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Abstract

The study of genetics has been making significant progress towards
understanding the causes of rare and common disease during the past
decades. Across a wide range of disorders, there have been hundreds of
associated loci identified and associated with multiple disorders. Now,
with the advent of next-generation sequencing technologies, we are able
to interrogate the contribution of high and low frequency variation to
disease in a high throughput manner. This provides an opportunity to
investigate the role of rare variation in complex disease risk, potentially
offering insights into disease pathogenesis and biological mechanisms.

In this thesis, it has been assessed the use of whole-exome sequenc-
ing technology to investigate the role of rare variation in a complex
disease, gastrointestinal food allergy induced by multiple food proteins.
For that, a cohort of 31 individuals (eight affected and 23 non-affected)
from seven different families was whole exome sequenced. Data ob-
tained from multiple sequencing systems and libraries were analysed,
and a workflow was developed, focusing on a comprehensive quality
control to maximise the number of real positive calls. Different types of
genome variations were investigated, including single nucleotide vari-
ants, insertions/deletions, copy number variants and HLA haplotypes. By
approaching different methods of variant filtering, a set of rare variants



xii

that could be associated with the disease was identified. The possible
role of these candidate variants in the pathogenesis of gastrointestinal
food allergies was also discussed.

These results reveal important insights into the genetic architecture of
gastrointestinal food allergies and lead to additional lines of investigation
that will be required in order to fully understand the genetic basis of this
disease.



Resumen

Durante las últimas décadas, se han realizado importantes avances en
el estudio de las causas genéticas de enfermedades raras y comunes,
donde un gran número de variantes han sido identificadas y asociadas
a múltiples enfermedades. Con las tecnologías de secuenciación de
nueva generación, hoy en día somos capaces de investigar, con un alto
rendimiento, la contribución de variantes de alta y baja frecuencia a dis-
tintos tipos de enfermedades, permitiéndonos así estudiar su importancia
en el desarrollo de las mismas.

En ésta tesis se ha utilizado la secuenciación del exoma como tec-
nología para el estudio de variantes raras en una enfermedad compleja,
la alergia gastrointestinal inducida por múltiples alimentos. Para ello, se
realizó la secuenciación del exoma completo de una cohorte de 31 indi-
viduos (ocho afectados y 23 no afectados) provenientes de siete familias
diferentes. Se desarrolló un flujo de trabajo para procesar los datos gen-
erados a partir de diferentes librerías e instrumentos de secuenciación,
así como un control de calidad exhaustivo con el fin de maximizar el
número de variantes de alta calidad. Diferentes tipos de mutaciones
fueron investigadas, incluyendo polimorfismos de nucleótido único, in-
serciones/deleciones, variantes del número de copia y haplotipos HLA,
y se realizaron diferentes métodos de filtrado para su interpretación.
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Finalmente, se encontraron una serie de mutaciones que podrían
estar asociadas con la enfermedad y se describe su posible papel en la
patogénesis de las alergias gastrointestinales. Los resultados de esta
tesis suponen importantes avances en el estudio de la compleja arqui-
tectura genética de las alergias gastrointestinales y abren las puertas
a futuras líneas de investigación, que serán necesarias para entender
completamente las bases genéticas de esta enfermedad.



Resum

Durant les últimes dècades, s’han realitzat importants avanços en l’estudi
de les causes genètiques de malalties rares i comunes, on un gran nombre
de variants han sigut identificades i associades a múltiples malalties.
Amb les tecnologies de seqüenciació de nova generació, avui en dia som
capaços d’investigar, amb un alt rendiment, la contribució de variants
d’alta i baixa freqüència a diferents tipus de malalties, permetent-nos
així estudiar la seva importància en el desenvolupament de les mateixes.

En aquesta tesis s’ha utilitzat la seqüenciació del exoma com a
tecnologia per a l’estudi de variants rares en una malaltia complexa,
l’al·lèrgia gastrointestinal induïda per múltiples aliments. Per això, es va
realitzar la seqüenciació del exoma complet d’una cohort de 31 individus
(vuit afectats i 23 no afectats) provinents de set famílies diferents. Es
va desenvolupar un flux de treball per a processar les dades generades
a partir de diferents llibreries e instruments de seqüenciació, així com
un control de qualitat exhaustiu amb la fi de maximitzar el nombre de
variants d’alta qualitat. Diferents tipus de mutacions foren investigades,
incloïent polimorfismes de nucleòtid únic, insercions/delecions, variants
del nombre de còpia i haplotips HLA, i es realitzaren diferent mètodes
de filtrat per a la seva interpretació.
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Finalment, es trobaren una sèrie de mutacions que podrien estar asso-
ciades amb la malaltia i es descriu el seu possible paper en la patogènesis
de les al·lèrgies gastrointestinals. Els resultats d’aquesta tesis suposen im-
portants avanços en l’estudi de la complexa arquitectura genètica de les
al·lèrgies gastrointestinals i obrin les portes a futures línies d’investigació,
que seran necessàries per entendre completament les bases genètiques
d’aquesta malaltia.
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Chapter 1

Introduction

Connecting phenotype with genotype is a fundamental aim of genetics.
The knowledge of mutant alleles responsible for a disease aids in predict-
ing the prognosis of an affected individual and provides a better selection
of the therapeutic strategies.

Next generation sequencing has been invaluable in the elucidation of
the genetic aetiology of many human disorders in recent years, providing
researchers with the opportunity to interrogate large numbers of candi-
date genes in order to establish key components of disease. In particular,
exome sequencing offers an efficient method to investigate disease, as
the exome only constitutes 1-2% of the whole genome, and contains
the majority of known disease-causing variants. This study explores the
potential of whole exome sequencing to elucidate the genetic basis of
gastrointestinal (GI) food allergies induced by multiple food proteins.

A GI food allergy is a type of adverse immune response where
exposure to certain food(s) induces allergy rather than tolerance, mainly
affecting the GI system. Although this is a complex disorder, genetic
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factors play an important role and are one of the major risk factors
of its development [1–3]. The study of common variants across the
genome by genome-wide association studies found an association with
allergies and genetic variations in genes that play crucial roles in immune
responses, such as interleukins, genes from the JAK-STAT signalling
pathway, or genes that play an important role in skin barrier, such as
FLG, which encodes for the filaggrin precursor [1]. They also found
that the Human Leukocyte Antigen (HLA) locus plays a major role in
immune regulation [4], and it has been significantly associated with
multiple immune disorders, including allergic diseases [5, 6].

However, very few well-grounded associations have been established
for GI food allergies. The fact that candidate gene studies have been
carried out for decades without consistent findings supports a possible
role for rare variation. Still, there have been no reports of rare variants
associated with GI food allergy via next generation sequencing.

In this chapter, it is explained the value of whole-exome sequencing
for the discovery of genetic rare variants and its utility for the study of
GI food allergies. Finally, the classification, pathogenesis and genetics
of this disorder is described and a case study of seven families with
individuals affected with severe GI food allergy is presented.

1.1 The genetics of disease

In an oversimplified categorisation, human diseases can be separated into
Mendelian or complex disorders, depending on the underlying genetic
cause.
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A disease is termed to be Mendelian if it segregates according to
Mendel’s laws of inheritance: dominant, recessive or X-linked. These
are usually caused by highly penetrant mutations, meaning that almost all
individuals who carry a disease-causing mutation express the phenotype.
Mendelian diseases are usually caused by very rare mutations in one or
very few genes, and that is why they are often referred as monogenic or
oligogenic diseases, respectively (Figure 1.1). The frequency of these
mutations tends to be very low because they undergo negative selection
due to the highly deleterious effects. Although many specific disorders
are very rare, altogether, Mendelian disorders affect between 5-10% of
the population which encompasses millions of people in the world. There
are at least 6,000 disorders in the Online Mendelian Inheritance in Man
database (http://www.omim.org) and 4,000 genes with disease-causing
mutations.

In contrast, diseases which do not follow a classic Mendelian pattern
of inheritance are complex diseases (also called polygenic or multifac-
torial). These do not have a single cause, but several of them have
been shown to have a genetic component from twin and family stud-
ies [7, 8]. These disorders can be the result of incomplete penetrance,
poligenic risks or mutations in multiple genes that can be present at
higher population frequencies (Minor Allele Frequency (MAF) >5%).
The variants associated with complex disorders do not directly cause
disease individually, but influence disease risk [9, 10].
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Fig. 1.1 Inheritance of monogenic and complex disorders. In monogenic diseases,
mutations in a single gene, often highly penetrant, are sufficient to produce the clinical
phenotype and to cause the disease. In complex disorders, variations in a number
of genes encoding different proteins result in a genetic predisposition to a clinical
phenotype. Pedigrees reveal no Mendelian inheritance pattern, and gene mutations are
often neither sufficient nor necessary to explain the disease phenotype. Incomplete
penetrance, environment and life-style are major contributors to the pathogenesis of
complex diseases. Adapted from [10].

