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1 

SUMMARY 

In the last decades, the European eel Anguilla anguilla has suffered a drastic 

decrease in the recruitment in most areas of their distribution range, leading 

the species to be included as critically endangered in the IUCN list. This 

situation, together with the high commercial importance of the species, 

evidence the need of taking actions such as development of reproduction in 

captivity and control of fisheries based on the complexity of their life cycle. 

One of the most interesting tools for its use in conservation biology is the 

sperm cryopreservation, which presents several advantages for this species 

such as the synchronization of gametes, selection of genetic lines or 

cryobanking. 

However, the development of cryopreservation protocols necessarily 

requires good quality sperm, and it is also needed an accurate method to 

assess sperm quality both pre- and post-cryopreservation. On this last 

matter, fish sperm motility is considered one of the best quality biomarkers 

for sperm quality assessment in fish, and it can be evaluated subjectively or 

objectively using computer assisted sperm analysis (CASA-Mot) systems.  

First, an experiment was conducted to evaluate the precision and accuracy 

of both methods for assessing sperm motility: the subjective method and the 

objective technique using CASA-Mot system. Moreover, it was tested 

whether the degree of expertise of the technicians in the case of the 

subjective method, has an effect on the accuracy of the motility estimation, 

and therefore there is an influence of the laboratory staff on the sperm 

motility assessment. Here we concluded that both the method and the 

technician expertise were key factors in order to accurately assess sperm 

motility in European eel, so the use of CASA-Mot together with qualified stuff 

is required to obtain reliable results. 

Secondly, and alternative methods for European eel males maturation was 

evaluated by testing two different hormonal treatments: OVI, a recombinant 

α-choriogonadotropin; and VET, a human chorionic gonadotropin purified 

from female urine. After choosing the best hormonal treatment, the effect 

of three different doses was evaluated aiming for best performance and 

lowest cost on the treatment. The results of this experiment pointed at OVI 
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as the best hormonal treatment in terms on sperm quantity and quality in 

most of the weeks of treatment, and at a weekly dose of 1.5 IU/g fish, which 

also provide the greatest profitability, obtaining high quality sperm at a lower 

price. 

In a third experiment, and using the knowledge acquired in the two first 

experiments (using the OVI hormonal treatment and CASA-Mot to assess 

sperm quality), a series of experiments were conducted to standardize the 

European eel sperm cryopreservation protocols available at the moment 

(using DMSO or methanol as cryoprotectant). The results indicated that the 

protocol using methanol was the best of them two in terms of sperm motility 

and velocity, sperm viability and preservation of DNA integrity.  

Following this last standardized method, a fourth experiment was conducted 

aiming for improvement of the protocol in terms of volume (larger volumes) 

and sperm quality outcome. Moreover, a simple protocol for short-term 

storage was developed to complement the options to preserve sperm for 

different time periods. Of all the tested storing conditions, 1/50 dilutions at 

4 ºC showed the best results, maintaining the motility compared to control 

for 3 days, and some sperm motility (12%) was still observed after 7 days. 

From the cryopreservation experiment, it was possible to scale up the 

cryopreserved volumes to 2 and 5 mL without losing sperm quality compared 

to lower volumes. Moreover, the protocol was further improved by 

supplementing the protocol with egg yolk as an additive, obtaining the 

highest cryopreserved sperm motilities (over 50%) ever reported in 

European eel. 

The final chapter of this thesis consists of a historical review of all the work 

that has been carried out in cryopreservation of eel sperm. Here, it is 

described with detail the evolution of the different protocols developed since 

the early 2000’s in the Japanese and European eels, and including the latest 

results presented in previous chapters, which put into perspective our 

advances in cryopreservation of eel sperm. 
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RESUMEN 

En las últimas décadas, la anguila europea Anguilla anguila ha sufrido una 

disminución drástica de su población lo que ha llevado su inclusión como 

especie en peligro crítico en la lista roja UICN. Esta situación, junto con la 

gran importancia comercial de esta especie, evidencia la necesidad de tomar 

acciones como el desarrollo de la reproducción en cautividad y el control de 

la pesca. Una de las herramientas más interesantes para su uso en la biología 

de la conservación es la criopreservación de espermatozoides, que presenta 

varias ventajas para esta especie, incluyendo la sincronización de gametos, 

la selección de líneas genéticas o su uso para la creación de un criobanco. 

Sin embargo, el desarrollo de protocolos de criopreservación 

necesariamente requieren esperma de buena calidad. Además, se necesita 

un método preciso para evaluar la calidad del esperma tanto antes como 

después de la criopreservación. Sobre esta última cuestión, la motilidad de 

los espermatozoides de los peces se considera uno de los mejores 

biomarcadores para la evaluación de la calidad de los espermatozoides en 

los peces, y se puede estudiar de forma subjetiva u objetiva utilizando 

sistemas “computer assisted sperm analysis” (CASA-Mot). 

Primero, se realizó un experimento para evaluar la precisión y la exactitud de 

ambos métodos para estudiar la motilidad del esperma: el método subjetivo 

y la técnica objetiva que utiliza el sistema CASA-Mot. Además, se probó si el 

grado de experiencia de los técnicos en el caso del método subjetivo tiene 

un efecto en la precisión de la estimación de la motilidad y, por lo tanto, hay 

una influencia del personal del laboratorio en la evaluación de la motilidad 

del esperma. Aquí concluimos que tanto el método como la experiencia 

técnica eran factores clave para evaluar con precisión la motilidad del 

esperma en la anguila europea, por lo que se requiere el uso de CASA-Mot 

junto con material calificado para obtener resultados fehacientes. 

En segundo lugar, se evaluaron métodos alternativos para la maduración de 

los machos de anguila europeos probando dos tratamientos hormonales 

diferentes: OVI, una gonadotropina recombinante; y VET, una gonadotropina 

purificada a partir de orina femenina. Después de elegir el mejor tratamiento 

hormonal de los dos, se evaluó el efecto de tres dosis diferentes con el 
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objetivo de obtener el mayor rendimiento al menor coste. Los resultados de 

este experimento apuntaron a OVI como el mejor tratamiento hormonal en 

una dosis semanal de 1.5 UI/g de pez, que proporciona la mayor rentabilidad, 

obteniendo esperma de alta calidad a menor precio. 

En un tercer experimento, y utilizando los conocimientos adquiridos en los 

dos primeros experimentos, se realizaron una serie de experimentos para 

estandarizar los protocolos de criopreservación de esperma de anguila 

europea disponibles en ese momento (utilizando DMSO o metanol como 

crioprotector). Los resultados apuntaron al protocolo que utiliza el metanol 

como el mejor de ellos dos en términos de motilidad, velocidad y viabilidad 

de los espermatozoides y la preservación de la integridad del ADN. 

Siguiendo este último método estandarizado, se realizó un cuarto 

experimento con el objetivo de mejorar el protocolo en términos de volumen 

(volúmenes de esperma más grandes) y de calidad espermática. Además, se 

desarrolló un protocolo simple de almacenamiento a corto plazo para 

complementar las opciones de preservar el esperma durante diferentes 

períodos de tiempo. De todas las condiciones de almacenamiento probadas, 

las diluciones 1/50 a 4 ºC mostraron los mejores resultados, manteniendo la 

motilidad en comparación con el control durante 3 días, y manteniendo 

cierta motilidad espermática (12%) después de 7 días. A partir del 

experimento de criopreservación, fue posible aumentar los volúmenes a 2 y 

5 mL sin perder la calidad del esperma en comparación con volúmenes más 

pequeños. Además, el protocolo se mejoró aún más al complementarlo con 

yema de huevo como aditivo, obteniendo la mayor motilidad espermática 

criopreservada (más del 50%) jamás registrada en la anguila europea. 

El último capítulo de esta tesis consiste en una revisión histórica de todo el 

trabajo llevado a cabo en criopreservación de esperma de anguilas, donde se 

describe en detalle la evolución de los diferentes protocolos desarrollados 

desde principios de siglo en la anguila japonesa y europea. En este, se 

incluyen los últimos resultados presentados en capítulos anteriores, lo que 

pone en perspectiva nuestros avances en criopreservación de esperma de 

anguila. 
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RESUM 

En les últimes dècades, l'anguila europea Anguilla anguila ha sofert una 

disminució dràstica de la seva població el que ha portat la seva inclusió com 

a espècie en perill crític en la llista vermella UICN. Aquesta situació, 

juntament amb la gran importància comercial d'aquesta espècie, evidencia 

la necessitat de prendre accions com el desenvolupament de la reproducció 

en captivitat i el control de la pesca. Una de les eines més interessants per al 

seu ús en la biologia de la conservació és la criopreservació 

d'espermatozoides, que presenta diversos avantatges per a aquesta espècie, 

incloent la sincronització de gàmetes, la selecció de línies genètiques o el seu 

ús per a la creació d'un criobanc. 

No obstant això, el desenvolupament de protocols de criopreservació 

necessàriament requereixen esperma de bona qualitat. A més, es necessita 

un mètode precís per avaluar la qualitat de l'esperma tant abans com després 

de la criopreservació. Sobre aquesta última qüestió, la motilitat dels 

espermatozoides dels peixos es considera un dels millors biomarcadors per 

a l'avaluació de la qualitat dels espermatozoides en els peixos, i es pot 

estudiar de forma subjectiva o objectiva utilitzant sistemes "computer 

assisted sperm analysis" (CASA-Mot). 

Primer, es va realitzar un experiment per avaluar la precisió i l'exactitud de 

tots dos mètodes per estudiar la motilitat de l'esperma: el mètode subjectiu 

i la tècnica objectiva que utilitza el sistema CASA-Mot. A més, es va provar si 

el grau d'experiència dels tècnics en el cas del mètode subjectiu té un efecte 

en la precisió de l'estimació de la motilitat i, per tant, hi ha una influència del 

personal del laboratori en l'avaluació de la motilitat del esperma. Vam 

concloure que tant el mètode com l'experiència tècnica eren factors clau per 

avaluar amb precisió la motilitat de l'esperma en l'anguila europea, de 

manera que es requereix l'ús de CASA-Mot juntament amb material 

qualificat per obtenir resultats fefaents. 

En segon lloc, es van avaluar mètodes alternatius per a la maduració dels 

mascles d'anguila europeus provant dos tractaments hormonals diferents: 

OVI, un gonadotropina recombinant; i VET, un gonadotropina purificada a 

partir d'orina femenina. Després de triar el millor tractament hormonal dels 
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dos, es va avaluar l'efecte de tres dosis diferents amb l'objectiu d'obtenir el 

major rendiment al menor cost. Els resultats d'aquest experiment van 

apuntar a OVI com el millor tractament hormonal en una dosi setmanal de 

1.5 UI/g de peix, que proporciona la major rendibilitat, obtenint esperma 

d'alta qualitat a un preu millor. 

En un tercer experiment, i utilitzant els coneixements adquirits en els dos 

primers experiments, es van realitzar una sèrie d'experiments per 

estandarditzar els protocols de criopreservació d'esperma d'anguila europea 

disponibles en aquest moment (utilitzant DMSO o metanol com 

crioprotector). Els resultats van apuntar al protocol que utilitza el metanol 

com el millor d'ells dos en termes de motilitat, velocitat i viabilitat dels 

espermatozoides i la preservació de la integritat de l'ADN. 

Seguint aquest últim mètode estandarditzat, es va realitzar un quart 

experiment amb l'objectiu de millorar el protocol en termes de volum 

(volums d'esperma més grans) i de qualitat espermàtica. A més, es va 

desenvolupar un protocol simple d'emmagatzematge a curt termini per 

complementar les opcions de preservar l'esperma durant diferents períodes 

de temps. De totes les condicions d'emmagatzematge provades, les dilucions 

1/50 a 4ºC van mostrar els millors resultats, mantenint la motilitat en 

comparació amb el control durant 3 dies, i mantenint certa motilitat 

espermàtica (12%) després de 7 dies. A partir de l'experiment de 

criopreservació, va ser possible augmentar els volums a 2 i 5 ml sense perdre 

la qualitat de l'esperma en comparació amb volums més petits. A més, el 

protocol es va millorar encara més al complementar-lo amb rovell d'ou com 

a additiu, obtenint la major motilitat espermàtica criopreservada (més del 

50%) mai registrada a l'anguila europea. 

L'últim capítol d'aquesta tesi consisteix en una revisió històrica de tot el 

treball dut a terme en criopreservació d'esperma d'anguiles, on es descriu en 

detall l'evolució dels diferents protocols desenvolupats des de principis de 

segle a l'anguila japonesa i europea. En aquest, s'inclouen els últims resultats 

presentats en capítols anteriors, el que posa en perspectiva nostres avenços 

en criopreservació d'esperma d'anguila. 
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1. The European eel 

The European eel (Anguilla anguilla) is a member of the Elopomorpha 

superorder, and belong to the Anguilliforme order and the family Anguillidae. 

The family Anguillidae is formed by a single genus, Anguilla, that includes 19 

species (Watanabe, 2003) all of which display a complex catadromous life 

cycle with long oceanic migrations ranging from few hundred to thousands 

kilometers depending on the species (Arai, 2014). Studies show that the 

genus Anguilla was originated in the deep ocean of tropical areas and 

radiated out from the tropics to colonize temperate regions. These species 

are now widespread, being present in temperate, subtropical and tropical 

areas all over the world, except in the western coasts of North and South 

America and in the South Atlantic (Inoue et al., 2010; Minegishi et al., 2005). 

Eels are common in the traditional diets of many countries, especially in 

Europe and Asia, where the ability to provide high quality elvers can be highly 

profitable. In the late 1800’s, the elvers were so plentiful that people used 

them to feed the pigs. Nowadays, elvers can be raised to eating size and sold 

again for a profit, and can quite literally worth their weight in gold. Although 

China is not one of the greatest consumers of eels, it is the country with most 

eel farms. There, it is common to buy elvers, grow them, smoke them and 

process them into “kabayaki”, a popular dish highly appreciated in Japan 

(Schweid, 2002). This delicatessen is traditionally made using Japanese eel 

(Anguilla japonica), but imported eels from the United States (American eel) 

and Europe (European eel) were also used due to the scarcity of Japanese 

eels. However, since 2010, due to the decline of European eel catches, the 

EU imposed export restrictions, making illegal to sell European-caught eel to 

markets outside the EU (ICES, 2015). In the United States, although American 

eels (Anguilla rostrata) were consumed by the pilgrims from Europe, the 

nowadays catches are mostly used for export of elvers to Europe or Asia. In 

Europe, the European eel has been consumed in several countries for 

centuries. Already in the 11th century, eel fishery is mentioned in the English 

Domesday book, and as early as in the 15th century, in the first English-

language cookbook, The Forme of Cury, there is a recipe for eel pie. 

Nowadays, eels are consumed in a wide variety of forms in many counties in 
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Europe. Smoked eels are common in North- and East-European countries. In 

Valencia, it is typical to eat the eels in all i pebre, a dish where eels are cooked 

in olive oil with paprika, potatoes and garlic. Elvers are also traditionally 

consumed in Europe, for instance in the Loire in France, in Comacchio in Italy 

or in the Basque country (Schweid, 2002). 

1.1 European eel life cycle 

The European eel, as all members of the Anguilla genus, is a catadromous 

species, with long oceanic migrations from continental waters to the ocean 

where they have their spawning areas. The longest spawning migration is 

cover by the European eel, with distances of 5000-8000 km from the coasts 

of Europe and North Africa to the spawning areas in the Sargasso sea (Arai, 

2014; Schmidt, 1925). The life cycle of the European eel is complex and 

poorly understood (Figure 1). Although neither spawning adults nor eggs 

have ever been collected, marine expeditions conducted in the early 20th 

century by the Danish scientist Johannes Schmidt, pointed out that the 

spawning area of this species was located in the Sargasso Sea (Schmidt, 

1923), in what is known as the panmixia theory and meaning that the whole 

species has one unique population. Although previous field observations, 

morphological traits and molecular data suggested that the complete 

homogeneity of the European eel population and the unique spawning 

location may have been an overstatement (van Ginneken and Maes, 2005), 

later findings after analyzing microsatellite loci in European eel larvae, 

indicated that the panmixia theory was the most plausible (Als et al., 2011). 

The complexity of their life cycle includes several metamorphoses. First, the 

larvae hatched as pre-leptocephalus and then develops into a leptocephalus 

larvae, which has a laterally compressed body and looks like a leaf with a 

small head. These larvae are transported by the oceanic currents, and after 

one year drifting, they reach the continental coasts, where they 

metamorphose into glass eels. They swim into the coastal waters and 

upstream, where they are established in their final habitat and spend most 

of their lives as yellow eels (van den Thillart et al., 2009). This growth phase 

is the longest and commonly lasts between 2 and 25 years (Tesch and White, 
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2008), although, specific individuals have been reported to live much longer 

depending on the habitat and growing conditions, such as water 

temperature. Finally, yellow eels undergo a final metamorphosis into silver 

eel in a process called silvering. 

 

Figure 1. European eel life cycle. 

Silvering is a puberty related event, which marks the beginning of sexual 

maturation, migration and the reproductive phase (Dufour et al., 2003). 

During this phase, the eels suffer several morphological changes such as 

enlargement of eyes, darkened skin or increased skin thickness, within others 

(Aoyama and Miller, 2003). The migration period towards the spawning areas 

of the silver eels was thought to last for 6-7 months (van Ginneken and Maes, 

2005). However, a study using electronic tagging techniques in silver eels 

they manage to map their oceanic migration, and they observed that silver 

eels adopted a mixed migratory strategy, with some individuals reaching the 

spawning areas fast enough for spawning, whereas others arrive much later, 

in time for the following spawning season (Righton et al., 2016). 

Silver eels are still sexually immature when they start their reproductive 

migration, with sexual maturation occurring during the migration period 
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towards the reproduction site in the ocean. External environmental factors 

seems to trigger the development of the gonad during their 5000-8000 Km 

migration, although it is still unknown which environmental stimuli are 

responsible for the final maturation of the eels (van Ginneken and Maes, 

2005). 

1.2 Conservation status 

Since the early 80’s, the population of European eel has continuously 

declined. The eel stock has decreased as much as 95-99% of its levels in 1960-

80 (ICES, 2013). This drastic reduction has led to include the species on the 

Red List of Threatened Species, by the International Union for Conservation 

of Nature (IUCN), as “Critically Endangered” (Jacoby and Gollock, 2014), 

which is the last category before extinction (IUCN, 2019). The reasons behind 

the decline of the stock are uncertain but probably are a sum of several 

impacts, including overexploitation, water pollution, migration barriers, 

habitat loss, climate change and infection with the swimbladder parasite 

Anguillicola crassus (Castonguay et al., 1994; Dekker, 2003; Kirk, 2003; 

Knights, 2003; Székely et al., 2009). 

The critical situation of the European eel population has forced the European 

Union to take actions, publishing a regulation in 2007 establishing measures 

for the recovery of the stocks (Council Regulation 1100/2007, 18th September 

2007). This regulation is mandatory for all the state members on the EU and 

recommended to elaborate a management plan for the European eel. The 

plans necessary included measurements for habitat restoration, fishery 

restrictions and restocking. Moreover, export restrictions were imposed and 

European eels caught in the EU cannot be exported to non-EU countries. 

2. Artificial maturation 

In eels, dopaminergic inhibition in addition to a deficient stimulation of 

gonadotropin-releasing hormone (GnRH), block their sexual maturation as 

long as the reproductive oceanic migration is not performed (Dufour et al., 

1988; Dufour et al., 2003; van Ginneken and Maes, 2005). Therefore, eels are 

blocked in a pre-pubertal stage and do not mature spontaneously in 



GENERAL INTRODUCTION 

13 

captivity. To induce an artificial full maturation in eels, costly hormonal 

treatments are required that last for several weeks in males and even months 

in females (Lokman and Young, 2000; Mylonas et al., 2017; Ohta et al., 1996; 

Oliveira and Hable, 2010; Pedersen, 2003). 

2.1 Hormonal treatments 

The traditional hormonal treatment with gonadotropins to induce 

maturation in European eel males typically consists of weekly injections of 

human chorionic gonadotropins (hCG) (Gallego et al., 2012; Pérez et al., 

2000) and has been used as the preferred method to obtain high quality 

sperm in European eels (Palstra and van den Thillart, 2009). However, the are 

several formats in which hCG have been successfully administered in 

European eel (Gallego et al., 2012).  

The first hormonal treatments for European eel gonadal maturation 

consisted in the administration of urine from pregnant women 

intraperitoneally injected (Fontaine, 1936). By the end of the XX century, 

several companies developed the technology to isolate hCG from urine of 

pregnant women, making available commercial treatments that simplify the 

maturation treatments, and allowing to standardize the process (Dollerup 

and Graver, 1985; Khan et al., 1987). Later, many studies focused in 

optimizing and standardizing the hormonal treatment based on purified hCG, 

developing a protocol consisted in weekly intraperitoneal injections of 1.5 

IU/g fish, that succeed in gonadal maturation and production of good sperm 

quality (Asturiano et al., 2006). In more recent years, through the 

development of recombinant DNA technology, new recombinant hCG 

(hCGrec) was developed and a protocol using this hormonal treatment 

became the preferred alternative yielding good results in eel maturation and 

sperm quality (Gallego et al., 2012). However, the application of 

heterologous hormonal treatments with hCG have been associated to low 

rates of fertilization and hatching (Tanaka et al., 2002a). 
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2.2 Sperm quality in fish 

The ultimate biomarker for assessing sperm quality is its fertilization capacity 

of mature oocytes and production of viable embryos (Cabrita et al., 2008; 

Fauvel et al., 2010). However, the fertilization capacity of the sperm is 

dependent on multiple factors, including quantifiable traits that are directly 

correlated to fertilization success and therefore can be used as alternative 

biomarkers. In fish sperm, several traits have been used as biomarkers for 

good sperm quality including sperm density (Sørensen et al., 2013), motility 

(Gallego et al., 2013b), morphometry (Alavi et al., 2015), energy content 

(Dzyuba and Cosson, 2014), and membrane and DNA integrity (Fauvel et al., 

2010). Regardless of these sperm quality biomarkers, motility is currently 

considered the best sperm quality biomarker in fish, due to its facility of 

analysis and its high correlation with fertilization and hatching rates (Gallego 

and Asturiano, 2018b; Suquet et al., 1992). 

The analysis of motility of fish sperm has been traditionally performed 

subjectively, where a technician evaluates the sperm motility though an 

observation under the microscope and estimating the percentage of motile 

spermatozoa, usually by assessing a motility score corresponding to an 

arbitrary criteria from 0 (immotile) to 5 (most spermatozoa motile) 

(Rurangwa et al., 2004). However, it has been reported that this kind of 

subjective evaluation used in human and animal sperm may lead to 

variations of 30 to 60% in the same ejaculates (Verstegen et al., 2002). Yet, 

the particular variation depending on the observer, have not been studied in 

fish sperm. This inconsistency make the results obtained with subjective 

evaluation difficult to compare between laboratories or experiments, and 

sometimes can make the results not reliable (Rosenthal et al., 2010). 

An objective analysis is also possible using a tracking software developed for 

the analysis of spermatozoa movement. This objective method is known as 

computer-assisted sperm analysis system, or CASA-Mot, and it is consistent 

of a microscope, a camera and an image analysis software. CASA-Mot not 

only analyzes the percentage of motile spermatozoa but also makes possible 

to analyze other kinetic parameters, therefore the use of this tool have been 

widely applied in multidisciplinary studies, from broodstock management or 



GENERAL INTRODUCTION 

15 

cryopreservation to ecology or toxicology (Gallego and Asturiano, 2018b; 

Kime et al., 2001).  

The development of CASA-Mot systems started in the 70s in mammalian 

sperm studies, and in the 90s the method was adapted for it use in fish 

spermatozoa studies (Perchec et al., 1995; Toth et al., 1995). To date, these 

systems have been used and validated in a wide range of animal groups such 

as marine invertebrates, birds, marine mammals, reptiles or even insects (Al-

Lawati et al., 2009; Lüpold et al., 2008; Montano et al., 2012; Riesco et al., 

2017; Tourmente et al., 2011).  

One of the main advantages of the use of CASA-Mot for analysis of sperm is 

the possibility of analyze several kinetic parameters. The two most common 

parameters used for fish sperm analysis are spermatozoa motility (MOT) and 

spermatozoa progressive motility (pMOT) (Kime et al., 2001), which can 

provide a general overview of the quality of the sperm (Rurangwa et al., 

2004). MOT indicates the percentage of spermatozoa moving in a sperm 

sample, whereas pMOT indicates the percentage of spermatozoa that swims 

in an essentially straight line. However, CASA-Mot analyses provide many 

other parameters that are useful to obtain a more complete analysis of 

sperm quality. These parameters include the curvilinear velocity (VCL), that 

is the speed at which the spermatozoa moves in its real trajectory, the 

straight line velocity (VSL), that is obtained dividing the distance between the 

start and the end of the movement in a straight line by the time elapsed, and 

the average path velocity (VAP) which is the speed of the spermatozoa 

through its spatial average trajectory (Figure 2). 

