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Volumetric water balance is proposed to analyze urban catchments. 

The minimum of a cost function based on the water balance is proposed. 

The minimum cost determines the optimum design of Sustainable Urban Drainage Systems.  

Several urban catchments are studied with the proposed methodology. 
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Abstract 1 

This paper presents a methodology for designing water reuse storage facilities as part of 2 

Sustainable Urban Drainage Systems (SUDS) in urban catchments. The method analyzes the 3 

whole water balance of the catchment. The contributions to the balance are irrigation and 4 

precipitation; the outlets are evapotranspiration, seepage and discharge to the conventional 5 

sewage system. The internal system variations are the volume of water to be locally reutilized 6 

and the soil water content variation. A cost function that includes the costs of irrigation, 7 

discharge to the conventional sewer system and reuse of water locally is proposed to estimate 8 

the optimum volume of water to be reused. This approach for SUDS design goes beyond 9 

traditional events-based perspectives oriented to damage prevention. This method conceives 10 

stormwater as a resource and seeks its optimal use through the design of SUDS. Several types of 11 

urban catchments were studied, and the results show that the proposed methodology can be 12 

applied either for simulating SUDS behavior in urban catchments or for estimating the optimum 13 

volume of water to be locally reused. 14 

Keywords 15 

Stormwater management; Surface runoff; Water reuse; Low impact development; Urban 16 

catchment. 17 

1 Introduction 18 

Urban development results in an increase in impervious zones that influence the hydrology of 19 

urban basins. The infiltration and evapotranspiration decrease, and runoff increases (Rodríguez-20 

Sinobas et al., 2018). The runoff peak flow and the risk of pluvial flooding increases, and the 21 

runoff volume conveyed to the receiving water bodies also increases (Ahiablame and Shakya, 22 

2016). The concentration time (Lim and Lu, 2016) and the groundwater recharge (Ogden et al., 23 

2011; Ursino, 2015) decrease, and contamination is favored (Morales-Torres et al., 2016). These 24 

effects will continue to increase in view of the projections of future climate change (Pike et al., 25 

2011). 26 
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Stormwater management in cities has traditionally been based on centralized systems that seek 27 

to evacuate runoff as quickly as possible through drainage networks that collect and convey the 28 

runoff to the final destination (Kong et al., 2017). 29 

In contrast, in recent years, a different stormwater management approach, the so-called 30 

sustainable urban drainage management, has become more common (Sustainable Urban 31 

Drainage System, SUDS, by its terminology in the United Kingdom, or Low Impact 32 

Development, LID, as they are known in the United States). This paradigm shift advocates for a 33 

decentralized management (Wang et al., 2018) as close to the runoff source as possible (Chang 34 

et al., 2018). SUDS aim to mimic the hydrology of the predevelopment state (Pappalardo et al., 35 

2017). 36 

SUDS include different infrastructures oriented to decentralized storm water management, such 37 

as green roofs, porous pavements, infiltration trenches or infiltration areas (Mguni et al., 2016, 38 

Wang et al., 2017). 39 

Some studies have analyzed the effectiveness of SUDS and have tested their feasibility for 40 

efficient urban basin management (Ahiablame et al., 2013; Busrzta-Adamiak and Mrowiec, 41 

2013; Dietz, 2007; Gregoire and Claussen, 2011; Hunt et al., 2006; Lee et al., 2013; Trinh and 42 

Chui, 2013), identifying barriers to their implementation (Dhakal and Chevalier, 2017; 43 

Loperfido et al., 2014; Rodríguez-Rojas et al., 2018; Zhang et al., 2012) or analyzing the future 44 

evolution of SUDS (Zischg et al., 2019). 45 

Conversely, few studies have focused on the development of tools or design criteria for SUDS. 46 

Some public administrations, as shown in Ballard et al. (2015) or Rossman and Huber (2016), 47 

have proposed design criteria, guidelines and recommendations. These references define the 48 

characteristics of the design event and set up limitations to the maximum peak runoff flow and 49 

runoff volume, among other variables. This type of events-based approach to SUDS design 50 

ensures the correct operation of the SUDS for events that do not exceed the magnitudes of the 51 

design event. This design proposal agrees with the management principles of conventional 52 

drainage systems but is not aligned with the philosophy of SUDS.  53 
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The SUDS operating principles go beyond simple runoff management that is oriented to damage 54 

prevention and incorporates concepts such as local reutilization and efficient use of resources. 55 

