
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/132515

Torres Bosch, MV.; Gil Pascual, M.; Pelechano Ferragud, V. (2019). Software Knowledge
Representation to Understand Software Systems. Springer. 137-144.
https://doi.org/10.1007/978-3-030-35333-9_10

https://doi.org/10.1007/978-3-030-35333-9_10

Springer



Software Knowledge Representation to Understand 
Software Systems*  

Victoria Torres[0000-0002-2039-2174] and Miriam Gil[0000-0002-2987-1825] and Vicente Pele-
chano[0000-0003-1090-230X] 

Universitat Politècnica de València, València 46022, Spain 
{vtorres, mgil, pele}@pros.upv.es 

Abstract. A software development process involves numerous persons, includ-
ing customers, domain experts, software engineers, managers, evaluators and cer-
tifiers. Together, they produce some software that satisfies its requirements and 
its quality criteria at a certain point in time. This software contains faults and 
flaws of different levels of severity and at different phases of its production (spec-
ification, design, etc.) so maintenance is needed in order to correct it. Perfective 
and adaptive maintenance is also needed to cope with changes in the environment 
or with new requirements, e.g. new functionalities. In this work, we introduce the 
Persistent Knowledge Monitor (PKM), which is being developed within the 
DECODER H2020 project for handling (i.e. storing, retrieving, merging and 
checking for consistency) all kinds of knowledge and information related to a 
software project. The PKM will be part of a platform capable of taking advantage 
of all the artefacts available in a software ecosystem, not only the source code, 
but also its version control system, abstract specifications, informal documents 
or reports, etc. for representing the software knowledge and improving the work-
flow of software developers. 

Keywords: Persistent Knowledge Monitor, Software engineering, traceability. 

1 Introduction 

Software maintenance and improvement are very costly and consuming tasks especially 
when there is an intense use of legacy code or third-party libraries, which usually lack 
of documentation or when available, it is out-of-date from the current version of the 
associated piece of software. However, properly performing these maintenance and im-
provement tasks requires a deep understanding not just of the source code but also of 
the critical information bound to the code and the process that led to its production.  

A key aspect to achieve such deep understanding is to discover knowledge by ana-
lyzing all the available artefacts of a given software project. Then, based on the obtained 

 
*  This work has been developed with the financial support of the European Union's Horizon 

2020 research and innovation programme under grant agreement No. 824231 and the Spanish 
State Research Agency under the project TIN2017-84094-R and co-financed with ERDF 



2 

knowledge, stakeholders can be provided with different views of the system at different 
levels of abstraction that may be more appropriate to achieve the understanding of the 
underlying system. However, prior to the creation of such system views, knowledge 
has to be properly represented according to a well-defined schema or meta-model. Such 
meta-model must represent, in the most accurate way, all the elements that conform to 
a software system and all the existing relationships between them. Regarding these re-
lationships, it is important to have a clear understanding at the most fine-grain level, 
where specific sections or portions of a given artefact (e.g., class x implementation in 
a java source file) may relate to a different one (e.g., class x definition in a uml class 
diagram).  

In the literature we can find different meta-models targeted to represent the 
knowledge that can be extracted from software artefacts. These include the Knowledge 
Discovery Meta-model (KDM) [1] and Abstract Syntax Tree Metamodeling (ASTM) 
[2] (specifications developed by the OMG ADM task force [3]), FAMIX [4], the Pattern 
and Abstract-level Description Language (PADL) [5], or the OASIS Static Analysis 
Results Interchange Format (SARIF) [6]. All these meta-models put their focus on ar-
tefacts such as source code, models, and specifications to extract knowledge from the 
software project. However, in addition to these artefacts, there are other less formal 
sources that are not usually considered and that can be processed and analyzed to get 
some extra knowledge about the software project being maintained or improved. These 
include forum discussions, issue tracker items, reports, etc.  

Therefore, taking as reference these meta-models, and considering these less formal 
sources, in this work we present an overview of the meta-model of the Persistent 
Knowledge Monitor (PKM), a central infrastructure to store, access, and trace all the 
persistent data, information and knowledge related to a given software or ecosystem. 
This PKM is being developed within the DECODER H2020 project1, whose major ob-
jective is to provide powerful tools for developers to get thorough understanding of a 
given piece of software.  

