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Summary

The input and output signals of a digital signal processing system can often be rep-
resented by a rectangular matrix as it is the case of the Beamformer Algorithm, a
very useful particular algorithm that allows to extract the original input signal once
cleaned from noise and room reverberation. We use a version of this algorithm in
which the system matrix must be factorized to solve a least squares problem. The
matrix changes periodically according to the input signal sampled and, therefore, the
factorization needs to be recalculated as fast as possible. In this paper we propose to
use parallelism through a pipeline pattern. With our pipeline, some partial computa-
tions are advanced so that the final time required to update the factorization is highly
reduced.
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1 INTRODUCTION

Updating a matrix that represents a digital system is one of the most frequent operations in digital signal processing problems.
This update usually consists of appending new rows to the bottom of the matrix while taking the same number of rows out of
the top. The matrix is usually factorized in order to solve some linear systems or to compute a least squares problem required
to generate the output signal. It is, hence, interesting to update the factorization instead of computing the factorization of the
matrix from scratch with the aim of saving computations. In our case, we use the QR factorization to obtain the upper triangular
factor R of the matrix to solve a least squares problem. Updating a factorization can be critical if the result is required in real
time. This is the case of many signal processing applications such as 3D audio [1, 2], analysis of multiple input/multiple output
detection systems (MIMO systems) [3], etc.
In this paper we work on the Beamformer algorithm [4], an algorithm very used in digital sound processing that is executed

in real-time. The most time-consuming part of this algorithm involves the QR factorization of a rectangular matrix [4]. We deal
with a particular case in which the proportion between the number of rows and columns is 4 × 3. At each step of the algorithm,
the matrix changes by losing 25% of the rows at the top and appending the same number of new entry rows at the bottom. Then,
a new QR factorization must be calculated. The objective is to recompute or update the QR factorization of this “changing”
matrix as fast as possible at each processing time. Although we work on the particular case of a 4 × 3 blocks matrix, all the
discussion is generalizable to other different matrix shapes.
Updating the QR factorization is a recurrent operation deeply studied in the past. There exist algorithms proposed that reduce

the computational cost of the factorization in one order of magnitude [5]. However, these algorithms require to build and update
the whole Q factor, even in the case this factor is not required by the application. Building Q implies, not only memory con-
sumption, but also some extra computations, to the point that using this tool is useful only if the number of new rows appended



2 Manuel F. Dolz ET AL

FIGURE 1 Beamformer model

to the bottom of the system matrix are very few (4 or 5) [6]. Thus, it is not clear that this technique to update the QR factorization
is useful with regard to computing the QR factorization from scratch in many applications where the Q factor is not required.
The solution to the Beamforming problem can be approximated in different ways. Here, we use the one proposed in [7], whose

mathematical background is described in Section 2. In the following sections we show how to tackle the solution of the main
computational step, which is the QR factorization of a matrix that describes the digital system. We show, in Section 3 how to
work on the whole rectangular matrix to perform its QR factorization in parallel. Next, in Section 4, we revisit the solution to this
problem by using a matrix called jagged. Using this type of matrix permits to reduce the computational cost of the factorization
and it is the basis for our proposed pipeline. The proposed idea of this paper is explained in Section 5, where we show how to
reduce the cost of the factorization using a pipeline structure. The paper closes with some conclusions.

2 THE BEAMFORMER ALGORITHM

The problem of the Beamformer can be described as shown in Figure 1. The figure represents a particular case with two speakers,
each one emitting a different signal, and an array of three microphones located at different points of the room. The sound signal
coming from the sound sources (loudspeakers) are captured by the microphones. Basically, the digital system should built those
filters, real-time, that allow to extract a signal that is coming from a certain direction. There exists a strong constraint for this
physical system to work: the number of listeners (microphones) must be larger than the number of sources (loudspeakers).
The Beamformer model can be formally described as follows. In this model, each Sm, for m ∈ 1, 2, represents a speaker, and

