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Abstract

This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the anal-
ysis of data proceeding from mixture designs of experiments. Gower’s idea of pseudo-sample
trajectories is exploited for interpretation purposes. The results show that, when the datasets under
study are a↵ected by severe non-linearities and comprise few observations, the proposed approach
can represent a feasible alternative to classical methodologies (i.e. Sche↵é polynomial fitting by
means of Ordinary Least Squares - OLS - and Cox polynomial fitting by means of Partial Least
Squares - PLS). Furthermore, a way of recovering the parameters of a Sche↵é model (provided
that it holds and has the same complexity as the K-PLS one) from the trend of the aforementioned
pseudo-sample trajectories is illustrated via a simulated case-study.

Keywords: mixture designs of experiments, Kernel-Partial Least Squares (K-PLS),
pseudo-sample trajectories, Sche↵é and Cox polynomials, Partial Least Squares (PLS), Ordinary
Least Squares (OLS)

1. Introduction

A wide range of products currently used in daily life result from processing blends of two
or more ingredients. Hence, the physicochemical properties of these products mainly depend on
the raw materials being mixed and on the proportions in which they are added. Alloys, as well
as drugs and foodstu↵s, are just some of the numerous examples where this applies, and their
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manufacturing can be considered a so-called mixture problem [1]. Traditionally, mixture problems
are defined as those in which i) the proportions xi of the I di↵erent constituents are related to the
aforementioned properties, ii) these proportions are of at least as much relevance as their absolute
quantities, and iii) their sum must be a fixed value (usually 1 or 100%):

IX

i=1

xi = 1 (1)

where 0  xi  1. This perfect collinearity restriction makes it impossible to modify the compo-
sition of any one of the ingredients independently from the rest. This implies that classical poly-
nomial fitting by traditional methods, like Ordinary or Generalised Least Squares (OLS/GLS), is
unfeasible as they assume the regressors to be linearly independent. Alternative approaches e.g.
the Sche↵é models or their reparametrisation, the Cox models, can be exploited in these circum-
stances. However, both of them show several limitations: the interpretation of Sche↵é models’
coe�cients may not be straightforward and Cox models’ ones might not be directly estimated by
OLS/GLS [2, 3]. In order to solve such issues, Partial Least Squares (PLS) regression-based tech-
niques can be resorted to [4]. Nevertheless, if the mixture data under study are a↵ected by strong
non-linear relationships, which is rather common in e.g. industrial scenarios, even applying clas-
sical PLS taking into account additional interaction, inverse and/or higher-degree terms may not
constitute an appropriate modelling strategy since it assumes their underlying structure is linear
[5]. A good option in these situations may be represented by the so-called kernel-based techniques
[6], which also encompass Kernel-Partial Least Squares (K-PLS) regression and have already been
broadly used in di↵erent fields of interest [7–11]. Unfortunately, kernel-based methodologies suf-
fer from a particular drawback: the information about the weights or the loadings of the original
variables is lost. Many possibilities to recover this information exist, but authors commonly ab-
stain from exploiting them essentially because they do not permit the graphical interpretation of
the final models. Recently, the idea of the pseudo-sample trajectories, originally described by
Gower and Hardings in [12], has been extended to overcome this limitation [13–18].
The main aim of this article is to evaluate the feasibility and the possible advantages of coupling
K-PLS to the pseudo-sample trajectories for the analysis of mixture designs of experiments. The
potential of such a combination will be assessed via simulated and real case-studies.

2. Methods

2.1. Sche↵é and Cox models
Applying the constraint in Equation 1, the linear (first-order) and quadratic (second-order)

Sche↵é canonical polynomials can be expressed as:

Linear model: y =
IX

i=1

�ixi + ✏ (2)

Quadratic model: y =
IX

i=1

�ixi +

I�1X

i=1

IX

j=i+1

�i, jxix j + ✏ (3)
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being y the value of the response property to be predicted, �i the first-order model coe�cient re-
lated to the i-th constituent of the mixture, �i, j the model coe�cient for the interaction between
the i-th and the j-th ingredient and ✏ an error term. In other words, �i corresponds to the expected
value of y for the hypothetical pure mixture composed by the only i-th constituent, while �i, j mea-
sures the synergism or the antagonism between the i-th and the j-th ingredient.
Although Sche↵é polynomials can be fitted by conventional OLS, the interpretation of their param-
eters is not straightforward. For this reason, they are commonly reformulated into their equivalent
Cox models:

Linear model: y = ↵0 +

IX

i=1

↵ixi + ✏ (4)

s.t.
IX

i=1

↵i si = 0 (5)

Quadratic model: y = ↵0 +

IX

i=1

↵ixi +

I�1X

i=1

IX

j=i+1

↵i, jxix j +

IX

i=1

↵i,ix2
i + ✏ (6)

s.t.