SUDS must manage the water resources efficiently for a wide range of situations, and not only 56 

for design events. Additionally, as a holistic approach, the design of SUDS must consider all of 57 

the variables influencing the hydrological cycle and not only those that are related to the design 58 

rainfall event.  59 

Considering the above, the main objective of this paper is to propose a method for SUDS design 60 

and analysis from a volumetric water balance perspective. Therefore, we propose: (1) to assess 61 

the feasibility of the proposed method to satisfy the existing SUDS design standards, and (2) to 62 

analyze the sensitivity of the main water balance variables to the installed SUDS characteristics. 63 

2 Materials and Methods 64 

2.1 General volumetric water balance 65 

A volumetric water balance (eq. 1) is proposed to analyze urban catchments. 66 

R + I = ETk +  + SUD + CUD + D       (1) 67 

where R is the precipitation, I is the irrigation, ETk is the crop evapotranspiration, CUD is the 68 

water volume conveyed to the conventional sewer system, SUD is the water volume managed 69 

by the SUDS, D is the seepage and  is the soil water content variation.  70 

The volume of water managed by the SUDS refers to a generic volume of water that is 71 

susceptible to be stopped, stored and locally reutilized. It is the result of the implementation of 72 

one or several SUDS. 73 

The following criteria were defined to characterize each variable of the water balance: 74 

1) For each type of land use within the catchment, precipitation (R) can be divided into runoff 75 

(RR) and infiltration (RI) as follows (eqs. 2 and 3).  76 

RR =  R × ci          (2) 77 

RI =  R × (1 – ci)         (3) 78 
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2) Runoff coefficients (ci) were estimated with the Soil Conservation System Curve Number 79 

Method (Soil Conservation System, 1985).  80 

3) The rainfall infiltrating the pavement (RIpav) can be locally managed (SUD) or percolate to 81 

the phreatic level (D) depending on whether the infiltrated water is being collected or not.  82 

4) The rainfall that infiltrates planting zones (RIplant) increases the soil water content ( to reach 83 

saturation. Once the soil is saturated, the additional infiltrated rainfall can be locally managed 84 

(SUD) or percolate to the phreatic level (D). 85 

5) Two alternatives were considered for runoff: (a) the runoff from pervious and impervious 86 

zones is directly conveyed to the conventional sewer system (CUD) or (b) the runoff from 87 

impervious zones is conveyed to the pervious zones to jointly infiltrate with the runoff that was 88 

generated in pervious areas. 89 

6) Crop evapotranspiration (ETk) depends on the potential evapotranspiration (ET0) and the 90 

crop coefficient (kc), as indicated in eq. 4. 91 

ETk = kc × ET0          (4) 92 

7) Soil water content variation () only refers to planting zones. Soil water content varies by 93 

rainfall infiltration, irrigation, evapotranspiration and infiltration from the storage element (RI). 94 

With cRD being the portion of runoff directed to the pervious zones and cD being the portion of 95 

the incoming water that is stored in the soil,  can be computed as follows (eq. 5). 96 

 = i - i-1 = RR × cRD × cD + RIplant × cD + RI × cD + I × cD –Etk   (5) 97 

where i and i-1 are the soil moisture contents at the current and previous temporal steps.  98 

To the extent that SUD is considered to be an available resource to be reutilized locally, a 99 

storage element can be installed and different alternatives for water reuse can be analyzed. Two 100 

alternatives for water reuse are proposed: re-infiltration to the planting zones (RI, eq. 6) or to the 101 

phreatic level (RIPH, eq. 7). For infiltration boxes or wells, RI depends on the amount of water 102 

stored, the contact area (CS, that is, the area of walls of the box in contact with water) and the 103 
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soil infiltration properties (it is supposed that, for the steady state, the infiltration rate depends 104 

on the saturated hydraulic conductivity of the soil, ks). 105 

RI = SUD × (1 - rRIPH) × CS × ks / VSUD       (6) 106 

RIPH = SUD × rRIPH × CS × ks / VSUD       (7) 107 

In which rRIPH represents the portion of the stored water that is infiltrated to the phreatic level 108 

(RIPH).  109 

8) The volume of water available for local reuse (SUD) is the portion of infiltrated water that 110 

does not store within the soil and/or does not percolate. If cDSUD and cIS represent the fractions of 111 

infiltrated water that go to the SUDS in planting and pavement zones, respectively, SUD can be 112 

defined as shown in eq. 8. 113 

SUD = RR × cRD × (1 - cD) × cDSUD + RIplant × (1 - cD) × cDSUD + RIpav × cIS – RI – RIPH (8) 114 