each Vn, for n ∈ 1, 2, 3, represents a microphone which is located at a different point into the room. The channel between the
m-th speaker and the n-th microphone is represented by a variable denoted as ℎmn. The filter to be applied to microphone z is
denoted by the array gz, for z ∈ 1, 2, 3, and it is the filter calculated so that the sought-after signal k can be obtained. Array y(k),
finally, represents the output signal resulting from applying the computed filter g to the signals captured on microphones.
Thus, the goal is to develop N filters gn, n = 1,… , N , being N the number of microphones of the system, that allow to

rebuild the original source signals sm(k), m = 1,… ,M , emitted byM loudspeakers in order to get a signal cleaned from room
reverberation and noise. To build the system, we need the channel responses of the room, which are represented as ℎnm.
The output of the n-th microphone is given by:

xn(k) =
M
∑

m=1

Lℎ−1
∑

j=0
ℎnm(j)sm(k − j) + vn(k) ,

being Lℎ the length of longest room impulse response of all the acoustic channels ℎnm, and vn(k) the noise signal (see [7] for
more details). In the definition of the problem it is quite usual, for the sake of clarity, to get rid of the noise term. Also for clarity,
it is usual to transform the previous formulation into a matrix/vector form, so that the output signal of each microphone can be
written as

xn(k) =
M
∑

m=1
hTnmsm(k) ,
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where sm(k) is the column vector defined as

sm(k) =
[

sm(k) sm(k − 1) ⋯ sm(k − Lℎ + 1)
]T ,

and hnm is the ℝLℎ×1 acoustic channel vector from loudspeaker m to microphone n.
Given the recorded observations xn(k) the problem of recovering source signals sm(k) can be described as follows. The aim

is to get an output signal y(k) which is a good estimate of sm(k), i.e. y(k) = ŝm(k − �), for � = k, k − 1,… , k − Lℎ + 1, with
minimum error. Thus, the Beamforming filters gn are designed with this in mind. Let Lg be the maximum length of taps for
each of theN filters gn, the broadband Beamforming output signal can be expressed as

y(k) =
N
∑

n=1
gTn xn(k) ,

where gn is the ℝLg×1 vector containing the ordered taps of Beamforming filters gn, and xn(k) = [xn(k)xn(k − 1)⋯ xn(k −
Lg + 1)]T . The concatenation of filters gn form the solution array gLCMV = [gT1 ,… , gTN ]

T . This formulation of the Beamformer
problem is called Linearly Constrained Minimum Variance or LCMV Algorithm.
The solution gLCMV is calculated as follows. Let A ∈ ℝK×NLg be the following matrix

A = 1
√

K

⎛

⎜

⎜

⎜

⎜

⎝

xT1 (k) xT2 (k) … xTN (k)
xT1 (k + 1) xT2 (k + 1) … xTN (k + 1)

⋮ ⋮ ⋮
xT1 (k +K − 1) xT2 (k +K − 1) … xTN (k +K − 1)

⎞

⎟

⎟

⎟

⎟

⎠

, (1)

where K (> NLg) represents the number of samples. By C = ATA we represent the correlation matrix of the recorded signals.
The impulse responses from them-th source to theN microphones, used in Sylvester matrix form, are represented though matrix
H(NLg)×(Lg+Lℎ−1), which is a partition of the channel impulse matrix. Then, the Beamformer filters can be calculated as:

gLCMV = C−1H
[

HTC−1H
]−1 um , (2)

where um is a vector set to zero except for one entry which is set to one at the proper position in order to compensate the room
impulse response delay [7].
The LCMV Algorithm is based on the QR factorization with the aim of achieving efficiency and accuracy. Let A = QR be

the QR factorization of A, where Q is orthogonal and R is upper triangular, then C = RTR and, consequently, C−1 = R−1R−T,
R ∈ ℝ(N ⋅Lg)×(N ⋅Lg). Equation (2) can be rewritten as

gLCMV = R−1R−TH
[

HTR−1R−TH
]−1 um .

If Z = R−TH then gLCMV = R−1Z
[

ZTZ
]−1 um. Let Z = PL be the QR factorization of Z, where PTP = PTP = I and L is

upper triangular, then gLCMV = R−1PL
[

LTL
]−1 um = R−1PLL−1L−Tum = R−1PL−Tum . If we set PL−Tum = b, vector b can

be obtained by computing

LTy = um ,
Py = b .

