheless this is leaving out a possible final step of
data compression. From this we can estimate the space required to store the
world model and user models given a certain configuration of the algorithm.

Take for example that we were to use eigenfaces reducing dimensionality
to 30, having 300 images to learn the world model, and 3 images to learn
the user models. Then the size of the models using 8-bit integers would be
300 × 30 = 9000 bytes for the world model and 3 × 30 = 90 bytes. As a
general rule, using 8-bit integers the size of the models for eigenfaces and
fisherfaces would be N × d and for local features would be F ×N × d, were
N is the number of images used for training, d the number of dimensions in
the reduced space and F the number of local features extracted per image.

Estimating the amount of memory required for the processing of the al-
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gorithms is a bit more complicated, and it actually is implementation de-
pendent. The gain obtained by passing from 32-bit floats to 8-bit integers is
not a quarter. This is because if there is a large amount of feature vectors,
a kd-tree structure is required to do an efficient nearest neighbour search.
As mentioned before a kd-tree structure for discrete data can be generated
using only integers, however not all of the information can be stored using
only 8-bit precision. Furthermore, a kd-tree structure requires the use of a
lot of pointer data which depend on the architecture of the system and the
structure of the generated tree.

Using the implemented software in Java, several kd-tree structures were
built using real data extracted from face images of the XM2VTS database
[MMK+99]. The dimension of the feature vectors and the amount of vectors
in the structure were varied. The graphs in figures 4.1, 4.2 and 4.3 show
the size of the kd-tree structure for 16, 32 and 64 dimensions respectively.
Obviously the size of the kd-trees is the same for float and int, for short is
smaller and for byte is the smallest and they all increases linearly with the
number of vectors.

As can be observed in the graphs the curves are linear, this means that
for the different data types the relative size of the kd-trees is constant for
any number of vectors and varies with the dimensions of the feature vectors.
This relationship can be observed in the figure 4.4. This graph gives a better
idea of how much the memory usage is reduced by representing the data as
8-bit integers.

4.4 Computation Time of the Algorithms

As was noted in the section 3.5, all of the face recognition algorithms rely
on first doing a dimensionality reduction by a simple linear projection and
afterwards a nearest neighbour search is performed. Apart from this, each
algorithm has to do some image processing and a feature extraction process.
Each of these tasks have been evaluated and the computation times were
measured first on a desktop computer and afterwards on a mobile phone.

4.4.1 Efficient Nearest Neighbour Search on a PC

If there is a large amount of feature vectors, which is the case for the world
models of all of the algorithms and the user models for local features, the
nearest neighbour search can take a significant amount of time. For this
reason an efficient nearest neighbour search algorithm based on a kd-tree
structure was implemented.
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Figure 4.1: Size of the kd-tree structure for feature vectors of 16 dimensions
for different data types.
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Figure 4.2: Size of the kd-tree structure for feature vectors of 32 dimensions
for different data types.
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Figure 4.3: Size of the kd-tree structure for feature vectors of 64 dimensions
for different data types.
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Figure 4.4: Relative size of the kd-tree structure for different data types.
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The implementation of the kd-tree nearest neighbour search was first
tested on a desktop computer running Linux with an Intel(R) Pentium(R)
4 CPU 3.20GHz processor. The Java virtual machine used was the Sun
Java 2(TM) Runtime Environment Standard Edition (build 1.5.0 11-b03).
For this experiment 1400 images from the XM2VTS database [MMK+99]
were used, 1000 for training and 400 for testing. The face in each image
was cropped using the eye coordinates that are publicly available, resized to
32×32 pixels and converted to grayscale. Using the methodology explained
in the section 3.3, local features were extracted for a window size of 13×13
pixels. In order to obtain training sets of different sizes, the amount of local
features extracted from each image was varied.

Figures 4.5, 4.6 and 4.7, show the results of the average nearest neigh-
bour search time for features of 16, 32 and 64 dimensions respectively. The
experiments were repeated ten times and the results averaged. The graphs
also include the 95% confidence intervals, although they are too small to be
seen.