Over the past decade, Genome Wide Association Studies (GWAS)
have been developed upon the common disease-common variant hypothe-
sis. This argues that "genetic variations with appreciable frequency in the
population at large, but relatively low penetrance are the major contribu-
tors to genetic susceptibility to common diseases" [11]. These studies
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have played a critical role using an advanced high-density genotyping
approach to characterise the contribution of single-nucleotide polymor-
phisms (SNPs) scattered across the genome to the genetic susceptibility
of individuals. GWAS have identified hundreds of common risk alleles
for complex human diseases, such as osteoporosis, autoimmune diseases
and diabetes [12–14].

Even though these studies have provided several biological insights,
most common variants have only subtle functional consequences and
therefore only explain a low percentage of the genetic risk component of
disease. For example, GWAS in type-2 diabetes (T2D) have identified
more than 70 loci at genome-wide significance, but that only explains
about 11% of T2D heritability [15]. Similarly, around 70 loci have
been associated with Crohn’s disease but these only explain 23% of
heritability. This problem is referred to as "missing heritability" (Figure
1.2) [16].

In order to solve the question of the missing heritability, the "common
disease-rare variant" hypothesis was raised, suggesting that multiple rare
DNA sequence variations, each with relatively high penetrance, are the
major contributors to genetic susceptibility to common diseases [11].
Since then, the focus on the discovery of rare variants with an important
effect was inevitable.
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family studies, and can be expected to vary across environments.
Narrow-sense heritability estimates in humans can be inflated if
family resemblance is influenced by non-additive genetic effects
(dominance and epistasis, or gene–gene interaction), shared familial
environments, and by correlations or interactions among genotypes
and environment36,37. However, heritabilities estimated from pedi-
gree studies in animals agree well with heritability estimated from
response to artificial selection, suggesting that estimates from family
studies are not necessarily inflated.

Teasing apart the contributions to heritability of environmental
factors shared among relatives will soon be possible because the
availability of genome-wide markers now provides empirical esti-
mates of identity-by-descent (IBD) allele sharing between pairs of rela-
tives. For example, full sibs share on average half their genetic com-
plement, but this proportion can vary—in one large study it ranged
from 0.37 to 0.62 (ref. 38). By relating phenotypic differences to the
observed IBD sharing fraction among sib pairs, marker data were used
to generate a heritability estimate of 0.8 for height38. This is remarkably
consistent with estimates using traditional methods but free of their
assumptions, suggesting that for height at least, heritability is not over-
estimated. Applying such estimation to distantly related or ‘unrelated’
individuals is now feasible using dense genomic scans39; given the num-
ber of people with dense genotyping data, heritability estimates could be
generated for a wide variety of traits free of potential confounding by
unmeasured shared environment.

Improving estimates of all contributors to heritability will facilitate
determination of the proportion of genetic variance that has been
explained. Despite imprecision in current estimates, it may still be
possible to know that ‘all the heritability’ has been explained by pre-
dicting phenotypes in a new set of individuals from trait-associated
markers, and correlating the predicted phenotypes with the actual
values. If the markers truly explain all the additive genetic variance,
the squared correlation between predicted and actual phenotype will
be equal to the heritability40. Population-based heritability estimates
thus provide a valuable metric for completeness of available genetic
risk information, but individualized disease prevention and treatment
will ultimately require identifying the variants accounting for risk in a
given individual rather than on a population basis.

Rare variants and unexplained heritability

Much of the speculation about missing heritability from GWAS has
focused on the possible contribution of variants of low minor allele
frequency (MAF), defined here as roughly 0.5% , MAF , 5%, or of
rare variants (MAF , 0.5%). Such variants are not sufficiently fre-
quent to be captured by current GWA genotyping arrays14,41, nor do
they carry sufficiently large effect sizes to be detected by classical
linkage analysis in family studies (Fig. 1). Once MAF falls below
0.5%, detection of associations becomes unlikely unless effect sizes
are very large, as in monogenic conditions. For modest effect sizes,
association testing may require composite tests of overall ‘mutational
load’, comparing frequencies of mutations of potentially similar
functional effect in cases and controls.

Low frequency variants could have substantial effect sizes (increas-
ing disease risk two- to threefold) without demonstrating clear
Mendelian segregation, and could contribute substantially to missing
heritability42. For example, 20 variants with risk allele frequency of 1%
and allelic odds ratio (or probability of an event occurring divided by
the probability of it not occurring, compared in people with versus
without the risk allele) of three would account for most familial
aggregation of type 2 diabetes. There are relatively few examples of
such variants contributing to complex traits, possibly owing to insuf-
ficiently large sample sizes or insufficiently comprehensive arrays.

The primary technology for the detection of rare SNPs is sequen-
cing, which may target regions of interest, or may examine the whole
genome. ‘Next-generation’ sequencing technologies, which process
millions of sequence reads in parallel, provide monumental increases
in speed and volume of generated data free of the cloning biases and

arduous sample preparation characteristic of capillary sequencing43.
Detection of associations with low frequency and rare variants will be
facilitated by the comprehensive catalogue of variants with
MAF $ 1% being generated by the 1,000 Genomes Project (http://
www.1000genomes.org/page.php), which will also identify many
variants at lower allele frequencies. The pilot effort of that program
has already identified more than 11 million new SNPs in initially low-
depth coverage of 172 individuals44.

Current mechanisms for using sequencing to identify rare variants
underlying or co-located with GWA-defined associations include
sequencing in genomic regions defined by strong and repeatedly repli-
cated associations with common variants, and sequencing a larger frac-
tion of the genome in people with extreme phenotypes. In the absence
of GWA-defined signals, sequencing candidate genes in subjects at the
extremes of a quantitative trait (such as lipid levels or the age at onset),
can identify other associated variants, both common and rare45,46. An
important finding from these studies is that much of the information is
provided by people at the extremes of trait distributions, who seem to be
more likely to carry loss-of-function alleles47.

Sample sizes used for the initial identification of DNA sequence
variants have generally been modest, and sample size requirements
increase essentially linearly with 1/MAF. Much larger samples are
needed for the identification of associations with variants than those
needed for the detection of the variants themselves. They also scale
roughly linearly with 1/MAF given a fixed odds ratio and fixed degree
of linkage disequilibrium with genotyped markers. Sample size for
association detection also scales approximately quadratically with
1/j(OR 2 1)j, and thus increases sharply as the odds ratio (OR)
declines. Sample size is even more strongly affected by small odds
ratios than by small MAF, so low frequency and rare variants will
need to have higher odds ratios to be detected.

Complicating matters further, numerous rare variants may be
detected in a gene or region but they may have disparate effects on
phenotype. Common variants have typically been analysed individu-
ally23,48, but with one or two carriers of each rare variant, pooling
them using specific criteria becomes attractive47,49,50. Pooling variants
of similar class increases the effective MAF of the class and reduces the
number of tests performed, but raises several other questions (Box 1).

Determining which of the multitude of variants carried by an
individual are responsible for a given phenotype represents a massive
task, especially if the causal alleles are relatively anonymous in terms
of known functional consequences. Because only a small proportion
will have obvious functional consequences for the resultant protein,
lesser evidence of association may suffice to implicate variants of this
sort. The best approaches for combining functional credibility and
statistical support in the evaluation of such variants remain to be
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Fig. 1.2 Genetic variants frequency and disease susceptibility. Feasibility of iden-
tifying genetic variants by risk allele frequency and strength of genetic effect (odds
ratio). Most emphasis and interest lies in identifying associations with characteristics
shown within diagonal dotted lines. Adapted from [17].

Hence, the field of human genetics typically separates rare and com-
plex depending on whether a phenotype is caused by mutations in one
gene or many genes, with the ambiguous term "oligogenic" being used
as an intermediate. Nevertheless, there are several cases where this
rule does not apply. There are Mendelian diseases where the "single
gene" mutation does not correlate absolutely with the clinical phenotype
because of the effects of additional independently inherited genetic vari-
ations and/or environmental influences. Those are Mendelian diseases
where the phenotypes are in fact complex traits [18]. For example, Fuchs
corneal dystrophy is caused by autosomal dominant mutations in TCF4
[MIM: 602272] (which encodes transcription factor 4) but is defined as
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a non-penetrant Mendelian disorder or a complex trait, since modifier
genes and/or environmental factors influence the observed phenotype
[19]. There are also monogenic disorders that violate the "one gene,
one phenotype" assumption. For example, recessive loss-of-function
(LOF) mutations in CEP290 gene [MIM: 610142] (which encodes for
centrosomal protein 290) can cause a range of conditions, from relatively
mild disorders (such as Leber congenital amaurosis or nephronophthisis)
to the perinatally lethal Meckel-Gruber syndrome [20].

