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S.1. Deterministic model derivation

We first derived a complete biochemical model of the gene synthetic circuit. Then we formulated its corre-
sponding dynamical model based on balance equations and mass-action kinetics. The biochemical reactions
considered can be split in two main classes: the gene expression reactions, and the induction ones. In the
gene expression block, the main processes considered for each of the proteins were transcription, translation,
mRNA degradation and protein degradation. In the induction part, the main processes considered were
binding between the protein LuxR and the inducer to form the monomer, monomer degradation, dimer for-
mation and its degradation, diffusion of the inducer, inducer degradation, and binding of the dimer to the
Plux promoter.

A set of biochemical reactions representing the system are shown in (1)-(2) where the 9 first reactions
describe the gene expression, while the remaining reactions represent the diffusion process of AHL and the
cell-to-cell communication system, and the degradation of the species. We denoted DNA as the free promoter
of luxI, mRNAluxI and mRNAluxR are the messenger RNA of luxI and luxR respectively, LuxI, LuxR are
proteins, AHL is intracellular inducer and AHLext is the extracellular inducer, Vc = Vcell/Vext is the ratio
between the cellular and the environment volumes to quantify the AHL or AHLext effect considering these
two different volumes. The species degradation is denoted as ∅.

CR−→ mRNAluxR

DNA
keI→ DNA + mRNAluxI

mRNAluxR
pR−→ mRNAluxR + LuxR

mRNAluxI
pI−→ mRNAluxI + LuxI

LuxI
kA−→ AHL + LuxI

LuxR + AHL
k−1/kd1

�
k−1

LuxR ·AHL

2(LuxR ·AHL)
k−2/kd2

�
k−2

(LuxR ·AHL)2

(LuxR ·AHL)2 + DNA
klux/kdlux

�
klux

DNA(LuxR ·AHL)2

DNA(LuxR ·AHL)2
αkeI−→ DNA(LuxR ·AHL)2 + mRNAluxI

(1)



Table S1. Parameters of the gene synthetic circuit model.
Parameter Description Value Unit Reference
CR Plasmid copy number times LuxR transcription rate 7.9† molecules·min−1 (Boada et al., 2015)
keI LuxI transcription rate 17.5† molecules·min−1 (Boada et al., 2015)
α Basal expression of luxI 0.01 estimated
pR Translation rate of mRNALuxR 10‡ min−1 (Alon, 2007; Milo et al., 2010)
pI Translation rate of mRNALuxI 3.09‡ min−1 (Alon, 2007; Milo et al., 2010)
kA Synthesis rate of AHL by LuxI 0.04 min−1 (Vignoni et al., 2013)
k−1 Dissociation rate of (LuxR ·AHL) 10 min−1 (Weber and Buceta, 2013)
k−2 Dissociation rate of dimer (LuxR ·AHL)2 1 min−1 estimated
kd1 Dissociation constant of (LuxR ·AHL) 100 molecules (Urbanowski et al., 2004)
kd2 Dissociation constant of (LuxR ·AHL)2 20 molecules (Harman, 2001)
kdlux Dissociation constant of (LuxR ·AHL)2 to the lux promoter 100 molecules (Buchler et al., 2005) and refs. therein

dI Degradation rate of LuxI 0.027[ min−1 (Goryachev et al., 2006; Milo et al., 2016)

dR Degradation rate of LuxR 0.2[ min−1 (Boada et al., 2016), and refs. therein

dA Degradation rate of AHL 0.057[ min−1 (Kaufmann et al., 2005; Schaefer et al., 1996)
dAe Degradation rate AHL in culture medium 0.04 min−1 (Kaufmann et al., 2005; Schaefer et al., 1996; Kaplan and Greenberg, 1985)

dRA Degradation rate of (LuxR ·AHL) 0.156[ min−1 (Buchler et al., 2005) and refs. therein
dRA2

Degradation rate of (LuxR ·AHL)2 0.017 min−1 estimated

dmI Degradation rate of mRNALuxI 0.247[ min−1 (Roberts et al., 2006; Santillán and Mackey, 2001)

dmR Degradation rate of mRNALuxR 0.247[ min−1 (Milo et al., 2016; Santillán and Mackey, 2001)
D Diffusion rate of AHL through the cell membrane 2¶ min−1 (Weiss, 1996; Nilsson et al., 2001)
Vcell Typical volume of E. coli. 1.1 · 10−9 µL/cell (Milo et al., 2010)
Vext Typical volume of microfluidic device 1 · 10−3 µL estimated