SUD may range from zero to VSUD, which is the planned storage capacity.  115 

9) The volume of water that is conveyed to the conventional sewer system (CUD) is the sum of 116 

runoff (from pervious and impervious zones) that is not stored in the pervious zones to infiltrate, 117 

plus the volume of water that is directed to the storage tank exceeding VSUD (eq. 9). 118 

CUD = RR × (1 - cRD) + SUD > VSUD = RR × (1 - cRD) +  119 

[RR × cRD × (1 - cD) × cDSUD + RIplant × (1 - cD) × cDSUD + RIpav × cIS – RI – RIPH -VSUD]SUD > VSUD 120 

           (9) 121 

10) Seepage (D) proceeds from both the infiltrated water that is not stored in the soil and/or is 122 

not collected in the SUDS and proceeds from RIPH as well (eq. 10). 123 

D = RR × cRD × (1 - cD) × (1 - cDSUD) + RIplant × (1 - cD) × (1 - cDSUD) + RIpav × (1 - cIS) + RIPH + 124 

RI × (1 - cD) + I × (1 - cD)        (10) 125 

11) Irrigation (I) is the variable that closes the water balance. The application of water as a daily 126 

basis fulfills the difference between the ETk and the water that reaches the soil (represented by 127 
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the values within the parenthesis in eq. 11). Irrigation is applied only within the period in which 128 

the aggregated monthly difference between R and ETk is negative. 129 

I = ETkdaily – (RR × cRD × cD + RIplant × cD + RI × cD)     (11) 130 

12) Finally, it is assumed that water infiltrates to the planting areas following the general 1D 131 

soil water flux governing equation (eq. 12). 132 

u = - k() × dH/dz          (12) 133 

where u is the effective velocity, H is the hydraulic potential and k() is the soil hydraulic 134 

conductivity, which has been estimated by the van Genutchen (1987) and Mualem´s (1976) 135 

equations, while the parameters were retrieved from Carsel and Parrish (1988). 136 

In summary, Figure 1 illustrates the scheme that was proposed for the whole water balance and 137 

depicts all of the aforementioned variables. The proposed method is considered to be an ideal 138 

uniform profile for the soil water distribution process that is described above. 139 

-Figure 1 near here- 140 

Figure 1. Scheme of the proposed water balance. 141 

2.2 Design criteria for water reuse storage facilities  142 

The optimum volume of water to be reutilized is deduced from the described water balance. An 143 

optimization problem can be proposed for the optimum volume of water (V*SUD) for different 144 

optimization functions according to the pursued objective. In this paper, we propose a 145 

minimization problem that considers the costs of managing water (eq. 13). 146 

Min C = C (VSUD) = VSUD × UCSUD + UCCUD × CUD + UCI × I  147 

st: VSUD > 0;           (13) 148 

      I ≥ 0 149 



7 
 

in which UCSUD, UCCUD and UCI are the unitary costs (€/m
3
) of water reuse (drain systems, 150 

storage capacity, etc.), conveying water to the municipal sewer system and irrigation, 151 

respectively. VSUD, CUD and I are the corresponding volumes described in section 2.1. 152 

An average runoff coefficient was considered (eq. 14) to characterize the different types of land 153 

use with regard to its hydrological properties. 154 

c* = Σ ci × Si/ST         (14) 155 

where Si represents each land use area and ST represents the total area. 156 

2.3 SUDS characterization 157 

The present paper considers SUDS to encompass a set of infrastructures aimed at collecting, 158 

storing and reutilizing water locally. The resulting effect of the installed SUDS is the process of 159 

SUD generation (see eq. 8). On this basis, the proposed methodology allows different 160 

typologies of SUDS to be incorporated as follows: 161 

a) Porous pavements: c* represents the average runoff coefficient defined by the means of the 162 

specific runoff coefficient of each land use category. Permeable pavements can be incorporated, 163 

including their specific ci and Si values, as shown in eq. 14. 164 

b) Swales, rain gardens or infiltration areas: these facilities can be included in the water balance 165 

through cRD. The entire runoff is directed to pervious zones if cRD = 1, while cRD = 0 implies that 166 

no infiltration area or its equivalent is included. 167 

c) Drain systems: cIS and cDSUD allow the inclusion of drain systems for planting and paved 168 

zones, respectively. A value of 1 represents an entire zone that is waterproofed and drained, and 169 