Therefore, it may be appropriate to consider human diseases as
a continuum of causality from Mendelian to complex, where some
disorders do not fit neatly into either one of these categories. As such,
genetic diseases would present with diminishing influence from a single
primary gene, then a single primary gene influenced by modifier genes,
to increasingly shared influence by multiple genes.

1.2 Next generation sequencing

Since Sanger sequencing was introduced in 1977, it has been used as a
gold standard for the study of disease-causing genes. During this time,
the technology has been enhanced to sequence longer DNA fragments
and for a higher level of parallelism. However, this method achieves
only a limited level of parallelization that does not allow the analysis of
the DNA in a high-throughput manner [21, 22].

Encouraged by the Human Genome Project in 2004, Next Generation
Sequencing (NGS) technologies emerged [23]. These are based on new
sequencing instruments, which are capable of producing millions of
DNA sequence reads in a single run. Since then, the advent of NGS has
revolutionised the genomics field by enabling the fast and inexpensive
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sequencing of entire genomes. This has led to very successful large-
scale sequencing projects, such as the 1000 Genomes [24], UK10K
[25], and Genome Aggregation Consortium (gnomAD) projects [26],
among others. In the clinical field, this technology has also been used for
identifying the causes of disorders with the ultimate goal of establishing
therapeutic treatments and finding cures.

Some different technologies have been developed. The Illumina/-
Solexa platforms (Illumina Inc., San Diego, CA, USA) are most common
and offer diverse systems, from relatively small machines such as MiSeq
to population-scale machines (HiSeq X Ten). These are based on the
sequencing of short reads (100-150 bp) of fragmented DNA (Figure 1.3).

In 2007, "targeted capture" was created by Nimblegen. This method
is able to select specific DNA sequences by microarray hybridisation
for further sequencing [27]. Targeted capture allowed the sequencing
of only a subset of the genome, e.g. specific genes or the whole exome,
increasing speed of analysis and reducing cost. An alternative platform
is Oxford Nanopore Technologies (ONT, Oxford, UK), which performs
sequencing of long-reads, with a median size of 10Kb, although reads
longer that 100Kb have been sequenced (Figure 1.3). This approach is
especially useful for phasing variants that are farther away than the short-
read sequencing read length and for identifying structural variants (SVs),
which usually happen in repetitive regions where short-read sequencing
has lower sensitivity [28]. However, the number of base-pairs sequenced
per run is lower compared to other technologies [29].
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Fig. 1.3 High throughput sequencing technologies. Timeline of commercial release
dates versus machine output per run. Numbers inside data points denote current read
lengths. Sequencing platforms are colour coded. [29].

Nowadays, different NGS strategies are used for discovering genetic
variations contributing to rare or common diseases. The simplest one
is gene panel sequencing, based on high-throughput sequencing (HTS)
for only specific genes. Since the introduction of NGS into clinical
practice, the number and variety of disorders for which gene panel tests
are being offered have increased dramatically [30, 31]. This is a good
strategy in genetically heterogeneous diseases (where different genes
can be responsible) given the reduced cost and the easy interpretation.
However, only known genes that have been previously associated with
the disease can be analysed.

Alternatively, whole-exome sequencing (WES) is based on the se-
quencing of the entire exome, which constitutes only about 1-2% of the
human genome, and requires sequencing of just 30-65 mega bases (Mb)



10 Introduction

of coding regions [32]. This is considered a suitable approach because
it allows gene discovery and less time of analysis and cost compared to
the sequencing of the whole genome, as well as a relatively simple final
interpretation of the results [33–35, 30]. The main limitation of WES
is that it does not detect non-coding variants and is limited to identify
CNVs in coding regions, missing structural variants that don’t present a
copy number change, or that extend beyond the exome.

Whole-genome sequencing (WGS) can instead identify SNVs, indels
and all types of structural variants in coding and non-coding regions with
high confidence. WGS also performs better to detect exome variants
than WES (where the proportion of variants missed by WES is higher)
since the distribution of coverage depth and genotype quality are more
uniform [36, 37]. For SNVs, the proportion of false-positive variants has
been seen to be higher for WES (reported 78%) than for WGS (17%),
making more difficult the analysis of true variants in the former.

However, despite the benefits, WGS is still more expensive than
WES and the analysis, storage and interpretation of full genomes in a
large number of individuals remains a challenge. Furthermore, it has
been reported that the difference in the diagnostic utility of WGS over
WES is not significant yet [38, 39], since most of WGS studies are
limited to coding variants (or non-coding but previously reported) due
to the challenges of analysing non-coding regions. Additionally, due
to the large amount of data produced by WGS experiments, turnaround
times take longer than for exome and panel experiments (although recent
studies have demonstrated the possibility of rapid turnaround of WGS of
∼2 weeks [40, 41]). This is especially relevant in a clinical context rather
in a research setting, where performing fast clinical diagnoses in as many
individuals as possible is a priority. Therefore, the sequencing strategy
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Table 1.1 Comparison of NGS strategies. [42–45]

Targeted
sequencing WES WGS

Targeted
region Variable (∼5Mb) 64Mb 3Gb

Number
of variants Variable (∼1500) ∼20,000 ∼4,000,000

Cost £200 - 400 £382 - £3,592 £1,312 - £17,243

Clinical
coverage 80x 120x 30x

Advantages

(1) Can be cus-
tomised
(2) The cheapest
and easiest to anal-
yse

(1) High coverage
of exons
(2) Less expensive
and easier to anal-
yse than WGS

(1) Uniform cover-
age
(2) Can detect
SNVs/indels and
all types of SVs
in coding and
non-coding variants

Disadvantages

(1) No gene discov-
ery
(2) Cannot detect
SVs

(1) Cannot detect
non-coding variants
(2) Limited to de-
tect CNVs in cod-
ing regions

(1) Highest cost
(2) Largest volume
of data and the most
complex analysis

needs to be chosen accordingly to the aims the study. A comparison
between panel sequencing, WES and WGS is represented in Table 1.1.

The availability of sequencing technologies led to the characteri-
sation of many forms of variation in the human population, including
SNPs/indels, SVs and more complex rearrangements [24, 28], providing
the first insights into the scale of variation within the human genome. It



12 Introduction

was found that: 1) there are at least 3.5 million positions and approx-
imately 1,000 large Copy Number Variants (CNV) in each individual
that differ from the reference genome [46], 2) most of these variants are
common in the population [47], and 3) individuals from older ancestral
origins (such as African) present higher variation with respect to the
human genome of reference [48].

One of the largest datasets from NGS data is gnomAD, which pro-
vides 123,136 exome sequences and 15,496 whole-genome sequences
from unrelated individuals, sequenced as part of various disease-specific
and population genetics studies. It provides allelic frequencies for spe-
cific ancestries and is largely used for the efficient filtering of candidate
disease-causing variants [26].

gnomAD provides not only allelic frequencies, but also informa-
tion about mutational recurrence, metrics of pathogenicity for sequence
variants, and information about which genes are subject to strong se-
lection against various classes of mutations, since deleterious variants
are expected to have lower allele frequencies than neutral ones, due to
negative selection. This information can be used for the discovery of
human ’knockout’ variants in protein-coding genes. For example, the
probability of being a loss-of-function (LOF) intolerant gene is measured
by the pLI score, which is calculated by comparing the observed and
expected protein truncating variant population counts within each gene.
This provides a probability of being intolerant (pLI > 0.9) or tolerant
(pLI < 0.1) to LOF variation, for a range between 0 and 1. Using a
similar approach, the tolerance to missense or synonymous variants is
measured by a Z score, which for synonymous variants is centred at zero,
but is significantly shifted towards higher values (greater constraint)
for missense variants. Positive Z scores indicate increased constraint
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(intolerance to variation) and negative values are given to genes that had
more variants than expected [26].

This information allows us to identify those genes, or regions within
specific genes, where variation is more likely to present with deleterious
consequences, therefore to be associated with a disease. An example
for the KMT2B gene [MIM: 606834] is represented in (Figure 1.4).
De novo mutations in this gene have been previously associated with
dystonia. KMT2B is a highly constrained gene for LOF (pLI = 1) and
missense variants (Z score = 4), meaning there is less LOF and missense
variation than expected in a control population. In (Figure 1.4), the
gnomAD missense distribution across the entire gene is lined up with the
encoded protein coordinates, showing the specific regions that are more
constrained for variation. Interestingly, this matches to regions where
pathogenic missense mutations have been reported. Thus, having this
information is a good approach for predicting whether other variants are
likely to be pathogenic or not.
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1.2.1 Exome sequencing in Mendelian diseases

The first monogenic disorder to be resolved by exome sequencing was
the multiple malformation disorder Miller syndrome in 2009. By doing
WES in four affected individuals from three unrelated families, they
found pathogenic compound heterozygous mutations in DHODH [MIM:
126064]. This demonstrated the value of this technology even without
pedigree information or any biological information related to the mecha-
nism of the disease [50]. Since then, more than 800 novel monogenic
disease genes have been identified by similar approaches [50, 51]. No-
table studies that have used NGS strategies for large-scale sequencing of
patients with Mendelian disorders are the ESP project [52], the UK10K
project [25] and the NIHR BioResource [53].