Finally, the Beamformer filter presented in (2) can be obtained by solving the following upper triangular system

gLCMV = R−1b .

The above mentioned elaboration can be summarized in the following algorithm:

1. Obtain R from A = QR.

2. Solve RTZ = H for Z.

3. Obtain L from Z = PL.

4. Solve LTy = um for y.

5. Obtain b = Py.

6. Solve RgLCMV = b for gLCMV.
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A0,1A−1,0 A−1,1 A−1,2

A0,0 A0,1 A0,2

A2,0 A2,1 A2,2

A1,0 A1,1 A1,2

A(k) = ⇐⇒

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

A3,0 A3,1 A3,2

A0,0

A(k+1) =

A0,2

FIGURE 2 Updating of system matrix A from iteration k to k + 1.

3 THE TILED QR FACTORIZATION ALGORITHM

The main computational step of the process described above is the QR factorization of matrix A (1). As it was shown in [4], this
step can approach 80% of the total computational time. A natural step to improve computation consists of using an algorithm-
by-blocks. Following the out-of-core algorithm in [8] it is easy to obtain the idea for an algorithm-by-blocks that solve the QR
factorization problem. The approach followed in this work was based on the techniques introduced in [9]. Furthermore, we
modified the code developed in [9] to progressively incorporate our proposals. The basic code views a matrix to operate with as
a partition of submatrices (tiles) that are set as units of data (algorithms-by-blocks).
Let’s consider a matrix as a collection of square tiles of size ts × ts. Each tile, although represents a square block, is really an

array of consecutive stored in memory elements. A previous transformation step consisting of reorganizing data can be necessary
if the matrix to be factorized is in the usual column-major order format required by BLAS/LAPACK routines (or another regular
format). In this case, we need to transform the matrix to a collection of tiles. Periodically, the Beamformer algorithm builds
matrix A(k+1) by deleting a bunch of ts rows at the top of matrix A(k) and appending the same number of rows at the bottom
using data that has been accumulated with the last samples. Our system matrix A, however, is progressively built with the new
upcoming information that will become the new bottom rows of A. This new data will be packed into tiles properly so that this
step can be integrated and hidden into the usual data acquisition process.
For the case addressed here, the matrix is partitioned in 4 × 3 tiles (Figure 2). However, all the following discussion is also

valid for any other grid arrangement of tiles. There exist another assumption, in addition, about the problem size, which must
be always multiple of the tile size. This is not a hard constraint, however, since the underlying physical problem allows a certain
degree of freedom in the choice of the tile size.
A tile QR factorization algorithm, QRTiled(A), can be described as shown in Algorithm 1. This algorithm, which is also

annotated with OpenMP macros, is a particular specification of a tile algorithm for the QR factorization of an M × N tiled
matrix. The algorithm can be used, e.g. to perform the factorization of a tiles matrix like the one shown in Figure 2. We use
OpenMP [10], which allows, through its set of compiler directives, library routines, and environment variables, to write high-
level parallel programs for a shared memory architecture like multicores. The sequential version arises from simply deleting the
OpenMP directives.
There exist four different task types identified in Algorithm 1. (These types are already identified and taken from [9]). We

describe them next, taking into account that the superscript drops, so that A denotes A(k) or A(k+1).

D_QR: This task type computes the QR factorization of a square tile. In the algorithm, tiles Ak,k are replaced by the resulting
factor, i.e. the upper triangular factor R of the QR factorization of the pivot tile. This operation is really a call to xpotrf
LAPACK routine.

D_QT: This task type multiplies the factor QT obtained by the previous task type (D_QR) applied to the diagonal block Ak,k
to tile Ak,j . LAPACK routine xpotrf stores the Householder reflectors of QT into the lower triangle of Ak,k. This task
type uses them to pre- multiply Ak,j by Q in the same way as LAPACK routine xormqr does. This operation comprises
the execution of the outermost loop indexed by j.
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Algorithm 1 QRTiled(A): factorizes a rectangular matrix A partitioned in square tiles.