0 means that drains have not been installed. 170 

d) Stored water: rRIPH refers to the destination of stored water. Values of rRIPH = 0 or 1 171 

correspond to cases in which the water is used for irrigation or groundwater recharge, 172 

respectively. 173 
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e) Green roofs: these roofs can be included, which modify c* and kc. Depending on the specific 174 

green roof design, cDSUD or cIS might also be affected. 175 

3 Results and discussion 176 

The methodology has been applied to four generic urban catchments with different 177 

characteristics (called design alternatives, see Table 1), depending on whether the runoff is 178 

directed (section 3.1) or not (section 3.2) to the pervious zones to infiltrate. A section that 179 

analyzes the feasibility of the SUDS designed with the proposed method to satisfy the existing 180 

design standards is also presented (section 3.3). Finally, section 3.4 presents a comparative 181 

analysis. 182 

-Table 1 near here- 183 

Climatological data (daily rainfall and potential evapotranspiration) have been collected from 184 

the weather station located at Barajas Airport in Madrid (Spain). Records from 2000 to 2016 185 

were averaged on a daily basis. 186 

Concerning the unitary costs of the system, the following values have been considered for the 187 

cost function proposed in section 2.2: UCI = 1.68 є/m
3
, UCSUD = 0.315 є/m

3
, and UCCUD = 1.99 188 

є/m
3
.  189 

3.1 Design alternatives that convey runoff to permeable zones 190 

3.1.1 Optimum water volume and minimum cost 191 

The first set of analyzed catchments include infiltration zones to receive and infiltrate runoff 192 

(cRD=1). A drain infrastructure underlying the entire catchment collects the infiltrated water and 193 

stores it in a tank (cIS=cDSUD=1). Figure 2 shows both the optimum volume of water to be 194 

reutilized (V*SUD, which corresponds with the optimum storage capacity) and the cost of the 195 

optimum solution for different design alternatives. 196 

-Figure 2 near here- 197 
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Figure 2. Optimum solutions, alternatives that convey the runoff to infiltrate. Optimum volumes 198 

(Figure 2a) and the cost of the optimum solution of each analyzed alternative (Figure 2b).  199 

The optimum water volume to be reused (Figure 2a) mainly depends on the final use of the 200 

stored water (rRIPH) and the average runoff coefficient (c*). The smaller V*SUD values 201 

correspond to rRIPH = 0. Unlike the planting soil, no capacity limit for water infiltration is 202 

observed for the phreatic level, so the required storage capacity is not as important for rRIPH = 1 203 

as it is for rRIPH = 0. 204 

No runoff goes to CUD (cRD = 1), and the potential discharge from the storage tank is the only 205 

source of CUD. Consequently, the cost of conveying water to the conventional sewer system 206 

will be negligible compared with irrigation or SUDS costs.  207 

As Figure 2a shows, V*SUD increases in c* increments when rRIPH = 0. The stored water can 208 

infiltrate into a great volume of planting soil if c* is small, whereas the same amount of water 209 

(cRD = 1 so that the runoff and the infiltration go to the storage element in any case) has to be 210 

infiltrated in a smaller volume of planting soil if c* increases. As a consequence, discharges to 211 

CUD reduce if V*SUD increases to store the water that cannot infiltrate into soil at planting 212 

zones. 213 

Considering that the cost of conveying water to the conventional sewer systems is not a major 214 

asset to the total cost, the results are mainly influenced by the irrigation cost: UCI > UCSUD, and 215 

usually I > VSUD. This fact explains the alternatives in which rRIPH = 0 show lower costs than that 216 

of the others (Figure 2b).  217 

3.1.2 Effect of the planned SUD on the main water balance variables 218 

Figure 3 shows the variations of I (Figure 3a), RI (Figure 3b), D (Figure 3c), CUD (Figure 3d), 219 

and VSUDav (Figure 3e) as the planned VSUD varies. 220 

-Figure 3 near here- 221 
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Figure 3. Influence of VSUD on the water balance. Variations of I (Figure 3a), RI (Figure 3b), D 222 

(Figure 3c), CUD (Figure 3d), and VSUDav (Figure 3e) as the planned VSUD varies. Points 223 

represent V*SUD. Continuous lines: c*=0.5, dotted lines: c*=0.1 and c*=0.9.  224 

As Figures 3a and 3b show, irrigation is partially covered by re-infiltration. Therefore, I reduces 225 

as VSUD increases for rRIPH = 0. Otherwise, RI=0 and, consequently, I is constant. RI increases as 226 

