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Abstract Gradient-based shape optimization processes of mechanical compo-
nents require the gradients (sensitivity) of the magnitudes of interest to be calcu-
lated with sufficient accuracy. The aim of this study was to develop algorithms for
the calculation of shape sensitivities considering geometric representation by para-
metric surfaces (i.e. NURBS or T-splines) using 3D Cartesian h-adapted meshes
independent of geometry. A formulation of shape sensitivities was developed for an
environment based on Cartesian meshes independent of geometry, which implies,
for instance, the need to take into account the special treatment of boundary
conditions imposed in non body-fitted meshes. The immersed boundary frame-
work required to implement new methods of velocity field generation, which have
a primary role in the integration of both the theoretical concepts and the dis-
cretization tools in shape design optimization. Examples of elastic problems with
three-dimensional components are given to demonstrate the efficiency of the algo-
rithms.

Keywords Cartesian Grid-FEM - sensitivity analysis - velocity field - NURBS

1 Introduction

In optimal structural design, sensitivity analysis is the calculation of the deriva-
tives of structural response (displacements, stresses, natural frequencies, etc.) with
respect to design variables. The initial development of sensitivity analysis focused
on the size design variables, i.e. thickness or cross-sectional areas of structural
components, etc. In many structural problems it is necessary to consider shape as
a design variable. This is particularly important in the optimal design of structural
components. This paper will focus on the analysis of the sensitivities of the design
variables that describe the geometry of the component to be optimized.
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A large number of references have been published in the field of sensitivity
analysis in shape design, especially during the 90s. Currently, the research efforts
in the topic are focused on new implementations of the well-known approaches and
their application to new problems. In a brief overview, four different approaches
can be distinguished:

1. Global finite differences [1, 24, 34, 75]: finite difference expressions are used
to obtain the derivatives from the output of repeated Finite Element Analysis
(FEA) when small perturbations of the design variables are introduced.

2. Continuum approach. [2, 3, 12, 36, 37, 49, 55]. Derivatives are obtained differ-
entiating the governing elasticity equations. For shape design variables, the two
main approaches are the material derivative and the control volume approach.
These relate changes in the geometrical shape with the structural characteris-
tics leading to a set of continuum sensitivity equations that are then discretized
and solved.

3. Discrete approach [32, 46, 53, 57]. The procedure derivation-to-discretization
is reversed and the components of the discretized system of equations are dif-
ferentiated with respect to the design variables.

4. Computational differentiation [52, 73] is related to the automatic differentiation
of the routines within the computational code[6, 22, 68].

The different approaches can be evaluated from the point of view of accu-
racy, their relation to discretization and cost in computational and implementation
terms. Their relationships and comparisons can be found in [13, 25, 26, 31, 50].

Gradient-based optimization requires the evaluation of the sensitivities to drive
the optimization process. In shape optimization, this involves adapting or regen-
erating the Finite Element (FE) mesh for the different geometries to run the
numerical simulation of each of these geometries. Reference [63] showed that the
behavior of the optimization algorithm is strongly influenced by the accuracy of
the results used to drive the process (objective function, constraints and their
derivatives). Any inaccuracy in these results can pollute the behavior of the op-
timization algorithm and reduce the convergence rate to the optimal solution,
induce the convergence to a non-optimal or unfeasible solution or even prevent
convergence. This requires high-quality FE analyses that can involve a consider-
able computational cost for each geometry and hence of the overall optimization
process. The analysis cost of each geometry can be partially alleviated by the
use of adaptive analysis techniques, which are intended to provide the optimal
cost-effective FE models to obtain numerical results of the prescribed accuracy.
Numerous methods of alleviating the mesh burden are reviewed in [40].

One of the options is the immersed boundary approach[43, 54, 76], which is a
natural platform for structural shape optimization processes because its properties
are suited to simplifying the mesh generation stage. Immersed Boundary Methods
(IBM) have been studied by a number of authors for a wide range of problems
such as shape optimization[27, 35] or bio-mechanics, see for instance[20, 44]. An
example of this type of approach can be seen in Figure 1. The geometrically
complex domain, {2pnys, is embedded into a geometrically simpler domain, 2, see
Figure 1a. The embedding domain is often simply a cube (or a rectangular cuboid
in general) that can be effortlessly discretized using a Cartesian mesh made out
of hexahedra to create what we call an approximation mesh, {2xpprox, see Figure
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1b. During the integration step, only the internal elements and the internal part
of the elements cut by the boundary will be considered (Figure 1c).

(a) (b) (c)

O External nodes

® Internal nodes

B Integration subdomains
B Internal elements

(d)

Fig. 1: Typical Immersed Boundary Method environment. (a) Model {2phys within
the embedding domain, (2. (b) Discretization {2ipprox of the embedding domain.
(c) Integration domain, prprox and (d) detail of a section.

Another approach is to improve the geometrical accuracy of the models by inte-
grating CAD representations with the FEM codes. Isogeometric Analysis (IGA)[28,
51] is a recent trend in this direction. The main idea is that the meshing procedure
is circumvented since an existing CAD geometry is directly used for analysis, all
the while keeping the exact geometry. However, in its finite element form, gener-
ating an analysis-suitable solid discretization is an open topic[17, 42, 78]. In order
to bypass the internal domain parametrization, Boundary Element Methods have
also been used in shape optimization [39, 41]. Studies on IGA sensitivity analysis
can be found in [9, 23, 58].

The NURBS-enhanced Finite Element Method (NEFEM) [66, 67] employs
NURBS for the geometric representation of the boundary, whilst maintaining the
flexibility of FEM by using polynomial interpolation. NEFEM conveniently merges
the accurate representation of the geometry alleviating the difficulty of generating
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interior isogeometric elements. However, mesh generation in NEFEM presents a
difficulty similar to that found in FEM.