1 #pragma omp parallel
2 #pragma omp single private(i,j,k)
3 for( k = 0; k < N; k++ ) {
4 #pragma omp task depend( inout: A(k,k) )
5 D_QR( A(k,k) )
6 for( j = k+1; j < N; j++ ) {
7 #pragma omp task depend( in: A(k,k) ) depend( inout: A(k,j) )
8 D_QT( A(k,k), A(k,j) )
9 }
10 for( i = k+1; i < M; i++ ) {
11 #pragma omp task depend( inout: A(k,k), A(i,k) )
12 TD_QR( A(k,k), A(i,k) )
13 for( j = k+1; j < N; j++ ) {
14 #pragma omp task depend( in: A(i,k) ) depend( inout: A(k,j), A(i,j) )
15 TD_QT( A(i,k), A(k,j), A(i,j) )
16 }
17 }
18 }

D_QR00

D_QT01

TD_QR10

D_QT02

TD_QR20

TD_QR30

TD_QT11:0

TD_QT12:0

TD_QT21:0

D_QR11

TD_QT22:0

D_QT12

TD_QT31:0

TD_QR21

TD_QT32:0

TD_QT22:1

TD_QR31

TD_QT32:1

D_QR22

TD_QR32

FIGURE 3 Directed Acyclic Graph of tasks featuring the QR factorization algorithm of a rectangular matrix of 4 × 3 tiles.

TD_QR: This task type computes the QR factorization of
(

Ak,k
Ai,k

)

. As a result, tile Ak,k is replaced by the resulting upper

triangular factor and tile Ai,k is completely zeroed. Tile Ak,k is also modified by this operation.

TD_QT: This task type multiplies the factorQT obtained by the previous task type, i.e. TD_QR, to the tiles row i. This task type
uses the Householder reflectors stored into tile Ai,k. Both tiles Ak,j and Ai,j are modified by this operation.

The parallel version of Algorithm 1, i.e. when it is compiled with the OpenMP compiler option activated, uses tasks with
dependencies (depend clause). Parallel algorithms designed from the task identification and partitioning point of view, tran-
scend the loop parallelization bounds and allow to build a DAG (Directed Acyclic Graph) of tasks which are executed by the
OpenMP runtime as their dependencies are met. Figure 3 shows the DAG generated by Algorithm 1 when performing the QR
factorization of a 4 × 3 tiles matrix. The four types of tasks are identified by different colors or border line shapes. Also, the
numbers identifies the indices (i, j, or k) of the main tile that is being modified by the task. After the colon, if it exists, there is
a number which denotes the iteration in which the task has been modified, in case this task is modified several times at different
iterations.
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J (k+1) =Ĵ (k) =

J0,2J0,1
J0,0

J1,0

J2,0

J3,0

J1,1

J2,1

A3,0 A3,1

J0,1
J0,0

J1,0

J2,0

J0,2

J1,2

J2,2

A3,2

J−1,1 J−1,2

J0,1 J0,2

J2,1 J2,2

J1,1 J1,2

J (k) =

J−1,0

J0,0

J1,0

J2,0

⇐⇒ ⇐⇒

J1,1 J1,2

J2,1 J2,2

J3,1 J3,2

FIGURE 4 Updating the jagged system matrix J from iteration k to k+1. Matrix Ĵ (k) is formed between jagged matrices J (k)

and J (k+1) in the process.

4 USING JAGGED MATRICES TO IMPROVE THE QR FACTORIZATION

As it has been seen previously, the process is iterative. Let’s denote by k, k = 0, 1,… , each iteration. At each iteration, system
matrix A(k) (Figure 2) is “updated” with new data to form the matrix of the next iteration, i.e. A(k+1). The new system matrix is
formed by deleting the top ts rows (“oldest” rows) of A(k), and a bunch of ts new rows (“newest” rows), built with information
sampled from the signal, is appended to the bottom of A(k).
Computing the QR factorization from scratch is an expensive operation so, with the aim of saving flops, we proposed in [11]

to work on a different type of matrix that we called jagged. A jagged matrix is a rectangular matrix of square tiles where the
first column is made of upper triangular tiles. The idea is to keep the system matrix in this form from one iteration to the next,
so that matrices of the form shown in Figure 2 are now always kept on the form shown in Figure 4 (left and right matrices). It is
not difficult to guess that the upper triangular blocks at the first column of J (k) are going to be the upper triangular factor (R) of
the QR factorization of the corresponding block in A(k). To obtain matrix J (k+1) from matrix J (k), we depict an “intermediate”
(middle matrix in Figure 4) that represents the three new ts × ts tiles appended at the bottom of J (k) (that would lead to form
A(k+1) in the previous case). Now, we need to form J (k+1) instead of A(k+1). This is simply carried out by computing the QR
factorization of these new ts rows, i.e. the QR factorization of