Other interesting parameters analyzed by CASA-Mot include straightness 

(STR) which indicates the linearity of the spatial average path of the 

spermatozoon, or the beat cross frequency (BCF) that is the average rate at 

which the curvilinear sperm trajectory crosses its average path. 

Another interesting feature is that CASA-Mot can discriminate different 

spermatozoa groups according to its VAP in “fast”, “medium” and “slow” 

spermatozoa. This feature provides valuable information of the different 

subpopulations in a sperm sample (Gallego et al., 2015). It is noteworthy that 

most of the parameters evaluated by CASA systems have been positively 
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correlated with spermatozoa fertilization success in several fish species 

(Table 1). 

3. Cryopreservation of fish sperm 

Cryopreservation is the conservation of biological material in liquid nitrogen 

(LN) at very low temperatures (-196 ºC) that may potentially preserve its 

viability indefinitely (Bakhach, 2009). Cryopreservation of fish gametes has 

many potential applications in aquaculture, conservation biology or 

cryobanking. The use of cryopreserved sperm for aquaculture purposes 

includes improvement of broodstock management in hatcheries, selection of 

genetic lines, or avoiding gamete synchronization problems. This last 

application is of particular interest in eels, since gamete production of male 

and female must be synchronized. Moreover, sperm cryopreservation may 

be used to provide biological materials for research scholars to perform 

comparative experiments, to promote exchange of genetic material for use 

in breeding and genetic studies, or to allow the cryobanking of genetic 

resources of endangered species (Asturiano et al., 2017; Cloud and Patton, 

2009). 

 

Figure 2. Diagram of the kinetic parameters analyzed by CASA-Mot. The black dots 

represent the recorded trajectory of the head of a motile spermatozoon.  VCL, 

curvilinear velocity; VSL, straight line velocity; VAP, average path velocity; ALH, 

amplitude of lateral head displacement; BFC, beat/cross frequency (from Gallego and 

Asturiano, 2018). 
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Table 1. Correlation coefficients between the most used sperm kinetic parameters 

and fertilization rate (FR) or hatching rate (HR) in several fish species. 

Species Motility Velocity Reference 

FR HR FR HR  

Clarias gariepinus    0.81 (Rurangwa et al., 2004) 
Colossoma macropomum 0.67  0.78  (Gallego et al., 2017) 
Cyprinus carpio  0.53  0.54 (Linhart et al., 2000) 
Hippoglossus hippoglossus 0.55    (Ottesen et al., 2009) 
Pagrus major 0.88 0.88   (Liu et al., 2007) 
Prochilodus lineatus   0.80  (Viveiros et al., 2010) 
Sander vitreus   0.48  (Casselman et al., 2006) 
Sparus aurata  0.77   (Beirão et al., 2011) 
Takifugu niphobles 0.70 0.68 0.82 0.81 (Gallego et al., 2013b) 

The development of a new cryopreservation protocol is normally dependent 

on several factors, such as the extender solution, the cryoprotectants, 

packaging and the cooling and thawing rates. All these factors are species 

dependent and therefore need to be developed for each species individually 

(Cloud and Patton, 2009). The use of extender is necessary to maintain the 

sperm inactive before freezing and are normally designed mimicking the 

seminal plasma, whereas the cryoprotectant is used to protect the integrity 

of the spermatozoa through the freezing and thawing process. The most 

common cryoprotectants are dimethyl sulphoxide (DMSO), ethylene, 

propylene glycol, glycerol and methanol. However, in marine fish species 

DMSO generally gave the best results.  

The freezing and thawing rates are also critical for the development of a 

cryopreservation protocol, with cooling rates normally ranging between 5 

and 99 ºC/min in marine fish species and thawing rates ranging between 1-

40 ºC/min (Suquet et al., 2000).  

Another important factor is the container used for packaging the sperm, 

which normally varies between small freezing straws of 0.25-0.5 mL to larger 

cryotubes of 5 mL or more. However, as mentioned above, all these factors 

are critical to develop a cryopreservation protocol, and need to be assessed 

individually for each species (Cloud and Patton, 2009; Suquet et al., 2000).  
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3.1 Origins of eel sperm cryopreservation 

The first eel sperm cryopreservation protocol was developed for Japanese 

eel by Tanaka et al. (2002a). They used DMSO at 10% v/v as cryoprotectant, 

which is the most common cryoprotectant used in sperm of marine fish 

species (Gallego and Asturiano, 2018a), and it was used together with a 

designed extender solution that included NaCl, NaHCO3 and soya lecithin. 

Since DMSO caused a hypertonicity in the medium that caused the activation 

of sperm motion (Horváth et al., 2005), the NaHCO3 in the extender solution 

reduced that activation (Tanaka et al., 2002b). Moreover, the protocol 

consisted in the use of 2 mL cryovials, cooled in LN vapor for 5 min, 2 mm 

above the LN surface, before immersion and storage. The thawing consisted 

in immersion in water at 40 ºC for 70 s. 

Using this protocol, Tanaka et al. (2002a) obtained good post-thaw sperm 

motility values (37-46%), and was further used for fertilization trials where 

they managed to fertilize Japanese eel oocytes using cryopreserved sperm. 

However, the hatchability of the fertilized eggs was lower than eggs fertilized 

with fresh sperm. 

Years later, Müller et al. (2017) and Koh et al (2017) developed in parallel 

new sperm cryopreservation protocols for Japanese eel. Both protocols used 

methanol as cryoprotectant, which is osmotically inert and do not activate 

the sperm, and used similar extender solutions, ASP and ASP30 respectively. 

These extender solutions were both designed to be iso-ionic with the seminal 

plasma, yet differed slightly between each other and Koh´s protocol added 

FBS to the media. Although both protocols resulted in good post-thawing 

sperm motility, they differed in other aspects such as straw size or cooling 

and thawing rates. 

Since these protocols consisted in small volumes of sperm, the most recent 

work of Nomura et al. (2018) adapted the protocol of Koh et al. (2017), to a 

larger-scale to be used for fertilization programs. In this work, they used 5 

mL straws and adapted the cooling rate to that volume, and the 

cryoprotectants and extenders were as described in the latest protocol (Koh 

et al., 2017). Using this protocol, they obtained very good results in the 
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fertilization trials, with no differences in egg hatching and survival rated 

when using fresh and cryopreserved sperm.  

3.2 European eel sperm cryopreservation 

Cryopreservation of the European eel sperm was developed shortly after the 

first cryopreservation protocols for Japanese eel. Two independent research 

groups established their own cryopreservation protocols in Spain and 

Hungary. These protocols differed in most aspects, from the rearing 

conditions of the eels to the type of cryoprotectants applied into their 

experiments. 

Our group developed in Spain a protocol (Asturiano et al., 2003; 2004) 

mimicking the protocol previously developed for Japanese eel (Tanaka et al., 

2002a) using DMSO as cryoprotectant (10%) and different extenders. In 

follow up studies, they obtained the best results using sperm diluted 1:5 in 

Tanaka extender (extender used for Japanese eel (2002a)) or P1 extender 

(extender designed to be iso-ionic with the European eel seminal plasma 

(Pérez et al., 2003)), with 10% DMSO, reaching post-thaw sperm motilities of 

32 - 36% (Asturiano et al., 2003; 2004).  

In parallel, the group from Hungary (Müller et al., 2004) developed a 

cryopreservation protocol using a modified Kurokura solution as extender 

and 10% methanol as cryoprotectant. The dilution rate used was 1:8:1 of 

sperm:extender:methanol, obtaining similar results to those of the Spanish 

protocol (36% motile spermatozoa). Following this study, Szabó el al. (2005) 

conducted a series of experiments to test different extenders and 

cryoprotectants (DMSO and methanol). The best results were obtained using 

DMSO (10%) or methanol (10%) with Tanaka extender. The samples 

cryopreserved using the protocol with methanol could be further diluted 1:9 

in Tanaka’s medium to reduce the toxicity of the cryoprotectant. However, 

this was not a possibility when using DMSO as cryoprotectant, probably 

explained by the change in osmolality of sperm following dilution (Horváth 

et al., 2005). Following Müller’s and Szabó’s protocols, using methanol 10% 

as cryoprotectant and Tanaka extender, Müller et al. (2012; 2018) 

successfully used cryopreserved European eel sperm in fertilization trials 
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with Japanese eel eggs, obtaining hybrid larvae. However, the hatching rate 

was very low. 

Alternatively to methanol based protocols, valuable results were obtained 

following protocols using DMSO in terms of percentage of spermatozoa 

motility, viability and spermatozoa head size (Asturiano et al., 2007; Garzón 

et al., 2008; Marco-Jiménez et al., 2006). However, the use of this 

cryoprotectant still increased the medium osmolality resulting in inducing 

spermatozoa motility activation and premature ATP consumption. To avoid 

this drawback, Peñaranda et al. (2009) tested different combinations of pH 

and NaHCO3 concentrations, that resulted in the development of an 

improved medium based on the P1 medium, but containing 100 mM NaHCO3 

and pH 6.5 that partially prevented the activation effect of DMSO. With this 

protocol, they obtained post-thaw spermatozoa motility values close to 40%, 

which is well sufficient for fertilization trials, that were conducted by 

Asturiano et al. (2016). In this work, they successfully produced fertilized 

eggs and larvae. However, the fertilization and hatching rate were again low. 

Despite the fact that cryopreservation protocols developed by the groups 

from Spain and Hungary were proved to succeed in fertilization trials, they 

differed in many aspects and a need of standardization of the protocol was 

evident. Moreover, following the improvements obtained in Japanese eels 

(Nomura et al., 2018), research should focus in scaling up in volume the 

protocols together with the use of additives for improving sperm 

cryopreservation outcomes for large scale fertilization programs. 

4. Projects, grants and companies involved in this Thesis 

All the experiments carried out in this thesis were funded by the European 

Union’s Horizon 2020 research and innovation program under the Marie 

Skłodowska-Curie grant agreement No. 642893: IMPRESS (Improved 

production strategies for endangered freshwater species). 

In addition, complementary training was conducted during short-term 

scientific missions (STSM) at Nofima AS (Tromsø, Norway) for 3 months and 

in the University of South Bohemia (Vodñany, Czech Republic) for 1 month. 

These STSM were funded with grants from COST Office (Food and Agriculture 
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COST Action: Assessing and improving the quality of aquatic animal gametes 

to enhance aquatic resources. The need to harmonize and standardize 

evolving methodologies, and improve transfer from academia to industry; 

AQUAGAMETE). 
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The main objective of this thesis was to develop different techniques and 

protocols for European eel sperm cryopreservation, for improve the control 

of the reproduction in captivity of European eel. The specific objectives 

include: 

 

 To demonstrate the intrinsic variation in the subjective evaluation of 
sperm motility and the convenience of use CASA-Mot systems to 
assess sperm quality 

 

 To study the effect of different doses and hormonal treatments as 
alternative maturation methods for male European eels. 
 

 To compare and standardize the sperm cryopreservation protocol for 
European eel sperm and evaluate the epigenetic effects of the 
available cryopreservation methods. 
 

 To develop a simple and effective protocol for short-term storage of 

European eel sperm, where temperature, dilution and stirring during 

storage were tested. 

 

 To adapt the available cryopreservation protocols of European eel 

sperm to larger volumes for its implementation in large-scale 

fertilization trials. 

 

 To improve the latest sperm cryopreservation protocols for European 
eel sperm by testing the effect of the additives BSA, FBS and egg yolk. 
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Abstract 

Fish sperm motility is nowadays considered the best sperm quality biomarker 

in fish, and can be evaluated both by subjective and computerized methods. 

With the aim to compare the precision and accuracy of both techniques, fish 

sperm samples were assessed by subjective methods and by a computer 

assisted sperm analysis (CASA-Mot) system, and simultaneously by three 

different technicians with different degrees of expertise on the sperm quality 

analysis. Statistical dispersion parameters (CV, coefficient of variation; and 

RG, range) were estimated in order to determine the precision and accuracy 

of the techniques and the influence of laboratory staff on sperm motion 

assessments. Concerning precision, there were not much significant 

differences between the technical support staff (high, medium, and low 

experimented technician), and statistical dispersion parameters were quite 

similar between them independent of the technique used and the sperm 

motility class analyzed. However, concerning accuracy, experimented 

technician reported subjective motility values very closed to the values 

provided by the CASA-Mot system, only 10 percentage points away from the 

data provided by a CASA-Mot system. However, medium and low 

experimented technicians often overestimate the CASA-Mot values, and 

amplitudes up to 30 percentage points were detected in several sperm 

assessments. To sum up, both the technique (subjective or objective) and the 

technician (degree of expertise) became key factors in order to reach 

accurate motility estimations, so the use of both qualified staff and novel 

CASA-Mot systems seems to be a critical requirement for obtaining satisfying 

results in fish species with similar motility patterns. 
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1. Introduction 

Over the years, a relatively high number of sperm parameters have been 

used to assess sperm quality in fish (Fauvel et al., 2010). These sperm 

biomarkers have so far been documented in scientific articles, and several 

traits such as osmolality, plasma composition, sperm density, or sperm 

morphology have been linked to the ability of sperm to fertilize the ova 

(reviewed by Cabrita et al. 2014). However, sperm motility is currently 

considered the most useful tool for assessing sperm quality in fish, and high 

correlations have been reported between sperm motility and fertilization or 

hatching rates in several fish species such as pufferfish (Takifugu niphobles; 

Gallego et al. (2013b)), rainbow trout (Oncorhynchus mykiss; Bozkurt 

andSecer (2006)), red seabream (Pagrus major; Liu et al. (2007)) or tambaqui 

(Colossoma macropomum; Gallego et al. (2017)). 

Nowadays, sperm motility evaluation can be done by two different ways in 

the laboratory: (i) the subjective way, in which a technician (more or less 

experienced) makes an evaluation of sperm motility through a simple 

observation under the microscope; and (ii) the objective way, in which sperm 

analysis systems, particularly CASA-Mot (computer-assisted sperm analysis) 

system, integrate the successive positions of the heads of moving 

spermatozoa in every frame video-taped for calculating their trajectories and 

kinetic characteristics. 

A subjective evaluation method has been the most used technique to 

evaluate sperm motility over the history, but some problems have emerged 

from this method (Rurangwa et al., 2004). First drawback is focused on the 

own limitation of the human eye, through which we can only provide a 

coarse evaluation of (i) the percentage of motile spermatozoa and (ii) the 

sperm motility duration. In addition, this type of evaluation depends on the 

observer’s experience, and several aspects such as sperm density, sperm 

velocity, and drift can cause over- or underestimations (Hala et al., 2009). 

Therefore, the low reproducibility of this subjective assessment, which can 

result in variations of 30 to 60% of CV (coefficient of variation) from the same 

sample, often makes difficult to interpret and compare the results intra- and 

inter-labs (Rosenthal et al., 2010; Verstegen et al., 2002). 
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By contrast, the gradual appearance and popularization of CASA-Mot 

systems have made possible to estimate a higher number of sperm motion 

parameters not given by subjective evaluation (spermatozoa velocities, 

motion pattern models, sperm subpopulations, etc.) and do it in an objective, 

sensitive, and accurate way (Kime et al., 2001). Nevertheless, it is important 

to consider that CASA-Mot systems are not ready-to-use devices, and they 

also depend largely on technical and biological settings which need to be 

standardized for enhancing the comparability of data produced by different 

research groups (Boryshpolets et al., 2013; Gallego et al., 2013a). In addition, 

CASA-Mot systems are not available for many research groups due to the 

initial investment necessary to purchase the complete equipment (software, 

high-resolution camera, etc.), so half of the scientific studies carried out 

during the last years have not used a CASA-Mot systems for the spermatozoa 

motion assessment (Gallego and Asturiano, 2018b). 

In this scenario, technique and technicians could have an important role for 

obtaining credible assessments of spermatozoa kinetic features, so the aim 

of this study was to compare the precision and accuracy of both subjective 

and objective techniques and, simultaneously, the influence of laboratory 

staff previous experience on sperm motion assessments. 

2. Materials and methods 

2.1 Fish handling and sperm collection  

Thirty adult European male eels from the fish farm Valenciana de 

Acuicultura, S.A. (Puzol, Spain), were moved to the Aquaculture Laboratory 

of the Universitat Politècnica de València (Spain). The fish were distributed 

in two 150-L aquaria (approximately 15 males per aquarium) keeping a 

constant temperature of 20 °C and covered to reduce light intensity and fish 

stress. During 1 week, the eels were gradually acclimatized from fresh- water 

to seawater (salinity = 37 ± 0.3 g/L). Later, they were anesthetized once a 

week with benzocaine (60 ppm) for injecting 1.5 IU g−1 fish of recombinant 

human chorionic gonadotropin (Ovitrelle, Merck S.L., Madrid). Fish were 

fasted throughout the trial and they were handled in accordance with the 
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European Union regulations regarding the protection of experimental 

animals (Dir 86/609/EEC). 

From the seventh week of hormonal treatment, sperm samples were weekly 

collected by abdominal pressure 24 h after the administration of the 

hormone (following the protocol described by Pérez et al. 2000), and taking 

special care to avoid the contamination with feces, urine, and seawater. 

Samples were diluted 1:9 (sperm:extender) in P1 medium (Peñaranda et al., 

2010b) and kept in plastic tubes at 4 °C until sperm kinetic analyses, which 

were carried out during the next 2 h after sperm collection. 

2.2 Experimental design 

Each of the samples was evaluated according to Fig. 1 by three different 

techniques: (i) by subjective way (human eye) directly through the ocular 

lens (eyepieces) of the microscope, (ii) by subjective way (human eye) using 

a computer monitor connected to the microscope, and (iii) by an objective 

way using a CASA-Mot system. The main difference between the two 

subjective assessments was that sperm sample observed directly through the 

eyepieces was done in a bright-field microscopy (dark cells on bright 

background) with a great wide field of view; while the assessment through 

the screen (monitor) was done in a dark-field (bright cells on dark 

background) with a smaller wide field of view. In addition, these three 

assessing methods were carried out by three different technicians with 

different degrees of expertise on the sperm quality analysis: (i) a high 

experimented technician (high ET; a postdoctoral researcher) with years of 

experience on sperm motility assessment, (ii) a medium experimented 

technician (medium ET; a pre-doctoral student) whose thesis is focused on 

issues related to sperm motion analysis, and finally (iii) a low experimented 

technician (low ET; a grade student) with very little experience on the sperm 

quality analysis. It is important to remark that the dispersion parameters (see 

the “Statistical analysis” section) used in this study were estimated analyzing 

the same sample through three consecutive sperm activations for each 

technique. 
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Fig 1. Experimental design for carrying out the motility assessments through the 

three different techniques (microscope, screen, and CASA-Mot system) and three 

technicians with different degrees of experience (high, medium, and low). Each sperm 

sample was assessed consecutively by the three methods and the same observer in 

order to avoid differences between the different evaluation methods. Samples were 

evaluated in different orders with every technique to avoid the observer’s 

preconception on the grade of motility of the sample from the technique used 

previously 

2.3 Sperm motility assessment both by subjective and objective 

methods. 

Each sample was activated by mixing 0.5 μL of P1-diluted sperm (see the 

“Fish handling and sperm collection” section) with 4.5 μL of artificial 

seawater (Aqua Medic Meersalz, 37 g/L, with 2% BSA (w/v), pH level was 

adjusted to 8.2). All the motility analyses (both by subjective and objective 

methods) were performed by triplicate. 

In relation to the subjective method, technicians estimated the sperm 

motility (percentage of motile spermatozoa) by both (i) looking directly 

through the eyepieces of the microscope and (ii) looking directly through a 

computer monitor. Spermatozoa were considered motile presenting any 

type of movement (progressive or non- progressive) according the World 

Health Organization (WHO) criteria in the 5th edition (2010). 
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In addition, technicians were asked to classify every sample as fast 

(spermatozoa with fast progressive movement), medium (spermatozoa with 

medium forward movement), or slow (spermatozoa with slow forward 

movement or non-progressive movement) depending on the motion 

(estimated subjectively) of swimming spermatozoa. Finally, objective 

assessments were done immediately after subjective evaluation using a 

CASA-Mot sys- tem, and several kinetic parameters such as total motility 

(MOT, %), progressive motility (pMOT, %), curvilinear velocity (VCL, μm/s), 

straight-line velocity (VSL, μm/s), and average path velocity (VAP, μm/s) were 

recorded for further analysis. Several manuscripts have reported high 

correlations between these parameters with fertilization and hatching rates 

in several fish species, so they become good biomarkers to predict and sperm 

quality and carrying out sperm studies (Gallego and Asturiano, 2018b). 

In order to perform an in-depth analysis of the results, sperm samples were 

classified into three classes based on the percentage of motile spermatozoa 

provided by the CASA-Mot system: class I (C-I) = 0–25% of motile cells; class 

II (C-II) = 26–50% of motile cells; and class III (C-III) = 51–100% of motile cells. 

2.4 Setting used on CASA system. 

Kinetic sperm analysis was carried out by the motility module of ISAS®v1 

(Proiser R+D, S.L.; Paterna, Spain) using an ISAS® 782M camera recorder 

capturing 60 frames per second (fps). Between 200 and 600, spermatozoa 

were captured in each field adjusting the brightness and contrast in the 

CASA-Mot settings in relation to the microscope light with the aim to reach 

spermatozoa clearly defined (Gallego et al., 2013a). Range size particles were 

defined between 2 and 20 μm and spermatozoa were considered immotile if 

their VCL was lower than 10 μm/s. 

2.5 Statistical analysis 

For evaluating the variability on the dataset, several measures of dispersion 

such as the coefficient of variation (CV, %) and the absolute range (RG, 

difference between the smallest value and the largest value of a series) were 

estimated both for each method and for each technician (observer). 
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In order to evaluate the accuracy, the amplitude (difference between the 

subjective evaluation and the motility values provided by a CASA-Mot sys- 

tem) was estimated. Coefficients of correlation (r) between the subjective 

and objective assessments were also obtained for high, medium, and low 

experimented technicians (ET) among different sperm motility classes (C-I, C-

II, and C-III). Finally, box plots were created in order to assess the ability of 

each technician to appreciate the velocity  of swimming spermatozoa. 

Data expressed in percentages were transformed using the arcsine 

transformation, and Shapiro-Wilk test was used to check the normality of 

data distribution. One-way analysis of variance (ANOVA) was used to analyze 

the data and significant differences between treatments were detected using 

the Tukey multiple range test (P < 0.05). Statistical analyses were performed 

using the statistical pack- age SPSS version 19.0 for Windows software (SPSS 

Inc., Chicago, IL, USA). 

3. Results 

3.1 Precision of techniques & technicians 

The precision for both techniques and technicians was evaluated through 

CVs and RG values (see Figs. 2 and 3, respectively). CVs were quite similar 

between technicians independent of the technique used and the sperm 

motility class analyzed (Fig. 2), and statistical differences were only found 

assessing samples from C-II and C-III through a subjective motility analysis 

(Fig. 2a, b). 

Regarding the absolute range (RG, defined as the difference between the 

smallest value and the largest value registered in the same motility 

assessment), a similar pattern than that obtained in CVs was found. 

However, trends in RG showed that high ET showed smaller RGs than 

medium and low ETs independently of the technique applied and the sperm 

motility class analyzed (Fig. 3). Nevertheless, statistical differences were only 

found assessing samples from C-II and C-III through a subjective motility 

analysis (Fig. 3a, b). 

 



CHAPTER 1 

36 

 

Figure 2. Coefficients of variation (CVs) obtained by High, Medium, and Low 

experimented technicians (ETs) among different sperm motility classes (C-I, C-II and 

C-III). Sperm motility was assessed through (A) the eyepieces of the microscope, (B) 

the computer monitor (screen), or (C) by a CASA system. Different letters indicate 

statistical differences (P ≤ 0.05) between different technicians. 
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Figure 3. Absolute ranges (RGs, difference between the smallest value and the largest 

value of a series) obtained by High, Medium, and Low experimented technicians (ET) 

among different sperm motility classes (C-I, C-II and C-III). Sperm motility was 

assessed through (A) the eyepieces of the microscope, (B) the computer monitor or 

screen, or (C) by a CASA system. Different letters indicate statistical differences (P ≤ 

0.05) between different technicians. 