In [47, 48] we introduced cgFEM (Cartesian Grid FEM) as an alternative to
solve these drawbacks. The 3D version of this methodology, based on the use
of Cartesian grids independent of the geometry, was implemented in a computer
code, named FEAVox [45], for the structural analysis of components. cgFEM is
distinguished from other immersed approaches by considering the exact CAD rep-
resentation of the boundary of the domain by means of the use of the NURBS-
enhanced integration techniques [66] to perform the numerical integration over the
true computational domain.

In the approach proposed here, the properties related to all the immersed meth-
ods (automatic domain discretization, creation of hierarchical data structures for
simple data transfer and re-use of calculations, etc.) are merged with the ability to
consider the exact geometrical representation, instead of simplifying the embedded
boundary (for instance using triangular facets for its definition).

From this point of view, we propose the implementation of sensitivity analy-
sis in cgFEM, exploiting the features of our embedded methodology, aiming for
the efficient calculation of sensitivities to reduce the computational cost of the
optimization process. The strategy proposed in this paper belongs to the group
of techniques denoted as discrete semi-analytical. This specification, in our case,
means that some of the discrete derivatives rely on analytical derivation and some
on finite difference approximations. We use finite differences in order to differen-
tiate the nodal locations with respect to design variables, the so-called velocity
field, which is a challenging issue considering the immersed nature of the cgFEM.

The paper is organized as follows: the generation of velocity fields, both on the
boundary and inside the domain, is addressed in Section 2. The formulation of
shape sensitivity analysis using an immersed boundary approach is described in
Section 3. The numerical results showing the performance of the proposed tech-
nique are given in Section 4 and the conclusions are reported in Section 5.

2 Design velocity fields

Sensitivity analysis is intended to find the change in the magnitude of response
(displacements, stresses, etc.) with respect to design variables. In the case of shape
design problems, the position of the material points depends on the design vari-
ables. Defining a as the vector of design variables, in a previous step, the evaluation
of shape sensitivities defines how to vary the position of material points of the do-
main in relation to the design variables, i.e. the sensitivity of the coordinates of
the material points, usually called velocity fields, which for an arbitrary design
variable a,, is defined as:

op

Vi = Da (1)

The quality of the velocity field influences the accuracy of the numerical solu-
tion, which determines the effective convergence rate of the gradient-based opti-
mization algorithms. The analysis domain will be usually defined by a parametric
description of its boundary as a function of the design variables. Differentiating
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this function with respect to the design variables will provide the velocity field on
the boundary, but there is no closed conformation of this field in the interior.

The determination of the velocity fields is based on the theoretical features of
the sensitivity expressions and practical requirements obtained from the features
of the FE solution [10, 11]. Theoretically, the velocity field should have the same
regularity as the displacements field and depend linearly on the alteration of the
design variables. In practical terms, different applications can also impose certain
practical additional requirements on the velocity field, such as the need to maintain
the mesh topology, to provide FE nodes necessarily located on the boundary of the
domain, to produce non-distorted meshes, to be naturally related with the design
parameters of the CAD models or to be efficient and general.

Magnitudes like the sensitivity of the strain energy are not affected by the
values of the velocity fields in the interior of the domain, provided the velocity
fields meet the theoretical requirements and the exact structural response is used
in the evaluation of this sensitivity. However, in practice, the FE approximation
will be used instead of the exact structural response. As a consequence of this,
the final sensitivity of the strain energy will be affected by the velocity fields
considered in the interior of the domain[61]. In fact, the stability of the sensitivity
of the strain energy can be used to assess the quality of the different techniques
that can be used to define the design velocity field[61].

As mentioned above, the design velocity fields must be defined in the whole
domain. To do this, the velocity field is usually defined at the nodes of the FE
mesh and then interpolated using the shape functions used to interpolate the
displacements, so that the velocity fields and the displacements field will have
equivalent regularity. In the following subsections we will first describe a procedure
to define the design velocity fields along the boundary of the domain, followed
by the procedure to define it inside the domain. We will consider the special
characteristics of cgFEM aimed at the development of an efficient procedure for
shape sensitivity analysis.

Some of the methods found in the literature for velocity field definition are
following:

— Finite Difference (FD) method[74]. This method defines the parametric nodal
positions on the boundary and evaluates the change of the position due to
a perturbation of the design variables using an FD scheme. After that, an
interpolation technique has to be used to give the values of the velocity field
to the internal nodes.

— Structured meshes[29]. These methods are based on the rules to generate struc-
tured meshes that provide a formulation for the position of internal nodes as
a function of the boundary nodes.

— Boundary elements method[5]. This strategy considers a null velocity field on
the domain except in the subdomain defined by the boundary elements. This
reduces the shape sensitivity calculations to a small fraction of the domain.

— Physical approach[4]. This approach defines the evaluation of the velocity field
as an equivalent linear elasticity problem where the velocity field evaluated on
the boundary is considered as displacements applied on the boundary. Solving
the elasticity problem will provide the displacements in the interior of the
domain that will be interpreted as velocity field.
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— Laplacian method[8]. As in the previous case, the velocity field is considered
analogous to a displacement field. The velocity field on the boundary is consid-
ered as a perturbation (displacement) of the boundary. Laplacian smoothing is
then used to improve the nodal positions. The final displacements of the nodes
will be considered as the velocity field at each node.

— Domain triangulation method[61]. This method uses an initial step of the De-
launay triangulation procedure, where the nodes of the triangulation are only
placed on the boundary, to interpolate the velocity field through the domain.

Comparative studies of some of these methods can be found in [10, 11, 60, 77].

Due to the nature of IBM, the above-described algorithms cannot be used
directly in an IBM context. In this paper we will therefore discuss some alterna-
tives that can be used to generate adequate velocity fields for a Cartesian grid
framework, taking into account the features of embedded methods.