(

A3,0 A3,1 A3,2
)

, what leads us to obtain the last ts rows of J (k+1),
i.e.

(

J3,0 J3,1 J3,2
)

. Keeping the system matrix in this form results in some savings in computational cost.
Algorithm 2 shows the steps to obtain the QR factorization of a jagged matrix. The first operations, lines 4–9, are devoted

to the computation of the QR factorization of
(

A3,0 A3,1 A3,2
)

that results in
(

J3,0 J3,1 J3,2
)

, i.e. the QR factorization of the
bottom ts rows of Ĵ (k) (middle matrix in Figure 4). The algorithm proceeds, lines 10–17, by performing the QR factorization of
the first block column of J (k+1) (Figure 5a). The remaining computation is carried out by QRTiled (Algorithm 1), through the
call shown in line 18, to reduce submatrix J1∶M−1,1∶N−1 to upper triangular (Figure 5b).
Algorithm 2 uses two more different type of tasks, apart from those included in Algorithm 1:

TD_QR_T: This task type is, somehow, kindred to task typeTD_QR for the case in which thematrix to reduce to upper triangular

form is
(

Ak,k
Ji,k

)

, i.e. when the “lower” factor, Ji,k, is triangular.

TD_QT_T: This task type is the counterpart of TD_QT for the case in which factor QT was generated with the previous task,
i.e. TD_QR_T.

The execution of Algorithm 2 in parallel, i.e. with OpenMP activated, results in a DAG like the one shown in Figure 6 for the
case of jagged matrices of size 4×3. Note that the DAG in Figure 6 does not represent the step carried out to obtain J (k+1) from
Ĵ (k) (middle matrix in Figure 4), i.e. steps 4–9. The number of tasks is the same as in the reduction to upper triangular form of
rectangular matrices (Figure 3). However, the computational cost has been reduced thanks to the zeros introduced at the first
column of tiles in the jagged matrix. As it was demonstrated in [11], the cost of reducing a jagged matrix to upper triangular
form using a QR factorization can be approximated by

TJ = TA − TS = 2n2
(

m − n
3

)

−
(4
3
t3s −

(4
3
m + 2n

)

t2s + 2mnts
)

.

The cost (in flops) of performing the QR factorization of a rectangular matrix A of size m × n (Figure 2) is denoted by TA
here [12]. Member TS , otherwise, denotes the savings obtained thanks to the use of jagged matrices.
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Algorithm 2 QRTiledJagged(J): performs the QR factorization of a matrix of the form Ĵ (k) (middle matrix in Figure 4).

1 #pragma omp parallel
2 #pragma omp single private(i,j,k)
3 {
4 #pragma omp task depend( inout: J(M-1,0) )
5 D_QR( J(M-1,0) );
6 for( j = 1; j < N; j++ ) {
7 #pragma omp task depend( in: J(M-1,0) ) depend( inout: J(M-1,j) )
8 D_QT( J(M-1,0), J(M-1,j) );
9 }
10 for( i = 1; i < M; i++ ) {
11 #pragma omp task depend( inout: J(0,0), J(i,0) )
12 TD_QR_T( J(0,0), J(i,0) );
13 for( j = 1; j < N; j++ ) {
14 #pragma omp task depend( in: J(i,0) ) depend( inout: J(0,j), J(i,j) )
15 TD_QT_T( J(i,0), J(0,j), J(i,j) );
16 }
17 }
18 QRTile(J(1:M-1,1:N-1)); /* Algorithm 1 */
19 }

⇒

J̄1,2

J̄2,1 J̄2,2

J̄3,1 J̄3,2

J̄0,2J̄0,1
J̄0,0

J̄1,1J1,1 J1,2

J2,1 J2,2

J3,1 J3,2

J0,2J0,1
J0,0

J1,0

J2,0

J3,0

(a) Reduction of the first block column of matrix J (k+1) to upper
triangular form.