Currently, high coverage (60-120x) WES is one of the most popular
approaches for discovering genes underlying Mendelian diseases, es-
pecially because the vast majority of disease-associated mutations that
have been previously identified by result in the disruption of protein-
coding sequences [54]. Genetic studies of Mendelian diseases are usu-
ally performed on family-based designs (Table 1.2). Different pedigree
structures can be used: trios (where the proband and both parents are
sequenced), duos (where the proband and a family member, both usually
affected, are sequenced) or even larger pedigrees including multiple
relatives. This design depends on the suspected inheritance. For ex-
ample, for highly penetrant autosomal dominant inheritance, where the
main mechanism of disease is usually sporadic mutations, trio analysis
is especially useful because it allows identification of de novo variants
(those that are not present in either of the parents) very efficiently. On the
other hand, a duo study can also be very powerful, for example, when a
recessive or X-linked inheritance is suspected. However, if the sequenc-
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Table 1.2 Pedigree structures for NGS family-based studies. Asterisks represent
sequenced individuals. Males are in squares and females are in circles. White colour
are unaffected and black colour are affected individuals. AD=autosomal dominant,
AR=autosomal recessive, XL=X-linked disorders, aff=affected.

Family
structure Trio Duo Multiple

Pedigree * *

* * *
*

*

*

*

*

Suited for AD,AR,XL AR,XL (if aff+aff) AD,AR,XL

Advantage
De novo and reces-
sive variants charac-
terisation

Identification of
cosegregating
biallelic variants

Combines the
advantage of trios
with multiple
affected relatives

Disadvantage
If budget is limited,
fewer patients can
be sequenced

It needs posterior
segregation analy-
sis

Difficult to collect.
If pedigree is very
large, it can be more
expensive

ing of affected individual/s alone (singleton) is performed, due to the
large number of candidate variants that would be identified, usually only
those which are in genes associated with the phenotype are considered.
Current diagnostic rates for singleton analysis is 22–25%, whereas for a
trio it can reach up to 33% [55–57]. This is probably because inheritance
pattern or de novo status of variants can be considered by this approach,
providing an extra evidence for a variant to be deemed as pathogenic.

NGS technologies have revolutionised the field of genetics by al-
lowing fast and accurate identification of disease-causing mutations.
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However, the identification of variants in genes of uncertain significance
is also dramatically increasing. Even if a variant segregates within the
family, if the gene has not been previously described as disease-causing,
a single family on its own is not sufficient evidence that the mutation is
causative. Therefore, observations in the same gene in additional families
or individuals with a similar phenotype provide an important statistical
support. Current guidelines for investigating causality of variants in new
candidate genes suggest that more than three unrelated individuals with
mutations in the same gene and consistent phenotypes are required to
demonstrate that a gene is disease-causing [58]. Additional supporting
evidence, such as functional assays and animal models, are often con-
sidered, as well as in silico evidence (eg. how tolerant is the gene to the
observed class of variation) although the last one with a minor impact
on decision.

Other than family-based design, a strategy that is increasingly being
used in disease studies is case-control enrichment. In this approach, rare
variants identified in a cohort of cases and a large cohort of controls
are used. A statistical test is then applied to identify if there are a set
of variants enriched in cases and not present in controls. Importantly,
this approach considers non-classical contributors to disease, such as
incomplete penetrance and variants that contribute to the phenotype in
combination with others.

There are different types of statistical methods that can be used to
perform case-control enrichment of rare variants [16]. Some of the most
common ones are CAST [59], Sum [60], SKAT/SKAT-O [61] and other
Bayesian methods such as BeviMed [62]. A summary of them is shown
in Table 1.3.
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Table 1.3 Rare variant association analysis methods. MAF=Minor allele frequency.
SNP=Single nucleotide polymorphism

Category Description Method Assumptions

Burden
tests

Weighted
average of
rare allele
counts

CAST,
CMC

The mode of inheritance is jointly
dominant [59, 63]

SUM All variants in the set have the same
effect size [60]

VT All variants with MAF ≤ ζ have the
same effect size [64]

WSC The effect size is inversely propor-
tional to MAF [65]

RWAS All SNPs have the same population
attributable risk [66]

Variance
compo-
nent
tests

Test of the
variance
of variant
effect
sizes

C-
ALPHA

Variants are both protective and at risk
[67]

SKAT The variance is w jτ
2 with beta w j

weights [61]

Combination
tests

Combination
of burden
and vari-
ance
com-
ponent
tests

SKAT-
O

The test is based on an optimal combi-
nation of burden and variance statistics
[68]

MIST The effect sizes are explicitly mod-
elled using a mixed effect model [69]

EMMPAT
The effect sizes are explicitly mod-
elled using a mixed effect model that
incorporates SNP annotation [70]

Other tests

Tests that en-
force sparsity

EC,
LASSO

Only a few of the variants are associ-
ated [71, 72]

Replication-
based test RBT

Inference is based on separate statis-
tics for protective and at-risk SNPs
[73]

Bayesian
methods BeviMed Information on variant effect size and

sparsity is incorporated in priors [62]
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Although this strategy was designed for complex diseases, it is of-
ten used in Mendelian studies, and several works have demonstrated
its utility. For example, heterozygous LOF variants in NFKB1 [MIM:
164011] were observed to be the most common cause of primary im-
munodeficiency using BeviMed [74]; a BURDEN test was used in 2,536
schizophrenia cases and 2,542 controls identifying an enrichment for rare
disruptive mutations in particular gene sets, including the voltage-gated
calcium ion channel and the signalling complex formed by the scaffold
protein ARC of the postsynaptic density [75], among others [76–78].
Nevertheless, case-control studies require a significant number of cases
and controls. Additionally, any baseline differences, for example techni-
cal artefacts from the sequencing, can yield to false-positive signals, so
results from these kinds of studies need particular attention and careful
review of all significant results.

1.2.2 Exome sequencing in complex diseases

GWAS has been broadly used for the study of common variants in
complex diseases. However, it presents two main limitations. First,
it cannot detect rare variants since only SNPs with allele frequencies
greater than 5% in the population can be analysed. Second, it is based
on a genotyping array of known SNPs, therefore, the detection of novel
variants or genes is not achievable directly, but feasible by imputation
and haplotype analysis [79, 79, 80].

For this reason, several studies have used WES as technique for the
discovery of rare variants involved in complex diseases [81–83]. For
example, the NHLBI ESP has sequenced 6,500 individuals to study
phenotypes such as heart attack, stroke and blood lipid levels. Like-
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wise, T2D-GENES Consortium has sequenced the exomes of ∼10,000
individuals to identify variants associated with T2D, and the UK10K
Project has sequenced the exomes of 6,000 individuals with multiple
phenotypes [16]. Smaller projects have also used WES for the discovery
of disease-causing genes in familial cases with complex traits [84], and
several methods for performing rare-variant association test in families
have been developed [85–90].

The main limitation of WES is that it does not consider non-coding
regions, while GWAS has previously demonstrated several variants asso-
ciated with disease in non-coding regions [80]. An alternative to this is
to perform low coverage (∼10x) WGS to maximise cost and statistical
power when budget is limited, so more individuals can be sequenced but
at a lower depth [91].

1.2.3 Other applications of exome sequencing

Copy number variants

Copy Number Variants (CNVs) are a major source of variation in the
human genome, contributing to many human diseases including neu-
ropsychiatric disorders and cancer [92–95]. Microarrays have been
typically used to identify copy number changes with great accuracy, but
with the inconvenience of a minimum probe resolution of 10Kb. There-
fore, using WES to identify CNVs is advantageous, since it provides not
only SNP/indel information at the exonic regions, but also exonic copy
number changes smaller than the microarray minimum resolution.

There are different approaches to detect CNVs from NGS data: 1)
split reads, based on split mapping of reads that span a CNV breakpoint
[96, 97]; 2) read pairs, based on an improbable distance of mapped
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read pairs[96, 97] and 3) read depth, based on drops or increases in
read depth [98]. Approaches one and two are of limited utility in WES,
since they will only detect breakpoints that fall within an exon. For that
reason, multiple software algorithms for WES are based on approach
three, including ExomeDepth [99] and XHMM [100], among others
[101, 102].