3.2 Accuracy of techniques & technicians 

The ability of technicians to carry out an accurate subjective evaluation was 

measured as the difference (amplitude) between the CASA-Mot motility 

values and the subjective estimations (Figs. 4 and 5). Concerning subjective 

motility assessments carried out through the eyepieces of the microscope, 

high ET obtained subjective motility values relatively closed to CASA-Mot 

motility values, presenting over- or under- estimations of only around 10 

percentage points throughout all the sperm motility classes (Fig. 4a). How- 

ever, although medium and low ETs had acceptable amplitude values in C-I 

class, overestimation of values was the common trend in samples belonging 
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to C-II and C-II classes, with subjective sperm motility values 25 percentage 

points higher than the motility assessed by a CASA-Mot system (Fig. 4b, c). 

 

 

Figure 4. Differences (amplitude) between the sperm motility values provided by a 

CASA system and the sperm motility assessments carried out through the eyepiece of 

the microscope by a High (A), Medium (B), and Low (C) experimented technicians 

(ETs). 

Concerning subjective motility values obtained through the computer 

monitor (screen), high ET also obtained subjective motility values relatively 

closed to real motility values assessed by a CASA-Mot system, presenting 

once again over- or underestimations of around 10% along all the sperm 

motility classes (Fig. 5a). Medium ET was able to estimate good subjective 

values (relatively closed to CASA-Mot motility values) of the samples 

belonging to C-I and C-II classes, but underestimations (up to 16%) were the 

common pattern on the C-III class (Fig. 5b). Finally, low ET was not able for 

estimating subjective motility values closed to CASA-Mot assessments, and 

high overestimations were the common trend in all the sperm classes, 
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reaching amplitude values up to 25 and 31% in C-I and C-II classes, 

respectively (Fig. 5c). 

Figure 5. Differences (amplitude) between the sperm motility values provided by a 

CASA system and the sperm motility assessments carried out through the computer 

monitor by a High (A), Medium (B), and Low (C) experimented technicians (ETs). 

Coefficients of correlation provided in Table 1 show that although all 

technicians showed relatively high r values among C-I and C-III classes (> 0.8 

and > 0.7, respectively), high ET was the only technician able to reach 

acceptable r values in samples belonging to C-II class. In this sense, medium 

and low ETs presented low r values (0.42 and 0.57, respectively) between the 

subjective microscope assessments and CASA-Mot estimations. 
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Table 1. Coefficients of correlation (r) between the sperm motility values assessed 

subjectively by eyepieces of the microscope (micro) and through the computer 

monitor (screen) with the sperm motility values provided by a CASA system. r were 

estimated for High, Medium, and Low experimented technicians (ET) among different 

sperm motility classes (C-I, C-II and C-III). 

   High ET  Medium ET  Low ET 

  
 

MOT 
Screen 

MOT 
CASA 

 
MOT 

Screen 
MOT 
CASA 

 
MOT 

Screen 
MOT 
CASA 

C-I MOT Micro 0.88 0.92  0.87 0.78  0.88 0.88 

 MOT Screen  0.94   0.93   0.94 

           
C-II MOT Micro 0.68 0.65  0.39 0.42  0.49 0.57 

 MOT Screen  0.96   0.87   0.78 

           
C-III MOT Micro 0.71 0.86  0.73 0.71  0.79 0.79 

 MOT Screen  0.88   0.66   0.88 

3.3 Technician ability for estimating sperm velocities 

Finally, last trial tried to evaluate the technician ability for estimating sperm 

velocities using the subjective assessments. In relation to subjective 

estimations carried out through the eyepieces of the microscope (Fig. 6), 

spermatozoa classified as fast, medium, or slow by the high ET showed 

significant differences in terms of both VCL, VSL, and VAP. However, 

spermatozoa classification carried out by medium and low ET did not reveal 

statistical differences between slow and medium spermatozoa in terms of 

VSL and VAP, evidencing their incapacity to evaluate properly the 

spermatozoa velocity. 
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Figure 6. Average velocity values (VCL, VSL and VAP) of spermatozoa classified by 

different technicians as Fast (FA), Medium (ME), or Slow (SL). Velocity estimations 

(FA, ME, and SL) provided by High, Medium, and Low experimented technicians (ETs) 

were carried out through the eyepiece of the microscope. Different letters indicate 

statistical differences (P ≤ 0.05) between sperm velocity classes. 

Concerning subjective estimations carried out through the computer 

monitor (Fig. 7), spermatozoa classified as fast, medium, or slow both by the 

high and medium ET showed significant differences in terms of VCL, VSL, and 

VAP, so both observers were able to do an accurate estimation of sperm 

velocity. However, velocities of spermatozoa classified as slow and medium 

by low ET did not differ statistically in neither VCL, nor VSL, nor VAP, so low 

ET was only able to distinguish subjectively the fast spermatozoa to the rest. 
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Figure 7. Average velocity values (VCL, VSL and VAP) of spermatozoa classified by 

different technicians as Fast (FA), Medium (ME), or Slow (SL). Velocity estimations 

(FA, ME, and SL) provided by High, Medium, and Low experimented technicians (ETs) 

were carried out through the computer monitor (screen). Different letters indicate 

statistical differences (P ≤ 0.05) between sperm velocity classes. 

4. Discussion 

This study show, by the first time in fish species, the importance of technique 

and technicians chosen for obtaining credible sperm motility assessments to 

be applied in fish spermatology research. Both precision and accuracy 

parameters were obtained in order to investigate the effect of subjective or 

objective methods for assessing sperm motility, at the same time that ability 

of different technicians (with different degrees of experience) for carrying 

out the different analysis. 

In relation to precision, which reflects how consistent results are when 

measurements are repeated (even if they are far from the “real” value), the 
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data revealed that there were not much differences depending on the 

methods used (objective or subjective), and CVs were quite similar between 

the techniques applied. In this sense, CVs are often used for testing analytical 

or instrumental techniques (immunoassay tests, PCR plates, etc.), and values 

no bigger than 25% are usually accepted in the scientific field (McAuliffe et 

al. 2015). Even though there are not data from fish, CV values obtained from 

subjective and objective assessment techniques were similar than those 

reported in several mammal species. For example, in rams, CVs of sperm 

motility assessments ranged between 12.5 and 31.74% (Rajashri et al., 2017); 

on boar, CVs values ranged from 4.7 to 34.7% (Reicks, 2012); and in bull, CVs 

ranged between 21 to 44% (Pepper-Yowell, 2011). On the other hand, there 

were not much significant differences between the technical support staff 

(high, medium, and low experimented technicians), and statistical dispersion 

parameters were quite similar between them independent of the technique 

used and the sperm motility class analyzed. In this respect, the degree of 

experience in the laboratory did not become a key factor in order to achieve 

a high level of precision in fish sperm motility assessments. 

However, in relation to accuracy, which measures the ability of technicians 

to carry out an accurate subjective evaluation by the difference (amplitude) 

between the CASA-Mot motility values and the own subjective assessment, 

this study yielded interesting results. When sperm motility assessments were 

carried out through the eyepieces of the microscope, high ET obtained 

subjective motility values relatively closed to the values assessed by a CASA-

Mot system (with over- or under- estimations of only around 10%), However, 

medium and low ETs provided overestimated values up to 25 percentage 

points, so the data reveal that the degree of experience in the laboratory 

becomes a key factor in order to achieve a high degree of accuracy (even 

though sometimes the low ET obtained more accurate results than the 

medium ET). 

On the other hand, when subjective motility values were obtained through 

the computer monitor (screen), both high and medium ETs were able to 

improve their assessment performance, and subjective values provided for 

them were closer to the CASA-Mot values. These results can be explained 

thanks to image quality field because while the sperm samples are analyzed 
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directly by the microscope, spermatozoa trajectories are difficult to 

distinguish in the clear field, and the overlap of trajectories can cause 

erroneous assessments of the samples; however, when sperm motion is 

assessed subjectively by the computer monitor (screen), spermatozoa 

appear clear over the dark field to the observer (technician), then accurate 

assessments can be carried out. In this sense, coefficients of correlation 

support this hypothesis, and both high, medium, and low ETs presented 

higher r values (r = 0.78–0.96) in assessments carried out by the computer 

monitor (screen) instead of the rude microscope evaluation (r = 0.42–0.92). 

Therefore, when sperm motility assessment is carried out without CASA- Mot 

system, it is recommended to assess the motility by the computer monitor 

(screen) instead of directly by the eyepieces of the microscope. 

On the other hand, it is important to note that r values obtained for samples 

belonging to CII (r = 0.42–0.65) were much lower than those obtained for C-

I and C-III classes (r = 0.71–0.92), overall for the medium and low ETs. These 

results show that samples with motilities between 25 and 50% have more 

difficulties for their accurate analyses, so subjective results can be 

compromised when the sperm samples are analyzed in this range of motility. 

Similar results have been reported in other species in which, although 

technicians were able to differentiate correctly the extremes of the sperm 

motility scale, the samples ranging between 34 and 57% were highly 

divergent for different technicians (Walker et al., 1982). In fact, the 

subjective evaluation in Walker’s study was not capable of defining this 

boundary (limit), and fertility workups on males are incorrect 14 times out of 

15 in this critical range, so the use of CASA-Mot systems seems to be an 

essential tool for working in fertility trials. 

In relation to technician ability for estimating sperm velocities by subjective 

assessments, high experimented technician was able to distinguish fast, 

medium, and low spermatozoa, while less experimented technicians were 

not able to do it, evidencing their incapacity to evaluate properly the 

spermatozoa velocity. On this regard, sperm velocities seems to be the major 

component that determines fertilization success and the proportion of the 

paternity through the sperm competition in several fish species (Gage et al., 

2004; Gasparini et al., 2010; Rudolfsen et al., 2008), so technician ability for 
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predicting velocity classes can be a useful tool to carry out fertilization trials 

in the aquaculture sector, optimizing the reproductive efficiency in the fish 

farms (Gallego et al., 2013b). The data obtained in this study suggest that the 

degree of expertise of a technician on the sperm quality analysis seems to be 

a key factor to predict velocities, and even though having a CASA system to 

make accurate assessments is the most recommended option, high 

experimented technicians are a requirement for investigating male fertility 

status as well as monitoring spermatogenesis. 

To sum up, this study showed, by the first time in fish species, the importance 

of technique and technicians chosen for obtaining credible sperm motility 

assessments to be applied in fish spermatology research. Both the technique 

(subjective or objective) and the technician (degree of expertise) became key 

factors in order to reach accurate motility estimations, so the use of both 

qualified staff and novel CASA-Mot systems seems to be a critical request for 

obtaining satisfying results in species that have a motility pattern similar to 

that of the European eel. 

In addition, because there are many different con- figurations and methods 

of using CASA-Mot systems, it is important to establish standard methods of 

enhancing the reliability, comparability, and applicability of data produced 

by different research groups (Boryshpolets et al., 2013; Castellini et al., 2011; 

Gallego et al., 2013a). All studies that use CASA must describe its 

methodology very clearly, particularly concerning image acquisition rate, 

track sampling time, number of cells sampled, type and depth of the chamber 

used, microscope magnification, etc. in order to make it possible to compare 

the results obtained by different laboratories. 
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Abstract 

In the past three decades the European eel Anguilla anguilla experienced up 

to 99% decline in recruitment in some parts of its distribution range, thus 

breeding in captivity is nowadays considered key in order to save this species. 

With this in mind, obtaining high quality gametes is fundamental, as is the 

ongoing study of new hormonal treatments in order to improve current 

methods. Therefore, the aim of this research study was i) to assess the effect 

of two hormonal treatments (OVI, a recombinant α-choriogonadotropin; and 

VET, a human chorionic gonadotropin purified from female urine) on the 

reproductive performance of European eel males and, after choosing the 

best hormone, ii) to compare the effects of three doses in order to cut the 

costs of artificial maturation. 

Our results indicated that the type of hormone used (recombinant vs purified 

gonadotropins) significantly affected the progression of spermiation in 

European eel males, and that the recombinant hormone (OVI) produced 

better results in terms of sperm quantity and quality in most of the weeks of 

the treatment, remaining thus an effective treatment to induce spermiation 

in this species. On the other hand, in terms of the doses experiment, our 

results showed that from the lowest to the highest dose (0.25 to 1.5 IU/g 

fish) all the treatments were able to induce the whole spermiation process. 

However, a weekly dose of 1.5 IU/g fish of recombinant hormone (OVI) was 

necessary in order to provide a notable amount (volume and density) of high 

quality (motility and velocity) samples throughout the treatment. 

Finally, the economic analysis demonstrated that the recombinant hormone 

(OVI, 1.5 IU/g fish) had a greater profitability than the other treatments, 

making it possible to obtain high-quality sperm for a lower price. In this 

context, and considering the fact that in the first few weeks of any hormonal 

treatment there is no high-quality sperm production, long-term hormonal 

therapies are necessary in order to lessen the cost of high-quality European 

eel sperm. 
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1. Introduction 

The European eel (Anguilla anguilla) is an important species for European 

aquaculture (5000 t per year, FAO 2014), being highly appreciated both in 

the European and Asian markets. However, its current production still 

consists in the fattening of eels captured in the natural environment, due to 

the fact that it is not yet possible to reproduce eels in captivity. In addition, 

a drastic decrease has been observed in the number of wild European eels 

migrating from Europe and North Africa to the spawning sites in the Atlantic 

Ocean, leading to the species being included in the IUCN red list as critically 

endangered. Therefore, breeding in captivity is postulated as a key 

alternative in order to save this species, which will help to reduce the 

pressure on natural populations, it will facilitate the supply to the eel farms, 

and it will allow repopulation in areas where those that historically were 

located the eel. 

Although in some fish species reproduction in captivity can be controlled 

exclusively by environmental factors (Rocha et al., 2008), sometimes it is 

impractical or even impossible to simulate the environmental conditions in 

which sexual maturation happens (i.e. depth, pressure, spawning migration, 

etc.), so the use of exogenous hormones is the only effective way of inducing 

reproduction (reviewed by Mylonas et al., 2010, 2017). This is the case of the 

eel species (Anguilla spp.), as they do not mature spontaneously in captivity, 

and the maturation of both males and females must be induced with long-

term hormonal treatments (Asturiano et al., 2005; Lokman et al., 2016; Ohta 

et al., 1997; Sorensen and Winn, 1984). 

In the case of European eel males, human chorionic gonadotropin (hCG) has 

been the most widely used hormone for achieving spermiation, but it has 

been administered to the animals in several different formats (Gallego et al., 

2012). The first studies date back to the middle of the 20th century, where 

gonadal maturation in eel males was induced by intraperitoneal injections of 

urine from pregnant women (Fontaine, 1936). At the end of the century, 

several companies were able to isolate hCG from female urine, so the 

induction of spermiation of this species became a much more simple and 

standardized process (Dollerup and Graver, 1985; Khan et al., 1987; Pérez et 
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al., 2000). Studies from the beginning of the 21st century served to develop 

and optimize hormonal treatments based on purified hCG, optimizing the 

sperm production and sperm quality  through weekly intraperitoneal 

injections of 1.5 IU/g fish (Asturiano et al., 2006). However, both the duration 

of the spermiation period (limited in time) and the interruption of the 

availability of hCG (in its purified form) in the market meant that new studies 

addressing the use of alternative hormones became necessary. In this 

context, the arrival of human recombinant gonadotropins (hCGrec, produced 

by recombinant DNA technology) became an effective alternative due to the 

similar structure of the native human hormone, and throughout the last few 

years they have yielded good results (Gallego et al., 2012). Nevertheless, the 

effectiveness of treatments based on hCGrec apparently depends on the 

batch of hormones used, and sometimes it is possible to find groups of 

animals where although gonadal maturation occurs, the sperm quality 

parameters (such as motilities and velocities) are not good enough for 

scientific or aquaculture purposes. Recently, new studies using specific 

(native) European eel recombinant gonadotropins were also able to induce 

spermiation in eel males, but the sperm volume and motility results were low 

for carrying out fertilization trials (Peñaranda et al., 2018). In addition, the 

production of these native hormones is a tedious and sophisticated process 

that can only be carried out by companies, thus the end cost of the hormones 

is prohibitive for many research groups. 

Therefore, studies into alternative hormonal treatments must be ongoing in 

order to improve current methods to date. With this in mind the aim of this 

work was i) to assess the effect of two hormonal treatments (recombinant vs 

purified mammal gonadotropins) on the reproductive performance of 

European eel males and, after choosing the best treatment, ii) to compare 

three different hormone doses in order to cut the costs of artificial 

maturation in this species both for fish farms and laboratories. 
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2. Material and Methods 

2.1 Fish maintenance  

Eel males from the fish farm Valenciana de Acuicultura, S.A. (Puzol, Valencia; 

on the east coast of Spain) were moved to our facilities, in the Aquaculture 

Laboratory at the Universitat Politècnica de València, Spain. The fish were 

distributed into aquaria equipped with separate recirculation systems, 

thermostats/coolers, and covered to reduce the light intensity and fish 

stress. The eels were gradually acclimatized to sea water (salinity 37 ± 0.3 g/l) 

over the course of one week, and later once a week they were anaesthetized 

with benzocaine (60 ppm) and weighed to calculate the individual doses of 

the hormone, which were then administered by intraperitoneal injection. 

The fish were not fed throughout the experiment and were handled in 

accordance with European Union regulations (see Ethics statement section). 

2.2 Experimental design 

2.2.1 Experiment 1. Hormonal treatments: recombinant vs purified 

gonadotropins 

Twenty adult eel males (mean body weight 107.9 ± 1.6 g) were equally and 

randomly distributed into two 150-L aquaria (10 males per treatment) where 

they underwent two hormonal treatments: OVI (a recombinant α-

choriogonadotropin produced in Chinese hamster ovary cells by 

recombinant DNA technology and marketed as Ovitrelle; Merck S.L., Madrid) 

and VET (purified human chorionic gonadotropin marketed as Veterin 

Corion; Divasa-Farmavic S.A., Barcelona).  

The VET hormone was dissolved in a saline serum (NaCl 0.9%) to obtain a 

concentration of 1 IU/µL serum. The OVI hormone was diluted to obtain a 

similar concentration. The hormones were injected weekly at a dose of 1.5 

IU/g fish and were administered for 25 weeks. 
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2.2.2 Experiment 2: Different doses of recombinant gonadotropin  

After choosing the recombinant gonadotropin (OVI) as the best hormone in 

terms of sperm quality and profitability, 30 adult eel males (mean body 

weight 102.3±3.7 g) were equally and randomly distributed into three 150-L 

aquaria (10 males per treatment). Each group (aquarium) received a different 

hormonal treatment doses (OVI1.5: 1.5 IU/g fish; OVI0.75: 0.75 IU/g fish; or 

OVI0.25: 0.25 IU/g fish; respectively) with the final aim of reducing 

production costs. The hormone was diluted 1:1 (IU/µl) in saline solution 

(NaCl 0.9%) and the doses were administered weekly for 12 weeks. 

2.3 Sperm collection and sampling 

Sperm samples were collected weekly by the application of abdominal 

pressure 24 h after the administration of the hormone (following the 

protocol described by Pérez et al. (2000)), and taking special care to avoid 

contamination with faeces, urine and sea water. Samples were diluted 1:9 

(sperm:extender) in P1 medium (Peñaranda et al., 2010b) and kept in plastic 

tubes at 4 ºC until the sperm kinetic analyses, which were carried out in the 

2 hours following sperm collection. Sperm volume was previously measured 

using graduated tubes and sperm density was determined by a CASA system 

(see next section). 

2.4 Evaluation of sperm motility and kinetic parameters 

Samples were activated by mixing 0.5 µl of P1-diluted sperm with 4.5 µl of 

artificial sea water (Aqua Medic Meersalz, 37 g/l, with 2% BSA (w/v), pH 

adjusted to 8.2). All the motility analyses were performed in triplicate using 

the motility module of ISAS (Proiser R+D, S.L.; Paterna, Spain) as described 

by Gallego et al. (2013a). The chamber used in all the experiments was a 

SpermTrack-10® (Proiser, Paterna, Spain) with a 10x negative contrast phase 

lens in a Nikon Eclipse (E-400) microscope. 

The parameters considered in this study were total motility (MOT, %); 

progressive motility (pMOT, %), defined as the percentage of spermatozoa 

which swim forwards in 80% of a straight line; curvilinear velocity (VCL, in 
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µm/s), defined as the time/average velocity of a sperm head along its actual 

curvilinear trajectory; average path velocity (VAP, µm/s), defined as the 

time/average of sperm head along its average spatial trajectory; and straight 

line velocity (VSL, µm/s), defined as the time/average velocity of a sperm 

head along the straight line between its first detected position and its last 

position. Spermatozoa were considered motile if their progressive motility 

had a VSL over 10 µm/s. 

In order to perform an in-depth analysis of the results, sperm samples were 

classified into three classes based on the percentage of motile spermatozoa 

provided by the CASA system: Class I (C-I) = 0 - 25% of motile cells; Class II (C-

II) = 26 - 50% of motile cells; and Class III (C-III) = 51 - 100% of motile cells.  

2.5 Economic analysis 

To analyze the economic profitability of each hormonal treatment (both in 

experiment 1 and 2) three factors were taken into account: i) the price of the 

hormone; ii) the total amount of hormone used (dose) throughout the whole 

treatment; and iii) the total volume of sperm of the highest motility class (C-

III) produced by each treatment. The aim was essentially to relate the 

investment made with the level of good quality sperm produced by each 

hormonal treatment. 

2.6 Statistical analysis  

The mean and standard error were calculated for all sperm parameters 

(volume, density, motility and the rest of the kinetic parameters). Shapiro-

Wilk and Levene tests were used to check the normality of data distribution 

and variance homogeneity, respectively. A two-way repeated measures 

ANOVA was used to analyze the sperm production and quality parameters. 

Significant differences were detected when p-value < 0.05. All statistical 

analyses were performed using the statistical package SPSS version 19.0 for 

Windows software (SPSS Inc., Chicago, IL, USA). 
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3. Results 

3.1. Experiment 1. Hormonal treatments: recombinant vs purified 

gonadotropins 

The sperm production parameters are shown in Figure 1. Most of the OVI-

treated fish (90%) started to produce sperm in the 6th week of treatment, 

while only 60% of VET-treated fish generated sperm in this week (Figure 1A). 

From the 12th to the 18th week, the VET treatment generated higher 

percentages of spermiating males (90-100%) than the OVI treatment (70-

80%) and, finally, the decreasing percentages of spermiating males were 

similar in the last few weeks (19th to 25th) in both treatments. 

Regarding volume, there was an increasing trend from the beginning to the 

end (Figure 1B) in both treatments. Volume values were generally higher in 

OVI treated males, although statistical differences were only found in weeks 

8 and 9, probably due to the high dispersion of data found in the OVI-treated 

males during the last few weeks. Density values were slightly higher in VET 

treated males from weeks 11 to 21, but significant differences were only 

found in weeks 13 and 15 (Figure 1C). 

Regarding the sperm quality parameters, OVI males showed higher motilities 

than VET males during the first few weeks of treatment (Figures 2A and 2B), 

reaching maximum values of 76 and 45% of MOT and pMOT, respectively. 

However, VET-treated males showed a marked rise from week 12 (with 77 

and 35% of MOT and pMOT, respectively), and motility parameters were 

similar for both hormones until the end of the treatment, with values 

remaining over 50% in the 25th week. The sperm velocities (Figures 2C, 2D 

and 2E) showed a similar pattern to the motility traits: OVI-treated males 

showed higher velocities (VCL, VSL and VAP) than VET-treated males during 

the first few weeks of the treatment, but the kinetic values were similar in 

both hormone treatments from the 12th week until the end of the treatment. 
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Figure 1. Evolution of sperm production parameters throughout the hormonal 

treatments (OVI and VET; 1.5 IU/g fish): A) Percentage of spermating males; B) Sperm 

volume; and C) Sperm density. Data are expressed as mean ± SEM and asterisks 

indicate significant differences between treatments at each week of treatment. 

Finally, when the volume and the sperm motility classes were considered 

simultaneously (Table 1, experiment 1), it was observed that the OVI 

treatment displayed better total volume results (with volume values over 

500 mL of C-III sperm) than the VET treatment, which yielded total volume 

values of around 200 mL of C-III sperm. In addition, in terms of the production 

of high quality sperm week-by-week (Figure 3), the OVI treatment showed a 

higher number of weeks (8th, 9th, 10th, 12th, 22th, 23th, 24th and 25th) providing 

higher volumes of good quality sperm (C-III) than the VET treatment. 
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Table 1. Total sperm volumes (mL) recovered from the different hormonal treatments 

of experiment 1 (OVI and VET; 1.5 IU/g fish) and experiment 2 (OVI1.5: 1.5 IU/g fish; 

OVI0.75: 0.75 IU/g fish; and OVI0.25: 0.25 IU/g fish) for each sperm motility class (CI-

CIII). 