J̄1,2

J̄2,1 J̄2,2

J̄3,1 J̄3,2

J̄0,2J̄0,1
J̄0,0

J̄1,1
⇒

̄̄J1,2

J̄0,2J̄0,1
J̄0,0

̄̄J1,1

̄̄J2,2

(b) Reduction of submatrix J̄ (k+1)
1∶M−1,1∶N−1 to upper triangular form.

FIGURE 5 Reduction of a jagged matrix to upper triangular form.

TD_QR_T10

TD_QT_T11

TD_QT_T12

TD_QR_T20

TD_QT_T21

D_QR11

TD_QT_T22

D_QT12

TD_QR_T30

TD_QT_T31

TD_QR21

TD_QT_T32

TD_QT22:1

TD_QR31

TD_QT32:1 TD_QR32

D_QR22

FIGURE 6 Directed Acyclic Graph of tasks featuring the QR factorization algorithm of a jagged matrix of 4 × 3 tiles.

The next expression represents the speed-up (S) achieved with the use of jagged matrices, that is the time to obtain the QR
factorization of matrix jagged Ĵ (k) (middle matrix in Figure 4) compared to the time needed to obtain the QR factorization of a
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TABLE 1 Theoretical speed-up obtained when working on jagged matrices compared with the algorithm that works on
rectangular matrices.

m × n / ts 1 2 8 32 80 160 320 480 640 960
1280 × 960 1.00 1.00 1.01 1.04 1.11 1.21 1.35 – – –
2560 × 1920 1.00 1.00 1.01 1.02 1.06 1.11 1.21 – 1.35 –
3840 × 2880 1.00 1.00 1.00 1.01 1.04 1.07 1.14 1.21 – 1.35

rectangular matrix A(k+1) (Figure 2),

S =
TA
TJ

=
TA

TA − TS
=

2n2(m − n
3
)

2n2
(

m − n
3

)

−
(

4
3
t3s −

(

4
3
m + 2n

)

t2s + 2mnts
) (3)

= 1

1 −
(

2
3
t3s −

(

2
3
m + n

)

t2s + mnts
)

∕
(

n2(m − n
3
)
) .

We draw, here, the attention of the reader on an interesting aspect. The point is that the savings obtained thanks to the use of
jagged matrices are larger than the proportion of zeros introduced in the system matrix to form that jagged shape with respect
to the matrix size. The speed-up S (3) can help to understand this point but, since the speed-up does expression is complicated
due to it does not vary linearly with ts, we provide numerical examples to better understand the savings achieved. Given some
values of the block size ts for two different matrix sizes, Table 1 shows the speed-up obtained with (3). Note that, for a 4 × 3
tiles matrices of size 1280 × 960, 2560 × 1920, and 3840 × 2880 the tile size is ts = 320, ts = 640, and ts = 960, respectively.
In all cases is achieved the largest speed-up of 1.35.

5 THE PIPELINE TO UPDATE THE QR FACTORIZATION

In this paper we propose reducing the computational cost of updating the QR factorization of matrices of 4 × 3 tiles which
appear in the Bemformer problem (Figure 1). One of the main limitations of the previous algorithms is the low number of
processors/cores that can be used concurrently to solve the problem. The QR factorization in the Beamformer Algorithm is a
repeated operation carried out recurrently over modified matrices with input data. We use this fact to design a pipeline structure
of tasks that allows to exploit more processors. Furthermore, reusing data calculated in previous stages of the pipeline, the total
time needed to compute the upper triangular form (R) of the current matrix is reduced.
To understand the idea, let’s firstly assume that we have a jagged matrix that represents the system matrix (A) and the upper