2.1 Generation of boundary velocity fields

NURBS (Non-Uniform Rational B-Spline) curves and surfaces [56, 64] were used in
the present study to describe the boundary of 2D and 3D domains. Existing works
in the literature show the use of NURBS for sensitivity analysis have been used
both as an analysis tool, i.e. Isogeometric Analysis[9, 33] and for the geometric
description of the models[7, 65, 70].

A rational B-spline curve is given by

Z?=1 Nz‘(p) (A) wiP;
i1 wiNi(p) (M)

C) = (2)
Here P; are the n control points given in d-dimensional space R?, w; is referred

to as the i-th weight, typically w; > 0 V ¢ and Ni(p) (A\) are normalized B-spline
basis functions of order p, which are defined recursively as

Ni(o) () = {1 A SA< A

0 otherwise

3)

(A=) NTY () L Qitarn =) N ()
Aitg = i Aitg+1 = Ait1

(4)

for g = 1,...,pand i = 1,...,n, where \; are the knots, which are assumed
ordered 0 < \; < Aj41 < 1, forming the so-called knot vector

Ni(q) (A =

A:{)‘la"'a>\n+10+1}7 (5)

which uniquely describes the B-spline basis functions. The multiplicity of a knot,
i.e. the number of times it is repeated in the knot vector, determines the decrease
in the number of continuous derivatives, so they are CP~'-continuous where the
knots are not repeated. If a knot has multiplicity k, the basis is C? ~*_continuous
at that knot. Other properties of the basis functions can be found in [56, 64].
NURBS surfaces are obtained from a tensor product through two knot vectors
E={&,...,&ntpt+1}t and I' = {n1, ..., Mm+q+1}- The n x m control points P; ;
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form a control net. The NURBS surface S (§,7) is defined on the one-dimensional
basis functions Ni(p) and Mi(Q) (withi=1,...,nand j =1,...,m) of order p and
q, respectively, as

S(&n) = (6)

7

I NP M () wi Py
1= i Z;n=1 Nz'(p) (€ MJ@ () wi;

An example of a NURBS surface is represented in Figure 2 with the corre-
sponding control net.

08

06

0.4

02

0.2 0.4 06 0.8 1

&

(a) Parametric space. (b) Surface and control net.

Fig. 2: NURBS surface example.

For a specific design variable a.,, the calculation of the velocity field on the
parametrized boundary S(&,, a), is simple and would be expressed as:

086 ma) _ (aP(a)) (7)

Vm,F (x(€7n),y(€in)’z(§’n)) = 8am aam

The boundary velocity field on the discrete model is achieved by the evaluation
of (7) using the parametric coordinates (§,n) of each surface point. The analytical
evaluation of the derivatives of the NURBS and trimmed NURBS (see Subsection
2.1.1) can be cumbersome, because of the lack of explicit expressions to evaluate
the control points as a function of a, and will depend on how each CAD system
generates the surfaces as a function of the parameters defined by the user. There-
fore, for the sake of generality, we propose to approximate the analytical evaluation
of these derivatives by a finite differences approximation as shown in the following
equation:

~ AS(£777: a) _ S(fﬂ%aJr Aam) — S(§7777a)
Vim,r & Aam, Aam (8)
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where Aa,, is a perturbation of the design variable a,.

In practical terms, the evaluation of the shape sensitivities will require the
information of the design velocity field at certain points on the boundary. These
points are: a) the points used for the numerical integration of boundary integrals,
and b) the points of intersection of the NURBS with the edges of the elements, i.e.
with the Cartesian axes that define the mesh. Equation (8) will be used to obtain
the velocity field at the parametric coordinates (£, 7) of these points.

2.1.1 Velocity field on trimmed surfaces

NURBS surfaces are inherently four-sided patches that do not allow for the pres-
ence of holes nor the direct creation of irregular shapes. Due to the limitation
of a strict rectangular topology, trimming is a valuable procedure to devise com-
plex objects. A trimmed NURBS surface consists of: a) a tensor product NURBS
surface and, b) a set of properly arranged trimming curves lying within the para-
metric rectangle of the surface. The trimming curves can be of any form but, when
dealing with NURBS entities, it is useful to represent them in NURBS form.
Assume that n. NURBS curves are given defined as:

Cr (AN) = (& (N),me (V) k=1,2,...,nc (9)

The curves Cy (\) are all properly oriented forming loops. A loop establishes
the boundary of the trimmed region such that, when advancing along the piecewise
curve as indicated by its numbering, the real surface material is always on the same
side, see Figure 3a. The trimmed surface boundaries are then retrieved by mapping
the 2D trimming curves onto the surface. That is,

S(gk ()\)77716 (A)) k:1727~~~7nc (10)

are surface curves bounding the trimmed surface. Figure 3b shows the 3D mapping
of the trimming loop.

Regarding the evaluation of velocity fields in geometries including trimmed
NURBS, the trimming procedure in general does not allow application of the
previously explained procedure to evaluate the boundary velocity field. The reason
for this is that, when dealing with trimmed entities, in some cases the generation of
new geometries is obtained by modifying the trimming curve into the parametric
space but not the parametric space itself, i.e. without modifying the control points
of the surfaces, leading to V,,,,r = 0 in (7).

Let us consider a trimmed NURBS surface defined as:

S(Ck (M a),a) =S (& (N a),nk (M, a),a) k=1,...,n¢ (11)

where C are NURBS curves and (& (A, a),n% (A, a)) are the surface parametric
coordinates of the k trimming curve function of the parameter A and the design
variable vector, a. In this definition, we assume that a can influence both the
surface S and the trimming curves C.

Figure 4a contains the representation of a surface as defined in (11) with the
trimmed curves and the parametric subspace I'r bounded by them. In Figure 4b,
the mapping of the parametric subspace to the physical space is shown along with
the diamond-shaped control point polygon.
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g
(a) Trimmed parametric space. (b) Trimmed physical surface.

Fig. 3: NURBS surface example.