In all of the graphs it can be observed that there is a large gap between
the search time for float and the others. This is mostly due to the difference
in speed of floating point arithmetic and integer arithmetic. When there
are more dimensions, the gain in speed seems to be larger. For 32 and 64
dimensions the integer based search is about twice as fast as with float.
Finally it is interesting to note that for a large amount of training vectors,
byte becomes slightly faster than int and short, and the gap with float stays
constant.

4.4.2 Face Verification on a PC

On the same desktop computer used to compute the nearest neighbour search
times, the average time for each step of the verification process was estimated.
This estimation was done using the XM2VTS configuration 1 for the same
parameters of the algorithms as in the section 4.1. In the table 4.3 are the
average times in milliseconds for a single verification of an image. The ex-
traction process includes the preprocessing and the feature extraction. These
times are for each algorithm and data type. The behaviour is as expected,
being for byte about 1.5 times faster than float.

As mentioned earlier, the parameters were chosen somewhat arbitrarily
because the objective was to compare between the use of the different data
types. Furthermore, it is difficult to find the verification times of other algo-
rithms found in the literature, so neither can these be compared.
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Figure 4.5: Average nearest neighbour search time for ε = 2 and feature
vectors of 16 dimensions for different data types on a PC.

 0.01

 0.1

 1  10  100

K
D

-T
re

e
 s

e
a
rc

h
 t
im

e
 [
m

s
]

Number of vectors [x1000]

float
int

short
byte

Figure 4.6: Average nearest neighbour search time for ε = 2 and feature
vectors of 32 dimensions for different data types on a PC.
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Figure 4.7: Average nearest neighbour search time for ε = 2 and feature
vectors of 64 dimensions for different data types on a PC.

Table 4.3: Verification times (ms) for the different algorithms and data types
on a PC.

Algorithm extraction projection score Total

Eigenfaces
float 0.040 0.320 0.220 0.580
short 0.035 0.245 0.135 0.415
byte 0.028 0.288 0.135 0.451

Fisherfaces
float 0.040 0.243 0.168 0.451
short 0.035 0.188 0.105 0.328
byte 0.028 0.220 0.105 0.353

Local Features
float 45.43 22.43 1026.67 1094.50
short 44.03 16.16 765.76 825.95
byte 43.97 16.88 653.72 714.57
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4.4.3 Face Verification on a Mobile Phone

Up to now the processing times presented have been for the implemented
software running on a desktop computer. These results have proved that the
proposed optimisations really work under these circumstances. Nonetheless
the objective is to determine how much is gained when the algorithms are
running on a mobile device and if the processing times are adequate for a
real world application. The ideal solution would be to test the software on
several mobile devices, however during the realisation of this work only one
device was available for testing. All of the results presented here are for a
Nokia N70 mobile phone.

Doing experiments on a mobile phone involving thousands of images or
feature vectors is not possible due to the limited memory that is available.
Because of this, the results are not averages obtained for a standard experi-
ment using a well known database. The results were obtained using real data
extracted from face images, however in some cases only one image was used
and the processes repeated over and over.

Projection Times:

The graph on the figure 4.8 shows the average projection time for features
of an original dimensionality of 1024 for the different data types. The orig-
inal dimensionality is the same as the one that would be required for the
parameters of eigenfaces and fisherfaces presented in the section 4.2.

As can be observed in the graph, the processing times for byte are more
than five times faster than for float. This is a very encouraging result, how-
ever in eigenfaces and fisherfaces a verification of an image involves only one
projection and therefore it does not account for much of the total processing
time. The graph on the figure 4.9 shows the projection time for features of 81
dimensions, a value common for local feature face recognition. The gain from
float to byte is slightly lower than the previous case, however it is still very
high. Furthermore for local features several feature projections are needed
for verifying one image, therefore the impact on the total time can be higher.