The remainder of the paper is organized as follows. Section 2 identifies the type of 
sources considered in DECODER to populate the PKM. Section 3 provides an overview 
over the existing literature found regarding meta-models representing software arte-
facts. Then, section 4 provides an overview over the PKM meta-model, describing its 
main components and the relationships among them. Finally, section 5 provides some 
conclusions and outlines future work. 

2 Knowledge Sources to Populate the PKM 

One of the major functionalities of the PKM is storing the knowledge generated by the 
DECODER toolset, toolset targeted to process/analyze the different software project 
artefacts. Besides this storage functionality, the PKM should also provide the capabili-
ties to allow the DECODER toolset to query, update, and reason over the stored 
knowledge. Specifically, the information that will be stored in the PKM includes:  

 
1  https://www.decoder-project.eu/ 



3 

• Some form of the abstract syntax tree (and concrete trees) related to the source code 
and the libraries used. 

• Some derived or normalized form of the code (after pre-processing, GIMPLE or Ge-
neric/Tree internal representations provided by GCC, or CIL representation for 
Frama-C [7]). 

• Some generated or manually written annotations (e.g. in ACSL/ACSL++ for C or 
C++ code, in JML for Java code). 

• Natural language documentation or comments, related to some particular chunk of 
source code or of a global nature. 

• Historical information, extracted from version control systems and bugzillas. 
• Information produced by static source code analysis, by optimization passes of com-

pilers, by natural language processing and machine learning techniques. 
• Any other relevant information that contributes to enrich the system representation. 

Examples of processing/analyzing activities performed by the DECODER toolset 
are extracting features from source code, annotating code comments and issues with 
entities, predicates, arguments, etc. Therefore, as Fig. 1 shows, the PKM is expected to 
interact with several tools, some targeted to process different artefacts to generate 
knowledge and populate the PKM and others to consume such knowledge and assist 
stakeholders in their respective tasks within the process lifecycle. 

 
Fig. 1. Interaction between the PKM and tools that generate and/or consume knowledge 

 



4 

3 Meta-models for Software Knowledge Representation 

The knowledge extraction process refers to one of the major tasks of the reverse 
engineering, which was defined by Chikofsky and Cross II in [10] as “the process of 
analyzing a subject system to identify the system’s components and their interrelation-
ships and create representations of the system in another form or at a higher level of 
abstraction”. Big efforts have been made in the area of Model-Driven software mod-
ernization where several works have been proposed in order to create a common repos-
itory structure for representing information about existing software assets. The OMG’s 
Architecture Driven Modernization (ADM) initiative [3] defines a set of standard meta-
models which represent the information normally managed in modernization tasks. 
Specifically, the Knowledge-Discovery Metamodel (KDM) [1] provides the ability to 
document existing systems, discover reusable components in existing software, support 
transformations to other languages and MDA, or enable other potential transformations. 
KDM is partitioned into several packages, each one representing different kinds of soft-
ware artifacts as entities (e.g., code entities, data entities, UI entities, environment en-
tities). An implementation of this meta-model is provided by MoDisco [11], an Eclipse-
based framework that was developed to provide support to the software modernization 
process. In addition, to better support source code analysis activities, ADM also defined 
the Abstract Syntax Tree Metamodel (ASTM) metamodel [2], to represent the Abstract 
Syntax Tree (AST) of any programming language. This model defines a Generic ASTM 
(GASTM) with definitions that apply to ASTs of most programing languages, and Spe-
cialized ASTM (SASTM) with features specific to  a single programming language. 
More recently, other meta-models have been defined to support structured metrics 
(SSM) [8], or software patterns (SPMS) [9]. Other meta-models focused specifically 
on the object-oriented languages are FAMIX [4], which also allows representing pro-
cedural languages, and the Pattern and Abstract-level Description Language (PADL) 
[5], which also focus on patterns, allowing the description of motifs. Mainly conceived 
to detect software defects and vulnerabilities, the OASIS Static Analysis Results Inter-
change Format (SARIF) [6] defines a standard specification to capture the range of data 
produced by commonly used static analysis tools. 

In DECODER, for the definition of the PKM meta-model we will make use/refer-
ence all those existing meta-models when possible. For example, GASTM and FAMIX 
will be used to define the part of the PKM meta-model where the AST is kept.  How-
ever, in the PKM we consider other less formal sources of knowledge that are poorly 
structured, incomplete, and sometimes incorrect. After a process of knowledge extrac-
tion, this information will be stored in the PKM. 