  Experiment 1   Experiment 2 

Sperm Class  OVI VET  OVI1.5 OVI0.75 OVI0.25 

C-I  29.7 14.7  29.9 199.6 206.5 

C-II  45.1 85.0  26.5 15.8 94.4 

C-III  544.9 201.4  99.0 13.7 15.9 

Regarding the economic analysis, the investment needed to obtain mature 

males was quite different in each hormonal treatment (Table 2; experiment 

1). The VET treatment investment was smaller, at 0.69 €/week per male, 

nevertheless, although the OVI treatment required a higher investment per 

male (1.17 €/week per male), the total volume of class III sperm obtained 

from OVI-treated males was much higher than VET males (Table 1). 

Therefore, the final profitability of this hormone was higher in OVI treated 

males, where it was possible to obtain 1 mL of the highest quality sperm (C-

III) for a lower price (0.44 €/mL). The other hormone (VET) produced worse 

economic results because it was necessary to invest 0.86 € to obtain 1 mL of 

good quality (C-III) sperm. 
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Figure 2. Evolution of sperm quality parameters throughout the hormonal 

treatments (OVI and VET; 1.5 IU/g fish): A) Percentage of motile cells; B) Percentage 

of progressive motile cells; C) Curvilinear velocity; D) Rectilinear velocity; and E) 

Average path velocity. Data are expressed as mean ± SEM and different letters 

indicate significant differences between treatments at each week of treatment. 

M
o

ti
li

ty
(%

)

20

40

60

80

P
ro

g
re

s
s
iv

e
 m

o
ti

li
ty

(%
)

10

20

30

40

50

C
u

rv
il

in
e
a
r 

v
e
lo

c
it

y

(
m

/s
)

50

100

150

200

A

B

C

Weeks of treatment

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
v
e
ra

g
e
 p

a
th

 v
e
lo

c
it

y

(
m

/s
)

25

50

75

100

125 E

R
e
c
ti

li
n

e
a
r 

v
e
lo

c
it

y

(
m

/s
)

25

50

75

100 D

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

OVI

VET



 ALTERNATIVE HORMONAL TREATMENTS 

59 

 

Figure 3. Percentage of sperm volume from each motility class (I-III) in each week 

throughout the different hormonal treatments: A) OVI and B) VET.  

Motility classes: Class I = 0- 25%; Class II = 26-50%; and Class III >50% of motile cells. 

3.2 Experiment 2: Different doses of recombinant gonadotropin 

In terms of the sperm production parameters (Figure 4), all the doses of 

recombinant gonadotropin (OVI) were able to induce high percentages of 

spermiating males (around 80%) during most of the weeks of treatment. 

However, the OVI0.25 group produced the lowest percentages of spermiating 

males during the last few weeks (around 60%). 

Regarding volume, an increasing trend from the beginning to the end was 

seen in all three treatments (Figure 4B). The volume values were generally 

higher in the OVI0.25 group, showing statistical differences in several (6, 7, 8 

and 10). On the contrary, density patterns were slightly higher in males 

treated in the OVI1.5 group, and significant differences were found from the 

9th week to the end of the experiment (Figure 4C). 
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Table 2. Profitability of hormonal treatments of experiment 1 (OVI and VET; 1.5 IU/g 

fish) and experiment 2 (OVI1.5: 1.5 IU/g fish; OVI0.75: 0.75 IU/g fish; and OVI0.25: 0.25 

IU/g fish) in relation to economic investment and production of high-quality (Class III) 

sperm. 

   Experiment 1  Experiment 2 

   OVI VET  OVI1.5 OVI0.75 OVI0.25 

Dose IU/g fish  1.5 1.5  1.5 0.75 0.25 

Hormone price €/IU  0.008 0.005  0.008 0.008 0.008 

aDose price €/g fish  0.012 0.007  0.012 0.006 0.002 

bInvestment/male €/male  1.17 0.69  1.17 0.58 0.19 

cC-III sperm price €/mL  0.44 0.86  1.78 6.44 1.85 

a Dose x Hormone Price 
b Investment to maturate one male (100 g approx.) per week. 
c Total investment (€) / Total C-III sperm volume (mL). 

Concerning sperm quality parameters, OVI.1.5-treated males provided 

samples with higher values of MOT and pMOT throughout almost all the 

treatment (Figures 5A and 5B), reaching maximum values of 72 and 46%, 

respectively. Conversely, medium and low doses (OVI0.75 and OVI0.25) 

provided samples which only showed maximums of 30 and 20% of MOT, 

respectively. The spermatozoa velocities (Figures 5C, 5D and 5E) showed 

similar patterns to those of motility, and OVI1.5-treated males showed higher 

velocities with significant differences (VCL, VSL and VAP) throughout most of 

the treatment. 

Finally, when the volume and the sperm motility classes were evaluated 

simultaneously (Table 1, experiment 2), it was observed that the highest dose 

(OVI1.5) was the only treatment able to produce acceptable volumes (near 

100 mL) of good quality (C-III) sperm. On the contrary, medium and low doses 

(OVI0.75 and OVI0.25) provided large volumes of bad quality sperm (C-II 

especially and C-I), which represented more than 95% of total volume 

production for each treatment. In addition, when looking at the production 

of high quality sperm week-by-week, the OVI1.5 treatment showed a higher 
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number of weeks (8th, 9th, 10th, 11th and 12th) providing higher volumes of C-

III sperm than the other treatments (Figure 6). 

 

 

Figure 4. Evolution of sperm production parameters throughout the different 

hormonal doses of OVI treatment (OVI1.5: 1.5 IU/g fish; OVI0.75: 0.75 IU/g fish; and 

OVI0.25: 0.25 IU/g fish): A) Percentage of spermiating males; B) Sperm volume; and C) 

Sperm density. Data are expressed as mean ± SEM and different letters indicate 

significant differences between doses at each week of treatment. 
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Figure 5. Evolution of sperm production parameters throughout the different 

hormonal doses of OVI treatment (OVI1.5: 1.5 IU/g fish; OVI0.75: 0.75 IU/g fish; and 

OVI0.25: 0.25 IU/g fish): A) Percentage of motile cells; B) Percentage of progressive 

motile cells; C) Curvilinear velocity; D) Rectilinear velocity; and E) Average path 

velocity. Data are expressed as mean ± SEM and different letters indicate significant 

differences between doses at each week of treatment. 
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Figure 6. Percentage 

of sperm volume 

from each motility 

class (I-III) in each 

week throughout the 

different hormonal 

doses OVI treatment: 

A) OVI1.5: 1.5 IU/g 

fish; B) OVI0.75: 0.75 

IU/g fish; and C) 

OVI0.25: 0.25 IU/g 

fish. Motility classes: 

Class I = 0- 25%; Class 

II = 26-50%; and Class 

III >50% of motile 

cells. 
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4. Discussion 

4.1. Hormonal treatments: recombinant vs purified gonadotropins  

The study of alternative hormonal treatments to improve both sperm 

production and quality parameters must be ongoing in order to enhance 

gonadal maturation in fish (Mylonas et al., 2017), specifically in species with 

serious reproductive problems, such as the European eel (Gallego et al., 

2012; Peñaranda et al., 2018). In the present study, our results indicated that 

the type of hormone used (recombinant vs purified gonadotropins) 

significantly affects the progression of spermiation in European eel males, 

with the recombinant hormone (OVI) producing better results in most of the 

weeks. 

First of all, it is important to note that sperm quantity and quality have 

become a key factor in controlled reproduction both for aquaculture and 

scientific purposes, thus reasonable volumes of high quality samples are 

necessary in order to fertilize the maximum number of eggs (Migaud et al., 

2013; Tvedt et al., 2001). In this context, although both hormones (OVI and 

VET) were able to induce a high percentage of spermiating males (>70%), 

there was a notable difference in sperm volume and density patterns 

between the treatments. In terms of volume, OVI-treated males produced 

approximately twice (even triple) the volume than VET-treated males in all 

the weeks, thus the final amount of sperm resulting from the OVI hormone 

was much higher than that produced by VET-treated males. In this context,  

Gallego et al. (2012) reported similar results in this species when using the 

recombinant hormone (OVI), where a purified hormone (from a different 

brand) used in that previous study yielded remarkable results (up to 8 mL). 

In addition to the volume, the density values provided by VET treated males 

in the present study were not high enough to compensate for the lower 

volumes produced by this hormone in most of the weeks, thus the 

recombinant hormone (OVI) was the best treatment according to both the 

sperm production parameters. 

Moreover, in addition to sperm quantity, sperm quality is a crucial factor in 

fertilization trials, and several kinetic parameters (characterizing sperm 
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motility and velocity) are nowadays considered to be the best fish sperm 

quality biomarkers (Gallego and Asturiano, 2018b). In experiment 1, both 

hormones yielded remarkable motility and velocity values during most of the 

treatment, although the recombinant hormone (OVI) was able to provide 

high quality samples during a greater number of weeks (18/20) than the 

purified hormone (12/20). In this context, it is noteworthy that an essential 

factor in European eel breeding captivity programs is the ability to obtain 

high quality sperm for a large number of weeks in order to synchronize egg 

production by the females (Butts et al., 2014; Tomkiewicz et al., 2013), thus 

the recombinant hormone (OVI) was identified as the best treatment 

according to the sperm quality indicators. 

From a physiological point of view, the different responses found in eel males 

regarding the different hormonal treatments could be explained by the 

biological activity of each hormone: while the VET hormone was a native hCG 

hormone, purified and isolated from human urine (Birken et al., 1996), the 

OVI hormone was a recombinant version of endogenous hCG produced by 

recombinant DNA technology (Choi and Smitz, 2015). Even though both 

hormones (OVI and VET) act as analogues of the luteinizing hormone (LH), 

Bassett et al. (2005) reported that purified-hCG preparations contained a 

high number of urine derived protein contaminants as well as hCG related 

metabolites, whereas recombinant hCG was confirmed to be essentially 

intact hCG (free from contaminant proteins and with very low levels of 

oxidised hCG). Therefore, the different nature and origins of these hormones 

(with different degrees and types of glycosylation) could induce gonadal 

maturation in different ways, generating different patterns in sperm volume 

or density as seen in previous studies reported by Gallego et al. (2012). In 

addition, recent reports showed that new recombinant hCGs are available in 

the market (Pregnyl, Ovidrel, etc.), and they could be probably useful for 

gonadal maturation in fish due to the high degree of structural and functional 

similarity with the reference format Ovitrelle (Leão and Esteves, 2014; 

Thennati et al., 2018). 

On the other hand, new hormonal therapies using specific recombinant 

gonadotropins are being developed to induce spermiation in eel species. 

Although results in European eel has not been good enough for applying in 
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aquaculture purposes (Peñaranda et al., 2018), recombinant Japanese eel LH 

induced a much higher amount of high-quality sperm when compared to hCG 

injections in this species (Ohta et al., 2017). In this context, studies into 

alternative hormonal treatments must be ongoing in order to improve 

current methods for inducing the successful artificial maturation of 

endangered species, such as the European eel. 

To sum up, our results demonstrated that the progression of spermiation in 

European eel males was notably influenced by the hormone used. 

Recombinant gonadotropin (OVI) showed the best results in terms of both 

sperm production and quality parameters, becoming an effective treatment 

to induce spermiation in the European eel. 

4.2. Different doses of recombinant gonadotropin (OVI) 

In addition to the task of pursuing new hormones in order to extend the 

spermiation period and enhance sperm quality, attempts to optimize 

hormonal therapies are also a key premise to be applied in both scientific and 

aquaculture sectors. In this context, and once the most efficient hormonal 

treatment from experiment 1 had been chosen, the effects on the induction 

of spermiation of several doses of the recombinant hormone (OVI) were 

evaluated.  

Our results showed that from the lowest to the highest dose of the 

recombinant hormone (0.25 to 1.5 IU/g fish), all the treatments were able to 

induce the whole spermiation process. Previous studies reported that a 

single injection of hCG was enough to induce spermatogenesis and 

spermiation both in European and Japanese eel species (Khan et al., 1987; 

Miura et al., 1991b), but a continuous supply of hormone was necessary to 

maintain both the sperm production and the sperm quality throughout the 

weeks (Asturiano et al., 2005). In this context, our results agree with these 

previous studies, and a periodic supply of hCG (even using the lowest doses) 

was able to maintain the spermiation process over the weeks. 

Concerning the sperm production rates (volume and density), the OVI0.25 

group surprisingly yielded the highest sperm volumes throughout the 

treatment, with values reaching close to 8 mL in the 10th week. However, 
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sperm density was lower in this group (OVI0.25) compared to the other two 

groups where higher recombinant hormone doses were injected (OVI0.75 and 

OVI1.5), thus the total amount of spermatozoa (volume x density) produced 

weekly was similar for all treatments. This density-volume pattern has 

already been described in other species, and this effect seems to be 

controlled by the maturation inducing steroids (MIS) which regulate the final 

stages of sperm maturation (Asturiano et al., 2002; Schulz et al., 2010). In this 

context, high densities would usually be linked to small volumes and 

conversely, low densities would need to be compensated by high sperm 

volumes. In addition, the density data yielded in this study using the standard 

doses of recombinant hCG (1.5 IU/g fish) agree with previous values obtained 

by administering the recombinant hormone in this species (Gallego et al., 

2012), but density data were significantly higher than those obtained using 

purified hormone a decade ago (Asturiano et al., 2006; Pérez et al., 2000). 

On the other hand, and concerning the sperm quality parameters, notable 

differences were found between the treatments. In this context, only the 

group with the highest dose (OVI1.5) was able to generate samples with 

acceptable motility values from the 8th-9th weeks until the end of the 

treatment, while OVI0.25- and OVI0.75-treated males produced bad quality 

sperm (<35% of motility) in all the weeks. This low response in terms of 

motility in the groups receiving the lowest doses could be due to a hormonal 

failure in the maturation process. In this sense, an insufficient weekly dose 

of gonadotropin could generate a deficient production of steroidogenic 

enzymes, which in turn would produce a low production of the steroids 

involved in gonadal maturation, therefore causing a poor production of good 

quality sperm (Jamalzadeh et al., 2014; Peñaranda et al., 2010c; Schulz and 

Miura, 2002). Throughout the bibliography, the most common dose applied 

in fish has been 1 IU/g fish, but doses are usually species-dependent, varying 

from 0.15 IU/g fish in pikeperch (Sander lucioperca) (Falahatkar and 

Poursaeid, 2014) to 50 IU/g fish in silver perch (Leiopotherapon plumbeus) 

(Denusta et al., 2014). Considering European eel references, previous 

experiments carried out a decade ago also showed that doses of 0.75 IU/g 

fish were unable to provide high quality samples throughout the treatment, 

as per this study. However, a dose of 1.5 IU/g fish of purified hCG 
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administered every 2 weeks provided a greater number of samples but of a 

similar quality (Asturiano et al., 2005), given more chances for carrying out 

hatchery operations related to fertilization trials. 

To sum up, our results have demonstrated that in order to achieve a 

successful maturation process in the European eel, a minimum dose of 1.5 

IU/g fish of recombinant hCG administered weekly is necessary, inducing the 

production of reasonable volumes of high quality sperm samples. 

4.3. Economic analysis for the different hormones and doses 

From a biological point of view, the best hormonal treatment should provide 

a large amount (volume and density) of high quality (motility and velocity) 

samples for as many weeks as possible. However, from an economic point of 

view, a reduction in the costs of hormonal therapies is essential in order to 

obtain affordable and more effective treatments (Mylonas et al., 2017). 

In the present study, the economic performance of the treatments was 

assessed by taking into account both the economic investment made (type, 

price and dose of hormone) and the total volume of high-quality sperm 

generated by each treatment. In experiment 1 and concerning high-quality 

sperm price, the recombinant hormone (OVI) generated the best results 

throughout the experiment, improving the performance yielded by the 

purified hormone (VET). In this context, and despite the fact that the 

investment required for maturating males using the recombinant hormone 

was almost double that of the purified gonadotropin (1.17 vs 0.69 €/male per 

week, respectively), the large amount of high-quality sperm produced by 

OVI-treated males (triple that of VET-treated males) meant a greater 

profitability, making it possible to obtain high-quality sperm for half the price 

(0.44 €/mL) of the purified hormone (0.86 €/mL). These results agree with 

previous studies carried out by Gallego et al. (2012), where recombinant hCG 

also generated better economic performances (0.5 €/mL) than 

gonadotropins purified from pregnant women and mares (0.72 and 1.8 €/mL, 

respectively). 

Moreover, the analysis of the economic return of the different doses used in 

experiment 2 yielded interesting results. Although the highest (OVI1.5) and 
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the lowest dose (OVI0.25) of recombinant hormone generated similar 

economic performance in terms of high-quality sperm price (1.78 and 1.85 

€/mL, respectively), the total C-III volume generated by OVI0.25 was too low 

(2.5 mL/week) for a sustainable application in eel aquaculture, including 

large-scale fertilizations. In addition, when comparing the results of the 

economic profitability of the same hormone (OVI) and dose (1.5 IU/g fish) 

from experiments 1 and 2, the results were notably different: the 

recombinant hormone showed a much better economic performance in 

experiment 1 (0.44 €/mL) than in experiment 2 (1.78 €/mL). This difference 

can be explained by the large-scale production concept, where the cost 

advantages obtained by applying a different scale of operation (in this case 

25 vs 12 weeks for experiment 1 and 2, respectively) decrease the cost per 

unit of output (high-quality sperm). In fact, when the economic profitability 

of experiment 1 was calculated just for the first 12 weeks, the economic 

performance of OVI was lower (1.06 €/mL) than for values obtained in the 

same experiment for 25 weeks (0.44 €/mL). Thus, because during the first 

few weeks of any hormonal treatment there is no high-quality sperm 

production, long-term hormonal therapies are necessary in order to lessen 

the cost of production of high-quality European eel sperm. 

Finally, and linking the production of large amount (volume and density) of 

high-quality (motility and velocity) sperm samples to the essential hatchery 

tasks such as in vitro fertilization trials (IVF), Butts et al. (2014) showed that 

the sperm to egg ratio became a critical step towards establishing successful 

in vitro fertilization protocols. In this context, and taking into account the 

optimum value of sperm:egg ratio reported in this species (1:25,000), a large 

amount of eggs (approx. 10 million per week) could be fertilized using a batch 

of 10 males induced with recombinant hCG (1.5 IU/g fish). 

5. Conclusions 

In conclusion, this study shows that the type of hormone used significantly 

affected the progression of spermiation in European eel males, and the 

recombinant hormone (Ovitrelle at 1.5 IU/g fish) produced the best results in 

terms of sperm quantity (volume and density) and quality (motility and 
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velocity). In addition, the economic analysis demonstrated that the 

recombinant hormone had a greater profitability than the other treatments, 

hence becoming an effective method to induce the spermiation process in 

this species with the aim to provide high quality samples during a great 

number of weeks 

Acknowledgements 

This study was funded from the European Coµmunity’s 7th Framework 

Programme under the Theme 2 “Food, Agriculture and Fisheries, and 

Biotechnology,” grant agreement 245257 (Pro-Eel), and Generalitat 

Valenciana (ACOMP/2011/229). D.S.P. and P.C.F.C. have postdoctoral grants 

from UPV (CE-01-10) and PAC-EMBRAPA, respectively. I.M. and V.G. have 

predoctoral grants from Generalitat Valenciana and Spanish MICINN, 

respectively. The authors thank the Proiser R+D, S.L. team, who performed 

the task of fractioning the original sequences for the experiment described 

in section 3.2. 

 

 

 

 

 

 

 

 



 

71 

CHAPTER 3 

 

Comparison of European eel sperm cryopreservation 
protocols with standardization as a target 

 

 

J.G. Herranz-Jusdado1, V. Gallego1, M. Morini1, C. Rozenfeld1,               
L. Pérez1, E. Kása2, T. Kollár2, A. Depincé3, C. Labbé3, Á. Horváth2,         

J.F. Asturiano1 

 

1 Grupo de Acuicultura y Biodiversidad. Instituto de Ciencia y Tecnología Animal. 

Universitat Politècnica de València. Camino de Vera s/n. 46022, Valencia, Spain..  

2Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100 

Gödöllő, Hungary 

3INRA, Fish Physiology and Genomics UR 1037, Campus de Beaulieu, Rennes 

France. 

  

Aquaculture 498 (2019) 539–544. 

https://doi.org/10.1016/j.aquaculture.2018.09.006 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



STANDARDIZATION OF CRYOPRESERVATION PROTOCOLS 

73 

Abstract 

The critical situation of the European eel (Anguilla anguilla) has urged the 

development of sperm cryopreservation protocols for reproduction in 

captivity and cryobanking. In the last years, two research groups have 

developed their own protocols in Spain and Hungary with positive results, 

but difficult to compare. 

Here, a series of experiments were conducted to test the quality of thawed 

sperm after using both protocols, determining which of them produce the 

best results and aiming for standardization. The quality of thawed sperm was 

assessed by studying the motility and kinetic values of thawed sperm from 

both cryopreservation protocols using a computer-assisted sperm analysis 

(CASA-Mot) system. In addition, a viability analysis was performed using flow 

cytometry to test if the cryoprotectants or the freezing-thawing process led 

to a reduction in spermatozoa survival. Furthermore, since during 

cryopreservation the sperm was treated with methylated cryoprotectants 

(DMSO or methanol) that may induce epigenetic changes in the sperm DNA 

(cytosine methylation) and could affect the offspring, we conducted a 

luminometric methylation assay (LUMA) to study the DNA methylation levels 

induced by both protocols.  

In this work, all the above-mentioned parameters were analyzed in fresh and 

frozen-thawed sperm samples. Our results showed that thawed sperm 

samples from both protocols presented lower sperm motility and velocity, 

and lower percentage of live cells than those shown in fresh sperm samples. 

Furthermore, sperm samples from the methanol based protocol showed 

significantly higher motility, velocity and percentage of live spermatozoa 

than the same sperm samples treated with the DMSO based protocol. In 

addition, the DMSO based protocol induced a hypomethylation of sperm 

DNA compared to fresh samples whereas the methanol based protocol did 

not alter sperm DNA methylation level. Our results indicate that the 

methanol based protocol is a more suitable protocol that preserves better 

the motility and genetic qualities of the European eel sperm. 
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1. Introduction 

During the last years, a drastic decrease has been observed in the number of 

European eels (Anguilla anguilla) returning from Europe and North Africa to 

the spawning sites in the Atlantic Ocean (Dekker, 2000; Jacoby and Gollock, 

2014). Several impacts such as water pollution, overfishing or habitat 

fragmentation, have led the European eel to be included on the IUCN red list 

as critically endangered (Jacoby and Gollock, 2014). Consequently, the 

development of techniques and protocols for reproduction in captivity are 

necessary to reverse this situation. 

The maturation of the European eel in captivity is only achieved by costly and 

long hormonal treatments (Asturiano et al., 2006; Gallego et al., 2012; Pérez 

et al., 2000), and still the production of gametes in both sexes can be 

unsynchronized (Asturiano et al., 2017). During the last years, several 

researchers have worked in the development of new maturation protocols 

such as alternative hormonal treatments with recombinant hormones 

(Peñaranda et al., 2018) or androgen implants (Di Biase et al., 2017; Mordenti 

et al., 2018), but the timing of final maturation in females is still highly 

variable and difficult to control (Mylonas et al., 2017). Therefore, the 

development of cryopreservation protocols for European eel sperm has been 

considered important for reproduction management, by guaranteeing the 

availability of both types of gametes when female spawns (Asturiano et al., 

2017), besides its application for cryobanking and future broodstock 

management. 

Cryopreservation of European eel sperm has been faced by different groups 

since early 2000s. Mainly two groups of research established successfully 

their own cryopreservation protocols in Spain (Asturiano et al., 2003; 2004; 

Peñaranda et al., 2009) and Hungary (Müller et al., 2004; Szabó et al., 2005). 

These protocols differ greatly in many aspects such as the composition of the 

extenders, the cryoprotectants used, the volume of the straws or the cooling 

rates within others, evidencing the need for standardization (Asturiano et al., 

2017; Rosenthal et al., 2010). 

The success of a sperm cryopreservation protocol is commonly assessed 

using parameters such as sperm viability and motility, fertilizing capacity and 



STANDARDIZATION OF CRYOPRESERVATION PROTOCOLS 

75 

the quality of the offspring (Cabrita et al., 2010). However, in the case of the 

eel both protocols have yielded high post-thaw sperm viability (58 to 63%) 

and motility values ranging between 18 and 38% (Asturiano et al., 2017). 

Furthermore, the fertilizing capacity of the Spanish protocol (from now on 

referred as DMSO protocol) was successfully tested by producing European 

eel larvae after fertilization with thawed sperm (Asturiano et al., 2016), and 

following the Hungarian protocol (from now on referred as methanol 

protocol), hybrid larvae were successfully produced using thawed sperm 

from European eel and eggs from Japanese eel (Anguilla japonica) (Müller et 

al., 2012; 2018). In this last study, Müller and collaborators showed that the 

malformation rate of larvae was higher when using cryopreserved sperm 

than in the control groups using fresh sperm, suggesting that the 

cryopreservation methodology needs further refinement.  