Nearest Neighbour Search Times:

The graphs on the figures 4.10 and 4.11 show the average nearest neighbour
search time for features of 16, 24 and 32 dimensions respectively. In this case
the nearest neighbour searches are about six times faster than the floating
point searches. It is somewhat unexpected that the gain from integer arith-
metic is higher for nearest neighbour searches than for feature projections.
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Figure 4.8: Average feature projection time for D = 1024 for different data
types on a Nokia N70.
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Figure 4.9: Average feature projection time for D = 81 for different data
types on a Nokia N70.
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Projections require exclusively floating point operations unlike the nearest
neighbour searches.

kd-tree Structure Construction Times:

Depending on the amount of reference feature vectors, the nearest neighbour
searches may or may not require a kd-tree structure for being more efficient.
The user models for eigenfaces and fisherfaces only have a handful of vectors,
and therefore a kd-tree is not necessary. On the other hand, the world models
for all of the algorithms and the user models for local features do require a kd-
tree, and this means that these structures have to be constructed. The world
models are fixed, and therefore the corresponding kd-trees do not have to be
built on the mobile device. However, this is not the case for the user models in
the local features algorithm. Figures 4.12 and 4.13 show the average kd-tree
construction times for each data type and varying the number of vectors.

Face Verification Times:

In the table 4.4 are the execution times for each data type and algorithm using
the parameters from the experiment on the section 4.2. For local features,
the faster configuration was used.

For eigenfaces and fisherfaces the gain due to the optimisations is very
little. For these configurations most of the processing time is taken by the
local histogram equalisation which is integer based and was not possible to
optimise. On the other hand, the gain obtained for the local features is
almost five times better. This takes the verification time from almost four
seconds, which can be very frustrating for a user of the system, to less than
one second. The 95% confidence intervals are included which confirm the
significance of the result.

4.5 Face Verification Statistics

Using the results from the previous sections, some statistics of the face ver-
ification algorithms have been estimated and organised, see table 4.5. The
statistics are for the parameters from the experiment on the section 4.2 and
only for the optimised versions of the algorithms. The data gathered in table
are the total error rate at a false acceptance rate of 0.1%, the size of the
verification user models, the memory required by the algorithms, and the
enrolment and verification times on a Nokia N70. The user model sizes and
enrolment times were estimated for three training images.
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Figure 4.10: Average nearest neighbour search time for ε = 2 and feature
vectors of 24 dimensions for different data types on a Nokia N70.
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Figure 4.11: Average nearest neighbour search time for ε = 2 and feature
vectors of 32 dimensions for different data types on a Nokia N70.
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Figure 4.12: Average KD-Tree construction time for bucket= 10 and feature
vectors of 24 dimensions for different data types on a Nokia N70.
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Figure 4.13: Average KD-Tree construction time for bucket= 10 and feature
vectors of 32 dimensions for different data types on a Nokia N70.
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Table 4.4: Estimation of verification times (ms) for the different algorithms
and data types on a Nokia N70.

Algorithm extraction projection score Total

Eigenfaces
float 379 92.4 22.8 494 ± 9
short 373 19.5 2.9 396 ± 6
byte 368 17.8 2.8 389 ± 5

Fisherfaces
float 375 55.1 14.2 444 ± 8
short 366 11.2 2.0 378 ± 6
byte 363 11.1 1.9 375 ± 6

Local Features
float 232 1266 2175 3764 ± 13
short 119 272 357 749 ± 15
byte 119 271 369 759 ± 14

Table 4.5: Face verification statistics for the different algorithms including
average execution times on a Nokia N70.

TER@ Model Memory Enrol. Verif.
Algorithm FAR=0.1% Size Time Time

[%] [kB] [MB] [s] [s]
Eigenfaces 57.0 0.141 0.118 0.387 0.389
Fisherfaces 37.2 0.085 0.075 0.374 0.375

Local Features 29.8 28.23 1.093 0.566 0.759
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This results can be compared with the OKAO Vision face recognition
engine for mobile devices. In [ISL06] they report recognition and enrolment
times of 0.99 and 2.84 seconds respectively for an ARM920T 200MHz pro-
cessor. This processor is similar to the one of Nokia N70, and therefore the
processing times are comparable to the ones obtained here. However in mem-
ory usage the local features approach requires more than 1MB compared to
480kB required by OKAO Vision.