Read depth can be affected by other factors besides copy number,
such as alignability, exome capture efficiency and GC content - especially
in exome data, where PCR amplification is performed on the enriched
reads in most of the protocols. To minimise those, different strategies
can be used. For example, ExomeDepth considers read depth as relative
to a reference sample (an average of many other exomes). A reference
file is first created with as many unrelated samples as possible, and with
minimum technical variability (samples need to be prepared in the same
way or using the same library prep kits).

An alternative is used by XHMM, which is also based on read depth
but uses principal components to handle normalisation. Basically, it
creates a matrix of the depth of all exons in all samples, and the principal
components of this matrix are expected to capture many of the artefacts.
Once normalisation is done, XHMM calls CNVs using a Hidden Markov
Model (HMM). This is based on the fact that if an exon is deleted, then
the prior probability for the adjacent exons to be deleted is considerably
higher than if no CNV had yet been detected in the gene.

However, CNV detection from WES data is still limited due to the
variable coverage distribution across the genome that negatively affects
the variant detection, and exons that are not well covered (especially
GC-rich content regions and capturing limitation) [103]. It also relies
on read depth as the sole source of information, ignoring split read and
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read pair information. Another limitation of CNV detection in WES is
that the breakpoints might not be exact, since there is only access to the
coding regions.

Nevertheless, some works have successfully found pathogenic CNV
by the analysis of WES data, demonstrating that an ’exome-first’ ap-
proach for clinical genetic investigations may be considered for the
analysis of CNV as well [104, 105]. For example, Spataro et al. identi-
fied ten patients with Parkinson’s disease and a gene dosage alteration in
PARK2, GBA, and PARK7 [106]. An example of a deletion they identi-
fied in PARK7 (also known as DJ1) is shown in (Figure 1.5). Throughout
this thesis, when a gene symbol is not followed by the MIM number
to avoid confusion due to the presence of multiple genes, these can be
found in the Appendix (Section 7.2, Gene information).

years of age) was found in 4 of the 6 patients with
structural variants in PARK2.

Structural Variants in the GBA-PGBA1 Region

The high homology between GBA and its neighbor-
ing pseudogene (GBAP1), which share 96% of
sequence identity, not only explains several gene-
pseudogene rearrangements and gene-conversion
events12 but also complicates the analysis of the whole
region.13 Our analysis disclosed 4 individuals

presenting CNVs along the GBA-GBAP1 region (see
Figure 1B). Cas103, which has already been described
in Set�o-Salvia et al. (2012),14 is heterozygote for a
recombinant deletion known as the Rec-Ncil allele
(where GBAP1 exons 1 to 10 and GBA exons 11 and
12 are deleted). In contrast, Cas211, Cas62, and
Cas136 are heterozygotes for 2 different duplications
along the same region. Because exons 11 and 12 in
the gene and the pseudogene are nearly identical, we
could not verify by quantitative PCR the exact limits
of the GBA-GBAP1 rearrangements detected (Figure

FIG. 1. Detection of copy number variation: (A) PARK2 gene, (B) GBA-GBAP1 region, and (C) DJ1 gene. In the upper panel, sequencing depth of
coverage for those samples inferred to carry copy number variants by the eXome-Hidden Markov Model (XHMM) software (https://atgu.mgh.har-
vard.edu/xhmm/) is indicated in colors along each exon; the color matches that of the individual label on the Y axis of the bottom panel. In all other
samples, the gray background represents sequencing depth of coverage. In the bottom panel, a schematic representation of the corresponding vali-
dated copy number variants is presented for each gene. Red bars, deletion; light blue bars, duplication; black diamonds, frameshift indels. The bot-
tom track represents a schematic representation of the gene structure.
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A)

B)

Fig. 1.5 Deletion in PARK7 gene detected by exome sequencing. A) Sequencing
depth of coverage for all samples in the study was used to infer copy number variants
by the XHMM software [107, 100]. The orange line is the coverage for a patient with
a deletion of exon 4. The grey background represents sequencing depth of coverage.
B) Schematic representation of the corresponding validated copy number variant and
the bottom track represents a schematic representation of the gene structure. PARK7 is
also known as DJ1 [106].



1.2 Next generation sequencing 23

HLA haplotyping

Since human Major Histocompatibility Complex (MHC) variation was
first linked to disease via association to Hodgkin lymphoma [108] it has
been intensively studied. Today, MHC, also called Human Leukocyte
Antigen (HLA) in Humans, has been established as the region of the
genome that is associated with the greatest number of human diseases.
HLA genes are crucial to the immune system function and they play im-
portant roles in allergies, pathogenesis of autoimmune diseases, immune
responses to infection and transplant rejection among others [109].

HLA is divided into three subclasses: class I region, which includes
classical (HLA-A, HLA-B, HLA-C) and non-classical (HLA-E, HLA-F,
HLA-G) genes; class II region, which includes HLA-DPA1, HLA-DPB1,
HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-
DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB4 and HLA-DRB5; and the
class III region, which contains genes that are involved in leukocyte
maturation, inflammatory responses and the complement cascade. The
organisation of the HLA gene region is represented in Figure 1.6.
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Fig. 1.6 Organisation of the HLA gene region. The HLA gene region is shown, with
each bar representing a gene. Class II molecules (HLA-DP, HLA-DQ, HLA-DR) are
towards the centromeric end, while class I molecules are located in the telomeric end
region. Classical class I and II genes display extraordinary allelic variation, except
for HLA-DRA1. Interspersed among the class II loci are genes that regulate antigen
presentation (in grey colour). The class III region encodes non-polymorphic immune
molecules that are not directly involved in antigen presentation (such as complement
components and TNF). From [110].

The HLA locus is extremely polymorphic and is in strong linkage
disequilibrium (the non-random association of alleles at different loci),
complicating the determination of the exact genes and their association
to disease. This variation may arise due to point mutations, but also often
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by mechanisms such as gene conversion (when one allele is converted
to another by mismatch repair mechanisms) [109]. More than 15,000
classical HLA alleles have been identified. This diversity likely exists to
maximise the probability of some individuals successfully mounting an
immune attack against a possible infection and survive.

HLA alleles have been associated with several disorders, mostly by
conferring risk to disease. For example, HLA-DR15 and HLA-DR4 have
been associated with Multiple sclerosis, HLA-A*02:01 increases risk
to type-1 diabetes (T1D), and HLA-DQ2.5 and HLA-DQ8 have been
seen in several individuals with Coeliac disease [109]. These, and other
examples, are shown in Table 1.4.

The current gold standard for high resolution typing of HLA alleles is
sequence-based typing, that uses Sanger sequencing or targeted amplifi-
cation of the HLA genes followed by HTS. Previous studies have already
used NGS data for HLA typing. For example, 1000 genomes and exomes
were typed by Major et al. [111], demonstrating that HLA-A, HLA-B and
HLA-C can be typed from exome data with an accuracy higher than 90%.
Moreover, with the growth of NGS technologies, methods for inferring
HLA types have been developed. One example that uses a Population
Reference Graph (PRG) is HLA*PRG [112], that can use data from both
WGS and WES.

1.2.4 NGS summary

WES has been proven to be of great potential value as a diagnostic tool in
clinical practice. It allows analysis of SNPs/indels in the coding regions
of genome, and also investigation of CNVs and HLA alleles. It has been
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Table 1.4 HLA haplotypes associated with disease. Autoimmune disease HLA
associations for which molecular mechanisms of action have been identified. Adapted
from [109].

Autoimmune disease HLA allomorph (effect on disease)

Type-1 Diabetes

HLA-A*02:01 (risk)

HLA-DQ2 (risk)

HLA-DR4 (risk)

HLA-DQ8 (risk)

HLA-DQ6 (protection)

HLA-DQ2 and HLA-DQ8 (risk)

Coeliac disease HLA-DQ2(.5) and HLA-DQ8 (risk)

Goodpasture disease
HLA-DR15 (risk)

HLA-DR1 (dominant protection)

Systemic lupus
erythematosus

MHC risk variants in distal intergenic XL9 regula-
tory element

Crohn’s disease Highly expressed HLA-C allotypes (risk)

Autoimmune
polyglandular syndrome,
IgA deficiency

HLA-DQ6 (protection)

Multiple sclerosis
HLA-DR15 (risk)

HLA-DR4 (risk)

Rheumatoid arthritis HLA-DR4 (risk)
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used for the study of Mendelian and complex disorders, demonstrating its
value for both in numerous cases. This technology is currently the gold
standard for diagnostic and clinical research in many centres. It is used
for the identification of known and novel variants in disease-associated
genes, as well as discovery of novel genes. In this dissertation, this
technology was used for the study of genetic variants in individuals with
a severe form of gastrointestinal food allergy to multiple food proteins.
Therefore, the classification, pathogenesis and genetics of the disorder is
next explained.