8>><
>>:

PI
i=1 ↵i si = 0
PI

j=1 ci, j↵i, j s j = 0 8i 2 [1, 2, . . . , I]
(7)

where si is the proportion of the i-th ingredient in a specific mixture set as reference a priori; ↵0

connotes the zero-order term of the polynomial; ↵i and ↵i,i denote the first-order and second-order
model coe�cients related to the i-th constituent of the mixture, respectively; ↵i, j is the model coef-
ficient for the interaction between the i-th and the j-th ingredient; and ci, j =

1
2 if i , j or ci, j = 1 if

i = j. Here, ↵0 represents the expected value of y for the reference mixture, ↵i equals the di↵erence
between the expected value of y for the pure mixture composed by the only i-th constituent and
the expected value of y for the reference mixture, and both ↵i,i and ↵i, j contribute to the response
function curvature as for classical polynomials.
The relationship between the Sche↵é model coe�cients and the Cox model ones is derived in the
Supplementary Material.
Cox canonical polynomials are probably the most intuitive approaches for mixture problem solv-
ing. However, the computation of their coe�cients cannot be carried out by OLS/GLS. PLS
regression constitutes a way to bypass this obstacle.

2.2. Partial Least Squares (PLS) and Kernel-Partial Least Squares (K-PLS) regression
Partial Least Squares (PLS) regression is a latent variable-based method for modelling the

inner relationships between a matrix of predictors, X, and a set of response variables, Y. The
basic idea behind it is predicting Y from the A-dimensional subspace of X, which maximises its
covariance with Y by resorting to the principles of the Nonlinear Iterative PArtial Least Squares
algorithm originally developed by Herman Wold in [19]. In the mixture scenario, X (N ⇥ I) would
contain the proportions of the I ingredients for the N sampled blends, while Y (N ⇥ K) the values
of their K properties of interest. In this sense, the PLS structure model can be written as:

Y = XB + F (8)
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being B (I⇥K) the array of PLS regression coe�cients and F (N⇥K) the so-called PLS Y-residuals
matrix, respectively.
By PLS one does not need to assume linearly independent regressors. Hence, it can be utilised
to calculate the parameters of Cox models of various complexity by possibly augmenting X with
interaction and/or higher-than-first-order terms to take into account their corresponding e↵ect on
Y. However, as detailed before, PLS assumes the underlying structure of the data under study is
linear. Therefore, when strong non-linearities a↵ect them, which is rather common when mixture
problems are dealt with, the application of this technique may not result in satisfactory outcomes,
even if the aforementioned augmentation procedure is exploited. An alternative to classical PLS is
represented by Kernel-Partial Least Squares (K-PLS) regression. K-PLS is based on the so-called
kernel transformation of the original data matrix, X. Its mathematical formulation is given by:

K(xn, xn0) =< �(xn), �(xn0) > (9)

where x

T
n and x

T
n0 are two generic row vectors of X to which a specific mapping function � is

applied, while < and > denote the inner product. By performing such a transformation for all the
possible couples of vectors in X, this array is converted into a squared symmetric kernel matrix, K

(N⇥N), whose elements measure the dissimilarity or distance between two di↵erent observations.
This implies projecting the analysed data onto a new space, also known as feature space, allowing
possible non-linear relationships to be modelled in a linear way. A comprehensive survey on the
properties of the feature space and on the basic principles of the kernel transformation can be found
in [5]. Finally, once the kernel matrix has been constructed, a standard PLS model is calibrated
between K (double-centred) and Y as:

Y = KBK�PLS + FK�PLS (10)

being BK�PLS (N ⇥ K) the array of K-PLS regression coe�cients and FK�PLS (N ⇥ K) the so-
called K-PLS Y-residuals matrix, respectively. When K-PLS is resorted to, various mathematical
functions can be applied to address the kernel transformation of X. Table 1 lists those considered

Table 1 – Kernel functions referred to in this article and list of their adjustable parameters

Kernel type Kernel function Adjustable parameters

Second-order polynomial (xT
n xn0)2 -

Third-order polynomial (xT
n xn0)3 -

Fourth-order polynomial (xT
n xn0)4 -

Radial-Basis-Function (RBF) exp(� ||xn�xn0 ||2
2� ) �

in this article together with their adjustable parameters.
However, although K-PLS allows severe data non-linearities to be easily handled and, if such non-
linearities exist, better fit and prediction quality to be achieved, its main disadvantage is associated
to the fact that, due to the conversion of X into K, the information about the importance of the
original variables is not carried by BK�PLS and, thus, cannot be recovered by simply plotting the
weights of the final models. To enable their interpretation, one can take advantage of Gower’s idea
of pseudo-sample trajectories.
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2.3. Pseudo-samples and pseudo-sample trajectories
The term pseudo-sample connotes a particular observation carrying all the weight in one sin-

gle regressor. For example, the vector [0, 0, . . . , 1, 0, . . . , 0] (1 ⇥ I) can be looked at as
one of the possible pseudo-samples related to e.g. the i-th ingredient of a generic mixture. If
[0, 0, . . . , 1, 0, . . . , 0] is multiplied by the estimated regression coe�cients, b (I ⇥ 1), of a
1-response variable PLS model as in Equation 11:

ŷnew = [0, 0, . . . , 1, 0, . . . , 0]b = bi (11)

its predicted y-value, ŷnew, equals the i-th element of b, and thus provides insights into the contri-
bution of the i-th constituent of the mixture to such a response variable.
Suppose now a pseudo-sample matrix, Zi (Z ⇥ I), is built so that its i-th column contains values
ranging from 0 (minimum proportion of the i-th constituent) to 1 (maximum proportion of the i-th
constituent) and 0 is set for all the other entries. Notice that the minimum and maximum propor-
tion may di↵er depending on the specific mixture design of experiments taken into account. It
follows:

Zib =

2
6666666664

0, 0, . . . , 0, 0, . . . , 0
...

0, 0, . . . , 1, 0, . . . , 0

3
7777777775

b =

2
6666666664

0
...
bi

3
7777777775
= bi (12)

By graphing for all the I ingredients the respective bi vectors as trajectories, an outline of the
PLS regression coe�cient plot would be obtained. For standard PLS, these trajectories would not
render any additional information, but, as demonstrated in [14, 17], they could be extremely useful
to interpret K-PLS models. Here, it would be only needed to i) execute on every Zi the same kernel
transformation as for X and ii) double-centre the resulting pseudo-sample kernel matrices as for K

before carrying out the operation in Equation 12.

2.4. Pseudo-sample trajectories for mixture data and pseudo-sample-based response surfaces
Unfortunately, the described way of defining the di↵erent Zi is not adequate when mixture

problems are concerned, because it violates the constraint in Equation 1, i.e. it is impossible to
modify the composition of any one of the blend constituents independently from the rest. In order
to account for such a constraint, the pseudo-samples matrices Zi should be adapted and structured
so that the values in their i-th column range from the minimum to the maximum proportion of the
i-th ingredient and all the elements of each one of their rows sum up to 1, provided that the fraction
of the other constituents is equal. E.g. if a ternary mixture problem is faced, a hypothetical Z1

may have the following aspect:

Z1 =

2
666666666666666666666664

0, 0.5, 0.5
0.2, 0.4, 0.4
0.4, 0.3, 0.3
0.6, 0.2, 0.2
0.8, 0.1, 0.1
1, 0, 0

3
777777777777777777777775

(13)

As shown in Figure 1, this would mean spanning in the design space (a triangle) the direction
connecting the vertex associated to the pure blend composed by only the i-th constituent ([1, 0, 0],
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if i = 1) and the midpoint of its opposite side ([0, 0.5, 0.5], if i = 1).
More generically speaking:

Zi =

2
66666666666666666666666664

1�z1,i
I�1 ,

1�z1,i
I�1 , . . . , min(xi),

1�z1,i
I�1 , . . . ,

1�z1,i
I�1

...
...

...
...

...
...

...
1�zz,i

I�1 ,
1�zz,i

I�1 , . . . ,
... 1�zz,i

I�1 , . . . ,
1�zz,i

I�1
...

...
...

...
...

...
...

1�zZ,i

I�1 ,
1�zZ,i

I�1 , . . . , max(xi),
1�zZ,i

I�1 , . . . ,
1�zZ,i

I�1

3
77777777777777777777777775

(14)

where xi is the i-th column vector of X and zz,i refers to the z ⇥ i entry of Zi. Mind that this is not
valid if the design space is not a simplex or if it is a simplex but the ingredient proportions do not
vary from 0 to 1. Anyway, it is straightforward to extend the described approach to handle such
situations [1].
As will be highlighted in Sections 4.3 and 4.4, the representation of the pseudo-sample trajectories
derived in this way yields the so-called trace plot, traditionally used in Cox model analysis to get
an idea of the linear and non-linear e↵ects generated on the property of interest by the change in the
proportion of every i-th ingredient. However, as most of these e↵ects are confounded with those
due to the simultaneous variation of the proportion of the other constituents, a precise identification
of the individual coe�cients of the corresponding Sche↵é polynomial (if the Sche↵é model holds)
cannot be achieved by directly investigating it.