4.6 Face Detection

A face recognition algorithm is no use if there is no previous face detection
and localisation. By face detection it is meant to detect the presence and the
amount of faces in an image or video. And by face localisation it is meant
the position scale and pose of the face in the image. This process is necessary
because if the face is not well positioned and cropped, the performance of
recognition algorithms degrades significantly. Considering the situation of
face recognition in a mobile device, it is possible not to have a face detection
and localisation. The idea would be to use some king of visual feedback
so that the user positions its face correctly. However this is much more
uncomfortable and time consuming for the user and the recognition accuracy
can sill be affected.

In this work, three face detectors were implemented. The fist one only
detects a single face and the others are capable of detecting multiple faces.
Given that the detection is going to be done on a personal mobile device, it
is reasonable to assume that the images will have only one face which will be
relatively close to the camera and frontal. For the initial attempt to do face
detection on the mobile device, the problem was restricted to selecting the
position and scale in the image which is more probable of being a face. Very
little care was taken to avoid false detections in the case that the image does
not have a face. This type of detector can be reasonable in this situation
if the user of the system will have a visual feedback which shows that the
image was not captured correctly.

Generally detection algorithms learn to detect faces by having a labelled
corpus of face and not face images. If the face detection problem is simplified
to finding the most probable location of the face in the image, the classifier
used can be trained differently. The classifier can be designed to discrimi-
nate between well centred faces and wrongly positioned faces and non faces.
Following this idea a training corpus was generated and an LDPP classifier
was trained. For the training data, the same images from the gender recog-
nition data-set were used [VP08]. Using the eye coordinates, 1892 correctly
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positioned face images and 5336 random wrongly positioned faces were ex-
tracted. To the bad positioned faces, 2500 non face images extracted from
University of Washington outdoor scene data-sets [LSB05] were added. The
size of the images was 24× 24.

The LDPP algorithm was used to learn a 16-dimensional orthogonal pro-
jection base and eight prototypes for each of the classes. This classifier was
also optimised using the 8-bit based dimensionality reduction. The detector
implemented was a simple exhaustive classification of faces and non faces
for different positions and scales. The position classified as a face with the
highest confidence is the one used for the only detected face.

This face detector was not assessed with a well defined experiment with
some standard database of face images. However this detector was tried on
a mobile phone (see chapter 5) taking pictures of real people and it detects
faces surprisingly well even though very few face images were used as training.
On the Nokia N70 phone it takes on average 4.5 seconds to detect faces in a
160×120 image searching from faces of 60 to 120 pixels sampled every 1.2.

The second detector implemented also used the previously mentioned
classifier trained with the LDPP algorithm. The difference is that it was
extended to detect multiple faces. After the exhaustive search, the close-by
hypothesis are fused using morphological operations. Finally the overlapping
hypothesis are removed taking preference the ones with higher confidence.
This post-processing is computationally expensive and therefore this second
detector is slower. For this second detector the time taken to process the a
160×120 with the same scale sub-sampling as before is about 13.4 seconds.
This is considerably higher and for a user would be unacceptable. This does
indicate that the method for used fusing and selecting the final hypothesis is
a bit too expensive for a mobile device.

The final detector that was implemented was the Viola and Jones face
detector. The detection models were not trained, instead the models that
come with the OpenCV library were used. After the Haar cascade gives the
face hypothesis the same procedure as the previous detector for fusing and
selecting the final face hypothesis was used. On average, it takes about 5
seconds to process an image under the same circumstances as before. Possibly
most of the time is due to the post-processing as was noted in the previous
detector. Therefore a much faster detector can be obtained by improving
this part of the code.
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4.7 Face Gender Recognition

The LDPP algorithm was used to learn one classifier used for face detection
as mentioned in the previous section. However this algorithm can be used to
for several other image recognition tasks. In the context of face recognition,
an example could be gender identification.