Now let us assume a change in the design variables such that a = a + Aam,
where Aan, is a small increment in a single design variable. Figure 4c shows an
illustration of this change in the parametric space I, that leads to the new domain
I'z. Figure 4d confirms how a change in the trimming loop yields a different
mapping of the subspace, while keeping the control polygon in place. However, it
is still necessary to evaluate the value of the velocity field for the points in the
domain represented in Figure 4a.

Let A in Figures 4a and 4b be a point of interest of coordinates (§,71)4 in the
parametric space and (z,y) 4 in the physical space. The perturbation of the design
variable a,, will modify the trimmed surface in the parametric space and hence
in the physical space. This will perturb the position of A to A (see Figures 4c
and 4d) of coordinates (£,7) 7 in the parametric space and (z,y) ;7 in the physical
space. The evaluation of the design velocity field at A will require the evaluation
of this perturbation in the physical space. We therefore need to find how (£,7)a
is mapped to (&,7) 7. This can be evaluated on the trimming curves Cy (X, a) but
we also need this information in the interior of I'p.

The velocity field on the trimming curve Cg boundary for this particular prob-
lem can be written, using approximation (8), as:

98 (Ck (M\a)) o S(Ck (N a4 Aam)) —S(Ck (N a))
Oam - Aam

Voo, = (12)

Equation (12) will evaluate the velocity field only on the trimming curves.
This means that the parametric coordinates of the points (§,7) on I'r will have
to be updated to consider the change of the parametric subspace that leads to
I'z. Figure 5 shows a general case in which a number of points of interest on
the surface, defined by their original parametric coordinates {£a,74}), should be
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(a) Original parametric space. (b) Original physical space.
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(¢) Perturbed parametric space. (d) Perturbed physical space.

Fig. 4: Trimmed NURBS surface example. Modifying trimming curves.

updated to new coordinates {5,775} to obtain a transformation consistent with
the trimming curves.

We adapted the idea of the physical approach [4] to obtain this update from
{€a,1Ma} to {&s,m5}- Hence, we propose solving an auxiliary elasticity problem with
imposed displacements on the boundary. It is possible to create a 2D finite element
system in the original parametric space from information that is already at our
disposal. In this case the intersections between the surface with the Cartesian
axes would be the nodes and the elements would be defined by the faces of the
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(a) Parametric space. (b) Physical space.

Fig. 5: Problem transforming points within a trimmed NURBS surface.

integration subdomains on the surface (see [45]). Figure 6a shows this proposal.
The discretized system of equations of the auxiliary problem can be written as:

KP=F (13)

where K is the stiffness matrix, F is the vector of equivalent nodal forces. In this
case F = 0 as Neumann boundary conditions are not applied, and P contains the
prescribed displacements on the boundary and the unknown values of the field in
the interior of the domain. These 'prescribed displacements’ will correspond to the
values of the change on the trimming curves coordinates such that:

Pm,k = (gk (>‘7 a+ Aam) ) Tk (A7 a+ Aa’m))_(&f (>‘7 a) ) Tk (A7 a)) k=1,...,nc
(14)

In this way the displacements imposed are those that change the position of
the trimming curves in the parametric space associated with the design variable
under study.

Solving (13) after applying the Dirichlet boundary conditions provides the
perturbation of the position of all the nodes of the mesh shown in Figure 6b,
which can be interpolated into the elements. The result will be the position of the
original points mapped into the new subspace defined by the perturbed boundary

in the parametric space:

{71} = {6at 20n Mot a0, } = {6asa} + Pra (€a,7a) (15)

The velocity field on these surfaces will be calculated as:

Vv = As(gﬂka) _ S(E, ﬁ7a+ Aam) — S(§7777a)
™57 Aam Aam

(16)



12

O. Marco et al.

08

06

04

02

08l Pb

06

(a) FEM system using the parametric space of a trimmed NURBS
surface.

(éﬁ,nﬁ) = Pd(én,na) + (&m,na)

(b) Solution in the parametric space. (c) Solution in the physical space.

Fig. 6: NURBS surface example solved using the proposed strategy.

To our knowledge, none of the previous works in the bibliography are related
to the evaluation of the design velocity field for trimmed surfaces. The procedure
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proposed to evaluate the design velocity field for these surfaces involves solving a
2D FE problem. However, the associated computational cost is low, as: a) the FE
mesh used for the analysis is that of a previously evaluated triangulation of the
trimmed surface in the parametric space required for intersecting the surface with
the Cartesian mesh, b) the mesh is a relatively coarse 2D mesh, thus involving a
low computational cost and c) the factorization of K obtained during the process
is common to all the design variables.

2.2 Generation of domain velocity fields

After describing the method of evaluating the design velocity field at any point on
the boundary of the domain, this section deals with the methods used to obtain the
velocity fields in the domain of the models from the boundary values. As explained
above, due to the fixed Cartesian configuration of the meshes used in FEAVox,
standard velocity field generation techniques cannot be used directly. Figure 7a
uses a 2D case to show that, using fixed Cartesian grids, it is possible to find
nodes external to the domain (green dots) that will be involved in the evaluation
of the design velocity field. Strategies are needed to assign the velocity field both
to internal and external nodes so that we can interpolate the velocity field at any
point on the elements.

| //:7>r\+&

N
)
/

%

L N

(a) (b)

/
[
\

A

\

Fig. 7: Embedded methods and velocity fields. (a) Existence of external nodes and
(b) perturbation of geometry only in boundary elements.

It should be noted that a perturbation of the boundary will not induce a
perturbation of the Cartesian nodes internal to the surface. This is an important
feature imposed by the use of Cartesian grids, since the velocity field will be zero
in the internal elements, thus reducing the computational cost associated with the
evaluation of their volume integrals for shape sensitivity analysis, e.g. the non-
shaded elements in Figure 7hb.