Figure 1 – Graphical representation of the direction spanned by the pseudo-sample trajectory associated to the con-
stituent A in a generic ternary mixture design space. Notice that the three vertices correspond to the three pure
mixtures composed by the only ingredient A, B or C, respectively

Alternatively, by using a combination of multiple pseudo-sample trajectories and graphing them
in a contour plot, the response surface for the full mixture design space can be retrieved. To this
end, every pseudo-sample matrix has to be constructed by i) fixing the proportions of all but two
constituents, ii) increasing the proportion of one of these two constituents, and iii) decreasing
the proportion of the other accordingly, for keeping the sum in Equation 1 constant and equal
to 1. Such a procedure is iterated for di↵erent values of the fixed proportions of the rest of the
ingredients. Graphically, this implies moving over the design space in the directions displayed in
Figure 2, if, recalling the previous example, the proportion of A is fixed and the proportions of B

6



Figure 2 – Graphical representation of the direction spanned by the pseudo-sample trajectories exploited for retrieving
the response surface for a generic ternary mixture design space. Notice that the higher the number of such trajectories,
the higher the resolution of the final plot. In this specific case, in every single pseudo-sample matrix, the proportion
of A is fixed, while that of both B and C varies

and C vary. In this case, a measure of the Sche↵é model coe�cients for the first-order e↵ects of
B and C and for their interaction can be recovered from the trajectory covering the BC side of the
triangle, as will be illustrated in Section 4.1. Clearly, this is also valid for the trajectories covering
the AB and the AC side of the triangle, not represented in Figure 2.

3. Datasets

Two simulated and four real datasets from mixture designs of experiments will be object of
this study.

3.1. Data simulated according to a second-order polynomial model
66 artificial samples (with no replicates) of a ternary mixture homogeneously distributed inside

a simplex and a single response variable were simulated according to the following second-order
Sche↵é model:

y = �1x1 + �2x2 + �3x3 + �1,2x1x2 + �1,3x1x3 + �2,3x2x3

�1 = 1.89, �2 = �1.33, �3 = 0.67, �1,2 = �2.89, �1,3 = 0.54, �2,3 = �1.33

xi 2 [0, 1] s.t
3X

i=1

xi = 1
(15)

whose reformulation as a Cox model for a reference mixture where s1 = s2 = s3 =
1
3 can be

written as (see Section 2.1 and Section I of the Supporting Material):

y = ↵0 + ↵1x1 + ↵2x2 + ↵3x3 + ↵1,2x1x2 + ↵1,3x1x3 + ↵2,3x2x3 + ↵1,1x2
1 + ↵2,2x2

2 + ↵3,3x2
3

↵0 = 0, ↵1 = 2, ↵2 = �2.67, ↵3 = 0.67, ↵1,2 = �1.67, ↵1,3 = 0.44,
↵2,3 = 0, ↵1,1 = �0.11, ↵2,2 = 1.33, ↵3,3 = 0

xi 2 [0, 1] s.t

8>>>>>>>><
>>>>>>>>:

P3
i=1 xi = 1
P3

i=1 ↵i si = 0
P3

j=1 ci, j↵i, j s j = 0
s1 = s2 = s3 =

1
3

(16)
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According to Equation 16, the first constituent is characterised by a positive first-order and a
small negative second-order term. Conversely, the second one features a negative first-order and
a positive second-order term. The third ingredient exhibits a small positive first-order and no
second-order term. Positive interaction terms were generated for both x1x2 and x1x3, while no
interaction was assumed to involve x2 and x3. No noise was added after the data simulation.

3.2. Tablet data
This dataset was first described in [3]. 10 pharmaceutical tablets resulting from distinct blends

of cellulose, lactose and phosphate were prepared to assess the influence of these substances on the
release time of the active ingredient of the final manufactured drug. No replicates were performed.

3.3. Bubbles data
The bubbles data relate to an experiment also reported in [3]. Di↵erent proportions of two dish-

washing liquids (DWL1 and DWL2), water and glycerol were combined to produce 24 soap mix-
tures (21 unique samples and 3 replicates) and determine which composition would have yielded
the longest bubble lifetime.

3.4. Colorant data
This dataset was referenced in [20]. 49 blends (46 unique samples and 3 replicates) of di↵erent

proportions of white (Cw), black (Cb), violet (Cv) and magenta (Cb) paints were manufactured to
optimise the values of three specific colour responses: lightness (L⇤), red-green tone (a⇤) and
yellow-blue tone (b⇤).

3.5. Gasoline data
Di↵erent proportions of three gasoline constituents, catalytically cracked, C5-isomer and re-

formate were mixed to produce 10 distinct blend samples according to an augmented simplex-
centroid design of experiments [21]. Here, the idea is to evaluate the e↵ect of these constituents
on the octane rating of the final product, and possibly maximise it.