1.3 Gastrointestinal food allergies

1.3.1 Introduction to food allergies

Certain foods or components of food may cause adverse reactions rang-
ing from a slight rash to a severe allergic response. Adverse reactions to
foods can be classified into non-toxic (immune and non-immune medi-
ated reactions) and toxic reactions produced by, for example, bacterial
toxins (Figure 1.7). The symptoms range from slight inconveniences to
life-threatening shock reactions. Some reactions are difficult to recog-
nise, diagnose and treat, while other dermatological, respiratory and
systemic manifestations are readily recognisable.

The most common adverse reaction to foods is food allergy, which
is an immune-mediated response that occurs after the ingestion of a
specific type of food protein and is absent during avoidance. The current
definition of food allergies is "adverse health effect arising from a specific
immune response that occurs reproducibly on exposure to a given food"
[113]. Food allergies can be classified into IgE (Immunoglobulin E)-
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mediated, non-IgE-mediated and mixed responses. Other non-toxic
adverse responses to foods are not immune mediated, and these can be
classified into food intolerance due to toxicity, pharmacological reactions
and even psychological food intolerance (Figure 1.7).
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Symptoms of food allergies usually start within minutes of exposure
to the trigger food and always occur within a few hours after the inges-
tion. Clinical presentation varies depending on the type of food allergy.
For example, IgE-mediated food allergy responses are most commonly
localised and affect the lips, mouth and throat. Additionally, they can
also be associated with more systemic reactions, involving gastrointesti-
nal (GI) manifestations, respiratory effects and skin manifestations [114].
Sometimes they can even entail a severe and life-threatening systemic hy-
persensitivity reaction that involves multiple organ systems and is called
anaphylaxis [115]. Augmenting factors (such as alcohol, nonsteroidal
anti-inflammatory drugs, concomitant infections or physical exercise)
can increase the severity of the reaction in up to 30% of cases [116].

Non-IgE mediated food allergy primarily affect the GI tract, and
are often classified as dietary protein enteropathies. Common examples
are allergy to cow’s milk or soy protein, and can cause variable small
and/or large bowel injury associated with nonspecific villous atrophy
and inflammation [117]. Symptoms may include repetitive emesis and
diarrhoea after one or two hours of ingestion of offending foods. On the
other hand, mixed responses can present manifestations characteristic
of both IgE-mediated responses (like atopic dermatitis) and non-IgE-
mediated responses (such as GI disorders).

Approximately 20% of the population in industrialised nations has
been reported to experience adverse reaction to foods, which varies in
clinical presentation, severity and underlying aetiology [114]. However,
when placebo-controlled food challenges studies were performed, the
prevalence of true reactions dropped to between 2% and 4% [115]. This
difference highlights the difficulty of measuring the prevalence of true
adverse reaction to food.
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Table 1.5 Classification of food allergies. GI=Gastrointestinal; OAS=Oral allergy
syndrome; Eo=Eosinophilic; EoE=Eosinophilic oesophaguitis; FPIES=Food pro-
tein–induced enterocolitis syndrome; FPIAP=Food protein–induced allergic proc-
tocolitis; FPE=Food protein–induced enteropathy. Adapted from [119].

GI Cutaneous Respiratory Generalised

IgE medi-
ated

OAS, GI ana-
phylaxis

Urticaria,
angioedema,
morbilliform
rashes and
flushing

Acute
rhinoconjunc-
tivitis, bron-
chospasm

Anaphylactic
shock

Mixed EoE, Eo, gas-
troenteritis

Atopic dermati-
tis Asthma -

Non-IgE
mediated

FPIES, FPIAP,
FPE

Contact
dermatitis,
dermatitis
herpetiformis

Heiner
syndrome -

Food allergy is more common in children than adults, and the preva-
lence is increasing in many countries. This disorder is often developed
in early childhood, affecting up to 6%-8% of children younger than ten
years and between 1%-4% of the adult population. Accurate determi-
nations are elusive because different factors influence the estimation,
such as sex, ancestry, geographic location, ages and dietary exposures
[118, 113]. Moreover, there are different ways to classify food allergies:
by affected system or by immune-type response. Allergies can have gen-
eralised responses or can affect specific systems such as GI, cutaneous or
respiratory system. They can also be classified into IgE mediated, non-
IgE mediated, and those that are mediated by both commonly referred to
as mixed food allergies (Table 1.5).
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This dissertation focuses on GI food allergies, hence other types of
food allergies will not be discussed. The different subtypes, pathogenesis
and management of GI food allergies are next explained.

1.3.2 Pathophysiology

Regulation of the Intestinal Immune Response

Appropriate regulation of the intestinal immune response is essential to
maintain balance and avoid potentially deleterious immune responses to
foods [120]. This is achieved by down-regulating the normal immune
response to bacteria and food antigens (also termed "oral tolerance").
This hyporesponsiveness, that seems to be impaired in GI food allergy,
is regulated by two major pillars: the innate, general defence and the
adaptive, specialised defence, both working closely together and taking
on different tasks.

First, the innate immune mechanisms in the GI system include gas-
tric acid, bicarbonate, intact epithelial layer with tight junctions, mucus
secretion, digestive enzymes and peristaltic movement among others
[118]. These mechanisms are involved in the control of invasion and
prevention of infection of pathogens, so a dysregulation could lead to
GI problems. For example, it has been seen that Humans and animal
models treated with proton pump inhibitors and with other anti-secretory
drugs presented increased sensitisation to food antigens, probably due to
less effective gastric proteolysis [121]. The permeability of the intesti-
nal barrier also plays an important role. Infants with an incompletely
matured intestinal mucosa or individuals with an impaired barrier have
an increased uptake of molecules. Increased intestinal permeability and
subsequent uptake of food antigens has also been observed in patients
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with food allergy [120, 122]. This may be secondary to the intestinal
inflammation. Additionally, the properties of the triggering antigen in-
fluence the type of immune response (where more soluble proteins are
more tolerogenic than particulate of globular antigens) [123].

Second, the balance of adaptive immune response in the gut is also
important for its maintenance, since uncontrolled inflammation could
drive an inappropriate immune response. In response to specific food
antigens, T-cells produce cytokines to induce B-cells to produce specific
antibodies. There are two different types of T-cell responses, Th1 and
Th2. Th1 cytokines, like IFN-γ , tend to produce the proinflammatory
responses responsible for killing intracellular parasites. In contrast, Th2
cytokines include IL-10 [MIM: 124092], which has more of an anti-
inflammatory response, and IL-4 [MIM: 147780], IL-5 [MIM: 147850]
and IL-13 [MIM: 147683], which are associated with the promotion of
IgE and eosinophilic responses in atopy. The interplay between Th1
and Th2 responses can be regulated by multiple factors, including the
expression of costimulatory molecules, different type of dendritic cells
and the cytoplasmic milieu. A dysregulation on the balance between Th1
and Th2 responses could lead to an uncontrolled inflammatory response,
that could drive to GI disorders such as atopy and food allergic reactions.

Allergic inflammation

Pathogenic mechanisms of GI food allergies differ depending on if they
are IgE-mediated or non-IgE mediated (Figure 1.8). On one hand, IgE-
mediated food allergies require an initial food allergen sensitisation.
This occurs when Th2 cytokines such as IL-4 and IL-13 are produced
by T cells in response to specific food antigens, and induce B cells to
produce food-specific IgE antibodies. These antibodies then bind to the
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surface of mast cells and basophils. Upon re-exposure to the offend-
ing foods, the food antigens bind to the food-specific IgE antibodies,
causing their activation and degranulation. Released mediators such as
histamine and leukotrienes cause inflammation, the allergic response and
the development of signs and symptoms [124, 114, 125, 116].

On the other hand, non-IgE mediated food allergies are indepen-
dent of IgE-mediation mechanisms. These are less understood than the
IgE-mediated ones and are usually confined to childhood, being less
recognised in adults. In non-IgE mediated mechanisms, inflammatory
cytokines (such as TNF-α) are produced antigen-specifically by T-cells
in response to specific food antigens. Inflammatory cytokines increase
the intestinal permeability, which facilitates the uptake of undigested
food antigens. Other Th2 cytokines such as IL-4, IL-5 and IL-13 are
also produced by T cells. Here, IL-4 and IL-13 don’t induce production
of food antigen-specific IgE antibodies by B cells, but induce intestinal
epithelial damage, while IL-5 accumulates and activates eosinophils in
GI tissues [124]. Mixed responses can present both IgE and non-IgE
mediated pathogenic mechanisms.
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Mast cell

Th2 cellDendritic
cell

Food proteins

IgM + B cell IgE + B cell

IgE antibody

Degranulation

IL-4, IL-13

Mast cell

Th2 cellDendritic
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IL-13
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IL-13
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Eosinophil

IL-5 Eosinophils

Fig. 1.8 Pathogenic mechanisms of food allergy. (a) IgE-mediated food allergy. (b)
Non-IgE mediated food allergy. Adapted from [124].