An experiment identical to the one presented in [VP08] using the gender
recognition data-set was performed. The only difference with respect to the
result presented in [VP08], was that like it was explained in the section 3.4
the learned projection bases were restricted to be orthonormal. This makes
the algorithm deal better with the curse of dimensionality and thus can lead
to higher recognition rates. The best result obtained was for learning a 32-
dimensional projection base and 8 prototypes per class. This configuration
gave an error rate of 8.5% compared to the 9.5% reported in [VP08].
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Chapter 5

Demonstration Applications

The final objective of this work was to have a demonstration application that
worked on several commercial mobile phones. The most popular operating
system used in mobile phones is Symbian, however the majority of devices
use proprietary operating systems. Furthermore the new operating system
Android, in the near future could gain a large portion of the market. This
posed the problem regarding which architecture to target. Doing face analysis
and recognition from images requires a lot of processing, therefore the best
choice would be to implement the software in C language and port it to each
of the platforms. Nonetheless this is not an easy task and possibly many
problems would arise. To make the software more platform independent the
decision was taken to implement all of the software in Java. For this same
reason all of the results presented in the chapter 4 were obtained using Java.

Most of the commercial phones currently sold support the Java Micro
Edition (ME) specification, which is a subset of the Java platform devel-
oped for resource constrained devices. Each manufacturer supplies its own
java virtual machine, therefore some incompatibility issues can arise. The
application framework used in Java ME is the MIDlet, which was adequate
to make the proposed demonstration applications. The demo applications
should work on devices which support Java ME with CLDC 1.1 and MIDP
2.0. The demo applications are available on the Internet and can be freely
downloaded from http://www.iti.upv.es/∼mvillegas/research.

All of the applications use the camera for capturing face images. There-
fore the devices also need to have a camera which is supported by the Java
Mobile Media API. Unfortunately because of the security model of the Java
application each time the user tries to take a picture a confirmation message
is displayed.

39
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5.1 Face Detection

One of the demo applications developed is dedicated exclusively to face de-
tection. The face detection demo MIDlet is a simple application that shows
in the screen the output from the camera and waits for the user to take a
snapshot. When the snapshot is taken, faces are detected on the image and
afterwards the results and some statistics are presented. Figure 5.1 shows
the output screen from an example detection.

Figure 5.1: Snapshot of the face detection demo.

Several details can be configured in the application. First for mobile
devices that have two cameras, the application can be configured to use
either one. The algorithm used for the face detection and the parameters
that control it can also be adjusted at will. The detection algorithms that
can be chosen from are the ones presented in the section 4.6. The detection
parameters that can be adjusted are: the minimum and maximum scale in
pixels and the step between the sampled scales; the sub-sampling distance
as a percentage of the face width; and the maximum number of faces to be
detected.

The detection results screen first shows the original image with additional
information related to the detection. In the configuration there is also a field
called Image output which controls the amount of information that is dis-
played over the detected image. A value of zero only highlights the detected
faces and a value of three highlights all of the considered hypothesis and the
regions used for fusion of nearby hypothesis. Followed by the detected image
the total detection time and the number of faced detected are displayed. Fi-
nally for each face detected the detection score, the face centre and size and
a cropped version of the face is displayed.
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5.2 Face Verification

The final goal of this work was to have a demo application that worked on
commercial phones for doing face verification. The developed application
starts displaying a menu which gives the options to capture training images,
edit the training images, make a verification and change the configuration.
Figure 5.2 shows a snapshot of the main menu.

Figure 5.2: Snapshot of the face verification demo.

In the configuration screen the user can choose among the three different
verification algorithms that were presented in this thesis. Also, the verifi-
cation threshold can be modified by selecting one of the operating points.
Finally just like in the face detection demo, for mobile devices that have two
cameras, the application can be configured to use either one.