AHL
D

�
DVc

AHLext

mRNAluxI
dmI−→ ∅

mRNAluxR
dmR−→ ∅

LuxI
dI−→ ∅

LuxR
dR−→ ∅

AHL
dA−→ ∅

AHLext
dAe−→ ∅

LuxR ·AHL
dRA−→ ∅

(LuxR ·AHL)2
dRA2−→ ∅

(2)

The set of reactions (1)-(2) was obtained under the following assumptions:

1. Transcription of genes luxI and luxR is not reversible, so that keI and CR are the effective transcription
rates of LuxI and LuxR respectively,

2. α is the basal expression (leakage) of luxI,

3. CR is the plasmid copy number times the effective constitutive transcription rate of luxR,

4. LuxR and AHL binding is a fast and reversible reaction,

5. Dimerization of (LuxR · AHL)2 is a reversible reaction, and

6. The interactions between AHL and AHLext represent the physical passive diffusion process for cell-to-
cell communication via quorum sensing.

The parameter values used in (1)-(2) are listed in the Table S1. Some of these parameters were calculated
as follows:

1. The transcription rate keI is the minimum LuxI transcription rate. The typical transcription rate in
E. coli. is ≈ 600-6000 bp/min (Alberts et al., 2009). The LuxI length is 582 bp (part BBa C0161)
(Biobrick Foundation, 2006). Therefore, keI = (600 bp/min)/582 bp = 1.03 min−1,

2. The rate CR was obtained as the transcription rate obtained as before times the LuxR plasmid copy
number. We use the vector pACYC184 with 10 copies/cell, the minimum transcription rate 600 bp/min,
and the LuxR length 756 bp (part BBa C0062) (Biobrick Foundation, 2006). Hence, the plasmid copy
number times LuxR transcription rate is CR = (10 ∗ 600 bp/min)/756 bp = 7.9 molecules·min−1,
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3. The translation rate can be tuned using a ribosome-binding site (RBS) of different strengths. In
bacteria, the translation rate is ≈ 30-60 bp/sec (Alberts et al., 2009). Accordingly, the minimum LuxI
translations rate is pI= (1800 bp/min)/582 bp = 3.09 min−1, while the minimum LuxR translations
rate is pR= (1800 bp/min)/756 bp = 2.38 min−1,

4. The degradation rates dmI, dmR, dI, dR, dA, dRA include the dilution effect due to the cell growth. We
considered specific growth rate µspe = 0.017 min−1 corresponding to a cell doubling time of 40 min,

5. The degradation rate dRA2
= 0.017 min−1 of the transcription factor (LuxR ·AHL)2 only depends of

the specific growth rate µspe, assuming (LuxR ·AHL)2 is much more stable than the other species in
the system (Basu et al., 2005; Buchler et al., 2005),

6. The diffusion coefficient was calculated as D = SPn

Vcell
min−1. It depends on the cell surface area S = 4πr2

(spherical area with r=10 µm), the membrane permeability Pn = 3 · 10−3µm ·min−1 and the typical
E. coli. volume Vcell = 1.1 · 10−9 µL/cell.

7. The dissociation rate of (LuxR ·AHL)2 to the lux promoter klux is not required by the mathematical
model, as seen in Section SI S.2.

A dynamical deterministic model corresponding to the biochemical reactions (1)-(2) was obtained using
the mass-action kinetics formalism (Alon, 2007; Chellaboina et al., 2009). These kind of models assume the
amount of species transformed by the reactions depend solely on the current amount of species, the rates
at which these reactions proceed, and the stoichiometry of the reactions (Picó et al., 2015). The resulting
deterministic model is given by the set of equations (3-12) representing the dynamics of each species inside
the ith cell in a population of N cells. Table S2 describes each state in the dynamical model.