VSUD increases to the maximum re-infiltration capacity, which depends on the soil porosity and 227 

precipitation patterns. A reduction in irrigation is not proportional to the RI increase since RI 228 

depends on the soil capacity to receive the water and not on the plant water requirements that 229 

determine the irrigation scheduling.  230 

Seepage (D) does not vary if rRIPH=0 (Figure 3c). Conversely, the increase in VSUD clearly 231 

influences D if rRIPH = 1. In this case, the storage element becomes the unique groundwater 232 

feeding source. D is limited by precipitation patterns if rRIPH = 1, and there is a threshold VSUD 233 

value that stores all the infiltrated water. This VSUD value ensures that no flow is discharged to 234 

the conventional sewer system. 235 

CUD is only caused by the excess of incoming water beyond VSUD. Consequently, CUD 236 

decreases as VSUD increases and approaches zero in the case the storage capacity holds all the 237 

incoming water volume (Figure 3d). CUD reduction as VSUD increases is more pronounced as 238 

rRIPH = 1, since the infiltration of the stored water is not limited by the soil water content.  239 

VSUDav is higher if the stored water is used for irrigation (rRIPH = 0) as a result of the greater 240 

resistance of the planting soil to receive water (see Figure 3e).  241 

As the location of V*SUD in the graphics included in Figure 3 shows, the optimum solution for 242 

rRIPH = 1 is found for CUD = 0. In these cases, irrigation does not depend on V*SUD, and the 243 

SUDS cost is lower than the cost of conveying the water to the conventional sewer system, so 244 

the total cost is mainly determined by the latter. Conversely, the optimum solution for rRIPH = 0 245 

depends on the I and CUD costs, and their relative weight is determined by c*. As a 246 
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consequence, the optimum solution varies between the following extreme cases: CUD = 0 and I 247 

≈ 0.65 m
3
/m

2
 if c* = 0.1 and I = 0 and CUD ≈ 0.28 m

3
/m

2
 if c* = 0.9. 248 

3.2 Design alternatives that do not convey runoff to permeable zones 249 

3.2.1 Optimum water volume and minimum cost 250 

The runoff goes directly to CUD in this group of design alternatives (cRD = 0). A drain 251 

infrastructure underlying the entire catchment collects the infiltrated water and stores it in a tank 252 

(cIS = cDSUD = 1). Figure 4 shows the minimum cost (Figure 4a) and the storage capacity that 253 

yields the minimum cost (Figure 4b) for each design alternative. 254 

-Figure 4 near here- 255 

Figure 4. Optimum solutions, alternatives not conveying the runoff to infiltrate. Optimum 256 

volumes (Figure 4a) and the cost of the optimum solution of each analyzed alternative (Figure 257 

4b). 258 

The runoff is directed to the conventional sewage system so V*SUD minimally influences CUD. 259 

In general, the volume of reutilized water decreases compared with the alternatives explained in 260 

section 3.1, since runoff is not collected by SUDS. Unlike the previous design alternatives, 261 

V*SUD decreases as c* increases. No runoff is directed to permeable zones, and the unique 262 

feeding source of VSUD is RI, which reduces as c* increases, so a smaller V*SUD is required as c* 263 

increases. The greatest V*SUD corresponds to the case in which water is reutilized for irrigation 264 

(rRIPH = 0). 265 

3.2.2 Effect of the planned SUD on the main water balance variables 266 

Figure 5 shows I (Figure 5a), RI (Figure 5b), D (Figure 5c), CUD (Figure 5d), and VSUDav 267 

(Figure 5e) variations as the planned VSUD varies. 268 

-Figure 5 near here- 269 
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Figure 5. Influence of VSUD on the water balance. Variation of I (Figure 5a), RI (Figure 5b), D 270 