Additionally, a growing concern is that the epigenetic effects of 

cryopreservation on the sperm DNA might be altered by the freezing, 

cryobanking and thawing process (Labbé et al., 2017; Pérez-Cerezales et al., 

2010). The use of methylated cryoprotectants such as methanol or dimethyl 

sulfoxide (DMSO) has been proven to produce reactive oxygen species (ROS) 

that can induce cytosine methylation in fish sperm (De Mello et al., 2017; 

Kawai et al., 2010). Methylation of cytosine residues in DNA is considered to 

be one of the major epigenetic mechanisms stabilizing gene silencing 

(Schaefer et al., 2007). Furthermore, cytosine methylation can be altered by 

cryopreservation, inducing hypo- and hypermethylation profiles in sperm 

DNA (Labbé et al., 2017). Therefore, the study of epigenetic effects of 

cryopreservation may be a good indicator of the success of a 

cryopreservation protocol, since damaged DNA or abnormal DNA regulation 

have been observed to have a negative effect on the generated embryos 

(Herráez et al., 2017).   

The main objective of this work was to compare the main protocols 

previously developed for European eel sperm cryopreservation, aiming for 

standardization. The comparison was made considering sperm quality after 

thawing, when sperm motilities, sperm velocities, and sperm viability were 

analyzed. Furthermore, epigenetic effects of sperm cryopreservation were 
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studied by analyzing whether DNA methylation patterns were affected by the 

different cryopreservation protocols. 

2. Materials and methods 

2.1 Ethics statement 

The protocol was approved by the Experimental Animal Ethics Committee 

from the Universitat Politècnica de València (UPV) and final permission was 

given by the local government (Generalitat Valenciana, Permit Number: 

2015/VSC/PEA/00064). 

2.2 Fish handling 

For this experiment, 28 immature male European eels from the fish farm 

Valenciana de Acuicultura S.A. (Puzol, Valencia) were brought to our facilities 

in the Universitat Politècnica de València. Fish were distributed in two 200 L 

aquaria with recirculation systems, and thermostats and coolers to maintain 

water temperature at 20 ºC. They were gradually acclimated to seawater 

(salinity 37 ± 0.2 g/L) increasing the salinity 10 ppt each 2 days for 8 days, and 

2 days more of resting at 37 ppt. The aquaria were covered to maintain a 

constant shadow and reduce fish stress.  

After 10 days of acclimation, male fish anesthetized with benzocaine (60 

ppm) were weekly treated with injections of recombinant human chorionic 

gonadotropin (rhCG; Ovitrelle, Madrid, Spain, 1.5 IU/g fish) to induce 

maturation and spermiation (Gallego et al., 2012; Pérez et al., 2000). From 

the sixth week of hormonal treatment, sperm samples were collected 

weekly, 24h after the hormone injections. 

For sperm collection, fish were anesthetized with benzocaine. Thereafter, 

the genital area was carefully cleaned with distilled water and thoroughly 

dried with paper to avoid contamination with feces, urine or seawater to 

avoid accidental sperm activation. Then, sperm was collected by applying a 

ventral massage from the pectoral fins to the genital opening and collected 

in graduated Falcon tubes using a vacuum pump. 
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Sperm samples were collected after 11-14 weeks of hormonal treatment. 

The samples were diluted 1:9 (sperm:extender) in P1 medium (in mM: NaCl 

125, NaHCO3 20, MgCl2 2.5, CaCl2 1, KCl 30; pH adjusted to 8.5, described by 

Peñaranda et al., 2010a) , kept in plastic tubes at 4 ºC and evaluated for 

motility. 

2.3 Evaluation of sperm motility 

In a maximum of 2 h after the sperm extraction, sperm samples were 

evaluated in triplicates following the method described by Gallego et al. 

(2013a). Briefly, each sperm sample was activated by mixing 0.5 µL of P1-

diluted sperm sample with 4.5 µL of artificial seawater (in mM: NaCl 354.7, 

MgCl2 52.4, CaCl2 9.9, Na2SO4 28.2, KCl 9.4, in distilled water) with 2% (w:v) 

bovine serum albumin (BSA), pH adjusted to 8.2 and osmolality of 1100 

mOsm/kg. The activation was performed in an ISAS Spermtrack 10 counting 

chamber (Proiser R+D, S.L., Spain) on a microscope in negative phase with a 

10X magnification (Nikon Eclipse 80i) connected to a computer with an ISAS 

782M camera (Proiser R+D, S.L., Spain), recording 60 frames per second (fps). 

All samples were analyzed 15 s after activation, using the CASA module ISAS 

v1 software (Proiser R+D, S.L., Spain). Several kinetic parameters such as 

percentage of motile spermatozoa (MOT, %), progressive motility (pMOT, %), 

curvilinear velocity (VCL, µm/s), straight-line velocity (VSL, µm/s), and 

average path velocity (VAP, µm/s), as well as percentage of slow (average 

path velocity (VAP) = 10-50 µm/s), medium (VAP = 50-100 µm/s) and fast 

(VAP >100 µm/s) spermatozoa were recorded for further analysis (Gallego 

and Asturiano 2018a for details). Samples with motility values higher than 

65% were selected for cryopreservation. 

2.4 Experimental design 

A total number of 18 sperm samples were selected for cryopreservation. 

Each sample was first evaluated for motility and then frozen and thawed 

following both protocols. In addition, before freezing, each sample was 

evaluated for motility approximately 10 minutes after diluted with the 

freezing media corresponding to each protocol. Then, four straws (IMV 
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Technologies, l’Aigle, France) of 250 µL for the DMSO protocol and four 

straws of 500 µL for the methanol protocol were frozen. Therefrom, three 

straws per protocol were thawed and immediately analyzed with CASA-Mot 

for sperm quality. Moreover, 50 µL of fresh and thawed sperm from each 

sample were used for the viability analysis using the flow cytometer (see 

down). The left straw per protocol was maintained frozen in liquid nitrogen 

and was sent to INRA’s lab in Rennes (France) for sperm epigenetic analysis, 

by studying the DNA methylation level. In addition, 100 µL of fresh sperm 

from each sample were frozen as well by directly throwing the tube with the 

sperm into the liquid nitrogen and then storing it at -80 ºC for DNA 

methylation analysis of the sperm control. We demonstrated previously that 

such snap freezing allows that the DNA methylation level of the fresh sperm 

is preserved (unpublished data).  

2.5 Cryopreservation protocols 

Every selected sample was frozen and thawed following both protocols. For 

the DMSO protocol, a freezing medium was prepared in advance by mixing a 

modified P1 extender solution (in mM: NaCl 50, NaHCO3 100, MgCl2 2.5, CaCl2 

1, KCl 30; described by Peñaranda et al., 2009; and named M5 in that paper), 

25% (v/v) of fetal bovine serum (FBS) and 10% (v/v) of DMSO. The freezing 

medium was adjusted to a pH of 6.5, an osmolality of 330 mOsm/kg and 

maintained at 4 ºC. Thereafter, a dilution 1:2 of sperm: freezing medium, was 

prepared and immediately packed in 250 µL straws, sealed with modeling 

clay and frozen for 5 min in liquid nitrogen vapor 1 cm above the surface 

using a floating structure. Following, the straws were thrown into the liquid 

nitrogen where the sperm was preserved as long as needed. The thawing 

consisted in a water bath at 30 ºC for 8 s. 

For the methanol protocol, modified Tanaka´s extender (in mM: NaCl 137, 

NaHCO3 76.2) was prepared in advance and maintained at 4 ºC. Then, a 

dilution consisting in sperm:Tanaka’s extender:methanol (1:8:1) was 

prepared and packed in 500 µL straws, and frozen for 3 min in liquid nitrogen 

vapor 3 cm above the liquid nitrogen before throwing the straws into the 
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liquid nitrogen. For thawing, the straws were immersed in a water bath at 40 

ºC for 13 s. 

2.6 Thawed sperm evaluation 

The quality of thawed sperm samples was assessed by analyzing several 

sperm motility parameters with CASA-Mot, sperm viability (membrane 

integrity) with a flow cytometer and epigenetic effects with an analysis of 

sperm DNA methylation pattern. 

The motility analysis was performed using CASA-Mot as explained above. In 

addition, a viability analysis was conducted with flow cytometry using a 

fluorescence kit (LIVE/DEAD Sperm Viability Kit, Thermo Fisher Scientific, MA, 

USA) containing the membrane-permeating dye SYBR 14, that stains the 

nuclei of membrane-intact cells fluorescent green and the non-permeating 

propidium iodide (PI), that counterstains the nuclei of cells with a damaged 

membrane fluorescent red. Here, 0.5 µL of SYBR 14 (100 µM) and 2 µL of PI 

(2.4 mM) were added to 50 µL of fresh or thawed sperm samples and 

incubated at room temperature in the dark for 10 min. Thereafter, samples 

were diluted in 500 µL of extender solution (P1 medium for the Spanish 

protocol or Tanaka´s medium for the Hungarian protocol) and were analyzed 

with a flow cytometer (Beckman Coulter FC500). The analyses were 

performed using the voltages: SS= 199, FS= 199, FL1= 377 and FL2= 372; for 

a maximum number of 5,000 events or 15 s at low flow. 

Finally, a study of DNA methylation level was conducted in fresh and thawed 

sperm. Sperm DNA was extracted using the phenol/chloroform method: 

about 20×106 spermatozoa in 10 µL Hank´s balanced salt solution (HBSS) 300 

were digested overnight at 42 °C under agitation in 1mL of TNES buffer (125 

mM NaCl, 10 mM EDTA, 17 mM SDS, 4 M urea, 10 mM Tris-HCl, pH 8) with 

75 µg of proteinase K (Sigma Aldrich, P6556). One mL phenol-chloroform-

isoamyl alcohol (25:24:1) was added and vigorously mixed. After 

centrifugation for 15 min at 8,000 g at 4 °C, the upper phase (800 µL) was 

mixed with 200 µL NaCl 5 M and 2 mL of cold (-20 °C) 100% ethanol. After 

centrifugation, the dried DNA pellet was mixed with 100 µg/mL RNase in 

water (Promega, A7973) and incubated 1 h at 37 °C. Whole DNA methylation 
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level was estimated using LUMA (luminometric methylation assay) (Karimi et 

al., 2006). Genomic DNA from each sperm (0.5-1 µg) was digested 4 h at 37 

°C with 7.5 units of either HpaII and EcoRI (NEB R3101) or MspI and EcoRI in 

a total volume of 30 μL in duplicate. For pyrosequencing of the digested 

samples, 20 µL of digested DNA were mixed with 20 µL of annealing buffer 

(Qiagen, 979009) and samples were placed in a Qiagen PyroMark Q96 ID. The 

instrument was programmed to add dNTPs in the following order: A, C+G, T, 

C+G, water, A, T. Peak heights (PH) were analyzed using the PyroMark Q96 

software. A and T peaks refers to the amount of DNA cleaved by EcoRI (DNA 

content controls) whereas C + G peaks show the amount of DNA cleaved by 

MspI and HpaII. The percentage of methylation was calculated as 100 x (1-

(PH HpaII/PH MspI)). The PH HpaII/PH MspI ratio was calculated by doing (PH 

HpaII/PH EcoRI) / (PH MspI/PH EcoRI). 

2.7 Statistical analysis 

Sperm viability and motility parameters were subjected to analysis of 

variance (General Linear Model, GLM). As fixed effect was chosen fresh or 

thawed sperm from both protocols, i.e. “fresh sperm”, “thawed DMSO” and 

“thawed methanol”. For all models, an examination of the residual plots 

verified that no systematic patterns occurred in the errors. Model results of 

p-values<0.05 were considered significant. 

For the statistical analysis of DNA levels, a non-parametric test (paired 

Wilcoxon test) was performed. Differences were considered as significant if 

p<0.05.  

All analyses were conducted in the R-environment 

(R_Development_Core_Team, 2010) 

3. Results 

Results from this comparison experiment showed that all samples, 

independently of the protocol used, decreased their percentage of motile 

cells and cell velocity after cryopreservation (Figure 1). In addition, the 

motility results from thawed samples of sperm cryopreserved with the 
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methanol protocol showed higher motility (32.4 ± 1.8%) than those from the 

DMSO protocol (10.8 ± 0.9%) (Figure 1). All the sperm kinetic parameters 

analyzed showed the same pattern, with higher motility and faster velocities 

in samples preserved with the methanol protocol than those preserved with 

the DMSO one (Figure 1). 

 

Figure 1. Sperm kinetic results from fresh sperm, thawed sperm from methanol 

cryopreservation protocol (Hungarian protocol) and thawed sperm from DMSO 

protocol (Spanish protocol). The motility analyses show MOT (motility) and PM 

(progressive motility). The velocity results presented here are VCL (curvilinear 

velocity), VSL (straight-line velocity) and VAP (average path velocity). Boxplots with 

different letters are significantly different (p < 0.05; n = 16-18). 

Furthermore, the proportion of fast cells (faster than 100 µm/s) was also 

significantly reduced after cryopreservation (Figure 2). Nevertheless, thawed 

samples of sperm cryopreserved with the methanol protocol presented a 

higher percentage (47.9 ± 1.5%) of fast cells than using the DMSO one (29.6 

± 2.1%). Note that the sperm was instantly activated when diluted in the 
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freezing medium of the DMSO protocol before freezing, clearly affecting the 

motility after thawing (Figure 3), whereas samples diluted in the freezing 

medium containing methanol were not activated (no differences with fresh 

samples) and did not affect the sperm motility prior to freezing (Figure 3). 

 

Figure 2. Comparison of the percentage of different velocity groups [slow (VAP = 10-

50 µm/s), medium (VAP = 50-100 µm/s) and fast (VAP > 100 µm/s)] of thawed sperm 

samples from the DMSO and methanol protocols, and from fresh sperm. Different 

letters indicate significant differences between percentages of fast cells (p < 0.05; n 

= 16-18). 

Cell viability results (Figure 4) showed that there were more live spermatozoa 

in thawed sperm samples from the methanol protocol than from the DMSO 

one, and although survival in both cases was high (>75%), it was still lower 

than viability measured in fresh sperm samples. 
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Figure 3. Effect of freezing medium dilution on sperm motility. Percentage of motile 

cells after activation with artificial sea water. “Fresh” column shows motility from 

fresh samples. “Pre-cryo” columns shows the sperm motility of sea water-activated 

samples after being diluted with freezing medium containing DMSO or methanol 

before cryopreservation, and “Thawed” columns shows the sperm motility of thawed 

and sea water-activated samples from the DMSO or methanol protocol. Values are 

means ± SEM of sperm from 16 samples. Means with different letters are significantly 

different (p < 0.05). 

The analysis of cysteine methylation in fresh and thawed sperm (Figure 5) 

showed that sperm samples treated with the DMSO protocol had lower DNA 

methylation than fresh samples and samples treated with the methanol 

protocol, whereas these two showed no differences between each other.  
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Figure 4. Comparative viability data from flow cytometry of fresh sperm and thawed 

sperm from methanol and DMSO cryopreservation protocols. Values represent 

means ± SEM (n = 12). Different letters indicate significant differences (p < 0.05) 

between means. 

 

 

Figure 5 Global DNA methylation of eel sperm. Average percentage ± SD (n=9) of 5-

methylcytosine on fresh and thawed samples. Different letters indicate significant 

differences (p<0.05). 
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4. Discussion 

In this work, we described and compared the two main protocols available 

for European eel sperm cryopreservation. Our results indicated that in every 

case, the sperm motility of thawed sperm was lower than in fresh sperm. The 

reduction in post-thawing sperm quality compared to fresh sperm is 

consistent with the available bibliography, although there is a great variation 

between fish species (Asturiano et al., 2017; Horváth et al., 2015). For 

instance, Dziewulska et al. (2011) used several cryoprotectants (DMSO and 

methanol as in the present study) to freeze fresh sperm samples of Atlantic 

salmon (Salmo salar) with a motility of 70-95%. The study showed that the 

sperm motility after thawing was significantly lower than in fresh samples, 

with post-thawing motility values in the best protocol of 8.2%, using DMSO 

as cryoprotectant. Oppositely, a different study with cryopreserved sperm 

from brown trout (Salmo trutta) using methanol as cryoprotectant, obtained 

motilities of thawed sperm higher than 60%, which represented a reduction 

of only 20% of motility compared to fresh samples (Horváth et al., 2015). 

In the present study, the data of sperm quality from thawed samples showed 

that cryopreservation using the methanol protocol caused higher motility 

values than the DMSO protocol. Although the values obtained with the 

methanol protocol were consistent with the bibliography (Müller et al., 2004; 

Szabó et al., 2005), the motility results from the DMSO protocol were lower 

than previously reported (Asturiano et al., 2003; 2004; Peñaranda et al., 

2009). Although the samples were frozen immediately after the addition of 

the freezing media containing DMSO to the sperm, it has been proved that 

the presence of DMSO in the freezing media activates the European eel 

sperm (Peñaranda et al., 2009), and lead to a reduced post-thawed sperm 

motility. Even though the DMSO protocol was improved to reduce activation 

by increasing the concentration of NaHCO3, decreasing the pH of the media 

(Peñaranda et al., 2009; Vílchez et al., 2017), fast manipulation was still 

required. In this study, we show that the sperm was activated after diluting 

in the freezing media (before freezing) containing DMSO. This pre-freezing 

activation naturally affects the final sperm motility of thawed sperm samples. 
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Although DMSO is the most used cryoprotectant for fish sperm (Gallego and 

Asturiano, 2018a; Martínez-Páramo et al., 2017), methanol has also been 

widely used in freshwater species such as sturgeons, salmonids, tench or 

Eurasian perch within others (reviewed by Asturiano et al., 2017). 

Furthermore, it has been recently used in cryopreservation protocols for 

Japanese eel sperm (Koh et al., 2017; Müller et al., 2017; 2018). As 

cryoprotectant, methanol has been reported to penetrate more rapidly the 

cells and being less toxic than DMSO (Horváth et al., 2015). In addition, 

methanol is osmotically inert and therefore does not activate sperm by 

osmotic shock (De Baulny et al., 1997; Horváth et al., 2005). In our study, the 

methanol was apparently less toxic than the DMSO, because thawed samples 

from the methanol protocol presented higher survival than samples from the 

DMSO protocol. Furthermore, we confirmed that since methanol is 

osmotically inert, it did not activate the sperm, oppositely to the DMSO that 

activated the sperm due to the increase of osmolality. This difference could 

partially explain the higher motility and velocity of thawed samples treated 

with the methanol protocol. Furthermore, both protocols differ in other 

aspects such as extender composition, dilution rate, volume and freezing 

rate that could also affect the thawed sperm motility. 

Sperm from the DMSO protocol presented a loss of methylation compared 

to fresh sperm, whereas sperm from the methanol protocol remained similar 

to the fresh control. Changes in cytosine methylation levels after 

cryopreservation have been little explored in fish. Primarily, the concern 

arose for the use of methylating cryoprotectants that in the presence of ROS 

may led to cytosine methylation (Kawai et al., 2010). Indeed, Riesco and 

Robles (2013) observed in zebrafish that some promoter regions were 

hypermethylated after genital ridge cryopreservation in DMSO. However, in 

tambaqui (Colossoma macropomum) sperm, cryopreservation with either 

DMSO or methanol induced in both cases a sperm DNA hypomethylation (De 

Mello et al., 2017), contrarily to what could have been expected from the 

model study from Kawai et al. (2010). It is therefore not clear if the 

cryoprotectant molecule is the main parameter affecting DNA methylation. 

It was reported that cryopreservation-induced changes in DNA methylation 

could be species dependent (Labbé et al., 2017), and that cryopreservation 
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with methods which are not optimal for a given species would induce more 

epigenetic effect (Labbé et al., 2014). In our case, the fact that the methanol 

protocol did not change the overall DNA methylation level would indicate 

that the epigenetic risk is reduced with this method. 

5. Conclusions 

In conclusion, this study show that the methanol cryopreservation protocol, 

is nowadays the most suitable protocol for European eel sperm 

cryopreservation, giving the best sperm motility, sperm velocity and cell 

survival values. Furthermore, the methylation level of sperm DNA from 

thawed samples with this method are the same as in fresh sperm, indicating 

that there are not drastic epigenetic changes when sperm is cryopreserved 

in this way.  
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Abstract 

Maturation in captivity of European eel (Anguilla anguilla) requires long and 

costly hormonal treatments that often lead to asynchronic maturation 

between sexes. Therefore, optimization of sperm short-term storage 

methods and cryopreservation protocols can be a key factor for successful 

artificial fertilization. Two experiments were carried out to optimize the 

existing protocols. 

For the short-term storage experiment, sperm was diluted in P1 extender 

and then stored at different dilution ratios (1:9 and 1:49). The best outcome 

was then tested at different temperatures (4 and 20 ºC) and in constant 

agitation or still. In the cryopreservation experiments, large sperm volumes 

(cryotubes of 2 and 5 ml), different cooling rates (freezing tubes 1 or 3 cm 

above liquid nitrogen during 15 and 20 min), and different extender 

compositions (methanol 10% was used as cryoprotectant, and 

complemented with FBS 20%, BSA 5% or egg yolk 5%) were tested. Sperm 

kinetic parameters were analyzed with a CASA-Mot system both in fresh and 

short- or long-term stored samples. 

In the short-term storage trial, sperm quality did not show significant 

differences in the first 24 h after sperm collection between the different 

storage conditions tested. For longer time, 1:49 dilution ratio showed 

significantly better results than 1:9, and low temperature (4 ºC) was better 

for sperm preservation after 3 days.  

Cryopreserved sperm samples showed good motility results when they were 

frozen in cryotubes of 2 and 5 ml, with no significant differences compared 

to samples cryopreserved in lower volumes (straws of 0.5 mL). Furthermore, 

the combination of methanol (10%) and egg yolk (5%) as freezing medium, 

induced significant higher post-thawing motility values (over 50%) than the 

control (methanol 10%), whereas the addition of FBS (20%) and BSA (5%) led 

to a significant reduction of the sperm motility. The establishment of these 

storage and cryopreservation protocols will be important for the 

improvement of European eel artificial reproduction programs. 
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1. Introduction 

European eel (Anguilla anguilla) is a catadromous fish with a complex life 

cycle that includes several metamorphoses. In the last 35 years, the number 

of European eels arriving to the European coasts, have been dramatically 

reduced in over 90% (van den Thillart et al., 2009), and strategies for artificial 

reproduction have become a priority to recover the species. Furthermore, 

the European eel is very appreciated as food delicatessen with great 

economical value, reinforcing the need for a program for reproduction in 

captivity to release the fishing pressure on natural individuals. 

Maturation in captivity of European eel requires hormonal treatments that 

last for several weeks in males and even months in females (Butts et al., 2014; 

Gallego et al., 2012; Mylonas et al., 2017), and frequently there is a 

maturation asynchrony between genders. Furthermore, in females, the 

period of time after ovulation that the eggs are viable for fertilization is very 

short (Butts et al., 2014). Therefore, short-term preservation of fresh sperm 

diluted in extender medium, or cryopreservation in liquid nitrogen is 

necessary to facilitate artificial fertilization in European eel (Asturiano et al., 

2016).   

The optimal sperm storage conditions are normally at low temperatures to 

avoid bacterial growth, and diluted in extender solution, that mimics the 

composition of the physiological seminal plasma, to maintain the 

spermatozoa capacities for longer time (Asturiano et al., 2016; Bobe and 

Labbé, 2009). However, the time that the sperm maintains motility and 

fertilization capacity varies widely between species, and the optimal 

temperature, dilution ratio and other physiochemical storing conditions are 

species specific (Bobe and Labbé, 2009).  

Several research groups have studied the effect of different storing 

conditions on European eel sperm quality at temperatures above freezing 

(Peñaranda et al., 2010a,b), with good sperm motility results for over three 

days, and even one week or more under specific air-limited conditions 

(Peñaranda et al., 2010a). Nevertheless, in these studies, the assessment of 

sperm motility was conducted subjectively, which make these results difficult 

to compare both intra- and inter-laboratories (Gallego et al., 2018).  
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For preservation of sperm during a longer period, cryopreservation is the 

best option, and protocols developed in fish species can keep the sperm 

quality up to several years (Fabbrocini et al., 2015). Moreover, sperm 

cryopreservation presents many other applications in broodstock 

management, including the transport of gametes from different centers, or 

preservation of selected genetic lines (Asturiano et al., 2017; Cabrita et al., 

2010; Martínez-Páramo et al., 2017). Although sperm cryopreservation 

present several benefits, these techniques face different issues such as the 

membrane damage produced by the freezing and thawing process (Labbé et 

al., 2013). The use of cryoprotectants can partially protect the sperm cells 

from damaging and are absolutely necessary for successful cryopreservation 

(Cloud and Patton, 2009). Furthermore, the use of membrane protectants 

such as sugars, bovine serum albumin (BSA), or egg yolk, have been used to 

improve the preservation of sperm membrane integrity (Cabrita et al., 2010; 

Martínez-Páramo et al., 2017). However, the sperm characteristics vary 

greatly between fish species and therefore the development and 

improvement of cryopreservation protocols should be adapted to the 

characteristics of each one (Asturiano et al., 2017). 