ṅi1 = keIn
i
7 + αCIn

i
8 − dmIn

i
1 (3)

ṅi2 = CR − dmRn
i
2 (4)

ṅi3 = pIn
i
1 − dIn

i
3 (5)

ṅi4 = pRn
i
2 + k−1n

i
5 − dRn

i
4 −

k−1
kd1

ni9n
i
4 (6)

ṅi5 = 2k−2n
i
6 +

k−1
kd1

ni9n
i
4 +

(
−k−1 − dRA − 2

k−2
kd2

ni5

)
ni5 (7)

ṅi6 = kluxn
i
8 +

k−2
kd2

ni5
2

+

(
−k−2 − dRA2

− klux

kdlux
ni7

)
ni6 (8)

ṅi7 = kluxn
i
8 −

klux

kdlux
ni6n

i
7 (9)

ṅi8 = −kluxn
i
8 +

klux

kdlux
ni6n

i
7 (10)

ṅi9 = D

(
Vcell

Vext
n10 − ni9

)
−
(

k−1
kd1

ni4 + dA

)
ni9 + k−1n

i
5 + kAn

i
3 (11)

ṅ10 = D

(
−N Vcell

Vext
n10 +

N∑
i=1

ni9

)
− dAe

n10 (12)

Notice the first two terms in equations (11) and (12) represent the passive diffusion process of AHL and
AHLext molecules, a physical process modeled using a lumped approximation of the Fick’s law (Alberts et al.,
2009; Weiss, 1996).

S.2. Reduction of the deterministic model.

We carried out model reduction by means of the Quasi Steady-State Approximation (QSSA) of the fast
chemical species (Mélykúti et al., 2014; Zagaris et al., 2004). In particular, we assumed that binding reactions
occur very fast as compared to those corresponding to translation and degradation. Additional algebraic
relationships among variables were obtained looking for system invariants (moieties).

Conservation laws can be inferred from simple inspection in the model (3-12). Notice the sum of equa-
tion (10) representing the variation of free promoter plus equation (11) representing the variation of dimer
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Table S2. Species of the complete model.
Symbol Biochemical species Unit

n1 Messenger RNA of luxI molecules
n2 Messenger RNA of luxR molecules
n3 Protein LuxI molecules
n4 Protein LuxR molecules
n5 Monomer (LuxR ·AHL) molecules
n6 Dimer (LuxR ·AHL)2 molecules
n7 Free promoter DNA molecules
n8 Bound promoterDNA(LuxR ·AHL)2 molecules
n9 Internal inducer AHL molecules
n10 External inducer AHLext molecules

(LuxR ·AHL)2 bound to the promoter is null (ṅi7 + ṅi8 = 0). This implies that the sum of free and bound
promoter is constant (ni7 + ni8 = PN) and equal to the plasmid copy number.

We considered that the RNA polymerase binding/unbinding reactions to the gene promoter proceed much
faster than translation and mRNA degradation so they can be assumed to be at quasi-steady state. This is
reflected in the values of the reaction rates of equations (4) and (5). Hence, obtained algebraic expressions
for mRNAluxI (ni1) and mRNAluxR (ni2) using two relationships: ṅi1 = 0 and ṅi2 = 0. Then, these algebraic
expressions for n1 and n2 can be replaced in equations (6) and (7) respectively. The second QSSA assumption
we used concerns the large production of monomer as compared to the dimer one. Thus, we assumed ṅi5 = 0
in equation (8). The resulting expression for the monomer ni5 can be replaced in equations (7), (9) and (11).
All these assumptions lead to the reduced-order model (13-17) for the ith cell in a population of N cells.

ṅi1 =
CIpI

dmI

(
kdlux + αni3
kdlux + ni3

)
− dIn

i
1 (13)

ṅi2 =
CRpR

dmR
+ k−1n

i
6 −

(
k−1
kd1

ni4 + dR

)
ni2 (14)

ṅi3 =
k−2
kd2

(ni6)2 − (k−2 + dRA2
)ni3 (15)

ṅi4 = k−1n
i
6 + kAn

i
1 + D

(
Vcell

Vext
n5 − ni4

)
−
(

k−1
kd1

ni2 + dA

)
ni4 (16)

ṅ5 = D

(
−N Vcell

Vext
n5 +

N∑
i=1

ni4

)
− dAe

n5 (17)

with:

ni6 =
kd2(dRA + k−1)

4k2

[√
8k−2(2k−2kd1ni3 + k−1ni2n

i
4)

kd1kd2(dRA + k−1)2
+ 1− 1

]
(18)

where all species involved are listed in Table S3. The parameter CI is the plasmid copy number times LuxI
transcription rate. CI = PN ∗ keI = 17.5 molecules·min−1, where PN is the LuxI plasmid copy number (vector
pBR322 with ≈ 17 copies), and keI = 1.03 min−1 from Table S1. The remaining parameters are the same as
those of the full model (see Table S1).