Therefore, regulation of T and B cells responses play an important
role in the development of GI food allergy. Patients with food allergy
present with the allergen-specific Th2 cell releasing cytokines in blood,
skin and mucosal sites [126], which play an important role in the induc-
tion of allergic responses by either regulating IgE synthesis (IL-4 and
IL-13) or chemoattraction of proinflammatory cells (IL-4 and IL-5).

It has also been seen that the risk of presenting allergic disease is
increased by a delayed development on the IgA system or the enhanced
switch to IgE producing B cells. The major inducer of IgA synthesis is
TGF-β , whereas the switch to IgE depends on CD40L [MIM: 300386],
IL-4 and IL-13, derived from Th2 and inflammatory cells [118].
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1.3.3 Classification

In general, allergic reactions to foods affecting the GI tract are charac-
terised by symptoms such as vomiting, diarrhoea and bloody stool after
the ingestion of offending foods. However, depending on their type of
response, specific characteristics and pathogenesis, they can be classified
into specific subtypes (as previously shown in Table 1.5).

IgE mediated

IgE mediated GI food allergies are Oral Allergy Syndrome (OAS) and
GI anaphylaxis. OAS is the most common manifestation of food allergy
in adults. Exposure to certain types of allergens (such as plant proteins)
may lead to itchy skin, or even more systemic reactions occurring a
few minutes after the ingestion of the allergen [118]. Differently, in
GI anaphylaxis the phenotypes (vomiting, nausea, abdominal pain and
diarrhoea) typically occur in conjunction with allergic manifestation
in other organs. The responsible foods usually are cow’s milk, eggs,
peanuts, seafood and fish. It can also be confirmed by measurement of
specific IgE levels or skin prick test.

Mixed IgE and non-IgE mediated

Mixed GI food allergies can be classified into eosinophilic oesophagitis
(EoE) and eosinophilic gastroenteritis (EG). EoE is an increasingly
recognised chronic inflammation of the oesophagus, that usually affects
children and adults. This is characterised by the infiltration of eosinophils
in the oesophageal mucosa, presenting symptoms like vomiting, pain,
reflux and dysphagia. Some patients have concomitant asthma or other
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chronic respiratory disease. Individuals with EoE often have positive
skin prick tests and specific IgE (sIgE) to foods, although these are
weaker in adults [118]. Diagnosis in children usually occurs within the
first three years of life. In EoE, diagnosis can be supported by endoscopic
findings and histological features of eosinophilic inflammation (with
>15 eosinophils per high power field) [115]. Three types of EG include
eosinophilic gastritis, eosinophilic enteropathy and eosinophilic colitis.
They are characterised by eosinophilic inflammation of the GI tissues,
and can manifest at any age (with male predominance) [115].

Eosinophilic infiltration location and depth determine the manifesta-
tions of this condition, which is characterised by abdominal pain, nausea,
vomiting and diarrhoea. Because these symptoms are also characteristics
of Inflammatory Bowel Disease (IBD), diagnosis is not always straight-
forward – the current gold standard for diagnosis is demonstrated by
characteristic endoscopic and histopathological features. EG is rare and
managed with corticosteroids in most cases. Successful resolution of
symptoms has been reported in a series of children [115].

Non-IgE mediated

Non-IgE mediated GI food allergies encompass three main types: Food
Protein-Induced Enterocolitis Syndrome (FPIES), Food Protein-Induced
Allergic Proctocolitis (FPIAP) and Food Protein-Induced Enteropathy
(FPE). A comparison is shown in Table 1.6.

The first one, FPIES, is an uncommon food allergy that causes GI
symptoms (vomiting with or without diarrhoea) as a reaction to the
ingestion of specific food proteins. The underlying pathophysiology is
not well defined, but it is suspected that the resulting inflammation from
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the stimulation of mucosal T-cells and TNF-α could explain the clinical
effects. In a prospective study on 13,019 infants, 0.34% (44/13,019)
presented FPIES [127]. It is present in babies and young children, and
most become tolerant by three years of age. Symptom onset could be
within weeks of birth, but if the babies are breast-fed, it could be up to
months, with the introduction of solid foods. There are three common
foods that lead to FPIES: cow’s milk, soy and rice, however, other
aliments such as vegetables, egg white, legumes and meat can also trigger
the symptoms. Symptoms can manifest two hours after the exposure
to the offender aliment/s, presenting with vomiting with or without
diarrhoea. And although they usually resolve in 6-12h, these children can
present as acutely unwell. Affected individuals are frequently mistreated
for sepsis, pyloric stenosis or inherited metabolic disease, especially
since blood test results may present metabolic acidosis, neutrophilia and
thrombocytosis [115]. The diagnosis has to be clinical, although the
presence of blood, eosinophils and lymphocytes in stools is supportive.
Due to overlapping features with the previously mentioned disorders, it
can take up to five episodes to establish diagnosis [128]. One difference
is that individuals with FPIES recover more rapid than those with sepsis
or surgical conditions.

The second type is FPIAP. Patients with FPIAP present blood and
mucus in the stool. Here, inflammation of the colon and rectum is due to
eosinophilic and lymphocytic inflammation. Diagnosis is based on the
presence of fresh rectal bleeding, and the absence of other symptoms,
as well as eosinophilic infiltration performed on mucosal biopsies from
colonoscopy. Symptoms resolve when eliminating the offending proteins
(cow’s milk and soy protein) from the diet. This is important to perform



1.3 Gastrointestinal food allergies 39

in order to differentiate infants with FPIAP than infants with transient
colitis, whom can resolve even without a change in diet.

Lastly, FPE is a disease of infants, characterised by malabsorption
mainly caused by cow’s milk. Affected infants develop chronic diar-
rhoea, steatorrhoea and poor weight gain. It is often seen with anaemia
and hypoalbuminemia. The most common offending foods are cow’s
milk, but also soy, rice, chicken and fish. The symptoms are observed in
the first few months of life, and resolution generally occurs in 1-2 years
[118]. The underlying mechanisms involve T-cell immune responses
within the small intestine, with villous atrophy and lymphocytic infil-
tration. It is similar to Coeliac disease, but the main difference is that
in FPE symptoms may appear before the introduction of dietary gluten.
Diagnosis is based on elimination diets and endoscopy/biopsy to identify
an increased intraepithelial lymphocytes and eosinophils and villous
injury.
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Table 1.6 Comparison of non-IgE mediated GI food allergies. FPIES=food protein-
induced enterocolitis syndrome; FPIAP=food protein-induced allergic proctocolitis;
FPE=food protein-induced enteropathy, FTT=failure to thrive, LNH=lymphonodular
hyperplasia, OFC=oral food allergy. Adapted from [129].

FPIES FPIAP FPE

Age of onset
Usually one day to
one year

Days to six months
Dependent on age
of exposure to anti-
gen

Common
food proteins

CM, soy, rice, mul-
tiple

CM CM

React to ≥2
foods

Up to 35% Up to 20% Rare

IgE positive 4% to 30% Negative Negative

Transition to
IgE positive

Up to 35% None reported None reported

Family his-
tory of atopy

40% to 70% Up to 25% Unknown

Symptoms

Emesis, severe
diarrhoea, severe
bloody stools,
severe oedema,
shock (15%)

Mild diarrhoea,
prominent bloody
stools, mild/infre-
quent oedema

Intermittent emesis,
moderate diarrhoea,
rare bloody stools,
moderate oedema,
moderate FTT

Laboratory
findings

Moderate anaemia,
acute hypoalbu-
minemia, possible
methemoglobine-
mia, possible
acidaemia, promi-
nent leukocytosis
with neutrophilia,
moderate thrombo-
cytosis

Mild/infrequent
anaemia, mild/in-
frequent hypoal-
buminemia, mild
thrombocytosis, oc-
casional peripheral
blood eosinophilia

Moderate anaemia,
moderate hypoal-
buminemia, mild
thrombocytosis,
malabsorption,
steatorrhoea

Continued on next page
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Table 1.6 – continued from previous page

FPIES FPIAP FPE

Treatment

Food elimination;
symptoms clear
within hours in
patients with acute
FPIES and in 3-10
days in patients
with chronic FPIES

Food elimination
from the maternal
diet or hypoal-
lergenic formula.
Food reintroduction
after 12 months

Food elimination,
symptoms clear
in 1-3 weeks,
re-challenge and
biopsy in 1-2 years

Resolution

Varies by popula-
tion, CM tends to
resolve by age 3-5
years; rice-induced
FPIES, 50% out-
grow by age five
years

Majority resolve by
age 12 months

Most cases resolve
in 24-36 months

T-cell re-
sponse

Inconclusive, TH2
skewing

Unknown

Increased intestinal
intraepithelial sup-
pressor/cytotoxic
CD8+ T cells

B-cell re-
sponse

Absent IgE, IgG4,
IgA responses

Unknown Absent

Cytokine im-
balance

Decreased TGF-β ,
increased TNF-α
and IFN-γ

Unknown

Increased IFN-γ
and IL-4 level
in jejunal biopsy
specimens
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1.3.4 Offending foods

The most common food allergen in patients with GI food allergy are
cow’s milk, soy and cereals, including rice and oats. FPIES is usually
caused by a single food (60-80% cases), but there are cases with reaction
to two foods (30-50%) or even more, though these are very rare. It’s
also been seen to vary with geographic differences (for example, high
frequency of fish allergy in infants from Italy and Spain), but feeding
routines, age of induction and genetic predisposition might also underpin
this.