In European eel, several researchers have developed different sperm 

cryopreservation protocols (Asturiano et al., 2003; 2004; Herranz-Jusdado et 

al., 2019a; Müller et al., 2004; Peñaranda et al., 2009; Szabó et al., 2005). 

Moreover, cryopreserved European eel sperm have been successfully used 

in fertilization trials (Asturiano et al., 2016) and in hybridization trials with 

Japanese eel (Anguilla japonica) eggs (Müller et al., 2012; 2018), although an 

increased rate of larval deformities were observed when  fertilizing with 

cryopreserved sperm (Müller et al., 2018), evidencing the need of refinement 

of the protocols. Recently, Herranz-Jusdado et al. (2019a) have compared the 

available European eel cryopreservation protocols with the aim of choose 

the most efficient one and standardize its use, but this protocol still consists 

of small volumes of 0.5 mL, which is impractical for large-scale fertilization 

programs needed in e.g. hatcheries. Furthermore, the use of additives may 

improve the protection of the spermatozoa membrane, increasing the 

viability of cryopreserved sperm and optimizing the motility results of post-

thawed sperm. 
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With the objective of improving the storage conditions and cryopreservation 

of large European eel sperm volumes, two experiments were designed. The 

first experiment was performed to test different sperm short-term storage 

conditions. Here, we tested whether the dilution ratio of eel sperm (1:9 or 

1:49) in extender solution or the temperature (4 or 20 ºC) had any effect on 

the sperm preservation time. Further, to reduce degradation, we tested if 

constant stirring had a positive effect on the stored sperm. The second 

experiment was performed to design a new cryopreservation protocol for 

larger volumes, using 2 and 5 mL vials. Furthermore, we tested whether the 

use of additives that previously have been successfully used in other fish 

species, such as fetal bovine serum (FBS), BSA or egg yolk, could improve the 

motility of cryopreserved European eel sperm. 

2. Materials and methods 

2.1 Animal rights 

This study was carried out in strict accordance with the recommendations 

given in the Guide for the Care and Use of Laboratory Animals of the Spanish 

Royal Decree 53/2013 regarding the protection of animals used for scientific 

purposes (BOE 2013). The protocols were approved by the Experimental 

Animal Ethics Committee from the Universitat Politècnica de València (UPV) 

and the final permission was given by the local government (Generalitat 

Valenciana, Permit Number: 2015/VSC/PEA/00064). The fish were not fed 

throughout the experiment and were handled in accordance with the 

European Union regulations concerning the protection of experimental 

animals (Dir 86/609/EEC). 

2.2 Fish handling and sperm collection 

Male European eels (n = 30) from Valenciana de Acuicultura, S.A. fish farm 

(Puzol, Spain) were moved to the aquaculture laboratory at the Universitat 

Politècnica de València (Spain). Fish were distributed in two 150-L aquaria 

(15 males per aquarium) and gradually acclimatized to seawater (salinity = 

37 ± 0.4 g/L) during a week. The eels were kept at a constant temperature of 

20 °C and the aquaria were covered to reduce the light intensity minimizing 
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fish stress. After 10 days of acclimation, the eels were anesthetized weekly 

with 60 ppm of benzocaine (Thermo Fisher, Kandel, Germany) for injecting 

1.5 IU g−1 fish of recombinant human chorionic gonadotropin (rhCG; 

Ovitrelle, Merck S.L., Madrid) to induce maturation. 

After ten weeks of hormonal treatment, sperm samples were weekly 

collected by abdominal pressure 24 h after the administration of the 

hormone (Gallego et al., 2012; Pérez et al., 2000). Sperm samples were 

immediately diluted 1:9 (sperm:extender) in P1 medium (in mM: NaCl 125, 

NaHCO3 20, MgCl2 2.5, CaCl2 1, KCl 30; and pH adjusted to 8.5, described by 

Peñaranda et al. (Peñaranda et al., 2010b) and kept in 15 mL centrifuge tubes 

at 4 °C until sperm kinetic analyses with Computer Assisted Sperm Analyzer 

(CASA-Mot). 

2.3 Evaluation of motility 

Within the 2 h following the sperm extraction, sperm samples were 

evaluated with CASA-Mot system following the method described by Gallego 

et al. (2013a). Briefly, 1 mL of each sperm sample (1:9 diluted in P1) was 

transferred to a 1.5 mL plastic tube. Then, each sample was activated by 

mixing 0.5 µL of P1-diluted sperm sample in 4.5 µL of artificial seawater (in 

mM: NaCl 354.7, MgCl2 52.4, CaCl2 9.9, Na2SO4 28.2, KCl 9.4, in distilled 

water) with 2% (w:v) bovine serum albumin (BSA) (Sigma Aldrich Química SA, 

Madrid, Spain), pH adjusted to 8.2 and osmolality of 1100 mOsm/kg. The 

activation was performed in a counting chamber ISAS Spermtrack 10 (Proiser 

R+D, S.L., Spain) on a microscope in negative phase with a 10X magnification 

(Nikon Eclipse 80i) connected to a computer with an ISAS 782M camera 

(Proiser R+D, S.L., Spain), recording 60 frames per second (fps) during 1 s. All 

samples were analyzed 10 s after activation, using the CASA module ISAS v1 

software (Proiser R+D, S.L., Spain). Several kinetic parameters were studied: 

percentage of motile spermatozoa (MOT), progressive motility (pMOT), 

defined as the percentage of spermatozoa swimming forward, curvilinear 

velocity (VCL) defined as the average velocity of a spermatozoa in a 

curvilinear trajectory and straight-line velocity (VSL), defined as the average 

velocity of a spermatozoa along a straight line. In addition, percentage of 
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slow (average path velocity (VAP) = 10-50 µm/s), medium (VAP = 50-100 

µm/s) and fast (VAP >100 µm/s) spermatozoa were recorded (see Gallego 

and Asturiano (2018b) for details). Samples with motility values higher than 

65% were selected for the experiments. 

2.4 Sperm viability 

A viability analysis was conducted for the cryopreservation experiment, in 

every fresh and thawed sample with flow cytometry using a fluorescence kit 

(LIVE/DEAD Sperm Viability Kit, Thermo Fisher Scientific, MA, USA) 

containing SYBR 14, that stains in green the nuclei of living cells, and 

propidium iodide (PI) that stains in red the nuclei of dead cells. For each 

sample, 0.5 µL of SYBR 14 (final concentration 100 nM) and 2 µL of PI (final 

concentration 12 µM) were added to 50 µL of fresh or thawed sperm samples 

and incubated at room temperature and darkness for 10 min. Thereafter, 

each sample was diluted in 500 µL of P1 extender and was analyzed with the 

flow cytometer (Beckman Coulter FC500). All analyses were performed using 

the voltages: SS= 199, FS= 199, FL1= 377 and FL2= 372, and for a maximum 

number of 5000 events or 15 s at low flow.  

2.5 Experimental design 

The study was divided into two independent experiments. The experiment 1 

aimed to find the best short-term storing conditions for European eel sperm, 

and the experiment 2 aimed to adapt the latest European eel sperm 

cryopreservation protocol to larger volumes, and test whether the use of 

additives may improve the quality of cryopreserved samples. 

2.5.1 Chilled storage 

The chilled storage experiment was divided in two parts. First, it was tested 

which dilution ratio preserved better sperm quality through time. For so, 11 

sperm samples with motilities higher than 65%, were diluted 1:9 or 1:49 in 

P1 extender solution with a final volume of 1 mL and stored at 4 ºC in 1.5 mL 

Eppendorf tubes.  Each sperm sample was then analyzed for sperm kinetics 

with CASA-Mot at 2, 24, 48, 72 h after the sperm collection.  
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In a second part of the experiment, using the dilution that preserved the best 

motility longer time, it was tested whether temperature or movement while 

storing would affect the sperm quality through time. Hence, sperm samples 

from 12 different males, with motility over 65% were diluted 1:49 in P1 

extender solution (v = 1 mL) and stored in 1.5 mL Eppendorf tubes at 4 or 20 

ºC and still or in constant stirring. The stirring consisted in placing the 

samples over a shaking device at 80 rpm. Then samples were again analyzed 

with CASA-Mot at 2, 24, 48, 72 h and 7 days after the sperm collection.  

2.5.2 Cryopreservation 

The cryopreservation experiment was also divided in two parts. First, it was 

tested if the latest eel sperm cryopreservation protocol could be used with 

larger containers (2 and 5 mL). For so, sperm samples from 14 males, with 

motilities over 65% were selected for the experiment and each sample was 

frozen in a straw of 0.5 mL (standard container) (IMV Technologies, l'Aigle, 

France), cryotube (Deltalab SL, Barcelona, Spain) of 2 mL and cryotube of 5 

mL. The straws were frozen following the protocol described by Herranz-

Jusdado et al. (2018b)  , but for the cryotubes different cooling conditions 

were tested. The different freezing conditions consisted in placing the 

cryotubes on a floating structure 1 or 3 cm over the liquid nitrogen (LN) for 

15 or 20 min.  

For the second part of the experiment, the best outcome for 5 mL cryotubes 

was further tested if by adding BSA, FBS (Sigma Aldrich Química SA, Madrid, 

Spain) or egg yolk, had a positive effect in the preservation of the sperm. Each 

sample from 10 different individuals, was analyzed for sperm kinetics with 

CASA-Mot as described above, before freezing and after thawing. In addition, 

the samples were analyzed with the flow cytometer for cell viability as 

explained above. 
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2.6 Cryopreservation protocols 

First, a dilution with sperm:P1-extender:methanol at a proportion 1:8:1 was 

prepared for each sample and packed in duplicate for each volume and 

cooling condition. The diluted samples were then incubated for one hour at 

4 ºC to ensure a stable penetration of the cryoprotectant into the cells. 

Further, the 0.5 mL straws were cooled for 3 min, 3 cm over the LN, and then 

threw them into the LN. The 2 mL tubes were cooled by placing them during 

15 or 20 min at 1 or 3 cm above the LN, and then they were thrown into the 

LN. For the 5 mL tubes, preliminary studies showed that 15 min were not 

sufficient time for cooling enough the sperm, therefore all 5 mL tube samples 

were placed for 20 min, 1 or 3 cm over the LN before throwing them into the 

LN. For thawing, frozen sperm samples were submerged in water at 40 ºC for 

13 s (0.5 mL straws), 70 ºC for 75 s (2 mL crytubes) or 70 ºC for 105 s (5 mL 

cryotubes). All samples were analyzed immediately after thawing with CASA-

Mot for sperm motility and with flow cytometry for cell viability. 

For the second part of the experiment, the same cryopreservation protocol 

was used.  Each sperm sample was divided in four treatments containing 5% 

of egg yolk, 20% FBS, 5% BSA or no additives, as control. The proportions of 

the mixture containing sperm:(P1+additive):methanol were 1:8:1, and it was 

prepared by diluting the additive in P1 first, then added the methanol and 

finally the sperm (Table 1). Note that the egg yolk was extracted directly from 

a commercial hen egg. Then, samples from each treatment were packed in 5 

mL tubes (two tubes per treatment), incubated for 1 h at 4 ºC and then frozen 

for 20 min, 1 cm above the LN surface. Thereafter, the samples were thrown 

into the LN and stored in a LN tank. Frozen samples were thawed by warming 

them in water at 70 ºC during 105 s, and stored at 4 ºC for 24 h. The samples 

were then analyzed with CASA-Mot, and an additional analysis was 

performed 24 h after thawing. The samples were also tested for cell viability 

with the flow cytometer approximately one hour after thawing. 
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Table 1. Volume proportion of the different components of the cryopreservation 

mixture. All volumes are represented as mL of a total volume of 10 mL. The additives 

tested were fetal bovine serum (FBS), bovine serum albumin (BSA) and egg yolk from 

hen. The order of mixture was first P1 extender and additive, followed by methanol 

and finally the sperm. The mixture was incubated for 1 h before freezing. 

Additives Sperm P1-extender Methanol Additive 

Control 1 8 1 - 
FBS 1 6 1 2 
BSA 1 7.5 1 0.5 
Egg yolk 1 7.5 1 0.5 

2.7 Statistical analysis 

Analysis of sperm viability, motility and velocity parameters were subjected 

to analysis of variance (General Linear Model, GLM). For the short-term 

experiment, the considered fixed effects were first the dilution rates, and 

then the temperature of incubation and stirring or still at each time point (1, 

24, 48, 72 h and 7 days). The cryopreservation experiment included each of 

the different cooling conditions and tube size as fixed effects, and for the 

second part of the cryopreservation experiment, the different treatments 

“MeOH”, “FBS”, “BSA” and “egg yolk”, were the chosen fixed effects.  

For all models, an examination of the residual plots verified that no 

systematic patterns occurred in the errors. Model results of p-values < 0.05 

were considered significant. All analyses were conducted in the R-

environment (R_Development_Core_Team, 2010). 

3. Results 

3.1 Chilled storage 

Sperm quality of samples diluted 1:9 and 1:49 in P1 was tested at 5 different 

time-points (1, 24, 48, 72 h and 7 days) (Fig. 1). The results showed no 

reduction in MOT in the first 24 h independently on the dilution ratio, and 

after 48 h, sperm samples of both dilutions showed a significant decrease in 

MOT, but the MOT values were significantly higher in samples diluted 1:49 

than in sperm samples diluted 1:9. The pMOT results showed a reduction 
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already at 24 h independently on the dilution ratio, but the pMOT results 

after 48 h showed that 1:49 preserved better this parameter. In the analysis 

of the velocities (VCL and VSL) very little differences were found, but sperm 

samples diluted 1:49 preserved the velocity for 48 h (the VCL) and 72 h (the 

VSL), whereas samples diluted 1:9 showed a reduction of VCL and VSL after 

48 h. 

 

Figure 1. Sperm kinetic results of sperm stored diluted 1:9 or 1:49 into P1 extender at 

1, 24, 48, 72 h and 7 days after collection. Graphs show motility (MOT), progressive 

motility (pMOT), curvilinear velocity (VCL) and straight-line velocity (VSL). Results are 

given as means ± SEM (n = 11). Different letters indicate significant differences 

(p<0.05) between different dilution ratios within each time point. * indicates 

significant differences (p<0.05) with the control (t = 1 h). 
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Since samples diluted 1:49 in P1 showed better sperm quality results, this 

dilution was tested then for different temperatures (4 or 20 ºC) and stirring 

or still storing (Fig. 2). The results showed few differences in the first 24 

hours. Only still storage at 20 ºC showed a significant reduction compared to 

control (1h stored) samples, but no significant differences were found 

between different storing conditions. After 48 h, all samples showed a 

reduction in MOT and pMOT independently of the storing condition 

compared to control and only samples stored at 20 ºC and still showed lower 

MOT than samples stored under the other conditions. However, the sperm 

velocities (VCL and VSL) were maintained unchanged in all storing conditions.  

At 72 h, samples stored at 4 ºC independently if they were stored still or 

stirring, showed significant higher MOT and pMOT than samples at 20 ºC. 

Similar patterns were found in the velocities (VCL and VSL) but only samples 

stored at 20 ºC and still were slower. Finally, after 7 days all samples showed 

a strong reduction in motility (0 - 12%) and velocity (0 - 38 µm/s).  

3.2 Cryopreservation 

Results from the cryopreservation experiment showed that all samples 

reduced their sperm kinetic parameters (MOT, pMOT, VCL and VSL) after 

cryopreservation independently on the cooling conditions or tube/straw size 

(Fig. 3). Between the different cooling conditions and tube sizes were very 

few differences. Only samples from tubes of 2 mL cooled for 15 min at 3 cm 

over LN and tubes of 5 mL cooled 20 min 3 cm over LN showed a decrease in 

MOT. The other cooling conditions did not show significant differences 

between each other or with the straw control. The results of pMOT showed 

that only thawed samples from 5 mL cryotubes, cooled 20 min 3 cm above 

the LN showed significant lower pMOT compared to thawed samples from 

straws, and sperm from 2 mL tubes cooled for 20 min at 3 cm over the LN 

had higher pMOT than the sperm from the control straws. Finally, the 

velocity results showed very little variation between different sizes or cooling 

rates. Only thawed samples from 5 mL cryotubes cooled 3 cm above LN for 

20 min showed slower sperm velocities (VCL and VSL) compared to samples 

from straws or from other cooling rates and tube sizes.  
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Figure 2. Sperm kinetic results of sperm stored at different conditions (temperature 

and still or stirring) at 1, 24, 48, 72 h and 7 days after collection. Graphs show motility 

(MOT), progressive motility (pMOT), curvilinear velocity (VCL) and straight-line 

velocity (VSL). Results are given as means ± SEM (n = 12). Different letters indicate 

significant differences (p<0.05) between different storing conditions within each time 

point. * indicates significant differences (p<0.05) between a storing condition 

compared with the control (t = 1 h).  

In addition, the spermatozoa survival after cryopreservation was studied (Fig. 

4). The results indicated that all samples showed a reduction in cell survival 

after cryopreservation, and few differences were found compared to 

samples from straws. Samples from 2 mL tubes cooled 1 cm above LN 

independently of the cooling time showed a small reduction in cell survival. 

The same was found when samples from 5 mL tubes were cooled for 20 min, 

3 cm over the LN. 
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Figure 3. Sperm kinetic results from fresh and thawed sperm samples treated with 

different cryopreservation conditions (straw/tube size, cooling height and cooling 

time). Graphs show motility (MOT), progressive motility (pMOT), curvilinear velocity 

(VCL) and straight-line velocity (VSL). Values represent means ± SEM (n = 8-14). 

Different letters indicate significant differences (p < 0.05). 

The second part of the cryopreservation experiment tested the effect of 

additives in the quality of thawed sperm using samples in 5 mL tubes cooled 

20 min, 1 cm above LN. All thawed sperm samples independently of the 

additives used, showed a reduction in the motilities and velocities (as 

occurred in the first part of the experiment) compared to fresh samples (Fig. 

5). However, sperm samples treated with egg yolk showed higher motility 

than samples treated with other additives and control (without additives). 

Furthermore, samples with egg yolk showed MOT higher than 50%, which is 

the highest value obtained so far in European eel. Further, the addition of 
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BSA and FBS induced a reduction in pMOT compared to samples without 

additives and with egg yolk. The analysis of velocities indicated that the 

addition of egg yolk resulted in thawed sperm with faster spermatozoa. 

Furthermore, the percentage of fast cells were also higher in thawed samples 

with egg yolk compared to samples with other additives or without them (Fig. 

6). Moreover, the analysis of cell viability showed a reduction on 

spermatozoa survival of all samples after cryopreservation, without 

significant differences in spermatozoa viability when using additives 

compared to thawed samples without additives (Fig. 7). 

 

Figure 4. Sperm viability data from flow cytometry analysis of fresh and thawed 

sperm samples from the different cryopreservation conditions (straw/tube size, 

cooling height and cooling time). Data (n = 8-14) are expressed as percentage of live, 

dying and dead cells. Different letters indicate significant differences (p < 0.05) in the 

percentage of live cells between different cryopreservation conditions. 
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Figure 5. Sperm kinetic results from fresh and thawed sperm samples from different 

cryopreservation protocols with bovine serum albumin (BSA), fetal bovine serum 

(FBS) or egg yolk as additives. MeOH indicates samples cryopreserved just with 

methanol as cryoprotectant and without additives. All samples were cryopreserved 

in 5 mL cryotubes. Graphs show motility (MOT), progressive motility (pMOT), 

curvilinear velocity (VCL) and straight-line velocity (VSL). Values are shown as means 

± SEM (n = 9). Different letters indicate significant differences (p < 0.05) between 

means. 

The samples with additives were maintained at 4 ºC for 24 h and then 

analyzed for MOT (Fig. 8). The results showed that samples with egg yolk 

showed similar MOT values than samples without additives, whereas 

samples with FBS or BSA as additives showed lower sperm MOT. However, 

sperm samples maintained their MOT unchanged for 24 h independently on 

the additive used (Fig. 8).  
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Figure 6. Comparison of the percentage of different velocity groups [fast (VAP = 100 

µm/s), medium (VAP = 50-100 µm/s), slow (VAP = 10-50 µm/s) and immotile] of 

sperm samples from fresh sperm and from thawed sperm cryopreserved using 

methanol (MeOH), MeOH and FBS, MeOH and BSA, and MeOH and egg yolk. 

Different letters indicate significant differences between percentages of immotile 

and fast cells (p < 0.05; n = 9). 

 

Figure 7. Viability data from flow cytometry of fresh and thawed sperm from the 

different cryopreservation protocols with bovine serum albumin (BSA), fetal bovine 

serum (FBS) or egg yolk as additives. MeOH indicates samples cryopreserved just with 

methanol as cryoprotectant without any other additive. Data (n = 9) are expressed 

as percentage of live, dying and dead cells. Different letters indicate significant 

differences (p < 0.05) between the mean percentages of live cells. 
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Figure 8. Comparison between sperm motility results from sperm immediately and 

24 h after thawing from different cryopreservation protocols with bovine serum 

albumin (BSA), fetal bovine serum (FBS) or egg yolk as additives. MeOH indicates 

samples cryopreserved just with methanol as cryoprotectant and without additives. 

Values are presented as means ± SEM (n = 9). Different letters indicate significant 

differences (p < 0.05) between means. 

4. Discussion 
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used in fish reproduction, due to its low cost and efficiency (Bobe and Labbé, 

2009; Pérez-Cerezales et al., 2009; Trigo et al., 2015). The extender used in 

this study, P1 extender, has been previously refined and optimized for its use 

as diluent for European eel sperm (Asturiano et al., 2003; 2010b; Peñaranda 

et al., 2010a), and it aims to maintain the sperm inactive by mimicking the 

physicochemical characteristics of the seminal plasma, where in natural 

conditions the sperm is immotile (Lahnsteiner et al., 1997; Ohta and Izawa, 

1996).  

In European eel, sperm dilutions raging from 1:10 to 1:100 have been 

previously tested under different conditions (Peñaranda et al., 2010a,b). In 

these studies, 1:50 showed the best outcome, but the motility analysis were 

conducted subjectively, and therefore difficult to compare to objective 
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studies (Gallego et al., 2018). In the present study, two sperm dilution ratios 

in P1 extender were tested, 1:9 and 1:49. We found that in the first 24 h, 

both dilution ratios successfully preserved sperm quality, but after two days, 

dilutions of 1:49 provided better results maintaining high sperm motility for 

over 3 days. These positive effects of higher sperm dilution ratios have been 

proposed to be related to a reduction in the effect of urine contamination, a 

better preservation of pH or a reduction in bacterial growth due to a lower 

spermatozoa concentration (Bobe and Labbé, 2009). Yet, these results 

support the previous findings showing that samples diluted 1:50 preserved 

better sperm motility through several days, but in the first 24 h, samples from 

both dilutions maintained the motility without differences with fresh 

samples. Therefore, for use in the first 24 h, 1:9 sperm dilution may be more 

practical for fertilization trials, since the concentration of spermatozoa in the 

semen would be higher, but after that time-period, 1:49 should be the used 

dilution ratio for preserving better sperm quality.  

In European eel, sperm dilutions raging from 1:10 to 1:100 have been 

previously tested under different conditions (Peñaranda et al., 2010a,b). In 

these studies, 1:50 showed the best outcome, but the motility analysis were 

conducted subjectively, and therefore difficult to compare to objective 

studies (Gallego et al., 2018). In the present study, two sperm dilution ratios 

in P1 extender were tested, 1:9 and 1:49. We found that in the first 24 h, 

both dilution ratios successfully preserved sperm quality, but after two days, 

dilutions of 1:49 provided better results maintaining high sperm motility for 

over 3 days. These positive effects of higher sperm dilution ratios have been 

proposed to be related to a reduction in the effect of urine contamination, a 

better preservation of pH or a reduction in bacterial growth due to a lower 

spermatozoa concentration (Bobe and Labbé, 2009). Yet, these results 

support the previous findings showing that samples diluted 1:50 preserved 

better sperm motility through several days, but in the first 24 h, samples from 

both dilutions maintained the motility without differences with fresh 

samples. Therefore, for use in the first 24 h, 1:9 sperm dilution may be more 

practical for fertilization trials, since the concentration of spermatozoa in the 

semen would be higher, but after that time-period, 1:49 should be the used 

dilution ratio for preserving better sperm quality.  
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However, since 1:49 dilutions preserved better sperm quality for longer time, 

this dilution was used to test whether temperature and still or stirring storing 

had an effect on sperm quality preservation. In this context, previous studies 

showed that semen storage at low temperature decreases spermatozoa 

metabolism (Cosson et al., 1985) and therefore maintained its quality. 