Notice the first term on the right hand side of (13) is a Hill-like function (Alon, 2007). representing the
transcription factor regulatory effect (repression in our case) over the expression of protein LuxI.

To validate the reduced model we performed a series of in silico experiments. Fig S1 shows some of
the results demonstrating the good agreement between the results provided by both the complete and the
reduced models. The principal biochemical species LuxI, LuxR and AHL are plotted on the top of Fig S1
for the reduced model (solid line) and the full one (dashed line). The plots of the 5 species eliminated
by the reduction (mRNAluxI,mRNAluxR, DNA, DNA(LuxR ·AHL)2 and (LuxR ·AHL)2) were calculated
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Table S3. Species for reduced model.
Symbol Biochemical species Unit

n1 Protein LuxI molecules
n2 Protein LuxR molecules
n3 Dimer (LuxR ·AHL)2 molecules
n4 Internal autoinducer AHL molecules
n5 External autoinducer AHLext molecules
n6 Monomer (LuxR ·AHL) molecules

Figure S1. Validation of the reduced models Simulation during 250 minutes for a single cell of both
the reduced (solid line) and the complete model (dashed line). In both cases the simulations were performed
with the same initial conditions and step size: δt = 1 · 10−3 seconds.

algebraically from the remaining species. The simulation shown was carried over a single cell (N = 1).
Therefore the amount of molecules of AHL and AHLext is similar. Hence, the AHLext plot was omitted in
this figure. The agreement between the results of both models was good enough for our purposes, without
requiring any ad hoc adjustment. From a qualitative point of view, the transient regime of the complete
model is similar to the reduced one for all species. The length of the transients and the steady state values
coincide in both models.

S.3. Computational analysis

The computational analysis methodology is depicted in figure S2.

S.4. Getting statistical moments and minimising stochastic realizations

The procedure we used to obtain the noise strength from the stochastic simulations is the following:

1. We first ran a simulation with a population of N = 240 cells in a culture volume of 10−3µl, corresponding
to an optical cell density OD600 = 0.3, for 400 minutes. From this simulation we obtain 240 time courses
corresponding to the protein expression levels in time for each one of the 240 cells in the population.
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Figure S2. Methodological procedure to obtain the statistical moments from stochastic simu-
lations of the circuit. (A) Temporal evolution of one species in the population of cells. (B) Distribution
of the number of molecules across the population at each time instant. (C) Acquisition of the long-term
distribution for each species. (D) Noise strength map for varying model parameters.

We discarded the first 134 minutes of simulation to ensure the system has reached steady state, using
the time samples corresponding to the last 266 minutes (around 100.000 time samples).

2. With these 240 time courses we calculate the mean and the variance across the population at each time
instant, obtaining the population mean and variance for each time.

3. Then, using the time-mean across the population, we calculated the temporal mean, thus obtaining a
representative of the long-term mean of the protein levels in the population.

4. Finally we calculated the long-term variance by using the law of total variance: the total variance is
the sum of the mean of the variance plus the variance of the mean (Weiss, 2006).

5. The noise strength is then calculated with the total mean and total variance of the system. In this way
we incorporate and aggregate all the noise (intrinsic) coming from the different cells in the population
(extrinsic).

The last two steps were performed to obtain the long-term statistics using only one realization of the
simulation, so we reduced the computational burden. We can do this if the system is ergodic, that is, if
enough time averaging along one realization is equivalent to getting statistics from many realizations at
each time instant. Theoretically proving ergodicity is difficult for our system, so we assessed ergodicity
computationally.

We quantified if one realization of the stochastic model for the population of N cells was enough to
characterize its long-term statistics such as mean, variance and noise strength. Three realizations where
performed for each circuit QS/Fb and NoQS/NoFb with the same set of parameters and conditions. We
first got the mean across the population for each time instant, for each one of the three realizations. We
then selected a portion of the steady state (120 time samples) for each realization. To check whether the
realizations are significatively different we performed a Kruskal-Wallis Test (Kruskal and Wallis, 1952) on
them. For the NoQS/NoFb network in Fig S3Top, the results of the Kruskal-Wallis analysis shows there is
no statistically significance to reject the hypothesis of the three realizations having the same LuxI’s median
and noise strength η2LuxI = 0.1307, with [Test−statistic, P −value] = [0.0018, 0.9991]. The same conclusion
is shown in Fig S3Bottom for the QS/Fb network with [Test − statistic, P − value] = [0.0006, 0.980714].
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We obtained P-values greater than 0.05, indicating there is no statistically significant difference with 95.0
% confidence level, confirming the system is ergodic. Therefore, one realization of the population of N
interconnected cells for the NoQS/NoFb or the QS/Fb network, provided sufficient simulated time length to
perform the time average, is enough to obtain representatives of the long-term moments of the population.