(Figure 5c), CUD (Figure 5d), and VSUDav (Figure 5e) as the planned VSUD varies. Points 271 

represent V*SUD. Continuous lines: c*=0.5, dotted lines: c*=0.1 and c*=0.9.  272 

The relationship between I and RI (Figures 5a and 5b) does not differ from that observed for the 273 

previous design alternatives (Figures 3a and 3b).  274 

Seepage (Figure 5c) is smaller than in the previous design alternatives (sect. 3.1) because of the 275 

different runoff destination. However, the trend with VSUD does not differ substantially; D 276 

increases to a maximum value that coincides with the VSUD value that stores all the infiltrated 277 

water. This VSUD value also defines a threshold beyond which no discharge is conveyed from 278 

the storage tank to CUD (Figure 5d). Unlike in the previous section, CUD does not reach zero 279 

because the runoff is still discharged to CUD. 280 

The irrigation cost is more sensitive to V*SUD than is the cost of conveying water to the 281 

conventional sewer system, which is almost independent of V*SUD. Moreover, the amount of 282 

infiltrated water is small, because runoff is not collected. All of these facts emphasize that, for 283 

rRIPH = 0, the optimum solutions are similar to the points of maximum re-infiltration, minimum 284 

irrigation and CUD (Figures 5a, 5b and 5d). Conversely, since I does not depend on V*SUD, if 285 

rRIPH = 1, the optimum solution in these cases are similar to the VSUD value that minimizes CUD. 286 

3.3 Case study: Comparison with event-based design criteria 287 

The method presented in this paper is based on a water balance that uses climatological data on 288 

a daily basis. Unlike the traditional design models, this method seeks to achieve optimum 289 

stormwater management for the widest range of hydrological conditions and not only for 290 

specific rainfall events. Therefore, SUDS performance designed with the exposed criteria was 291 

analyzed for typical rainfall extreme events. With this purpose, we adapted the requirements 292 

that were defined in Ballard et al. (2015), which establishes that SUDS must be designed to 293 

constrain the runoff volume and the peak runoff flow to the predevelopment green field rates. 294 

Following this reference, the volume requirements have to be complied for a rainfall event of a 295 
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100 year return period of 6 hour duration, while a 100 year return period critical duration event 296 

has to be considered for the runoff flow rate. We considered these durations, but we chose a 25 297 

year return period event, since it adapted better to the local Spanish design criteria. 298 

The alternatives presented in Table 1, with an additional alternative that considers the classical 299 

catchment design without SUDS, were studied. For each design alternative, the distributions 300 

among land uses (impermeable pavements with c=0.9, irrigated planting zones with c=0.01 and 301 

porous pavements with c=0.6) presented in Table 2 were considered. 302 

-Table 2 near here- 303 

The total theoretical yearly irrigation requirement, which was calculated as the difference 304 

between the precipitation and evapotranspiration, is approximately 5,287.23 m
3
, thus resulting 305 

in a maximum daily irrigation depth of 5.48 mm. 306 

3.3.1 Runoff volume 307 

Table 3 shows the calculated runoff volumes for the alternatives and the pavements 308 

combinations that are presented in Tables 1 and 2, for a 25 year return period event of 6 hour 309 

duration. 310 

-Table 3 near here- 311 

Table 3 shows that the alternatives of collecting and conveying the runoff to infiltrate in 312 

permeable zones (alternatives 1 and 2) remove runoff and satisfy the volume requirements. 313 

In the absence of installations to collect runoff (alternatives 3 and 4), the fulfillment of the 314 

requirements depends on the porous pavement area. A minimum of 1,500 m
2
 porous pavements 315 

(with 5,000 m
2
 planting zones and 3,500 m

2
 impermeable pavements) has to be provided to 316 

reduce the runoff volume to a level that is below the predevelopment level. 317 

Figure 6 shows the hydrographs that were calculated with the dimensionless hydrograph method 318 

that was proposed by Haan et al. (1994), for the alternatives and pavement combinations that 319 

consider the rainfall event of 6 hour duration with a 25 year return period. 320 



14 
 

-Figure 6 near here- 321 

Figure 6. Hydrographs for an event of 6 hour duration with a 25 year return period. Infiltration 322 

and runoff hydrographs of the analyzed alternatives and pavement combinations for a rainfall 323 

event of 6 hour duration and 25 year return period (Q = runoff flow rate; Qinf = infiltrated flow; 324 

QSUDin = incoming flow to the storage element; QSUDout = outcoming flow from the storage 325 

element to CUD).  326 

No differences were observed among the runoff hydrographs of alternatives 0, 3 and 4. The 327 

infiltration hydrographs present different behavior depending on the runoff management. 328 