3.6. Data simulated according to a highly non-linear model
An additional small dataset, constituted by 12 artificial samples of a ternary mixture simulated

according to an augmented simplex centroid design of experiments (with 2 replicates for the design
centroid), was also generated based on the following model:

y = �1x1 + �2x2 + �3x3 + �4 log(x1 + 0.01) + �5x4
3 + �6 sin [(1.01 � x2) ⇤ ⇡]

�1 = 4.87, �2 = �1.35, �3 = 5.67, �4 = �1.52, �5 = �0.35, �6 = 8.00

xi 2 [0, 1] s.t
3X

i=1

xi = 1

(17)

Normally distributed random noise was added to the response variable estimated by Equation 17.
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4. Results

Both the simulated and real data were used for addressing an exploratory comparison among
Sche↵é polynomial fitting by means of OLS, Cox polynomial fitting by means of PLS, and K-PLS
in terms of goodness-of-fit in calibration (R2), goodness-of-fit in leave-one-out cross-validation
(Q2)i, and Root Mean Square Error in leave-one-out Cross-Validation (RMSECV)i [22], and for
illustrating that under certain conditions K-PLS can guarantee improved predictions and interpre-
tation. Moreover, a way of retrieving the coe�cients of a Sche↵é polynomial (when they hold)
from the pseudo-sample trajectories yielded by a K-PLS model with the same complexity was
derived.
The whole set of routines resorted to for data processing and analysis was self-coded in MATLAB
R2012b (Version 8.0.0.783) and is available on request.

4.1. Data simulated according to a second-order polynomial model
This section will be focused on demonstrating how pseudo-sample trajectories can be resorted

to for recovering the coe�cients of the Sche↵é model in Equation 15, which the generation scheme
outlined in Section 3.1 is based on. Figure 3 shows the shape of the trajectories spanning the three
sides of the ternary mixture space of the first simulated dataset. The three lines reproduce the
evolution of the values of the response variable, predicted by means of a 3-latent variable second-
order polynomial K-PLS model, while moving from a vertex (pure blend) to another vertex of
a triangle like that in Figure 2. Recall that every �i (8i 2 [1, 3]) measures the expected y for
the pure mixture composed by the only i-th constituent. Therefore, each one of such parameters
should match the predicted response at one of the two extremes of the respective pseudo-sample
trajectories. As indicated in Figure 3, since the data at hand are noiseless, an exact match was here
observed for �1, �2 and �3. Analogously, the coe�cients for the interaction terms x1x2, x1x3 and
x2x3 can be computed as:

�1,2 =
ŷ0.5,0.5,0 � 0.5�1 � 0.5�2

0.25
=
�0.44 � 0.5(1.89) � 0.5(�1.33)

0.25
= �2.89

�1,3 =
ŷ0.5,0,0.5 � 0.5�1 � 0.5�3

0.25
=

1.42 � 0.5(1.89) � 0.5(0.67)
0.25

= 0.54

�2,3 =
ŷ0,0.5,0.5 � 0.5�2 � 0.5�3

0.25
=
�0.44 � 0.5(�1.33) � 0.5(0.67)

0.25
= �1.33

(18)

where ŷ0.5,0.5,0, ŷ0.5,0,0.5 and ŷ0,0.5,0.5 denote the estimated y value for the binary blends with com-
position x1 = x2 = 0.5, x1 = x3 = 0.5, x2 = x3 = 0.5, respectively (the mid-points of the three
trajectories in Figures 3a, 3b and 3c).

iNotice that when extreme observations are left out of the original data, responses for mixtures which are outside
the calibration experimental domain are predicted (extrapolation). However, as this is the case for all the approaches
under study, a fair comparison of the RMSECV values is still guaranteed.
Furthermore, for K-PLS, the objects/samples to be iteratively left out are removed from the datasets before the kernel
transformation.
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Figure 3 – Data simulated according to a second-order polynomial model (generation scheme in Equations 15 and
16): pseudo-sample trajectories representing the evolution of the predicted response (estimated by means of a cross-
validated 3-latent variable second-order polynomial K-PLS model) while moving from a) the pure mixture composed
by the only B constituent to the pure mixture composed by the only A constituent, b) the pure mixture composed by
the only C constituent to the pure mixture composed by the only A constituent, and c) the pure mixture composed by
the only C constituent to the pure mixture composed by the only B constituent

10



4.2. Tablet data
Second-order Sche↵é, Cox and polynomial K-PLS models were fitted for the analysis of the

tablet datasetii. The number of extracted PLS and K-PLS latent variables was selected by leave-
one-out cross-validation. As Tables 2 points out, the three modelling strategies as well as RBF
K-PLS returned comparable and satisfactory performance indices. Figure 4 displays their corre-