In order to visually show the similarity between realizations, Fig S3 shows the LuxI distributions of the
three realizations in both circuits. The LuxI long-term distributions were unimodal and well shaped.

Figure S3. Different realizations, similar statistics moments. Population histograms of the LuxI
molecules number for three different realizations of the NoQS/NoFb (top), and QS/Fb (bottom) circuits.

S.5. Validation of the non-linear propensities

Usually the stochastic algorithms treat all reaction events alike. Thus they use most of its time simulating
the many relatively uninteresting fast reaction events instead of explicitly simulating only the slow reactions.
Yet, slow reactions dependency on the fast ones can be approximated using different approaches (e.g. QSSA).
Then, they can be treated as new deterministic or stochastic rational slow reactions. This approximation
leads to higher-order propensity functions. The use of these higher-order terms in stochastic simulation is
justified in many cases (Cao et al., 2005; Rao and Arkin, 2003).

In our case, the propensity function f(ni3, t) (see Methods, Mathematical model) represents the Hill-
like function of gene expression for protein LuxI in the ith cell. This propensity function resulted from the
model reduction, so that the propensity term f(ni3, t) contains all fast interactions between the luxI promoter
(DNA), mRNAluxI and the repressor (LuxR ·AHL)2 repeated again in (19).

DNA
CI−→ DNA+ mRNAluxI

(LuxR ·AHL)2 + DNA
klux/kdlux

�
klux

DNA(LuxR ·AHL)2

DNA(LuxR ·AHL)2
αCI−→ DNA(LuxR ·AHL)2 + mRNAluxI

mRNAluxI
dmI−→ ∅

(19)
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The set of reactions in (19) were approximated (see section S.2) as the two equivalent reactions:

(LuxR ·AHL)2
f(n3,t)−→ (LuxR ·AHL)2 + mRNAluxI

mRNAluxI
dmI−→ ∅

(20)

where f(ni3, t) ,
CIpI

dmI

(
kdlux+αn

i
3

kdlux+ni
3

)
describes the mRNAluxI transcription in an equivalent way to (19), and

ni3 is the transcription factor (LuxR ·AHL)2 for the ith cell.

Figure S4. SSA and CLE comparison validate use of propensity functions. (A) One realization
of mRNAluxI made using the SSA (cyan color) and the CLE (blue color) respectively. Both trajectories
match during a large temporal window (15·104 min). (B) Histogramsshow close means and covariances.

(C) Box-and-Whisker plots showing both medians S̃SA = 127.7 molecules, and C̃LE = 126.1 molecules are
statistically indistinguishable

To validate the use of the propensity function f(ni3, t), we simulated the reactions (20) using the CLE,
and the reactions (19) using the SSA (Gillespie direct method), for one single-cell under the same conditions.

The SSA trajectory, plotted in Fig S4A (left), matched very well with the CLE trajectory shown in
Fig S4A (right) during the whole simulation. For both trajectories (SSA and CLE respectively), we obtained
similar distributions and no meaningful differences between their first statistical moments: µSSA ≈ µCLE
molecules, and σSSA ≈ σCLE , as shown in Fig S4B. In turn, noise strength of mRNAluxI in both SSA and
CLE trajectories had similar values (η2SSA = 0.008, η2CLE = 0.0072).

Fig S4C shows the Box-and-Whisker plots of the realizations. Their medians C̃LE (white line), and

S̃SA (black line) are practically the same, accordingly with the Kruskal-Wallis Test which reveals there is no
statistically significant difference between their medians with a 95.0 % confidence level ([Test−statistic, P −
value] = [−2.09067 · 106, 1.0]).
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S.6. Effect of population size and cell density

The optical density (OD) of a cell culture depends on the number of cells, and the volume of the culture.
In our computational simulations we selected the number N of cells and the volume Vext to obtain different
OD600 values using the relationship:

OD = N
1

Vext
∗ 1

NOD|1
(21)

where N is the number of cells (N = 240 bringing the OD600 to 0.3), Vext = 1 ·10−3 µL, and NOD|1 = 8 ·105

is the quantity of cells contained in 1 µL of bacterial culture when the OD600 is 1 (Source: Agilent, E. coli
Cell Culture Concentration from OD600 Calculator).