Nonetheless, higher storage temperatures can be more practical in certain 

situations such as long distance transportation, since then maintaining low 

temperatures require specific cooling equipment.  

Furthermore, studies with salmonids sperm reported lower mortality when 

sperm was shaken during storage (Parodi et al., 2017), and this way of storing 

is common in sperm short-term storage protocols of various salmonid 

species (Trigo et al., 2015; Ubilla et al., 2015). In the present study, no strong 

effect of stirring was found on sperm preservation. However, low 

temperatures (4 ºC) preserved higher sperm motility after 2 days of storage, 

and significant improvements from stirring the samples were found only 

after a week. These results are in agreement with several previous studies, 

that indicate that chill storage of sperm preserved better spermatozoa 

motility through time due to a reduction in spermatozoa metabolism and a 

lower bacterial growth in the sperm at low temperatures (Bobe and Labbé, 

2009; Cosson et al., 1985). Yet, this study shows that in the first 24 h of 

storing, European eel sperm maintained its motility independently of the 

temperature. 

The storing time analyzed here was up to 7 days after collection. The 

preservation of sperm motility through time is species specific and varies 

greatly. For instance, sperm samples from Atlantic halibut (Hippoglossus 

hippoglossus) preserved at optimal conditions, remained motile after 79 days 

of storage (Babiak et al., 2006), whereas in common carp (Cyprinus carpio), 

sperm motility was maintained for a maximum of 84 h (Ravinder et al., 1997). 

In European eel, previous studies showed that under air-limited conditions, 

sperm could maintain some motility for as much as 14 days (Peñaranda et 

al., 2010a). That protocol required the used of polycarbonate bags that were 

closed under vacuum conditions. In the present study, the aim included 

finding the best short-term storing conditions that resulted in a practical and 
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easy handling of the samples, having in mind its potential use in large-scale 

reproduction programs at the hatcheries.  

In the second experiment of this work, it was tested whether the latest sperm 

cryopreservation protocol for European eel (Herranz-Jusdado et al., 2018), 

that uses small straws of 0.5 mL, could be applied for larger volumes without 

losing sperm quality for aquaculture purposes. Even though sperm 

cryopreservation protocols are typically developed to solve gamete 

synchronization problems, the establishment of this protocols may have 

additional practical uses such as transfer of sperm between hatcheries 

(Żarski et al., 2017), and using larger volumes would be a great advantage for 

this purpose.  

Cryopreservation of fish sperm in large volumes has already been tested in 

different fish species. For instance, Cabrita et al. (2001) conducted a series of 

experiments using rainbow trout (Oncorhynchus mykiss) sperm using 

different straw sizes for cryopreservation. The results showed similar sperm 

motility results from cryopreserved samples independently of the straw size, 

i.e. 0.5, 1.8 and 5 ml. Moreover, in a recent study, Nomura et al. (2018) 

successfully cryopreserved Japanese eel sperm in 2.5 and 5 mL straws, and 

they obtained similar fertility, hatching and survival rates using 

cryopreserved sperm than from fresh sperm. 

In the present study, we show that it is possible to use 2 or 5 mL cryotubes 

for cryopreservation of European eel sperm. Compared to the 

cryopreservation protocol used for 0.5 mL straws, similar thawed sperm 

quality was obtained in larger volumes just by adjusting the cooling 

conditions. This represents a great advantage for fish reproduction 

management, since the number of spermatozoa required to fertilize an egg 

is relatively high (Butts et al., 2012; 2014), and therefore a large number of 

spermatozoa is preferred for fertilization programs. However, in this work 

we did not tested the fertilization outcome of this protocols, yet the 

cryopreservation success have been evaluated by studying the sperm 

survival, motility and other kinetic parameters analyzed with CASA-Mot. 

These parameters are widely use in fish reproduction studies, and have been 

proposed as good biomarkers for sperm quality showing a strong correlation 
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with fertilization success in several fish species (reviewed by Gallego and 

Asturiano, 2018b).  

The second part of this experiment aimed to improve the cryopreservation 

protocol by using different additives: FBS, BSA or egg yolk. These additives 

have been widely used in sperm cryopreservation protocols of different fish 

species (Cabrita et al., 2010; Labbé et al., 2013; Magnotti et al., 2018b). FBS 

and BSA are commonly used due to their osmotic shock buffer effect, 

antioxidant effect and because they provide mechanical protection to the 

cell membrane during the freezing and thawing processes (Cabrita et al., 

2005; Lewis et al., 1997; Peñaranda et al., 2009), whereas egg yolk stabilizes 

the sperm membrane and reduces injuries provoked by the thermal shock 

(Bozkurt et al., 2014; Gallego et al., 2017). Furthermore, the LDL fraction of 

egg yolk has been reported to protect against DNA damage that may occur 

through the freezing-thawing process (Hu et al., 2008; Pérez-Cerezales et al., 

2010).  

In this study, we showed that the addition of egg yolk had a positive effect in 

the post-thawed sperm motility, showing sperm cells survival values close to 

80% and motilities of over 50%. The sperm motility after cryopreservation is 

species specific in fish and varies greatly (Asturiano et al., 2017). For instance, 

cryopreservation of paddlefish (Polyodon spathula) sperm can reach thawed 

sperm motility values of 85% (Horváth et al., 2006), whereas experiments 

with striped bass (Morone saxatilis) showed thawed sperm motility lower 

than 10% (Frankel et al., 2013). In European eel, using the latest protocol, it 

was obtained sperm motility values of approximately 30% (Herranz-Jusdado 

et al., 2019a), which is consistent with the motility values obtained in the 

present work in samples without additives. However, the addition of egg yolk 

resulted out in the highest thawed sperm motility reported in European eel. 

Moreover, our results indicated that the thawed sperm quality was 

preserved for 24 h after thawing stored at 4 ºC. This represents a great 

practical advantage, since the sperm could be thawed at the home institution 

and when required, transported to the hatchery just under refrigeration 

within the next 24 h, and still preserving good quality.  
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The benefits shown in this work from the addition of egg yolk have been 

proposed to depend on its chemical composition. Previous work have 

studied the differences in phospholipids, proteins and cholesterol content 

between different avian egg types and their effect as cryoprotectant in fish 

sperm (Bozkurt et al., 2014), but only small differences were found between 

the different avian egg yolks and none of the components alone could explain 

the sperm post-thaw variation. Although hen´s egg yolk has been previously 

used in fish sperm cryopreservation (Babiak et al., 2012), further research to 

study the effect of the different components of egg yolk as cryoprotectant 

are recommended, not only to understand better how egg yolk protects the 

sperm through the cryopreservation process, but also to standardize the 

protocols. Note that the egg yolk used in this study was obtained from 

standard commercial hen eggs, which may have variations in their 

composition. 

5. Conclusions 

Here we have described a simple method for short-term preservation of 

European eel sperm for a maximum of 7 days, which is long enough to 

compensate the gamete asynchronic release that often occurs in European 

eels. Furthermore, we have optimized the sperm cryopreservation protocol 

for European eel by increasing the volume of sperm cryopreserved without 

losing thawed sperm quality. Moreover, we demonstrated that by including 

egg yolk as additive, the sperm quality post thawing was improved reaching 

motility values higher than 50%. These findings represent a good advance in 

the development of future large scale reproduction programs for European 

eel. 
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Abstract 

The eels are teleost fishes from the order Anguilliformes that includes several 

species with high commercial value. Due to the high interest for aquaculture 

production of some eel species and for the need to restore eel species that 

are endangered, several research groups have directed their research toward 

developing protocols to cryopreserve the spermatozoa of Japanese eel 

(Anguilla japonica) and European eel (Anguilla anguilla). In this review, we 

provide an overview on the different protocols that have been developed so 

far. The first developed protocols used DMSO as cryoprotectant in both 

species with good success, obtaining sperm motilities of over 45% in 

Japanese eel and over 35% in European eel. Moreover, sperm cryopreserved 

using DMSO was successfully used in fertilization trials, although with low 

fertilization rates. However, recent studies show that DMSO produce 

epigenetic changes in eel sperm and therefore, the last developed protocols 

used methanol as cryoprotectant instead. Cryopreservation protocols using 

methanol as cryoprotectant, showed improved motility values in both 

Japanese and European eel. In addition, the latest protocols have been 

adapted to cryopreserve larger volumes of sperm of up to 5 mL, which is 

useful for larger scale fertilization trials. 

The present study introduces the state of the art and future perspectives of 

the eel sperm cryopreservation to be applied in aquaculture and biological 

conservation programs. 
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1. Introduction 

Freshwater eels of the genus Anguilla include 19 species (Watanabe, 2003), 

all of which display a complex catadromous life cycle, with oceanic 

migrations ranging from few hundreds to thousands of kilometers depending 

on the species (Arai, 2014). Recent studies have indicated that the genus 

Anguilla is originated in the deep ocean of tropical areas and freshwater eels 

radiated out from the tropics to colonize the temperate regions (Inoue et al., 

2010; Minegishi et al., 2005). 

Since the early 80´s, the population of temperate eels has continuously 

declined. Particularly, the populations of European eel (A. anguilla) and 

Japanese eel (A. japonica) became reduced by 90% in the last 30 years, 

however the decline of the American eel (A. rostrata) population is less 

dramatic (ICES, 2011). In the case of tropical eels, the actual situation is 

uncertain, since data of fisheries are unavailable. The causes behind the 

decline of the temperate eel populations are most likely due to a 

combination of global climate change, habitat degradation, pollution, 

parasite infection and overfishing. These eels are common in the traditional 

diets of many countries, especially in Europe and Asia. The country where 

eels are consume the most is Japan. There, eels are smoked and processed 

into a dish named “kabayaki”. This delicatessen is made using Japanese eel, 

but imported eels from the United States (American eel) and Europe 

(European eel) were also used due to the low availability of Japanese eels. 

However, since 2010, due to the decline of European eel catches, the EU 

imposed export restrictions, making illegal to sell European-caught eel to 

markets outside the EU (ICES, 2015). In Europe, eels are consumed smoked 

principally in northern European countries or consumed at elver stage in 

places like northern Spain. In the United States, although eels were 

consumed by the pilgrims from Europe, the nowadays catches are mostly 

used for export of elvers to Europe or Asia (Schweid, 2002). However, all 

three temperate eel species have been included in the Red List of the 

International Union for Conservation of Nature (IUCN) as threatened due to 

population decline, with A. japonica and A. rostrata categorized as 

“Endangered” (Jacoby and Gollock, 2016; Jacoby et al., 2016), and A. anguilla 
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included as “Critically Endangered” (Jacoby and Gollock, 2014), which is the 

highest category before extinction rating.  

The conservation status of the eel species justifies the needs for taking 

actions such as development of reproduction in captivity and control of 

fisheries based on life cycle. The complexity of their life cycle include a 

metamorphosis. First, the larvae hatched as leptocephalus, which has a 

laterally compressed body and looks like a leaf with a small head. These first 

larvae are transported by the oceanic currents to the continental coasts, 

where they metamorphose into glass eels. At this stage, they display the 

anguilliform shape but they are thin, small and unpigmented. Thereafter, the 

glass eels migrate into coastal waters and turn into pigmented elver eels, that 

later migrate into continental waters and become yellow eels. At this stage, 

eels undergo a sedentary and feeding phase in freshwater prior to enter the 

silver eel stage (called silvering). Silvering is a puberty related event, which 

marks the beginning of sexual maturation, migration and the reproductive 

phase. Silver eels are still sexually immature when they start their 

reproductive migration, with sexual maturation occurring during the 

migration period towards the reproduction site in the ocean. However, in 

captivity, dopaminergic inhibitions in addition to a deficient stimulation of 

gonadotropin-releasing hormone (GnRH) block the eel sexual maturation as 

long as the reproductive oceanic migration is not performed (Dufour et al., 

1988; Dufour et al., 2003; van Ginneken and Maes, 2005). Therefore, eels are 

blocked in a pre-pubertal stage and do not mature spontaneously in 

captivity. To induce an artificial full maturation in eels, costly hormonal 

treatments are required that last for several weeks in males and even months 

in females (Lokman and Young, 2000; Ohta et al., 1996; Oliveira and Hable, 

2010; Pedersen, 2003). Moreover, there is frequently a maturation 

asynchrony between sexes. In females, the period of time after ovulation 

during which oocytes are viable for fertilization is very short (Butts et al., 

2014; Nomura et al., 2013). Therefore, preservation of sperm would be 

essential to facilitate successful artificial fertilization. 

Interestingly, eel spermatozoon present an unusual structure (Figure 1). It 

possesses a crescent-shaped nucleus with a flagellum consisting of a 9+0 

pattern, whereas the typical axonemal structure of the flagellum is 9+2. 
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Moreover, it has a pseudoflagelum and a single large spherical 

mitochondrion on the anterior surface at the superior end of the nucleus 

(Gibbons et al., 1985; Okamura et al., 2000). 

 

Figure 1. Electron microscope picture of eel spermatozoa (European eel). m, 

mitochondria; n, nucleus; r, rootlet (pseudoflagellum); f, flagellum. 

Cryopreservation is the conservation of biological material in liquid nitrogen 

(LN) at very low temperatures (-196 ºC) that may potentially preserve its 

viability indefinitely (Bakhach, 2009). In addition to long-term conservation 

of sperm, cryopreservation of sperm presents several additional advantages; 

for instance providing research scholars with biological materials to perform 

comparative experiments, to promote exchange of genetic material for use 

in breeding and genetic studies (Asturiano et al., 2017; Bobe and Labbé, 

2009).  

Cryopreservation of eel sperm was first achieved by Tanaka et al (Tanaka et 

al., 2002a) in the early 2000´s for Japanese eel. Many advances have been 
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achieved since, including the development of cryopreservation protocols for 

European eel. In this review, we performed an overview of the historical 

development of different sperm cryopreservation protocols of two 

freshwater eels including the European and the Japanese eels.  

2. Eels artificial maturation 

Good gamete quality is crucial for successful sperm cryopreservation (Bobe 

and Labbé, 2009). Eels (Anguilla spp.) do not mature spontaneously in 

captivity, so to obtain good quality sperm in the lab, male eels need to be 

treated with long-term hormonal treatments, i.e. gonadotropins, to induce 

maturation (Asturiano et al., 2005; Gallego et al., 2012; Ohta et al., 1997). 

These treatments produce a boost in the plasma levels of 11-

ketotestosterone (11-KT), which is the effective androgen in most fish 

species, including eels (Miura et al., 1991a). Leydig cells are considered as the 

major source of androgens, while androgen receptors are mainly expressed 

in Sertoli cells and in interstitial cells. However, androgen receptors are also 

expressed in Leydig cells, where androgens modulate the expression of 

steroidogenic genes (Miura et al., 2006), suggesting that androgens develop 

biological activity via testicular somatic cells (Schulz et al., 2010). Sertoli cells 

produce different growth factors during spermatogenesis, and their 

expression or repression seems to regulate spermatogonial mitosis and germ 

cell differentiation (Schulz et al., 2010). Consequently, the hormonal 

treatment with gonadotropins promotes spermatogenesis and spermiation. 

The traditional hormonal treatment with gonadotropins to induce 

maturation in Japanese eel and European eel males typically consists of 

weekly injections of human chorionic gonadotropins (hCG) (Ohta et al., 1997; 

Pérez et al., 2000) and has been used as the preferred method to obtain high 

quality sperm for cryopreservation trials in the eels (Asturiano et al., 2004; 

2016; Garzón et al., 2008; Herranz-Jusdado et al., 2019a; Marco-Jiménez et 

al., 2006; Müller et al., 2004; 2012; Peñaranda et al., 2009; Szabó et al., 2005; 

Tanaka et al., 2002a). However, application of heterologous hormonal 

treatments with hCG have been observed to produce low rates of fertilization 

and hatching due to low gamete quality (Tanaka et al., 2002a), and a new line 
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of studies focuses on the development of homologous gonadotropic 

hormones to induce eel maturation.  

In European eel, Peñaranda et al. (2018) used homologous recombinant LH 

and FSH, which were obtained by transfection of mammalian cells of Chinese 

hamster ovary. They treated immature European eels with weekly injections 

of recombinant LH and FSH and successfully induced full spermatogenesis 

and spermiation in vivo. Nonetheless, there were high variations in sperm 

quality among treated males (Peñaranda et al., 2018), and thus sperm 

obtained from this protocol has not yet been used for any cryopreservation 

trial. In parallel, in the Japanese eel, Kazeto et al. (2014) succeeded in 

producing homologous recombinant gonadotropins of Japanese eel 

synthetized as well from cell lines of Chinese hamster ovary. Soon after, Ohta 

et al. (2017) developed a protocol for Japanese eel maturation consisting of 

weekly injections of recombinant LH at a dose of 500 μg/kg fish, that induced 

a high volume of spermiation and fast stimulation of spermatogenesis. This 

maturation method has been successfully used in cryopreservation and 

fertilization trials with positive results (Nomura et al., 2018). 

3. Cryopreservation protocols 

3.1 Japanese eel sperm cryopreservation 

A cryopreservation protocol for Japanese eel sperm was first developed by 

Tanaka et al. (2002a). In this work, the researchers first designed a 

cryopreservation diluent or extender, to prevent cryoinjury of the 

spermatozoa and to avoid the spermatozoa activation. This is crucial, since 

when spermatozoa start their motility, the stored ATP required for the 

movement of the flagellum will last for only a few minutes (Ingermann, 

2008). The cryoprotectant used was dimethyl sulphoxide (DMSO) at 10% v/v, 

which is the most common compound used as cryoprotectant in sperm of 

marine fish species (Gallego and Asturiano, 2018a), and the extender diluent 

included NaCl, NaHCO3 and soya lecithin (Table 1). The use of DMSO caused 

a hypertonicity in the medium that activated sperm motility (Horváth et al., 

2005), but due to the inclusion of NaHCO3 in the extender, the spermatozoa 

motility was prevented and the protective capacity of the freezing medium 
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was improved (Tanaka et al., 2002b). Furthermore, the cryopreservation 

protocol used 2 mL cryovials that were cooled in LN vapor for 5 min, 2 mm 

above the LN surface, before immersion and storage, and the thawing 

consisted in immersion in a water bath at 40 ºC for 70 s. 

Using this protocol, Tanaka et al. Tanaka et al. (2002a) obtained good post-

thaw sperm motility values (37-46%), and therefore, they used it for 

fertilization trials. In these trials, they successfully fertilized Japanese eel 

oocytes using cryopreserved sperm, however the hatchability of the 

fertilized eggs was lower than eggs fertilized with fresh sperm.  

For long time, this was the only published Japanese eel sperm 

cryopreservation protocol, until Müller et al. (2017) published a new 

cryopreservation protocol in which an artificial seminal plasma (ASP) and 

methanol were used as extender and cryoprotectant, respectively. The 

composition of ASP was based on the Ohta et al.’s study (1997), and was 

prepared with (in mM) 149.3 NaCl, 15.2 KCl, 1.3 CaCl2, 1.6 MgCl2 and 20 

NaHCO3, buffered with 20 mM TAPS-NaOH at pH 8.1, and possess iso-ionic 

osmolality to the seminal plasma of artificially maturated Japanese eel. In 

contrast to DMSO, methanol is osmotically inert avoiding the spermatozoa 

motility activation that has been caused by DMSO. Moreover, the protocol 

used 0.5 mL straws and the freezing was conducted in LN vapor for 3 min, 3 

cm over the LN surface, before immersion and storage, and the thawing 

consisted of immersion for 13 s in water at 40 ºC. Although Müller et al. 

(2017) successfully cryopreserved Japanese eel sperm, the embryos hatched 

using cryopreserved samples showed lower survival and higher 

malformation rate than those of fresh sperm, indicating that the protocol 

was still sub-optimal. 

In parallel, Koh et al. (2017) conducted a series of experiments focused on 

the use of K30 ASP (Ohta et al., 2001) as extender in an alternative 

cryopreservation protocol for Japanese eel sperm. The K30 ASP consisted of 

(in mM) 134.3 NaCl, 30 KCl, 20 NaHCO3, 1.6 MgCl2, 1.3 CaCl2, and buffered at 

pH 8.1 with 20 mM TAPS-NaOH. Moreover, they tested different 

cryoprotectants in various concentrations, addition of fetal bovine serum 

(FBS), different storage temperatures before cooling, sperm dilution ratios 
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and cooling rates. The cryoprotectants tested were methanol, DMSO, N-

N,dimethyl formamide (DMF), N-N,dimethyl-acetamide (DMA) and a 

combination of methanol and DMA. Their results showed that the optimal 

protocol with the tested parameters consisted of 10 or 15% methanol as 

cryoprotectant, with 22.5% FBS and 67.5% K30 ASP as extender solutions, 

obtaining results close to 60% of comparative post thaw motility (CPM), 

which is a parameter calculated from [sperm motility (%) after 

cryopreservation × sperm motility (%) before preservation-1] × 100. 

Furthermore, the cooling rates used were 6.3 – 28.6 ºC/min, corresponding 

to cooling at 10-16 cm above the LN surface when 0.25 mL straws were used, 

and the temperature at which the samples were immersed in LN was -40 to 

-70 ºC. Interestingly, the use of DMSO as cryoprotectant was incompatible 

with the use of K30 ASP as extender for Japanese eel sperm. 

Following the work of Koh et al. (2017), Nomura et al. (2018) established a 

large-scale cryopreservation protocol for Japanese eel sperm to be used for 

fertilization programs. They used 5 mL straws and adapted the cooling rate 

to that volume, and the cryoprotectants and extenders were as described in 

the latest protocol (Koh et al., 2017). Further, the fertilization trials did not 

show any difference in egg hatching or survival rates between cryopreserved 

sperm and fresh sperm. Moreover, the morphology of larvae produced from 

cryopreserved sperm was similar to that of larvae from fresh sperm, and the 

larvae were further grown into normal glass eels, representing a great 

refinement of the Japanese eel sperm cryopreservation protocol. 

3.2 European eel sperm cryopreservation 

Cryopreservation of the European eel sperm was developed shortly after the 

first cryopreservation protocols for Japanese eel. Two independent research 

groups established their own cryopreservation protocols in Spain and 

Hungary. These protocols differed in most aspects, from the rearing 

conditions of the eels to the type of cryoprotectants applied into their 

experiments (Table 2).  



EEL SPERM CRYOPRESERVATION: AN OVERVIEW 
 

123 

 



CHAPTER 5 

124 

Table 2. Comparison of the main technical aspects of European eel sperm 

cryopreservation protocols developed by the Spanish and Hungarian research groups 

previous to standardization by Herranz-Jusdado et al. 2019a 

Protocols Spanish  Hungarian  

Fish origin 
Rearing water 
Hormonal treatment 
Extender solution 
Dilution ratio 
Cryoprotectants 
Straws (in mL) 

Farmed fish 
Seawater 
hCG recombinant 
P1 
1:2 
10% DMSO & 25% FBS 
0.25 

Farmed fish 
Freshwater 
Natural hCG 
Tanaka 
1:9 
10% Methanol 
0.5 

The group from Spain developed a primary protocol (Asturiano et al., 2003; 

2004) mimicking the protocol previously developed for Japanese eel (Tanaka 

et al., 2002a) using DMSO as cryoprotectant (Table 1). Different extenders 

were tested, including two developed for Japanese eel (Tanaka´s and K30) 

and two developed for the European eel  (P1 and P2) designed to be iso-ionic 

to the seminal plasma of European eel (Pérez et al., 2003). The Tanaka 

medium, developed for Japanese eel had (in mM) 137 NaCl, 76.2 NaHCO3 and 

20 TAPS at pH 8.2, and the K30 medium with (in mM) 134.5 NaCl, 20 NaHCO3, 

30 KCl, 1.6 MgCl2, 1.3 CaCl2, and at pH 8.1. The P1 medium developed for 

European eel, was composed by (in mM) 125 NaCl, 20 NaHCO3, 30 KCl, 2.5 

MgCl2, 1 CaCl2, and the pH was adjusted to 8.5, and the P2 medium was 

prepared with (in mM) 70 NaCl, 75 NaHCO3, 30 KCl, 2.5 MgCl2, 1 CaCl2, and 

pH 8.5.  All media were supplemented with 10% DMSO as cryoprotectant and 

different sperm dilution ratios were also examined. The freezing process was 

carried out in 0.25 mL straws placed for 10 min, 5 cm above LN surface before 

plunging them into LN, and the thawing was conducted by submerging the 

straws in a water bath at 20 ºC during 45 s. In this first approach, Asturiano 

el al. (2003; 2004) reported that sperm samples diluted 1:5 in Tanaka 

extender or P1 extender with 10% DMSO showed the highest spermatozoa 

motility post thawing. 