4 The PKM Meta-model 

The PKM provides the representation of a general and specific knowledge about the 
artefacts of a software project. In order to manage the complexity of the PKM, it is 
defined by a collection of meta-models according to the categories of the artefacts and 



5 

a core package that defines the general knowledge of them. The defined packages are 
the following (see Fig. 2): 

 

 
Fig. 2. Organization of the PKM Packages 

 

• Core package: it defines the core part of the PKM representing the concept of arte-
fact and its related concepts such as the project use case in which the artefact belongs 
to, the tools that can manage the artefacts (specification and management tools), the 
development phases in which artefacts are used during the development process, and 
the stakeholders that are involved.  

• Abstract specification package: it defines the meta-model elements of the formal 
specification describing, by means of pre, post and invariants, the behavior of an 
associated source code. This abstract specification can be automatically generated 
or manually written by means of annotations (e.g., in ACSL, ACSL++, JML, etc.).  

• Source code package: it defines the part of the meta-model that refers to the artefacts 
that list human-readable instructions written by a programmer with the objective of 
being executed in a computing device. A source code artefact belongs to one pro-
gramming language, it relates to a set of referenced libraries and with history data 
extracted from version control systems and bugzillas.  

• Report package: it defines the part of the meta-model that represents the artefacts 
containing a structured content in natural language, related to some particular chunk 
of source code or of a global nature.  

• Model package: it defines the part of the meta-model that represents abstract repre-
sentations of a specific aspect from a given domain (e.g., a uml class model describes 
the structure – concepts, properties of the concepts, relationships between concepts- 
of a specific domain). 

• Configuration package: it defines the meta-model that represents artefacts describ-
ing, in plain text, the parameters that define or execute a specific software program.  

• Structured data package: it defines the meta-model that represents artefacts that 
store data structures and that are usually used as interchange format.  

• Image package: it defines the meta-model that describes binary representation of 
visual information such as drawings, pictures, graphs, etc. 

• Extracted information package: it defines the meta-model that represents infor-
mation produced by static source code analysis, by optimization passes of compilers, 
by natural language processing or by machine learning techniques. 

PKM Core package 

Abstract 
specification 

package

Source code 
package Report package Model package

Configuration 
package

Structured data 
package Image package

Extracted 
information 

package



6 

4.1 The PKM Core Package Overview 

The PKM Core package, as shown in Fig. 3, is built around the artefact concept, which 
is specialized into the different types of artefacts considered in DECODER use cases, 
which are abstract specifications, source code, reports, models, configuration arte-
facts, structured data, and images.  

Artefacts are digital products or documents created during the software development 
process. It can be presented in different formats (plain text, key-value structures, 
markup documents), and levels of abstraction (high, medium, and low). Moreover, ar-
tefacts can be related to other artefacts with the same (or similar) semantic intention 
(e.g., a java file may be related to a uml diagram describing a class from a given do-
main).  

An artefact belongs to a project use case, which defines a set of artefacts of different 
nature (source code, documents written in natural language, configuration files, etc.) 
organized (or not) according to a logical structure (e.g., directories) and provided (or 
not) as a compressed file. These artefacts are consumed or created during the project 
development and maintenance process.  
 

 
Fig. 3. PKM Core Metamodel Package 

Artefacts are managed by tools that are used by any stakeholder to analyze, trans-
form, refine, etc. them and produce new or modified artefacts.  Tools can be categorized 
into specification tools, which are tools that allow to create, modify, and refine arte-
facts, and management tools, which are tools that assist/guide the stakeholder in the 



7 

task of analyzing, managing, evolving, and configuring a specific tool as well as tools 
that act as back-ends to the previous tools categories to generate various kinds of re-
ports.  

Artefacts are related to development phases in which they are used during the devel-
opment process, i.e., requirements, design, implementation, testing, deployment, 
maintenance. Finally, in each development phase, different stakeholders take part to 
develop a specific task within the project. These stakeholders can be senior engineers, 
developers, reviewers, maintainers, or assessors. 

5 Conclusions and future work  

As we have pointed out, the PKM has been built within the DECODER project with 
the goal of store, access, and trace all the persistent data, information and knowledge 
related to a given software project or ecosystem. This knowledge will be useful for the 
different actors involved during the life span of a software, especially new persons, to 
keep project information and knowledge in the most accessible and unambiguous way. 
This living repository can be queried and enriched by the actors involved in the project, 
in order to maintain consistency and keep the most updated and precise information 
about it. 