We propose two different velocity field generators that will represent the geom-
etry changes only in these elements. Both methods can be classified as boundary
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element methods [5], as the velocity fields will be non-zero only on the band of
elements intersected by the parametrized boundary.

Figure 8 shows an example of the velocity field for the example in Figure
7 that would be obtained by the proposed methods using the radius as design
variable. Figure 8a shows the interpolation of the velocity field even in the external
nodes, while Figure 8b represents the actual velocity field necessary to evaluate the
integrals of the sensitivity analysis only of the internal elements and the integration
subdomains of the boundary elements.

F N

(a) Velocity field including the values of external (b) Effective velocity field.
nodes.

Fig. 8: Representation of a velocity field with the proposed strategies.

2.2.1 Least squares approach

In this first method we use a least squares procedure to extrapolate the values
to the external nodes imposing the velocity field on the boundary and the zero
velocities on the internal nodes of the elements of the boundary of the layer.

An FE nodal interpolation for each component of the design velocity field is
fitted into each element with the velocity field values at the surface integration
points of the elements and to V = 0 at the internal nodes of the boundary elements.
By using a least square approach we obtain the linear system of equations:

MV.q = G g qg=x,yand z (17)

The system matrix M is obtained by the assembly of the mass matrix-type
array of each element along the boundary. The global mass matrix is given by:

M = Z/Fe NTN|J|dIr (18)

where
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I'f is the portion of the boundary within the element,
N corresponds to the matrix of finite element interpolation functions.

On the other side of the equation, the vector G 4 is evaluated by adding the
contribution of elements:

Gimyg = Z/F NTVE IA0 g==,y,2 (19)

with V7, , as the ¢*" component of the velocity field on the boundary related to
the design variable m within each element. Note that this is a low-cost procedure
as it only involves the elements along the boundary, which is of interest for 3D
domains.

2.2.2 Physical approach

This method consists of solving a linear elasticity problem in which the velocity
field on the boundary is considered as the displacements applied on the boundary.
This auxiliary problem will have, for example, the following characteristics:

— The body {2pnys is characterized with a linear elastic material with Young
modulus equal to one and zero Poisson ratio;

— The discretization used to evaluate the design velocity field is the discretization
used to evaluate the displacements;

— Every single shape design variable gives a non-zero velocity field on the ele-
ments cut by the boundary and zero velocity on the rest of the domain, which
ensures the equilibrium of each auxiliary problem. The unknowns are the ve-
locities for all external nodes of the actual FE mesh (2spprox.

Even though this method needs the resolution of a system of equations as
large as the original problem, the associated computational cost is reduced, as:
a) the FE mesh used for the analysis is the same Cartesian mesh used for the
sensitivity analysis, b) we can remove the internal nodes from the system since
the velocity field is set to 0 on these nodes, leading to a problem only associated
with the domain’s boundary, which can be seen as a 2D problem, and c) the
stiffness matrix K can be factorized during the process and used for all the design
variables.

3 Calculating shape sensitivities with FEAVox

This section describes the adaptation of the discrete analytical method to evaluate
shape sensitivities when using the cgFEM methodology. In order to do this we
have to take into consideration that imposing Dirichlet boundary conditions in
an immersed boundary environment requires different strategies from those used
in standard FEM. This also has to be considered for the calculation of the shape
sensitivities dealt with in this section.

The case of the Neumann boundary conditions can be easily undertaken by
simply considering that the integration surface can cut the element and does not
necessarily has to correspond with the element faces. In cgFEM we use a stabilized
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method [72] similar to Nitche’s method that modifies the classical structure of the
FE linear elastic stiffness matrix and force vector.

The global stiffness matrix is obtained by the contribution of the classical
stiffness matrix of each element k® and a stabilization term k% for all the boundary
elements containing the Dirichlet boundary.

The stiffness matrix of each element is computed by

k= [ B"DB|J|dR (20)
Qe
where

£2¢ is the domain in local element coordinates,

B is the nodal strains-displacements matrix,

D is the stiffness matrix that relates stresses with strains. In this work we
consider linear elasticity where, under isotropic behavior, this matrix
depends only on F, the Young modulus, and v, the Poisson ratio of the
material,

is the determinant of the matrix J, representing J the Jacobian matrix

of transformation of the global coordinates (z,y, z) to the local element
coordinates (&,m, 7).

|J

and the stabilization term:

%:/ LNCLIGTRI T (21)
ry b
where

I'p is the portion of the Dirichlet boundary within the element,

k™ is the penalty constant, being k* = k- F and k > 0,

h is the element size,

C is the matrix of finite element interpolation if Dirichlet conditions are
applied on the three displacement components z, y and z.

Ni 0 ON2 0 ONs O O...Npnoa 0 O
C=N=1|0 Nt 00 No 00 N3 0...0 Npnoa O
0 0 N1O O Na20 O N3...0 0 Npnod

with nnod as the number of nodes per element. Otherwise C = SN,
where S;; = > ,0;a would be a diagonal matrix, d is the direction

where Dirichlet boundary conditions are applied and § is the Dirac
delta function.

On the other side of the equation, the equivalent force vector f is evaluated by
adding the contribution of the standard FE vector of equivalent forces on nodes
f,, the stabilization term of the Dirichlet boundary f; and the stabilizing stress
component fs.

The vector f; is the standard FE vector due to point forces, volumetric forces,
forces distributed over the Neumann surface of the element, evaluated assembling
the contribution f; of every element e on the domain:

£e = NTt|J|dF+/ N*b|J[df2 + p (22)
r

e
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where vectors t, b and p correspond to the surface, body and point loads, respec-
tively.