In order to see whether quorum sensing effect on our circuit depends on the cell density, we changed the
OD as a function of the number of cells and the volume. Fig S5A shows the LuxI noise strength obtained at
different values of OD ranging from 0.005 to 5. First, we kept the number of cells constant (N = 240 cells)
and changed the culture volume Vext from 0.06 to 0.0003 µL (blue squares). The OD ratio is tabulated in
Table S4. Next, we changed the cell number N and the external volume Vext simultaneously, so as to have
volumes in more realistic range for microfluidic settings (green squares). Their values (see Table S4) were
chosen trying to keep the same cell densities as in the first case.

Table S4. OD changing the cell number and volume.
Cell number fixed
N (cells) 240 240 240 240 240 240
Vext (µL) 0.06 0.03 0.006 0.003 0.0006 0.0003
OD600 0.005 0.01 0.05 0.1 0.5 1
Cell number and external volume are variable
N (cells) 240 240 1200 2400 4800 12000
Vext (µL) 0.03 0.006 0.015 0.006 0.006 0.003
OD600 0.01 0.05 0.1 0.5 1 5

Table S5. OD fixed.
N (cells) 240 1200 2400 4800 12000
Vext (µL) 0.001 0.005 0.01 0.02 0.05
OD600 0.3 0.3 0.3 0.3 0.3

Moreover, to evaluate how representative of a cell population is a simulation with N = 240 cells, we changed
the number of cells and the volume to achieve a constant cell density at different cell numbers. The cell
numbers and volumes used in this case are in the intervals: N = [240, 12000] cells and Vext = [0.001, 0.05]µL
(see Table S5). Figure S5B shows the LuxI noise strength for different values of N ranging from 240 cells to
12000 cells. In all cases LuxI noise strength did not appreciably change.

S.7. LuxR Parameters variation

We sampled the LuxI expression parameters in the ranges of kdlux = [10 − 2000] nM, α = [0.01 − 0.1], and
pI = [0.2 − 10] min−1, together with the LuxR parameters in the ranges of dR = [0.02− 0.2] min−1, and
pR = [0.2− 10] min−1. The simulation results are showed in Fig S6. In the top panel, dR = 0.02 min−1 and
the different colors code for several values of pR. The same, for the central panel with dR = 0.07 min−1 and
the bottom panel dR = 0.2 min−1.

S.8. Plasmids and experimental conditions

All plasmids are shown in Figures S7-S9.
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Figure S5. LuxI noise strength comparison at different OD600 values. (A) LuxI noise strength does
not appreciably change for different OD= [0.005, 0.01, 0.05, 0.1, 0.5, 1, 5], obtained either changing only
the volume and keeping the cell number constant in N=240 (blue squares) or when changing both the cells
number together with the volume (green squares). (B) LuxI noise strength for different number of cells and
volume, but keeping constant OD600 = 0.3.

S.9. Experimental flow cytometry protocol

These protocols were performed over two consecutive days for each experiment in order to measure the ac-
tivity of the output protein LuxI in both QS/Fb and NoQS/NoFb circuits. The protocols were adapted from
Olson et al. (2014).

QS/Fb, NoQS/NoFb growth and induction via flow cytometry protocol.

1. Start a 37 ◦C, shaking overnight culture from a -80 ◦C stock in a tube containing 3 mL LB medium
and the appropriate antibiotics (100 µg/mL ampicillin, 12.5 µg/mL tetracycline and 34 µg/mL chlo-
ramphenicol for both QS/Fb and NoQS/NoFb systems in 14 mL culture tubes).

2. After the overnight culture has grown for 12-16 h, prepare M9 medium (200 mL is made with: 151.58
mL autoclaved, distilled H2O, 40 mL 5x M9 salts, 4 mL 10 % casamino acids, 4 mL 20 % glucose, 400
µL 1 M MgSO4, 20 µL CaCl2). Add appropriate antibiotics to medium and stir the container to ensure
the antibiotics are mixed well in the medium.

3. Measure the OD600 of the overnight culture.

4. Dilute the overnight culture into the M9 + antibiotics, bringing the OD600 to 0.004. Shake the container
to ensure the cells are mixed well in the medium.