triangular factor (RA) of its QR factorization (Figure 7a). Given a set of new rows represented by a 1 × 3 tiles matrix (W̄ )
(Figure 7b), the first step of the algorithm is to compute its QR factorization to obtain W . Then, the 1 × 3 tiles submatrix on
the top (S) is discarded, the new jagged submatrix (W ) is appended at the bottom, and the QR factorization of A′ is computed
to obtain RA′ (Figure 7c). As we saw in Section 4, using jagged matrices instead of the original rectangular allows to speed up
computations up to 1.35 (Table 1).
Whenwe identify the suboperations necessary to factorize each updatedmatrix, it can be seen that some of these suboperations

can be reused and/or executed in advance. This fact, together with the availability to use concurrent threads, motivates the
construction of the proposed pipeline structure. Figure 8 shows the process followed when a new bunch of ts rows is coming
(matrices V̄ , W̄ , X̄, and Ȳ ). Each row of matrices represents the stages followed to reduce a jagged matrix to upper triangular
form using the QR factorization. For instance, the second matrix at the first row represents system matrixA in Figure 7a. Stage 2
consists of reducing the submatrix formed by blocks S and T to the one formed by blocks S̄1 and T̄2. At the next stage, the
submatrix formed by blocks S̄1, T̄2, and U is reduced to the one formed by blocks ̄̄S1, ̄̄T2, and ̄̄U3. Analogously, the last stage
produces the sought-after upper triangular factorRA =

(

ST1 T T2 UT
3

)T of Figure 7a. In the sameway, the second row represents
the new system matrix A′ (Figure 7c) resulted by discarding T from A and appending W , which is the result of reducing the
new bunch of rows W̄ (Figure 7b) to a trapezoid by its QR factorization. Hence, at the last stage we get RA′ (Figure 7c). The
rest of the rows of Figure 8 represent the following system matrices in jagged form, i.e. matrices formed when the first block is
discarded and a new one is appended.
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FIGURE 7 QR factorization update on jagged matrices.
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FIGURE 8 Reduction to upper triangular form through QR factorization of the system matrix A, in jagged form, in different
steps of the algorithm.

The objective is to obtain the QR factorization of matrixA′ (Figure 7), i.e.RA′ , as fast as possible. This can be accomplished if
the upper triangular factor

(

̄̄T1
T ̄̄U2

T ̄̄V3
T
)T

of the QR factorization of the upper square submatrix ofA′, i.e.
(

T T UT V T
)T ,

has already been computed when matrixW is available. A key factor that can be observed in Figure 8, and it is useful for the
pipeline design, is that those framed stages operate on the same submatrixW and the three of them can be executed concurrently.
We have used this fact to design a pipeline structure like the one shown in Figure 9. The figure shows four steps of execution
of the pipeline at each horizontal line. At Step 1, the output of the pipeline is matrix RA (Figure 7). Let’s assume that matrices
represented into the stages of the pipeline at Step 1 all have been computed previously, then we can see that Step 2 represents
the operation in which Stage 1 broadcasts factorW to the following three stages. The computations are carried out at the third
step of the pipeline, where those matrices built at Step 2 are reduced through a QR factorization to the triangular (or trapezoidal)



10 Manuel F. Dolz ET AL

̄̄W 3

̄̄V 3

̄̄U2

̄̄T 1

Stage 1 Stage 2 Stage 3 Stage 4

Ū1
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FIGURE 9 Pipeline for the QR factorization update.

matrix represented inside the bold-line circles. Note that these computational steps are those represented in the framed stages of
Figure 8. At the last step, all stages pass their factor to the right-hand side stage. At this step, the last stage issues the sought-after
triangular factor at the output, i.e. RA′ (Figure 7). Notice that Step 1 and Step 4 are really the same but with different data.
According to [12], applying a Householder Reflection to nullify the �−1 last components of a column of a rectangular � × �

matrix has a cost of 6� + 4�� flops. Provided the triangularizations are carried out by means of Householder Reflections the
computational cost of performing Stage 4 of the pipeline (Figure 9) can be approximated by two terms,

ts
∑

i=1
6(i + 1) + 4(n − i)(i + 1) +

m
∑

i=1
6(ts + 1) + 4(ts + 1)(m − i) . (4)