The vector f; is due to the non-homogeneous Dirichlet condition u" =gonlp
and it is evaluated assembling the contribution of every element on the Dirichlet
boundary:

£ = /PC %CTg|J|dF (23)
D

Finally, fs is the stabilizing term which depends on the stress field. In our
formulation we use the recovered tractions on I'p evaluated from the recovered
stress field *[62] to stabilize, solving the problem iteratively updating the stress
field value [71, 72], o* (0") being the FE recovered stress field calculated for an FE
solution from a previous iteration (or mesh) a”. The traction on the boundary is
defined as T(@") = o*(4") - n where n is the unit vector normal to the boundary,
then

= [ c'r@")Jdr (24)
I'p

which modifies the global system such that:

(K+Kp)u=»£, +1f; +f; (25)

The derivative of (25) with respect to any design variable a,, provides the
sensitivity of the calculation

ou  0f ofy Ofs
Oam  Oam * Oam + Oam (26)

( 0K  0J0Kp

0am  Oam ) u+t (K+Kp)

then, rearranging, yields

du (afq L Ofy Ok, ) K @)

(K+Kp) Oam - O0am  Oam  Oam O0am

The discrete analytical method consists of obtaining analytical expressions of
the sensitivities of the external forces and stiffness matrix. In our case we used
the finite differences approximation of Egs. (8) and (16) in the evaluation of the
velocity field that will be used to obtain the derivatives of the previous equation.
Therefore the method used to evaluate the shape sensitivities can be classified
as a discrete semi-analytical method. Then using (27) the sensitivities of the dis-
placements are obtained. From these sensitivities other response magnitudes are
calculated.

3.1 Evaluation of derivatives

In this section we derive the components of (27) to be able to evaluate the shape
sensitivities in the Cartesian grid framework. First, starting with k® and consid-
ering that the derivative of D with respect to design variables is zero

e T
Ok :/ {‘93 DB+BTD8—B} |J\d9+/ {BTDBy} a0 (28)
Q¢ m Q¢

Oam O0am Oa am
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As can be found in [16], this expression depends on known magnitudes and the

OB 8\ \

factors 9o and , which are a function of the velocity field evaluated above.

Bk
To evaluate 7
will not be modified by the design variables, i.e. h and C do not depend on ap,.
Therefore, the only non-zero partial derivative with respect to a., is gc‘b ‘ , which
leads to:

oKy [ K oGOl
o | CTCgear (20)

In general, the sensitivity with respect to design variables of the nodal equiv-
alent forces f; will have two terms, one dependent on the variation of the forces
(punctual, volumetric, etc.), with respect to design variables, and the second de-
pending on the velocity field. In the first case the expression defining the depen-
dence of the acting forces with respect to the design variables must be available
but in this work we considered constant acting forces. In the second case the
derivatives had to be calculated by the same procedure as for the stiffness matrix
components.

The remaining components of f have to be derived as

oty _ 7, 9]
aam_/P R C 990, (30)

where we have assumed that the Dirichlet boundary conditions are not a function
of the design variables,

ofs 7 9T(a") Ty 2V
e i e L COFE (31)
where
aT(@") 90" . On
Oam 8amn+a Oam (32)

As mentioned above, the term T used to stabilize the Lagrange multipliers is
a recovered stress field obtained from the FE solution. To evaluate the stresses in
linear elasticity we consider the general expression for the calculation of the FE
stresses o, in continuous isoparametric elements

on = DBuj, (33)

uj, being the vector of nodal displacements of element e. Taking the derivative
with respect to the design variable a,, yields

oo ouy, oB .
=DB D 34
Oam Oam + Oam th (34)
where all terms on the right can be evaluated using the development of the pre-
ceding sections. Once we have evaluated both o and % we can apply the con-

struction of the smoothing field based on a recovery technique shown in [62].

* *
Remark 1 To simplify the evaluation of 2 — we considered 6"’ = ( ai:,) . The

numerical results will show that this approxunatlon, prev1ously used in [19], does
not influence the results.
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4 Numerical examples

From the premise of the approximate nature of the FEM, the error of the solution
associated with the size of the elements of the FE mesh can be termed FE dis-
cretization error. Usually this error is quantified in terms of the energy norm |||
as:

le(w)eall? = /Q (o1 — o) D (o) — 0) AR (35)

where o}, and o are the FE (approximate) and the exact stresses respectively.

The sensitivity analysis results evaluated by the FEM are also influenced by
the discretization error associated with the FE model. Therefore, a way must be
defined to evaluate the discretization error in the evaluation of the sensitivities.
Following [19] we use the sensitivity of the squared energy norm with respect to
each design variable, i.e.

2
L /aTDflo—dQ (36)

™7 Oam  Oam

and following a similar procedure to that used to derivate the expression (28) we
obtain:

= o0 22552 2
(37)

The following definition of relative error in sensitivities can be used to make the
error in sensitivities comparable with the error in energy norm in relative terms:

e(Xm)eac

38
XM ( )

n(xm)ex =

In the absence of singularities, with this definition, the optimal convergence
rate of the relative error in sensitivities with respect to the number of degrees
of freedom will have the convergence rate of the relative error in energy norm.
The theoretical predicted convergence rate in energy norm is O(hP). Therefore,
following the rationale of [80], taking into account that the number of degrees of
freedom N in 3D is approximately inversely proportional to k3 the convergence
rate can be written as O(N ~P/3). Therefore, the convergence rate of 7(x) as defined
in (38) will be —1/3 for tri-linear elements and —2/3 for tri-quadratic elements in
3D problems.

In addition, we know from [61] that there is a relationship between the dis-
cretization error in energy norm and the so-called sensitivity discretization error,
such that:

e(Xm)ew
l[e(u)ex]|?
This expression shows that, only with the presence of the discretization error,
the discretization error in the sensitivity of the squared energy norm and the
squared discretization error in energy norm will both be related by a constant Ry,.
This relationship between the two types of errors can be adopted as an indicator
to measure the quality of the procedure to generate the velocity field.