Alternatives 3 and 4 do not harvest runoff, so the infiltrated volumes are smaller than the ones 329 

for alternatives 1 and 2. The peak infiltrated flow of alternatives 1 and 2 is higher than that of 330 

alternatives 0, 3 or 4. The infiltrated flow of the predevelopment state is always smaller than the 331 

infiltrated flow of alternatives 3 and 4, whereas in alternatives 1 and 2, the infiltrated flow 332 

depends on the porous pavement area.  333 

When the initial soil water content is 0.25 m
3
/m

3
, the storage tank will start to fill after the peak 334 

runoff flow. The start of filling, and then the probability of discharging to CUD, strongly 335 

depends on the soil water storage capacity, which, in turn, depends on the soil type and initial 336 

soil water content. 337 

No discharge from the storage element to the conventional sewer system (QSUDout) was produced 338 

because the incoming volume was smaller than V*SUD in any case. It has to be noted that RI is 339 

supposed to be zero during the rainfall event. This explains why VSUD curves become horizontal 340 

for alternatives 2 and 4. Conversely, RIPH ≠ 0 if rRIPH = 1 since the phreatic level can receive 341 

water during the rainfall event. As a result, VSUD curves reduce after reaching a maximum point 342 

for alternatives 1 and 3. 343 

3.3.2 Peak runoff 344 

Figure 7 presents the hydrographs for the alternatives and pavement combinations considering 345 

the rainfall event of critical duration and the 25 year return period. 346 
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-Figure 7 near here- 347 

Figure 7. Hydrographs for a 25 year return period critical duration event. Infiltration and runoff 348 

hydrographs of the analyzed alternatives and pavement combinations for a rainfall event of 349 

critical duration and a 25 year return period (Q = runoff flow rate; Qinf = infiltrated flow; QSUDin 350 

= incoming flow to the storage element; QSUDout = outcoming flow from the storage element to 351 

CUD).  352 

The tendency of the runoff hydrographs does not differ between this rainfall event and the 353 

previous event. The compliance of the requirement depends on the porous pavement area for 354 

alternatives 0, 3 and 4 (the requirements are satisfied if Spavpor > 1,500 m
2
), while it is guaranteed 355 

in any case if runoff is conveyed to permeable zones for infiltration (alternatives 1 and 2). 356 

Results differ from the hydrographs that are presented in Figure 6 for the infiltrated flow. As 357 

Figure 7 shows, the maximum soil infiltration capacity limits the peak infiltrated flow for any 358 

alternative, including the predevelopment situation. VSUD filling curves look similar to the same 359 

curves of the previous rainfall event, and the differences among the design alternatives are also 360 

caused by the destination of the stored water. There is also a relevant time lag between the start 361 

of infiltration and the tank filling due to the soil storage capacity. No discharge is observed in 362 

the conventional sewer system for this rainfall event either.  363 

Finally, Table 4 shows that the aggregated volume reduces compared with volumes shown in 364 

Table 3. 365 

-Table 4 near here- 366 

3.4 Comparative analysis 367 

The design alternative that conveys the surface runoff to pervious zones within the catchment 368 

and that uses the stored water for irrigation is the optimum choice in terms of irrigation and 369 

water conveyed to the conventional sewer system. Moreover, it is this alternative that yields the 370 

minimum cost.  371 
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Design alternatives that harvest surface runoff fulfill the classical design standards, while the 372 

compliance for the other design alternatives depends on the surface of porous pavements. This 373 

relationship between the area of pervious zones and the effectiveness of the SUDS was also 374 

stated by other authors, for example, Palla and Gnecco (2017) or Yang and Chui (2018). The 375 

complementarity among different SUDS that are observed in the present paper was also 376 

highlighted by other authors, for example, Duan et al. (2016). Similar to the results presented in 377 

the present paper, Mei et al. (2018) found that the combination of porous pavements plus 378 

bioretention cells and vegetated swales was the optimum solution according to a cost/benefit 379 

criterion.  380 

The literature does not agree with respect to the ability of SUDS to reduce flood risk, and results 381 

are highly conditioned by the location and the analyzed combination of SUDS. For example, 382 

Ahiablame and Shakia (2016) found that combining porous pavements, rain gardens and rain 383 

barrels would lead to a 47 % reduction in the average annual runoff. Kong et al. (2017) 384 

observed that the hydrological response did not mimic the predevelopment situation despite the 385 

installed SUDS. In contrast, Bortolini and Zanin (2018) observed that rain gardens were able to 386 

practically eliminate surface runoff for most of the analyzed rainfall events. In this research, we 387 

have found that in harvesting surface runoff, using rain gardens and storing the infiltrated water, 388 

neither flood nor discharge to the conventional sewer system from the catchment should be 389 

expected.  390 

In contrast, we have not found relevant differences in the SUD performance depending on the 391 

storm duration as, for example, Her et al. (2016) observed. The main differences in our study 392 

were caused by the soil storage capacity. The relevance of the soil water content to the runoff 393 

control and the volume reduction was also highlighted by Batalini de Macedo et al. (2019).  394 