5. Distribute 3 mL of inoculated medium into each 8 BD Falcon round-bottom 14 mL polypropylene test
tubes (BD Biosciences Catalog Number 352006).

6. Incubate tubes at 37 ◦C with shaking at 250 rpm for 3 h.

7. Dilute 5 mg of AHL (N-3-Oxohexanoyl-L-homoserine lactone, Santa Cruz Biotecnology Catalog Number
SC205396) into 468.98 µL of DMSO to reach a solution 50 mM. This stock was stored at -20 ◦C until
use.

8. Successively dilute AHL 50 mM into M9 reaching different AHL concentrations to induce the culture
tubes. Take into account the final desired AHL concentration and the total test tube volume. We
induce AHL 10 and 50 nM to measure final repression levels Egland and Greenberg (2000).

10



Figure S6. LuxI noise strength vs. LuxI mean. Increasing the LuxR turnover as a function of the
degradation rate attenuates LuxI noise strength: dR = 0.02 min−1 (top panel). dR = 0.07 min−1 (central
panel). dR = 0.2 min−1 (bottom panel).

9. After 2 h of growth, quickly induce the test tubes at AHL 0, 10 and 50 nM.

10. Incubate tubes at 37 ◦C with shaking at 250 rpm for 4 h.

11. After 4 h of induction and growth, harvest all test tubes by immediately transferring them into an ice-
water bath. Wait 10 min for the cultures to equilibrate to the cold temperature and for gene expression
to stop.

12. Prepare a solution of phosphate-buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2
mM KH2PO4, pH to 7.4) + 500 µg/mL of the transcription inhibitor rifampicin (Rif, Tokyo Chemical
Industry, cat. ]R0079). Prepare at least 1 mL for each culture tube to be measured via flow cytometry.
Rif dissolves slowly, so allow 45 - 60 min of stirring. Also at this time, begin preparing a 37 ◦C water
bath.

13. Filter the dissolved solution of PBS + Rif through a 0.22-µm 20-mL syringe filter.

14. Transfer 1 mL of the filtered PBS + Rif into one 5 mL cytometer tube per culture sample, and chill
tubes in an ice-water bath.

15. Transfer 50 µL of each chilled culture from step 7 into the chilled PBS + Rif solution.

16. Incubate the PBS + Rif + culture tubes in a 37 ◦C water bath for 1 h.

17. Transfer the tubes back into ice-water bath.

18. Wait 15 min, and then begin measuring each tube on a flow cytometer.

Flow cytometry data acquisition. Cytometry acquisition and analysis was performed using a BD
FACSCalibur (Serie Nr. E14600085) flow cytometer with the laser system blue (488 nm) and red (635 nm).
The FL1 (GFPmut3b) acquisition channel has a 510/21-nm emission filter. Acquisition was performed with
typical count rates of 1,000-2,000 events/sec. Approximately 50,000 events were stored for each sample. After
acquisition performed with CellQuest Pro 5.2.1 software, the raw cytometry data were processed using the
custom-made Matlab scripts described in section S.11.

11



pCB2tc
5246Sbp

50
0

1000

1500

2000

25
00

30
00

3500

4000

4500

50
00

Cm

Tc

p15ASoriginSofSreplication

luxR

Tetracycline
resistance

Chloramphenicol
resistance

Pc
RBS

TT

LuxR

Figure S7. Plasmid pCB2tc

pYB06ta
5895 bp

500

1000

1500

20
00

25
00

3000

3500

4000

4500

50
00

55
00

Tc

luxI

gfp

Am
p

PluxR
RBS

GFPmut3b

LuxI

RBS

TT

ROP

Tetracycline
resistance

Ampicillin
resistance

Figure S8. Plasmid pYB06ta

12



pAV02ta
5292 bp

50
0

10
00

1500 2000

2500

3000

35
00

400
0

4500

5000

Tc

Am
p

gfp

PluxR
-10

RBS

TT

ROP

Tetracycline
resistance

Ampicillin
resistance

GFPmut3b

Figure S9. Plasmid pAV02ta

S.10. Comparison between flow cytometry experimental data and com-
putational simulations