~ Rm (39)
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4.1 Thick wall infinite cylinder under internal pressure

The geometrical model for this test is represented in Figure 9. A linear-elastic
analysis is performed on a domain whose boundary representation is defined by
NURBS. Appropriate symmetry boundary conditions allow only 1/4 of the section
to be modeled. The internal and external surfaces are of radius a and b, with a = 5
and b = 20. Young’s modulus is £ = 1000, Poisson’s ratio is v = 0.3 and the
applied load is P = 1. The shape sensitivity analysis of this example considers
only one design variable corresponding to the outer radius of the cylinder, thus
taking a., = b.

(a) Front view with boundary conditions. (b) 3D representation.

Fig. 9: Model of a cylinder under internal pressure.

The exact solution for displacements and stresses is given by:

_ P(1+v) b’ _
i ] ) F w
P b i b?
m=at (1) =i (1) m=vlete) @y

where k = b/a, r = Va2 + 22

The analytical sensitivity of the squared energy norm (1/4 of cylinder) is:

2 2 Ap(y —
Y= Oaea|” _ 9 oIl _ 9P I+v)  a*b(v—1)

42
Oam Oam E (a2 —b2)? (42)
For the data used in the model we will have:
ez ||® = 0.055815629478779
(43)

X = —5.082398781807488 - 10™*
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For this problem we will analyze the behavior of the methods used to generate
the velocity field, i.e. the proposed least squares approach (LS) and the physical
approach (PA), in various FE analyses. In the first analysis we will study the
convergence for tri-linear elements (L8) with meshes uniformly refined and h-
adapted meshes. The meshes used in this simulation can be seen in Figures 10a
and 10b.

(¢) h-adapted meshes with tri-quadratic elements (Q20).

Fig. 10: 2D view of the first four meshes of the h-refinement analyses.

Figure 11a shows the relative error of the sensitivity analysis 1(x) and Figure
11b shows its convergence rate as a function of the number of degrees of freedom.
The theoretical convergence rate for tri-linear elements (—1/3) is indicated in the
plot with a black horizontal line.

The convergence plots show almost optimal rates for tri-linear elements using
the two velocity fields proposed in this contribution, although the physical ap-
proach provides more stable results. Regarding the quality of the velocity fields,
estimated using Ry, (see Figure 11c) we can conclude that all the analyses show
good behavior, but the velocity field calculated using the physical approach shows
slightly better stability.

In Figure 12 we compare the results for tri-quadratic elements (Q20). Repeat-
ing strategy, we analyze uniform meshes (Fig. 10a) and h-adapted meshes (Fig.
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Fig. 11: Thick wall infinite cylinder. Analysis with tri-linear elements (L8)

10c). Figure 12a shows similar behavior in the convergence of the relative er-
ror in sensitivities for the two methods proposed to construct the velocity field.
For 3D problems with a non-singular solution, the theoretical convergence rate
is —2/3 if tri-quadratic elements are used. Figure 12b shows that both velocity
fields provide optimal convergence rates. In addition, h-adapted meshes present
convergence above the optimal rate, which could indicate that the analysis is still
in the pre-asymptotic range.

Finally, the quality of the velocity fields quantified by Ry, (see Figure 12c)
show less stability than that obtained for tri-linear elements, although the interval
of oscillation is narrow enough to consider the proposed velocity fields acceptable.
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Fig. 12: Thick wall infinite cylinder. Analysis with tri-quadratic elements (Q20)

4.2 Sequence of collinear cracks in an infinite plate

In problems of Linear Elastic Fracture Mechanics (LEFM), the Stress Intensity
Factor (SIF) is the parameter that characterizes the stress field near a crack tip.
This parameter is vital to assess the maximum allowable stress, critical crack size,
fatigue life of a component with cracks, etc.

The evaluation of the SIF represents an interesting challenge for shape sensi-
tivity analysis, given the singular nature of the problem[14, 15, 18, 21]. In fact, the
quantity called energy release rate G is the variation of the total potential energy
of a component as a function of the crack size growth.

The energy release rate G for a two-dimensional LEFM problem under mode I
loads can be defined as:

dH, _ dI

9=""4 " d (44)
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where

IT, is the total potential energy. In the case where the load remains con-
stant. II, = —II, where II is the strain energy and
a is the length of the crack.

Since the energy norm squared is equal to twice the strain energy (||ul|* = 21IT)
it follows:

g Ldlul?
2 da

We can therefore evaluate G using shape sensitivity analysis, assuming that a,
the crack length, is the design variable. From (45) and from the definition of xm
in (36) we have:

(45)

1
== 46
g=3x (46)
On the other hand, the energy release rate G and the SIF K; are related by
the following expression:

K; =VEG (47)

where B/ = E in plane stress and ' = E/ (1 — y2) for plane strain, F is the
elasticity modulus and v is the Poisson’s ratio.

To evaluate the effectiveness of the sensitivity calculation module in singular
problems we are going to use the problem of a sequence of collinear cracks in an
infinite plate (see Figure 13).

(o)
SRR RN AR 6&jﬁﬁ>
2b 4. :
I
z 3 :
2a 2, |
I
1 |
s 4 N
LULLLuibid y%!P5x2
(¢
(a) Plate with a crack of infinite length. (b) 3D representation of the mode I

crack model.

Fig. 13: Infintie plate with a sequence of collinear cracks.

Considering the symmetries of the problem in Figure 13a, the FE model in-
volves taking into account the strip bounded by the center of the crack and the
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equidistant point between the ends of two consecutive cracks, together with the
appropriate boundary conditions, as shown in Figure 13b. On the blue surfaces
the normal displacements have been blocked to simulate the symmetry and plain
strain conditions. The red surface is free and the constant stress o is applied on
the top surface. A considerable height was used in the analysis to make certain
that the effect of the finite height on the SIF was insignificant.