4 Conclusions 395 

A methodology based on a comprehensive volumetric water balance was proposed to analyze 396 

urban catchments, including SUDS, using climatological data on a daily basis. The 397 

contributions to the balance are irrigation and precipitation; the outlets are evapotranspiration, 398 
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seepage and discharge to the conventional sewage system. The internal system variations are the 399 

volume of water to be locally reutilized and the soil water content variation.   400 

A cost function including the costs of irrigating, discharging to the conventional sewer system 401 

and reusing water locally was proposed to estimate the optimum volume of water to be 402 

managed. 403 

The methodology was applied not only to simulate the behavior of the main water balance 404 

hydrological variables but also to estimate the optimum amount of water to be managed locally. 405 

Regarding the study of different urban catchments, the catchments that conveys runoff to the 406 

pervious areas and uses the stored water for irrigation provides the optimum solution. This 407 

design ensures the minimum cost and the most efficient management of resources (the greatest 408 

amount of water available to be reused and the smallest discharge to the conventional sewer 409 

system). Additionally, alternatives conveying runoff to permeable zones satisfy the traditional 410 

SUDS design criteria regarding the reduction of volume and peak runoff flow to the 411 

predevelopment situation.  412 

Further investigations should be conducted to evaluate the infrastructure operating conditions 413 

during the season to focus on irrigation management. Moreover, field experiments should help 414 

to monitor the variables that are studied in the present paper, such as the soil water content or 415 

the storage filling level. In the field experiments, particular attention should also be paid to the 416 

operating conditions under extreme rainfall events. 417 
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Table 1. Analyzed design alternatives. 

Design 

Alternative 

Draining 

and 

storing 

Irrigation 

reutilization 

Phreatic level 

reutilization 

Infiltration area Coefficients Section 

Alt. 1 Yes No Yes Yes 

rRIPH=1 

cIS=cDSUD=1 

cRD=1 

3.1 

Alt. 2 Yes Yes No Yes 

rRIPH=0 

cIS=cDSUD=1 

cRD=1 

3.1 

Alt. 3 Yes No Yes No 

rRIPH=1 

cIS=cDSUD=1 

cRD=0 

3.2 

Alt. 4 Yes Yes No No 

rRIPH=0 

cIS=cDSUD=1 

cRD=0 

3.2 
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Table 2. Land uses distribution for each design alternative 

Scenario 

Impermeable pavement 

(m
2
) 

Porous pavement 

(m
2
) 

Planting zone 

(m
2
) 

S1 5,000 0 5,000 

S2 4,500 500 5,000 

S3 4,000 1,000 5,000 

S4 3,500 1,500 5,000 

S5 3,000 2,000 5,000 

S6 2,500 2,500 5,000 

S7 2,000 3,000 5,000 
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Table 3. Runoff volume (m
3
) for the studied alternatives and pavements combinations 

Scenario Alt. 0 Alt. 1 Alt. 2 Alt. 3 Alt. 4 

S1 45.3 0.0 0.0 45.3 45.3 

S2 43.5 0.0 0.0 43.5 43.5 

S3 41.7 0.0 0.0 41.7 41.7 

S4 39.9 0.0 0.0 39.9 39.9 

S5 38.1 0.0 0.0 38.1 38.1 

S6 36.3 0.0 0.0 36.3 36.3 

S7 34.5 0.0 0.0 34.5 34.5 

Pre-development S (m
2
)=10,000; c=0.45 40.3 
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Table 4. Runoff volume for the studied alternatives and pavements combinations 

Scenario Alt. 0 Alt. 1 Alt. 2 Alt. 3 Alt. 4 

S1 21.4 0.0 0.0 21.4 21.4 

S2 20.6 0.0 0.0 20.6 20.6 

S3 19.7 0.0 0.0 19.7 19.7 

S4 18.9 0.0 0.0 18.9 18.9 

S5 18.0 0.0 0.0 18.0 18.0 

S6 17.2 0.0 0.0 17.2 17.2 

S7 16.4 0.0 0.0 16.4 16.4 

Pre-development S (m
2
)=10,000; c=0.45 19.1 
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