Table 2 – Tablet data: R2, Q2 and RMSECV values resulting from second-order Sche↵é model fitting by means of
OLS, second-order Cox model fitting by means of PLS, second-order polynomial K-PLS, and RBF K-PLS

# LV R2 Q2 RMSECV

Second-order Sche↵é model (OLS) - 0.98 0.84 38.86
Second-order Cox model (PLS) 5 0.99 0.83 39.69

Second-order polynomial K-PLS model 5 0.98 0.83 38.86
Radial-Basis-Function (RBF) K-PLS model (� = 1.5) 5 0.99 0.85 36.26

sponding response surface plots (almost identical - including the one for RBF K-PLS, not shown).
They enabled a similar interpretation of the e↵ects of the single constituents on the active ingre-
dient release time. High contents of phosphate, moderate contents of cellulose and low contents
of lactose clearly led to high values of such property of interest. More concretely, binary mixtures
composed by roughly 2

3 of phosphate and 1
3 of cellulose are expected to exhibit the longest release

time. Short release times are instead yielded by blends consisting of e.g. 2
3 of lactose and 1

3 of
cellulose. Thus, it is quite reasonable to assume the presence of a positive contribution for the in-
teraction phosphate/cellulose and a negative contribution for the interaction lactose/cellulose. As
illustrated in Section 4.1, one can look at the pseudo-sample trajectories spanning the sides of the
triangle in Figure 4c for an accurate determination of the Sche↵é model first-order and interaction
parameters (see Table SM.1).

4.3. Bubbles data
As for the previous example, the second-order Sche↵é, Cox and polynomial K-PLS models

and the RBF K-PLS model adjusted for the bubbles dataset rendered acceptable and equivalent
R2, Q2 and RMSECV values (see Table 3)ii. Since this particular mixture problem embraces up

Table 3 – Bubbles data: R2, Q2 and RMSECV values resulting from second-order Sche↵é model fitting by means of
OLS, second-order Cox model fitting by means of PLS, second-order polynomial K-PLS, and RBF K-PLS

# LV R2 Q2 RMSECV

Second-order Sche↵é model (OLS) - 0.94 0.81 0.042
Second-order Cox model (PLS) 9 0.94 0.81 0.042

Second-order polynomial K-PLS model 9 0.94 0.81 0.042
Radial-Basis-Function (RBF) K-PLS model (� = 1.5) 9 0.94 0.81 0.042

to four constituents, the proportion of one of them has to be fixed to allow the response surfaces

iiThe use of second-order models was originally suggested in [3]
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Figure 4 – Tablet data: response surface plots resulting from a) second-order Sche↵é model fitting by means of OLS,
b) second-order Cox model fitting by means of PLS, and c) the combination of second-order polynomial K-PLS and
pseudo-sample trajectories
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Figure 6 – Bubbles data: trace plots representing the evolution of the predicted lifetime while varying the proportion of
the 4 ingredients of the blend (DWL1, DWL2, water and glycerol) and resulting from a) second-order Sche↵é model
fitting by means of OLS, b) second-order Cox model fitting by means of PLS, and c) the combination of second-order
polynomial K-PLS and pseudo-sample trajectories. Here, s1 = s2 = s3 = s4 =

1
4
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to be graphed as in Section 4.2. Given that glycerol presented a much more positive e↵ect on
the bubble lifetime and a much higher cost than any other ingredient, as also suggested in [3], its
relative amount was set at 0.4. The results (virtually indistinguishable - including the one for RBF
K-PLS, not displayed) are represented in Figure 5. Figure 6 shows instead the corresponding trace
plots (not displayed for RBF K-PLS). As one can easily see, although the e↵ect of DWL2 on the
response of interest seems to be more positive than that of DWL1 and water (see Table SM.2), the
interaction of these latter is crucial for guaranteeing high bubble lifetimes, i.e. more equilibrated
blends of DWL1, DWL2 and water would feature more durable bubbles.
The pseudo-sample trajectories spanning the sides of the triangle in Figure 5c cannot be directly
resorted to for the estimation of the related Sche↵é model coe�cients in this situation owing to the
fact that the design space of the bubbles data is just a portion of a whole tetrahedron, and then they
do not reflect the evolution of the predicted response while moving from a pure mixture to another.
On the other hand, if these trajectories are constructed so that they exactly overlap the entire edges
of this hypothetical tetrahedron, the methodology proposed in Section 4.1 for the retrieval of the
first-order and binary interaction parameters is still valid assuming that any e↵ect involving the
two constituents of the concerned binary mixture do not vary outside the actual data space [1].