In an infinite sequence of collinear cracks subjected to constant stress o, the
exact value of Stress Intensity Factor K; is given by equation (Kanninen and
Popelar [30]):

2b ma
K; =ov7ma Etan (2—1)) (48)

For the data used in the model it yields:

K; =200

49
x = 2G = 0.007112888 (49)

Since the crack has a top and a bottom, the value of x in the upper part would
be obtained when modeling both sides. However, the model used in the numerical
analysis uses only the top of the crack, so that the value of x obtained directly
through the shape sensitivity analysis approximates to half the value displayed.
Thus the value of x to be compared with the numerical results is:

X = 0.003556444 (50)

In order to evaluate the behavior of the velocity fields, as in the previous
problem, we consider using the ratio R,, defined previously. However there is no
expression to evaluate the exact energy norm for this problem. To determine the
error in strain energy we have taken, as a reference, the solution obtained from
a very refined 2D h-adapted mesh (23811 degrees of freedom, 12059 nodes, 5918
elements) with quadratic triangular elements, with an estimated error of 0.0753%,
evaluated using the ZZ error estimator [79] i.e. using (35) but substituting the
exact stress field o by a recovered stress field o* obtained by the recovery technique
described in [62]. In this mesh, the value of ||u]|?, which will be considered as exact
in the analyses, is:

ul.|l? = 0.009582263 (51)

The J integral [59] is commonly used to characterize the singularity at the crack
tip in LEFM problems. The behavior of this contour integral can be considerably
improved by means of the Equivalent Domain Integral (EDI) method[38, 69]. The
transformation of the J contour integral into a domain integral leads to the ap-
pearance of an auxiliary function, usually denoted as ¢, which must be defined by
the analyst. This function used in the EDI method is equivalent to the velocity
field used to characterize the singularity through the use of shape sensitivity anal-
ysis. Therefore, in this problem, we will compare the behavior of the velocity field
based on the physical approach (PA) with the behavior of an auxiliary function g
commonly used in the EDI method, a Plateau function. Hence, as in the case of
the auxiliary function ¢, the Plateau velocity field will be defined as a vector field
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in the direction of the crack propagation, with a maximum constant value within
the volume defined by a radius R;, around the crack tip and a linear decrease to
0 within R;, and an outer radius Rout. Figure 14 shows the appearance of these
velocity fields.

&y ") i

@ ()

Fig. 14: Velocity fields for the crack model. (a) Physical approach and (b) Plateau
function.

As in the previous test problem, a sequence of uniformly refined meshes has
been used with both tri-linear (L8) and tri-quadratic (Q20) elements, Figure 15a,
and two sequences of h-adapted meshes, one for linear elements, Figure 15b, and
another for quadratic elements, presented in Figure 15c.

Figure 16a shows the variation of the relative error in sensitivities n(x) obtained
for each velocity field, while Figure 16c represents the evolution of K in terms
of the number of degrees of freedom. Tri-linear elements and both uniform and h-
adaptive refinement have been used in the analysis represented. Figure 16b shows
the convergence rate of n(x) with respect to the number of degrees of freedom
for the different meshes. We can see how only the h-adaptive simulations reach
the optimal theoretical convergence rate of —1/3, for 3D tri-linear elements. The
convergence rate for singular problems and uniform refinement is dominated by
the intensity of the singularity A and not by the degree of the interpolation of the
solution. In this case A = 0.5, thus, the convergence rate in terms of the number
of degrees of freedom will be —\/d, d being the dimensionality of the problem.
Thus, for A = 0.5 and d = 3, the theoretical convergence rate with respect to the
number of degrees of freedom for uniform refinement is —1/6. The convergence
rate for uniform refinements is close to this value. Regarding the quality of the
velocity fields evaluated using R,,, we observe in Figure 16d how the velocity field
defined using the physical approach is more stable for both uniform meshes and
for h-adapted meshes but especially for uniform refinement processes.

The same analyses were carried out with tri-quadratic elements. Figure 17b
shows the convergence rate for the different meshes. We can observe that only the
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.
¥

(b) h-adaptive meshes with tri-linear elements (L8).

i

(c¢) h-adaptive meshes with tri-quadratic elements (Q20).

Fig. 15: Infinite sequence of cracks. First five meshes of the h-refinement process.

h-adaptive simulations reach the optimal theoretical convergence rate of —2/3, for
3D tri-quadratic elements. The uniformly refined meshes have a convergence rate
close to the convergence rate for tri-linear elements with uniform refinement, i.e.
close to the theoretical convergence rate for this type of mesh, —1/6, as expected.
Figure 17c represents the evolution of K; with respect to the number of degrees
of freedom. The evolution of the quality constant for tri-quadratic elements shown
in Figure 17d is similar to that of tri-linear elements. The results obtained by the
physical approach are clearly more stable than with the plateau velocity, which
produces oscillatory behavior, especially in h-adapted meshes.

5 Conclusions

This paper proposes an extension of a methodology for the calculation of shape
sensitivities, together with the definition of two methodologies that define the de-
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Fig. 16: Infinite sequence of cracks. Analysis with tri-linear elements (L8)

sign velocity field for an immersed boundary method where an h-adapted Cartesian
grid is used to mesh the embedding domain. This includes adapting the formula-
tion of shape sensitivities, taking into account the special treatment of boundary
conditions required by the use of non body-fitted meshes.

Two problems with known analytical solutions, one with a smooth and another
with a singular solution, were used in the section devoted to numerical examples.
These examples were used to compare the performance of the proposed method-
ologies in defining the design velocity field and to demonstrate their appropriate
behavior in shape sensitivity analysis, within the framework of immersed boundary
techniques based on Cartesian grids.

The proposed physical approach for the definition of the design velocity field
provided the best behavior. Furthermore, this approach outperforms the behavior
of an analytical velocity field commonly used in the context of fracture mechanics
to evaluate the Stress Intensity Factor.
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Fig. 17: Infinite sequence of cracks. Analysis with tri-quadratic elements (Q20)
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