The other options of the main menu are very self explicative. The capture
training option activates the camera so that the user takes images that will be
included in the training of the user model. The edit training option displays
the images that have been captured for training and gives the option the
delete any unwanted images.

The final option of the main menu gives the option to do a face verifica-
tion. By selecting this option the camera is activated waiting for the user
to capture an image. When the image is captured the face is detected and
verified. The output of the face verification is first a message indicating if the
access was granted or not (a positive or a negative verification). Afterwards
the score of the verification algorithm is displayed along with the threshold
used to make the decision. Finally the times taken for detection, building
the user model and each of the steps of the verification process are displayed.
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5.3 Face Gender Recognition

Originally this demo application was intended to do more than just gender
recognition. It was more intended to analyse a face image and printout
several data, including gender, facial expression, and ethnicity. However
because of a lack of adequate labelled data-sets it was only possible to do
gender recognition.

This application simply gives the choice to select which camera to use and
when an image is captured the face is detected and the results are presented.
The result shows if the face image is of a male or a female and the confidence
of the classifier. Also the execution times are shown and at the end the
captured image is shown with the detected face highlighted. Figure 5.3 shows
the output screen of a recognised image.

Figure 5.3: Snapshot of the face gender recognition demo.



Chapter 6

Conclusions

This work has been oriented to the difficulties that are encountered when
trying to do facial analysis and recognition in mobile devices. Some face
recognition algorithms were described and analysed in detail, and this made
it possible to propose some key optimisations targeted at the specific charac-
teristics that are encountered in resource constrained devices. The objective
was to reduce the system requirements in terms of memory and processing
speed without affecting the recognition accuracy.

The proposed optimisations were very simple and general which could
be applied to all the algorithms in question, however this ideas can also be
applied to many other pattern recognition problems. The optimisations were
first to use only 8-bit signed integers to store the training data and second to
do as much of the processing a possible using only integer arithmetic. These
ideas were used for optimising linear feature projections used in dimension-
ality reduction and for efficient nearest neighbour searching by means of a
kd-tree structure.

The algorithms were implemented with and without the proposed optimi-
sations and an extensive empirical assessment was performed. Experiments
using real face images confirm that the optimisations do not have a significant
impact on the recognition accuracy of the algorithms. Furthermore, experi-
ments done on a Nokia N70 mobile phone show that the algorithms can be
almost five times faster by using integer arithmetic. The improvements in
memory requirements are also significant. For processing of the algorithms
the memory used is reduced by a factor of two and for the storage of data
the improvement is by a factor of four.

The recognition accuracy of the algorithms were estimated trying to some-
what simulate the circumstances that are generally found in mobile applica-
tions. The results obtained are comparable to existent commercial software,
both in processing time or resource requirements.
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The only part for which the results were not as good as was initially
expected was in the face detection. Three face detectors were implemented.
Two were based on prototypes and nearest neighbour classification. The first
one detects only one face and the other can detect multiple faces. The third
detector was the well known Viola and Jones, also for detecting multiple faces.
The detection takes about five seconds, which is quite slow compared to other
software available on the Internet which also runs in J2ME. The part which
is making the detection slow is the post-processing done for fusing close-by
hypothesis and selecting the final ones. As future work the detectors can
surely be greatly improved.

As a result of this work, three J2ME MIDlet applications were developed.
One for doing face detection, another for doing face verification or in other
words user authentication, and the final one which does face gender recog-
nition. They all work considerably well, however they can still be improved
much more. Furthermore, as future work an application could be developed
which has some real use not just being a demonstration.
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[BBBB+03] Enrique Bailly-Bailliére, Samy Bengio, Frédéric Bimbot,
Miroslav Hamouz, Josef Kittler, Johnny Mariéthoz, Jiri
Matas, Kieron Messer, Vlad Popovici, Fabienne Porée, Belén
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