This work constitutes a first step in the formalization process of the PKM meta-
model, which will be in charge of gathering all the data, information and knowledge 
that can be extracted from a given software project. As future work such meta-model 
will be implemented as a database having in mind that the potential and diverse pro-
cessing tools that may interact with the PKM demands for a dynamic and flexible data 
schema that could be modified according to the new interaction needs. Such flexibility 
would allow extending the schema with new types based on the processing results pro-
duced by new interacting tools. For this reason, we are planning to use JSON as the 
interchange mechanism between tools and the PKM. Once complete and implemented, 
the PKM will be validated empirically with four different use cases proposed in the 
DECODER H2020 project. These refer to OS drivers provided by SYSGO 

(https://www.sysgo.com/), the openCV library commonly used by Tree Technology 
(http://www.treetk.com/es/index.html) in its developments, general purpose Java code 
hosted in the OW2 (https://www.ow2.org) open-source software community, and My-
Thai-Star showcase application, developed by CAPGEMINI (https://www.capgem-
ini.com/es-es/service/agile-delivery-center-valencia/). 

In addition, the knowledge gathered in the PKM should be also used along the dif-
ferent stages of the software lifecycle to improve and assist stakeholders in their respec-
tive tasks. Fig. 4 provides an overview over the different roles involved in DECODER 
as well as their interaction with the PKM. First, developers will feed the PKM with the 
bulk code and documentation of the use cases where they are involved. Second, review-
ers will write correct properties in ACSL, ACSL++ (the extension of ACSL for C++) 
or JML with invariants and behaviors implicitly connected to a model based on abstract 
state machines. Finally, maintainers will do the work of reviewing and taking decisions 
on how to resolve inconsistencies. An online traceability matrix will be used to control 



8 

the consistency of these elements and to help deciding when the software becomes 
ready for manufacturing and for being reused.  

 
Fig. 4. An overview of the development life cycle 

References 

1. Object Management Group, Inc. (2012) Knowledge Discovery Meta- model (KDM). 
[Online]. Available: http://www.omg.org/technology/ kdm/index.htm  

2. Architecture-Driven Modernization: Abstract Syntax Tree Metamodel (ASTM), OMG doc-
ument formal/2011-01-05, OMG, Jan. 2011. [Online]. Available: 
http://www.omg.org/spec/ASTM  

3. ADM initiative website. http://adm.omg.org. Accessed 5 July 2019  
4. S. Tichelaar, S. Ducasse and S. Demeyer, "FAMIX and XMI," Proceedings Seventh Work-

ing Conference on Reverse Engineering, Brisbane, Queensland, Australia, 2000, pp. 296-
298. doi: 10.1109/WCRE.2000.891485 

5. Y.G. Guéhéneuc, “Ptidej: promoting patterns with patterns”, in 1st ECOOP Workshop on 
Building Systems using Patterns, pp. 1-9. Springer, Heidelberg (2005) 

6. Static Analysis Results Interchange Format (SARIF) website. https://www.oasis-
open.org/committees/sarif. Accessed 9 July 2019  

7. Frama-C software analyzer website. https://frama-c.com/. Accessed 9 July 2019 
8. Structured Metrics Meta-model (SMM), OMG document formal/2016- 04-04, OMG, Apr. 

2016. [Online]. Available: http://www.omg.org/spec/ SMM/  
9. Structured Patterns Metamodel Standard (SPMS), OMG document ptc/16-03-13, OMG, 

Mar. 2016. [Online]. Available: http://www. omg.org/spec/SPMS/1.1  
10. Elliot J. Chikofsky, James H. Cross II: Reverse Engineering and Design Recovery: A Tax-

onomy. IEEE Software 7(1): 13-17 (1990) 
11. H. Brunelière, J. Cabot, G. Dupé, F. Madiot, “MoDisco: A model driven reverse engineering 

framework”, in Information & Software Technology 56(8): 1012-1032 (2014) 

PKM
Persistent
Knowledge
Monitor

Maintainer

DeveloperReviewer

new code

new docum
entation

online
assistance

co
de and

docu
m

enta
tio

n

enric
hed b

y A
SFM

,

ACSL/A
CSL+

+,

JM
L, 

GSL, 
UML

new/u
pdate

d

 A
SFM

, A
CSL/A

CSL+
+,

JM
L, 

GSL, 
UML

decisions how to
resolve inconsistencies,

updates to the
traceabillity matrix

online
navigation, alarms,

code maps

Dynamic and static
automatic verification
and updates

semantic verification precice API documents