Data from flow cytometry were processed with our scripts (see SI Section S.11). First, cytometry data were
read using the fca readfcs Matlab function. Then, the first 250 and last 100 events were removed from the
data set to avoid transient errors introduced owing to uneven pressurization of the sample tube. After this,
the highest and lowest measured histogram channel for each of the measured values (FSC, SSC, and FL1) were
removed, as the events in these channels have an undetermined fluorescence value. All this was done using
the trim Matlab function. Next, the 2D binning of FSC and SSC was performed together with a smooth
representation of the 2D histogram using the function smoothing , shown in Fig. S10A. The fluorescence
histogram from FL1 raw data, corresponding to the all this events is plotted in Fig. S10B. From this, the
normalized and smoothed representation of the histogram was used to obtain contour level curves. Then, it
is possible to use them as gate to select the events that are enclosed by the desired contour level using the
function contour gating . This contour level curve was used to isolate a uniformly sized population of cells,
and it is naturally aligned with the observed cell population. The gating procedure leaves N = 15000−20000
events shin in Fig. S10C. This events were then scaled back to linear (detectors were set to log scale) using the
parameters from the header of the FCS file. Next, a trim was performed on FL1 to remove a small number of
apparent noncellular events with very low and very high fluorescence, the fluorescence corresponding to the
gated events is shown in Fig. S10D. Finally experimental data were multiplied by a scale factor of 2.72 to
obtain the histograms shown in Figure S11 and in Figure 1C panel left in the main text. Figure S11 shows
the overlays of experimental flow cytometry with the simulation results for the QS/Fb circuit in panel A and
the NoQS/NoFb in panel B. Simulation results are shown in colored bars and experimental results are black
lines overlay.

S.11. Matlab and OpenFPM CODE

A short description of the main functions integrating the code used to simulate the model and process
experimental data is given below. It has been divided in three groups: files related to parameters setting
(Matlab), files to simulate the model (OpenFPM client in C++), and files used to process experimental data
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from flow cytometry (Matlab). All them can be downloaded from http://sb2cl.ai2.upv.es/content/

software.
The stochastic simulation of our synthetic circuit is implemented using langevin, an OpenFPM client in

C++. Information about OpenFPM installation can be found in its webpage http://openfpm.mpi-cbg.de/.
The best option for a system that is natively supported (i.e. Linux based systems, Mac, etc.) is to run the
code:

clone https://github.com/incardon/openfpm_pdata.git && cd openfpm_pdata && ./install

and follow the installation instructions therein.

C++ code - OpenFPM client

• main.cpp is the OpenFPM client langevin code. It implements the main body and two auxiliary
functions. The first function opens the file param.dat created by the Matlab script and sets the
parameters values for each cell. The second function is called at each simulation time step to update
the system states (number of molecules of species) using the Euler-Maruyama algorithm.

• Makefile has the information for make to compile the C++ source code.

• langevin.mk has the information for Makefile to obtain all the paths and libraries. Should be replaced
by the example.mk file generated by the OpenFPM instalation.

Computational cost Execution of 120 parameter sets takes around 20 minutes when performed in a
Intel XEON Server with 8 cores and 32 Gb of RAM Memory.

Model code - Parameter setting

• Evaluate CLE Extrinsic.m is a script to set the parameters for the model and run the langevin
OpenFPM client. It generates a matrix with all required parameters,runs langevin and saves the
results obtained both as a variable in the Matlab workspace and as a Matlab .mat file.

• struct2csv append.m is a function to convert a Matlab structure into a csv file that can be open
with the langevin OpenFPM client.

15



Model code - Flow cytometry data postprocessing

• plot tubes.m is the main script used to read, trim, smooth and gate the data. It plots the FSC vs
SSC scatter and the FL1 histogram before and after the gating procedure. Then it calculates the mean
and noise strength of the gated data.

• fca readfcs.m is a function obtained from Matlab Central (www.mathworks.com/matlabcentral/
fileexchange/9608-fcs-data-reader) by Laszlo Balkay. The function reads the raw data and returns
the header of the file with information about the acquisition and the raw data (FSC, SSC, FL1).

• trim.m is a function that trims the raw data. First, the first 250 and last 100 events are removed
from the data set to avoid transient errors introduced owing to uneven pressurization of the sample
tube. Then each channel is trimmed to the user defined limits. In general this limits are the highest
and lowest measured histogram channel for each of the measured values (FSC, SSC, and FL1), as these
events have an undetermined fluorescence value.

• smoothing.m is a function that binds the 2D (FSC,SSC) raw data and returns a smoothed version of
the 2D histogram.

• contour gating.m is a function that gates FSC and SSC data based on the contour obtained from
smoothing.m. The user can select the contour level. Then all the events inside the contour are gated
in.
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