4.4. Colorant data
When the colorant dataset was dealt with, second-, third- and fourth-order Sche↵é, Cox and

polynomial K-PLS models and RBF K-PLS models were fitted (separately for every response
variable) in order to additionally assess the e↵ect of their complexity on the final outcomes. Table
4 lists their main performance indices. It can be said that di↵erent approaches usually required a
di↵erent complexity to achieve the minimum RMSECV, but, overall, their performance was found
to be rather similar also in this case.
For the sake of interpretation, as an illustration, the trace plots resulting from the best Sche↵é, Cox
and K-PLS models built for the prediction of the yellow-blue tone (b⇤) are displayed in Figure 7
(including the one for RBF K-PLS, not shown). They are almost in perfect agreement and only
negligible variations with respect to the outcomes obtained by Alman and Pfeifer in [20] were
observed (the same goes for those derived for both L⇤ and a⇤ - not shown). Concretely, all the
constituents exhibited a positive e↵ect on b⇤.

4.5. Gasoline data
Second-order cross-validated Sche↵é and Cox models were tentatively adjusted for the gaso-

line dataset. Due to the low number of mixture samples concerned, not enough degrees of freedom
were available for the estimation of the coe�cients of more complex polynomials. As highlighted
by Table 5, both the approaches returned negative Q2 and poor RMSECV values. On the other
hand, their performance was clearly outmatched by that of RBF K-PLS. In addition, RBF K-PLS
was found to yield figures of merit just slightly worse than those obtained by coding the constituent
proportions in terms of so-called pseudo-components [21] and fitting a first-order Sche↵é or Cox
model including inverse terms, a more standard and common procedure for handling non-linear
data coming from a mixture design of experiments [1]. Still, the main advantage of K-PLS over it is
that there is no need of performing such a domain transformation and defining these inverse terms
prior to the analysis: the optimisation of the kernel transformation function and, in this case, of
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Figure 7 – Colorant data: trace plots representing the evolution of the predicted yellow-blue tone (b⇤) while vary-
ing the proportion of the 4 ingredients of the blend (white, black, violet and magenta paints) and resulting from a)
second-order Sche↵é model fitting by means of OLS, b) fourth-order Cox model fitting by means of PLS, and c) the
combination of second-order polynomial K-PLS and pseudo-sample trajectories. Here, s1 = s2 = s3 = s4 =

1
4
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the � parameter guarantees a certain flexibility when modelling di↵erent types of non-linearities
without requiring any further operation to be carried out. The first-order pseudo-component

Table 5 – Gasoline data: R2, Q2 and RMSECV values resulting from second-order Sche↵é model fitting by means
of OLS, second-order Cox model fitting by means of PLS, first-order (plus inverse terms) pseudo-component Sche↵é
model fitting by means of OLS, first-order (plus inverse terms) pseudo-component Cox model fitting by means of PLS,
and RBF K-PLS. If required and feasible (i.e. a su�cient number of degrees of freedom was available), non-linearity
degree (tuned through the value of the � parameter in RBF K-PLS) and complexity (number of latent variables) were
optimised within a leave-one-out cross-validation loop

# LV R2 Q2 RMSECV

Second-order Sche↵é model (OLS) - 0.85 -1.42 12.40
Second-order Cox model (PLS) 2 0.99 -0.91 11.02

First-order (plus inverse terms) pseudo-component Sche↵é model (OLS) - 0.98 0.88 2.73
First-order (plus inverse terms) pseudo-component Cox model (PLS) 5 0.99 0.88 2.73
Radial-Basis-Function (RBF) K-PLS model K-PLS model (� = 0.2) 8 0.99 0.82 3.46

Sche↵é and Cox models encompassing inverse terms led to identical surface plots (see Figures
8a and 8b). Certain dissimilarities from the one rendered by RBF K-PLS (see Figure 8c) are in-
stead observable, which was expected considering the intrinsic di↵erences among the compared
algorithmic methodologies and especially the fact that the first-order pseudo-component Sche↵é
and Cox models encompassing inverse terms are able to explain strong non-linearities mainly at
the borders of the design space but not in its central area. Nevertheless, a common explanation
of how the distinct ingredients a↵ect the values of the response variable can be given: the ideal
(maximum) octane rating can be achieved by blending a relatively high quantity of catalytically
cracked and relatively low quantities of C5-isomer and reformate.