The first one represents the cost of zeroing the bottom ts × ts triangular block and, the second one, represents the cost of
zeroing the remaining rectangular ts × (n− ts) bottom block. After some arithmetic operations, the total number of flops can be
approximated as 2tsn2 + 2t3s − 2nt2s flops.
In order to obtain the total cost, we must add to (4) the cost of triangulating factor W̄ , which is 2t2sn flops (this cost can be

deduced in the same way as (4)). If we account for the 4 × 3 relationship between the number of row and column tiles, we have
the following costs: 54t3s flops to reduce a rectangular matrix of the form shown in Figure 2 to upper triangular, 40t3s flops to
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FIGURE 10 Directed Acyclic Graph of tasks featuring the QR factorization algorithm of the matrix represented in Stage 4 of
the pipeline in Figure 9.

TABLE 2 Time in seconds to perform the QR factorization of a rectangular matrix, a jagged matrix, and using the pipeline for
Figure 9 for different matrix sizes.

Execution time Speed up
m × n Tile size Rectangular Jagged Pipeline Rec./Jag. Jag./Pip. Rec./Pip.

1280 × 960 320 0.137 s. 0.102 s. 0.046 s. 1.34 2.22 2.98
2560 × 1920 640 0.863 s. 0.653 s. 0.297 s. 1.32 2.20 2.91
3840 × 2880 960 2.754 s. 2.022 s. 0.988 s. 1.36 2.05 2.79

reduce the jagged matrix A toRA (Figure 7), and 20t3s flops to reduce a matrix of the form shown in Stage 4 of Figure 9 to upper
triangular form, including the computation ofW as well.
A parallel algorithm to compute the factorizations carried out in each of the stages of the pipeline can be derived easily

from Algorithm 2. In particular, the algorithm to perform the reduction in Stage 4, the largest one, results in a DAG like the
one shown in Figure 10. As in the DAG of Figure 6, the steps carried out to obtain the trapezoid matrix W from Ŵ has not
been represented. Clearly, the number of tasks is very low compared with the previous DAGs, showing a large reduction in
computational cost. The number of tasks that can be executed concurrently have been reduced to only two, however, this loss of
parallelism is compensated by the increase in the number of concurrent tasks that are needed to build the pipeline.
The pipeline has been implemented in C++17 with OpenMP tasks and Single-Producer/Single-Consumer queues connecting

the stages. However, the structure can be implemented using other software tools like GRPPI (Generic Reusable Parallel Pattern
Interface) [13]. GRPPI [14] is an open source generic and reusable parallel pattern programming interface that simplifies the
developer efforts for parallel programming.
Table 2 shows a comparison in terms of execution time for three different problem sizes with its respective tile size. We

have used a node with two Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70 processors with 12 cores each. The column labeled as
Rectangular shows the execution time for the QR factorization with a tiled algorithm [9]. Column Jagged shows the execution
time required to obtain the QR factorization of a matrix of the type shown in Figure 7 with the algorithm presented in [11]. The
fifth column shows the time obtained with the pipeline proposed in this work, i.e. this is the time to reduce a matrix of the form
shown in Stage 4 at Step 2 in Figure 9 to upper triangular, in other words, the time needed to obtain each factorization. It can
be shown that all the times obtained are coherent with the computations carried out. As it can be seen in the last three columns
of the table, the use of the pipeline allows to speed up the computation more than ×2 the time for jagged matrices, and close to
×3 the time for the QR factorization of rectangular matrices.

6 CONCLUSIONS

This paper presents an idea to accelerate the update of the QR factorization of the matrix appeared in the Beamformer Algorithm.
The idea consists of a pipeline in which some computations are advanced in time using data that has fed the pipeline in previous
steps. The result, i.e. the upper triangular factor of the sought-after QR factorization, is produced by the last stage of the pipeline
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in the minimum possible time according to the data available to perform the update. With this parallel pattern, we managed to
improve the speed 2 and 3 times, respectively, with regard to other two former algorithms.
This work has addressed the particular problem of a system matrix is made of 4 × 3 tiles. This shape arises when the system

matrix changes 25% of its rows at each step. However, the proposal can be extended to amore general case inwhich the percentage
of rows is different. Furthermore, as it what shown in previous works where the QR factorization tasks were accelerated with
GPUs, the stages of the pipeline could be easily accelerated using these devices.
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