In parallel, the group from Hungary (Müller et al., 2004) developed a 

cryopreservation protocol using a modified Kurokura solution as extender (in 

mM: 61.6 NaCI, 134.1 KCI, 1.98 CaCl2, 0.84 MgCl2, 2.4 NaHCO3) and 10% 
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methanol as cryoprotectant (Table 1). The dilution rate used was 1 sperm: 8 

extender: 1 methanol using 0.25 mL straws, and cooling them 4 cm over the 

LN for 3 min before plunging them into the LN. A water bath at 40 ºC was 

used to thaw cryopreserved sperm for 5 s. Under application of this protocol, 

Müller et al. (2004) obtained similar results to those of the Spanish protocol, 

although protocols show differences. Following this study, Szabó el al. (2005) 

conducted a series of experiments to test different extenders and 

cryoprotectants (DMSO and methanol), aiming at improvement of the 

protocol described by Müller et al. (2004). They observed that application of 

DMSO (10%) with Tanaka extender, and application of methanol (10%) with 

Tanaka extender resulted in the highest success compared to other 

treatments. The samples cryopreserved using the protocol with methanol 

could be further diluted 1:9 in Tanaka’s medium to reduce the toxicity of the 

cryoprotectant, which may be important for further short-term storage of 

frozen-thawed sperm. This was not a possibility when using DMSO as 

cryoprotectant, probably explained by the change in osmolality of sperm 

following dilution (Horváth et al., 2005).  

Similarly, the Spanish group conducted a study where they tested the effect 

of DMSO, methanol and other cryoprotectants, with different dilution ratios 

and freezing medium supplementation with FBS, on European eel 

spermatozoa motility, viability and on spermatozoa head size (Garzón et al., 

2008; Marco-Jiménez et al., 2006). Here, they found that viability for frozen-

thawed eel spermatozoa with DMSO and methanol was similar, but the 

spermatozoa heads when cryopreserved in methanol medium were smaller 

than with DMSO. Furthermore, the researchers found a positive effect when 

the freezing medium was supplemented with FBS (25%). In a different study, 

a similar effect as spermatozoa membrane protector was found when adding 

L-α-phosphatidylcholine (Asturiano et al., 2007). However, this compound 

also increased the osmolality and density of the media, being therefore 

impractical to use. 

Although valuable results were obtained following the protocol using DMSO 

in terms of percentage of spermatozoa motility, viability and spermatozoa 

head size, the use of this cryoprotectant still increased the medium 

osmolality resulting in inducing spermatozoa motility activation and 
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premature ATP consumption. To avoid this drawback, Peñaranda et al. 

(2009) tested different combinations of pH and NaHCO3 concentrations. The 

use of NaHCO3 was previously included in the Japanese eel sperm 

cryopreservation protocols, developed by Tanaka et al. (2002a,b) because of 

its inhibitory role on spermatozoa motility. Based on this feature, Peñaranda 

et al. (2009) developed an improved medium based on the P1 medium, but 

containing 100 mM NaHCO3 and pH 6.5 that partially prevented the 

activation effect of DMSO. Furthermore, the researchers refined the protocol 

and used a 1:2 (sperm:freezing medium) dilution, and the 0.25 mL straws 

were cooled 1.6 cm above LN surface for 5 min before being immersed into 

LN. With this protocol, they obtained post-thaw spermatozoa motility values 

close to 40%, which is well sufficient for fertilization trials.  

Following this last protocol, Asturiano et al. (2016) successfully used 

cryopreserved sperm in fertilization trials, to produce viable offspring. 

Despite the low percentage of fertilized eggs, lower than that observed with 

fresh sperm, embryos developed and a few larvae from cryopreserved sperm 

were obtained at 55 h after fertilization. Similarly, Müller et al. (2012; 2018) 

successfully used cryopreserved European eel sperm in fertilization trials, but 

in this case, they used Japanese eel eggs and successfully obtained hybrid 

larvae of A. japonica x A. anguilla. The sperm used in this fertilization trial 

was cryopreserved following a protocol based on those described by Müller 

et al. (2004) and Szabó et al. (2005), using a modified Tanaka solution (Tanaka 

et al., 2002a) as extender and methanol 10% as cryoprotectant (Table 1), 

obtaining progressive motility results in the thawed sperm samples of 12.3 ± 

10.87%. Although the hatching rate was low, they demonstrated that the 

cryopreservation protocol worked successfully on the European eel sperm. 

Despite the fact that cryopreservation protocols developed by the groups 

from Spain and Hungary were proved to succeed in fertilization trials, they 

differed in many aspects (Table 2) and a need of standardization of the 

protocol was evident. With this aim, both groups conducted together a 

joined study (Herranz-Jusdado et al., 2019a), where both protocols were 

tested using the same sperm samples. In this study, in addition to analysis of 

viability and motility in frozen-thawed samples, epigenetic effects of 

cryopreservation on spermatozoa DNA was also tested. Several studies 
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suggested that the drastic changes occurring during freezing and thawing 

may affect the DNA of cryopreserved spermatozoa (Labbé et al., 2017; Pérez-

Cerezales et al., 2010). Furthermore, the use of methylated cryoprotectants 

is known to induce the production of reactive oxygen species (ROS) that can 

cause several damages, such as cytosine methylation in fish spermatozoa 

DNA (Kawai et al., 2010), which is one of the principal epigenetic mechanisms 

(Bird, 2002), and have been suggested to be a good indicator for sperm 

quality (Herráez et al., 2017), affecting consequently the success of a 

cryopreservation protocol. In this comparative study, Herranz-Jusdado et al. 

(2019a) showed that the protocol using methanol, initially developed by the 

Hungarian group (Müller et al., 2012; Szabó et al., 2005), was better in terms 

of higher spermatozoa viability and motility than the protocol with DMSO 

developed by the Spanish group (Asturiano et al., 2016; Peñaranda et al., 

2009). Furthermore, the protocol with DMSO induced a hypo-methylation of 

them spermatozoa DNA, whereas no changes in DNA methylation were 

observed when sperm was cryopreserved with the protocol with methanol.  

The most recent work on the European eel sperm cryopreservation aimed at 

the improvement of the protocol by using sperm membrane protection 

additives and to adapt the protocol to larger volumes (Herranz-Jusdado et 

al., 2019b) as done with Japanese eels (Nomura et al., 2018). In this latest 

work, using the protocol described by Herranz-Jusdado et al. (2019a), the 

researchers successfully scaled up the volume of sperm cryopreserved using 

2 and 5 mL cryotubes, by adapting the cooling rate. Furthermore, adding egg 

yolk to the extender solution, they improved the frozen-thawed sperm 

quality, reaching motility values over 50%, which are the highest motility ever 

reported in cryopreserved European eel sperm. These improvements in the 

protocol represent a great advance for future large-scale reproduction 

programs in European eel. 

4. Vitrification 

Vitrification is a cryopreservation technique that leads to a glass like-

solidification while preventing intracellular and extracellular ice 

crystallization, that has been proposed as an alternative to traditional 
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cryopreservation (Tavukcuoglu et al., 2012). Although exists several methods 

for vitrification (Katkov et al., 2006), its application with fish sperm is typically 

based on the combined use of high concentrations of cryoprotectants and 

fast cooling rates (Magnotti et al., 2018a). The use of vitrification of fish 

spermatozoa is a relatively new application, however, it has been already 

tested on sperm of several fish species (Xin et al., 2017). The success of sperm 

vitrification depends on several factors, including initial sperm quality, type 

and concentration of cryoprotectants, equilibration time and cooling and 

warming rates (Tsai et al., 2015). Normally, the concentration of 

cryoprotectants used must be very high to prevent the formation of ice 

crystals during the fast cooling process, but can be toxic to the cells. 

Therefore, finding a proper cryoprotectant and its concentration is critical to 

develop new sperm vitrification protocols (Magnotti et al., 2018a).  

Recently, a new vitrification protocol has been developed for European eel 

sperm (Kása et al., 2017). The protocol consisted in a sperm:diluent ratio of 

1:1, with 40% cryoprotectant (20% methanol and 20% propylene glycol), and 

10% FBS using Cryotops of 2 µL as cooling device. The percentage of 

spermatozoa motility obtained from this vitrification protocol was low 

compared to conventional sperm cryopreservation. However, this was the 

first protocol described for European eel, proving the feasibility of this 

technique with European eel sperm. 

5. Conclusion and future remarks 

Since first was developed an eel sperm cryopreservation protocol in the early 

2000´s, lots have been changed and improved. The latest protocols for sperm 

cryopreservation of European and Japanese eel use methanol as 

cryoprotectant and they have been adapted to large volumes. In the case of 

the protocol for Japanese eel sperm, successful fertilization have been 

achieved and with similar survival rates as with fresh sperm. Moreover, the 

morphology of the larvae produced with cryopreserved sperm was similar as 

larvae produced from fresh sperm. In the case of the protocol for European 

eel sperm, the latest protocol has not been tested for fertilization trials yet, 

but the motility of frozen-thawed sperm obtained was over 50%, which is the 



EEL SPERM CRYOPRESERVATION: AN OVERVIEW 
 

129 

highest ever obtained in this species and future studies should aim to test 

whether is suitable for large-scale fertilizations. Moreover, future work 

should aim to investigate the effect of large periods of cryogenic storage 

(over 2 years) on eel sperm. 
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1. Alternative methods for European eel artificial maturation 

The natural population of European eel has drastically decreased in the last 

decades. To reverse this tendency, it is necessary immediate correcting 

measures, being the control of artificial reproduction crucial to reduce the 

pressure on natural populations and to fulfill the demands of eel farms 

(Feunteun, 2002). To develop breeding captivity programs, the first step is to 

obtain high quality gametes, which is crucial to reach high fertilization and 

hatching rates (Bozkurt and Secer, 2006). 

In European eel, the hormonal treatments required to obtained `high quality 

gametes, and in particular good quality sperm in males, have been developed 

since the middle 20th century (Fontaine, 1936), and later improved and 

standardized by the use of weekly injections of hCG (Asturiano et al., 2005; 

Gallego et al., 2012; Pérez et al., 2000). This method using weekly injections 

of hCG, has also shown successful spermiation results in other eel species 

such as Japanese eel, American eel, shortfinned eel and longfinned eel 

(Lokman and Young, 2000; Ohta et al., 1997; Sorensen and Winn, 1984). In 

this thesis, alternative hormonal methods for European eel maturation have 

been tested aiming to improve several male reproductive traits such as the 

onset and the duration of the spermiation period and the quantity and 

quality of sperm (see Chapter 2). Here, we tested the effect of two different 

hormonal treatments, purified hCG and hCGrec. The results obtained 

indicated that the recombinant hormones produced better sperm in terms 

of quality and quantity than purified hormones, and the optimal dose was 

1.5 IU/g fish, since lower doses produced lower quality sperm.  

These results are consistent with previous work of Gallego et al. (2012) that 

compared a protocol using hCGrec with a protocol using a different brand of 

purified hCG than the one tested in this thesis. The different hormonal 

treatments tested possess different glycosylation profiles that affect the 

bioactivity of the gonadotropins (Hearn and Gomme, 2000; Ulloa-Aguirre et 

al., 1999). Furthermore, the advantages of using recombinant gonadotropins 

include that in their production, the protein resulted is more pure and safe, 

and its production is not dependent on urine collection and hormone 



 GENERAL DISCUSSION 

134 

extraction, avoiding contamination during the purification (Thennati et al., 

2018). 

Although the protocol have been improved and standardized here (see 

Chapter 2), there are still aspects that may be optimized. One aspect of the 

protocol that is susceptible of being improved is the type of recombinant 

hormones. The hormones used here are heterologous, and although they 

have successfully been used to induce eel maturation obtaining good quality 

sperm, their use also have been linked to low rates of fertilization and 

hatching (Palstra and van den Thillart, 2009). Therefore, recent studies in 

teleost reproduction have been focused on the development of homologous 

recombinant gonadotropins (Chauvigné et al., 2012; Hayakawa et al., 2008; 

Molés et al., 2011; So et al., 2005; Zmora et al., 2007).  

Following this line of studies, Kazeto et al. (2014) succeeded in producing 

homologous recombinant gonadotropins of Japanese eel synthetized from 

cell lines of Chinese hamster ovary. Soon after, Ohta et al. (2017) developed 

a protocol for Japanese eel maturation consisting of weekly injections of 

recombinant LH at a dose of 500 μg/kg fish, that induced a high volume of 

spermiation and fast stimulation of spermatogenesis. This maturation 

method has been successfully used in fertilization trials with positive results 

(Nomura et al., 2018). In European eel, Peñaranda et al. (2018) also tested 

homologous recombinant LH and FSH, which were again obtained by 

transfection of mammalian cells of Chinese hamster ovary. They treated 

immature European eels with weekly injections of recombinant LH and FSH 

and successfully induced full spermatogenesis and spermiation in vivo. 

Nonetheless, there were high variations in sperm quality among treated 

males, perhaps due to the low doses of recombinant gonadotropins used 

compared to those used by Ohta et al. (2017) with Japanese eel. Moreover, 

the price of the treatment was too high to make the method sustainable. 

Therefore, further work using European eel recombinant hormones are 

required to improve the present hormonal treatments. 

Another aspect of the maturation protocol susceptible of improving is the 

hormonal administration method. The method used here requires weekly 

injections that involve repetitive handling of the animals, which demand 
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substantial labor, time, and monitoring cost. Moreover, the intense 

manipulation causes stress and increases mortality of the fish. Therefore, the 

use of alternative hormonal delivery methods may improve the actual 

protocol. For this purpose, there are several available hormonal delivery 

methods such as solid implantable pellets of cholesterol (Weil and Crim, 

1983) or Ethylene-Vinyl Acetate (EVAc) (Mylonas et al., 2007) or in the form 

of biodegradable microspheres (Mylonas et al., 1995). Each method has 

shown specific advantages, and all have been proved to effectively deliver 

the hormones in different fish species. Different implant treatments have 

already been tested in eel species. For instance, Lokman et al. (2015) showed 

that pretreatment of shortfinned eels with androgen implants in females 

improved greatly the maturation protocol, resulting in less handling, less 

hormone and less time. Moreover, Kagawa et al. (2009; 2013) used an 

osmotic pump as an effective method for inducing vitellogenesis in female 

Japanese eels. The success obtained using implants or osmotic pumps in eel 

species, infer that these may be good alternative delivery methods for the 

hormonal treatment of European eel. 

2. Sperm quality analysis: Future remarks 

The success of artificial reproduction of fish species including the validation 

of cryopreservation protocols, depend greatly on the accurate evaluation of 

the sperm quality, which is the best way to define the fertility potential of 

males (Gallego and Asturiano, 2018a; Kime et al., 2001; Rurangwa et al., 

2004). There are several characteristics of semen that contribute to define 

the sperm quality, however, sperm motility is considered the best biomarker 

and shows high correlation with fertilization and hatching ratios in some fish 

species (Gallego and Asturiano, 2018b). In Chapter 1 of this thesis, it has been 

described the wide variation existing when the analysis of sperm motility is 

conducted subjectively, and how the experience of the observer affects the 

sperm motility estimation. The results in Chapter 1 suggest that using CASA-

Mot systems to assess sperm quality in fish is the only reliable method to 

compare results between research groups and it is crucial to assess accurate 

sperm quality evaluation. CASA-Mot analyses supply data of several sperm 
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parameters in addition to sperm motility, that improve the method to assess 

sperm quality (Gallego and Asturiano, 2018b). 

Although the use of CASA-Mot to assess sperm quality has been widely 

accepted as an accurate, reliable and objective method to assess sperm 

quality, it is important to describe thoroughly the settings used, in both 

hardware and software, for the analysis. This is important for several 

reasons, but mainly to be able to replicate experiments and to compare 

results between different experiments (Verstegen et al., 2002), since 

different settings may directly influence the results from CASA-Mot. In this 

matter, Caldeira et al. (2019) recently reviewed the optimal settings for 

analyzing European eel sperm with CASA-Mot. In their study, they showed 

that using low recording frame rates when analyzing European eel sperm, led 

to underestimation of real kinetic trait values. Particularly the VCL was highly 

affected when using the optimal frame rate (200 fps) compared to low frame 

rate (60 fps) recordings. 

Alike the effect of the frame rates, the temperature also seems to play a key 

role in the motility of eel sperm, affecting their kinetic traits. It has been 

observed in several fish species that temperature affects speed and duration 

of sperm movement (Bobe and Labbé, 2009). The record of the temperature 

of analysis when using CASA-Mot should be included in every experiment. In 

this thesis, all sperm analyses with CASA-Mot were performed using sperm 

samples and activation medium (seawater) at 4 ºC, however, the microscope 

is placed at room temperature and immediately warms the samples, being 

the real temperature at which the sperm was analyzed uncertain. Future 

work should study how temperature affects sperm motility and velocities, 

and which is the optimal temperature of analysis for European eel sperm. 

Additionally to motility and kinetic parameters analyzed with CASA-Mot, 

there are other parameters that offer additional information to accurately 

assess sperm quality in fish for instance spermatozoa viability, mitochondrial 

activity, DNA integrity and membrane fluidity. These parameters have been 

typically studied using live/dead staining method, counting live and dead 

spermatozoa (differentiated by colors) under the microscope (McNiven et 

al., 1992) or using a more advanced method such as the flow cytometry 
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(Cabrita et al., 2005; Gillan et al., 2005). These parameters are particularly 

relevant in cryopreservation studies since the plasma membranes of 

spermatozoa are very sensitive to cryoinjury from ice crystals formed during 

the freezing-thawing cycle that may affect the spermatozoa structures. In 

this thesis, these analyses have been included in the chapters that addresses 

sperm cryopreservation (Chapters 3 and 4), providing information on the 

success of the different cryopreservation protocols.  

Additionally to analyses with flow cytometry, effects on sperm DNA have 

been studied further in Chapter 3. The effects of the extreme low 

temperatures and chemicals (cryoprotectants) required in the 

cryopreservation process may provoke epigenetic changes in the 

spermatozoa DNA (Labbé et al., 2017). Here we showed that 

cryopreservation of European eel sperm using DMSO as cryoprotectant, lead 

to hypo-methylation of DNA. Since phenotype is resulting from the genotype 

associated with epigenetic information, and the spermatozoa carries both 

the genetic and the epigenetic information that will be transferred to the 

offspring. Hence, epigenetic alteration should be avoided in any 

reproduction program (Labbé et al., 2017).  

However, there are still several questions regarding the epigenetic effects 

resulted from cryopreservation technology. In this thesis, the analysis 

consisted in a Luminometric methylation assay (LUMA) that analyzed sperm 

global methylation levels, but other analysis showing genome areas more 

sensitive to epigenetic changes, or individual genes affected by the 

methylation would contribute to understand better the epigenetic effects. 

Moreover, further studies tracking the consequences on the offspring should 

be considered. 

3. Prospects for European eel cryopreservation 

The main objective of this thesis was the development and improvement of 

different techniques and protocols for European eel sperm cryopreservation. 

This has been covered in two chapters and reviewed in one more of this 

thesis where first the standardization (Chapter 3) and then improvement 

(Chapter 4) have been addressed. Further, Chapter 5 has reviewed within a 
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historical perspective, the evolution and development of the different 

cryopreservation protocols. In chapter 3, we standardize the 

cryopreservation protocol from the pre-existing protocols developed by the 

Spanish and the Hungarian groups. The Hungarian protocol (Müller et al., 

2012; Szabó et al., 2005), that used methanol as cryoprotectant, was better 

in terms of spermatozoa viability and motility than the protocol with DMSO 

developed by the Spanish group (Asturiano et al., 2016; Peñaranda et al., 

2009). In chapter 4, we successfully scaled up the volume of sperm 

cryopreserved using 2 and 5 mL cryotubes, by adapting the cooling rate. 

Furthermore, adding egg yolk to the extender solution, the frozen-thawed 

sperm quality was improved, reaching motility values over 50%, which are 

the highest motility ever reported in cryopreserved European eel sperm.  

Although this last protocol has shown the best outcome quality to date, still 

it is susceptible of improvement. Firstly, this protocol uses egg yolk as an 

additive, and although its role as sperm protectant during freezing and 

thawing is still poorly understood, it is hypothesized that egg yolk supplies 

lipids and proteins to the extender medium that act as spermatozoa 

membrane stabilizer, becoming more resistant to cryoinjuries (Aboagla and 

Terada, 2004). The use of egg yolk from commercial hen eggs has the 

problem that the composition vary depending on the strain and size of the 

eggs (Ahn et al., 1997), and therefore it is difficult to standardize its use. Thus, 

future work using the low-density lipoprotein (LDL) fraction of egg yolk 

should be evaluated since positive results have been described in other fish 

species (Pérez-Cerezales et al., 2010) and it possible to control the accurate 

proportion of LDL used. 

Another interesting additive that may be tested in a future in 

cryopreservation of European eel sperm, are the anti-freeze proteins (AFP). 

These proteins that are naturally found in arctic fish species, binds to water 

molecules preventing ice crystal formation, and interact with sperm 

membranes protecting them of cryoinjuries. There are three types of AFP (I-

III) and a glycoprotein (AFGP) that have been tested as cryopreservation 

additives in fish sperm, eggs and embryos of fish and mammals with different 

results (Kim et al., 2017; Robles et al., 2019). In fish, Beirão et al. (2012) 

showed that using AFPs, mainly AFPIII, in the extender solution improved the 



GENERAL DISCUSSION 

 

139 

cryopreservation protocol for gilthead seabream sperm, decreasing the loss 

of sperm quality and helping maintain the lipid composition of the plasma 

membrane. In a more recent study, Shaliutina-Kolešová et al. (2019) in their 

work with common carp sperm cryopreservation obtained similar results 

where AFPs (I and III) showed a dose dependent protective effect to frozen-

thawed sperm. 

Alternatively to sperm cryopreservation, the cryopreservation of eel oocytes 

may be an interesting option to preserve genetic material and future artificial 

reproduction of European eel. Cryopreservation of fish oocytes is less 

developed than cryopreservation of fish sperm, partially due to the intrinsic 

difficulties for freezing oocytes, i.e. larger cell volume, lower permeability to 

cryoprotectants, high chilling sensitivity or the presence of chorion. 

However, several studies have been successfully carried out mainly on model 

species such as zebrafish (Danio rerio) (Godoy et al., 2013), but also on 

marine species such as gilthead seabream (Sparus aurata) (Zhang et al., 

2007) and on some South American freshwater species (Streit Jr. et al., 2014). 

In recent years, the cryopreservation of oocytes have been mainly focus on 

the development of slow freezing cryopreservation and vitrification of early 

oocyte developmental stages such as stage I and stage II, since at these 

stages have been obtained the best results. However, these oocytes will need 

to undergo in vitro maturation, ovulation, and fertilization, after cryogenic 

storage. Therefore, the optimization of the protocols for cryopreservation 

and for in vitro maturation of fish ovarian follicles, represent the future 

challenges for further development of these techniques (Martínez-Páramo 

et al., 2017). 

Besides these alternative methods, the logical next work on European eel 

sperm cryopreservation should aim to test whether the latest protocol 

described in this thesis is suitable for large-scale fertilization trials. Moreover, 

future work also should aim to investigate the effect of large periods of 

cryogenic storage (over 2 years) on eel sperm, since the use of cryopreserved 

sperm for cryobanking should maintain sperm quality intact through a long 

period. 

 



 

140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

141 

 

 

CONCLUSIONS 

  



 

142 

 

 

  

 



 CONCLUSIONS 

 

143 

 

i. The subjective evaluation of sperm quality was proved to be 

dependent on the technicians’ degree of expertise. Therefore, the 

use of qualified technicians and CASA-Mot systems is critical for 

obtaining reliable results of European eel sperm quality. 

 

ii. The spermiation process in European eel males was strongly affected 

both by hormonal dose and type, and an effective and economically 

profitable treatment was established, improving the reproducion 

performance of eel males. 

 

iii. A simple short-term sperm storage method for European eel sperm 

was developed, by adjusting the dilution rate in extender solution 

and the storage temperature, preserving the sperm for up to 7 days. 

 
iv. The cryopreservation protocol of European eel sperm was 

standardized after compareing two protocols resulting more 

effective the protocol using methanol as cryoprotectant. Moreover, 

the use of DMSO as cryoprotectant was proved to induce negative 

epigenetic effects in cryopreserved eel sperm. 

 

v. The previously standardized cryopreservation protocol was adapted 

to larger volumes (up to 5 mL) without losing frozen-thawed sperm 

quality compared to smaller volumes. 

 
vi. The European eel sperm cryopreservation protocol for large volumes 

was improved by adding egg yolk obtaining the best quality frozen-

thawed sperm ever reported for European eel. 
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