4.6. Data simulated according to a highly non-linear model
This section will be focused on further emphasizing the added value of K-PLS with respect

to the other methodologies concerned. The outcomes yielded by the application of Sche↵é model
fitting by means of OLS, Cox model fitting by means of PLS, and K-PLS to the second simulated
dataset are reported in Table 6:
The R2, Q2 and RMSECV displayed values corroborate what stated before about K-PLS: when
strong non-linear relationships (e.g. fourth-order, logarithmic, etc.) characterise the data under
study, it may outperform in terms of fit and prediction quality both Sche↵é model fitting by means
of OLS and Cox model fitting by means of PLS. This applies even if first-order Sche↵é or Cox
models including inverse terms are fitted. Notice that here a Radial-Basis-Function (RBF) kernel
transformation and not a polynomial one was found to guarantee the best Q2 and RMSECV. RBF
K-PLS requires the optimisation of an additional parameter, �. The variation of such a param-
eter allows di↵erent types of complex trends to be modelled, thus its utilisation might be highly
recommended when combinations of unknown non-linearities influence the nature of the interde-
pendence between ingredient proportions and properties of interest.
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m
odelfitting

by
m

eans
of

O
LS,b)

first-order
(plus

inverse
term

s)
pseudo-com

ponentC
ox

m
odelfitting

by
m

eans
ofPLS,and

c)the
com

bination
ofR

B
F

K
-PLS

and
pseudo-sam

ple
trajectories.

A
s

here
the

originalm
ixture

design
space

is
irregular,the

graphs
are

represented
as

parts
ofthe

corresponding
sim

plex
w

ith
vertices

[1,0,0],[0,
1,0]and

[0,0,1]forthe
sake

ofan
easiervisualisation

19



Table 6 – Data simulated according to a highly non-linear model (generation scheme in Equation 17): R2, Q2 and
RMSECV values resulting from second-order Sche↵é model fitting by means of OLS, second-order Cox model fitting
by means of PLS, first-order (plus inverse terms) pseudo-component Sche↵é model fitting by means of OLS, first-
order (plus inverse terms) pseudo-component Cox model fitting by means of PLS, and RBF K-PLS. If required and
feasible (i.e. a su�cient number of degrees of freedom was available), non-linearity degree (tuned through the value
of the � parameter in RBF K-PLS) and complexity (number of latent variables) were optimised within a leave-one-out
cross-validation loop

# LV R2 Q2 RMSECV

Second-order Sche↵é model (OLS) - 0.95 0.56 2.14
Second-order Cox model (PLS) 5 0.99 0.56 2.14

First-order (plus inverse terms) Sche↵é model (OLS) - 0.69 -1.11 4.71
First-order (plus inverse terms) Cox model (PLS) 1 0.96 -0.06 3.35

Radial-Basis-Function (RBF) K-PLS model (� = 0.8) 7 0.98 0.61 1.83

5. Conclusions

In this article, a novel approach for the analysis of data proceeding from mixture designs of ex-
periments and based on the combination of K-PLS and pseudo-sample trajectories was proposed.
Two interesting points arose from the discussed examples:

• if the considered mixture data were not a↵ected by severe non-linearities and/or featured
a su�ciently high number of observations, K-PLS and pseudo-sample trajectories yielded
very similar results to classical Sche↵é model fitting by means of OLS and Cox model
fitting by means of PLS (see Sections 4.2, 4.3 and 4.4). Furthermore, a way of recovering
the parameters of a Sche↵é model (provided that it holds and has the same complexity as the
K-PLS one) from the trend of the aforementioned pseudo-sample trajectories was derived
and validated via a simulated case-study (see Section 4.1);

• on the contrary, when more non-linear and relatively small data structures had to be anal-
ysed, K-PLS proved to be a valid alternative for overcoming the main limitation of both
Sche↵é model fitting by means of OLS and Cox model fitting by means of PLS (see Sec-
tions 4.5 and 4.6): it resulted, in fact, in better fit and prediction quality when the nature of
such non-linear data was not strictly polynomial. In addition, although the performance of
these more classical methodologies can be improved by taking into account inverse terms,
often not enough degrees of freedom are available for a stable estimation of the coe�cients
of these augmented models. K-PLS does not su↵er from the same drawback. On top of
that, RBF K-PLS through the optimisation of its parameter, �, may allow di↵erent types of
complex non-linear relationships to be modelled. Its use might then be highly recommended
when combinations of unknown non-linearities influence the nature of the interdependence
between constituent proportions and response variables.

Finally, it was also shown how graphs like the surface plots or the trace plots associated to the
mixture design space can be retrieved by the pseudo-sample trajectories enabling a reliable inter-
pretation of the influence of changing the proportion of the di↵erent ingredients of the blend on its
properties of interest.
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6. Supporting material

The supporting material associated to this paper includes also two tables containing the Sche↵é
model coe�cients estimated by Sche↵é polynomial fitting by means of OLS, Cox polynomial
fitting by means of PLS and K-PLS, respectively, for the tablet and bubbles examples. As in the
other two illustration cases the best outcomes were returned by Sche↵é, Cox and K-PLS models
with diverse complexity, such a comparison is skipped for them.
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