Interestingly, the study of allergens that may cause allergic reactions
in the GI tract revealed that inhalant allergens such as pollens can also be
swallowed and detected in faecal samples of affected individuals. Pollen
shares morphological features with certain parasite eggs [130]. Major
epitopes (the part of an antigen that is recognised by the immune system)
in pollen are Bet v1 and Bet v2. Specific IgE in patients with allergy to
pollen are directed to Bet v1, emphasising the importance of this protein
as a major epitope [131]. This opens up the opportunity for genetically
modified and recombinant food antigens, offering new possibilities for
both diagnosis and treatment of patients with food allergies. For example,
a cloned peanut allergen (Ara h3) has already been developed which
binds less efficiently to IgE but keeps the ability to stimulate T-cell
activation [132].

1.3.5 Diagnostic approach

It is very important for the proper management of the patient to diagnose
and properly differentiate between GI food allergies and other types of
GI pathologies with different aetiology, such as food intolerance, inflam-
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mation (IBD, Crohn’s disease, ulcerative colitis), anatomic problems
(pyloric stenosis, which is a narrowing of the opening from the stomach
to the first part of the small intestine), malignancy, and infections or
metabolic disorders.

Food intolerances are different than immune-mediated allergies,
where patients may experience anaphylactic reactions and must avoid
all foods containing the specific allergen. Unlike a food allergy, for
intolerance there is a delay in symptom onset (several hours), a pro-
longed symptomatic phase (can last for hours or days) and negative IgE
serology [115]. Therefore, one main difference is that most GI food
allergies exhibit severe symptoms within one hour after ingestion of the
offending food, while other disorders present delayed manifestation of
symptoms (up to several hours after the ingestion) [118]. Nevertheless,
the overlapping phenotypes and the poorly understood pathophysiologic
mechanisms makes very challenging proper diagnosis of GI food aller-
gies. GI food allergy diagnosis highly depends on the clinical history
of the patient, the exclusion of other conditions and the observation of
the patient after the ingestion of offending foods. The diagnostic algo-
rithm for food allergy, developed by the American Gastroenterological
Association [133], is shown in (Figure 1.9).
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History of allergy, 
asthma, GI features

Prick test, endoscopy, 
pH probe, stool analysis

Elimination specific food, 
oligoantigenic dies, elemental 
diet (hypoallergenic formula)

Open challenge, single 
blind, double blind, 

monitoring treatments

Evaluation

History, physical examination, 
selected laboratory tests

Possible food allergy Other causes identified 
-> Not food allergy

Elimination diet

Improved Not improved -> Not 
food allergy related

Maintain diet
Consider re-introduction of specific 

foods and/or formal challenges

Food tolerated/Challenge 
passed -> add food to diet

Challenge positive, 
symptoms returned

Continue exclusion of food
Consider periodic re-evaluation

Fig. 1.9 Diagnosis evaluation approach in GI disorders. Adapted from American
Gastroenterological Association [133].

Diagnosis of subtypes of GI food allergy mediated by IgE can be
performed with the combination of the skin prick test along with the
measurement of food-specific IgE antibody levels. Measurement of
specific IgE by a radioallergosorbent test or a newer nonradioactive test
is also possible. These have higher specificity and reliability than the
skin prick test. However, these tests have some disadvantages: first, false
positive results are fairly common, and cannot be distinguished between
a sensitised individual to the allergen and one who is clinically allergic.
Second, IgE is also produced locally in the GI mucosa, so serum IgE
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measurements do not correlate well with mucosal allergic responses in
the intestine [130]. Consequently, in those cases where a food challenge
has not been performed, the classic elimination of foods followed by the
observation of the patient well-being is considered to be a good approach
[115, 116].

Due to the absence of IgE in non-IgE mediated food allergies, its
exact diagnosis is more challenging. Some approaches include T-cell
cytokine assays and serum measurements of markers of eosinophil acti-
vation (for example, eosinophil cationic protein). Measurement of IgE,
TNF-α and eosinophil mediators in stool samples are also interesting
tools, but they are not yet established for use in clinical practice [118].
Colonoscopy allergen provocation is a technique equivalent to skin test-
ing in which a panel of antigens are injected in the GI mucosa and then
the response is observed by endoscopy [134]. However, although it has
been reported to be an advance in the field, its incorporation into routine
clinical practice has been limited.

Furthermore, the fact that precise pathogenic mechanisms of GI food
allergies remain poorly understood, makes difficult the identification of
more specific types. For example, different subtypes of non-IgE mediated
food allergy (FPIES, FPIAP and FPE) exhibit similar symptoms such
as vomiting and diarrhoea. It is not well described if these disorders
have similar pathogenesis and just differ in severity, or whether the
pathogenesis of each is distinct, meaning they should be classified as
separate entities. Previous works have tried to approach this issue by
performing cluster analysis on the clinical and laboratory findings in
order to characterise between these types of allergies and determine
whether the pathogenesis is different [135].
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1.3.6 Treatment

Since there is no curative treatment for food allergy, the main strategy
for management is the avoidance of the allergen and the preparation
for future accidental exposures. Patients should also learn to read and
understand labels for food allergens. Sometimes it is also important
for those affected individuals and family members to join local founda-
tions and support groups that can provide information and support. In
instances where an elimination diet cannot be followed (e.g. multiple
food allergies), antiallergic medications should be tried. For example,
mast cell-stabilising agent disodium cromoglycate can act locally in the
GI tract and can be tried in such cases, although its supporting evidence
is limited [118].

Patients and their families should also be prepared for accidental
exposures. For individuals with IgE-mediated response, the first-line of
defence is the emergency medication during the anaphylaxis, through
the intramuscular auto-injection of an epinephrine-containing syringe.
Antihistamines and corticosteroids have a supportive role in treating
anaphylaxis, but they should not replace the adrenaline injection [113,
116, 114]. Furthermore, patients with non-IgE mediated exposures will
require intravenous or oral rehydration. Steroids can also be provided,
although there is no evidence that they hasten recovery [118].

Nevertheless, the rise in prevalence of food allergy has led to sig-
nificant interest in developing better therapeutic strategies for its man-
agement. Treatment approaches for food allergies, including the most
promising advances, are shown in Table 1.7. One example is Oral
Immunotherapy Treatment (OIT), which offers the best efficacy as com-
pared to other routes of immunotherapy but also the highest probability
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for adverse effects. The use of Omalizumab in conjunction with OIT
may improve the safety profile.

Table 1.7 Food allergy treatments. OIT=Oral Immunotherapy Treatment;
IT=Immunotherapy.

Type Strategy Description Ref

First line
treatment

Dietary
strategies

Targeted elimination diet or elemental diet
[115,
136]

Cortico-
steroids

First-line treatment for induction of remis-
sion

[115,
117,
136]

Steroid spar-
ing agents

Include selective leukotriene inhibitors (e.g.
Montelukast), mast cell stabilizers (e.g.
Sodium cromoglycate) or 2nd generation
H1-antihistamine agents (e.g. Ketotifen)

[115,
117,
136]

Immuno-
therapies

OIT
Involves the administration of increasing
doses of the offending food over months
and then a maintenance dose for years

[137–
143]

Sublingual
IT

Delivers the antigen under the tongue in
a liquid form. Patients receive gradually
escalating doses until a maintenance dose
period is achieved

[144–
147]

Epi-
cutaneous
IT

Delivers the offending antigen via a patch
through the skin

[148–
150]

Continued on next page
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Table 1.7 – continued from previous page

Type Strategy Description Ref

Future
thera-
peutic
strategies

Hypo-
allergenic
antigens

Reduce the allergic potential of foods by
genetically or chemically modifying their
structure (e.g. substitutions in the IgE bid-
ing site of a peanut allergen)

[132,
151]

Anti-
monoclonal
antibodies
IT

Use of anti-IgE antibodies for the specific
region that binds to receptors on mast cells
and basophils. E.g.: Omalizumab

[152,
153]

Antagonist
of Th2
response

Strategies to antagonize Th2 response, such
as Th1-type cytokines (including IL-12 and
IFN-γ). IL-12 provides benefit in a murine
model with peanut hypersensitivity

[154–
158]

Serotonin
5-HT3
receptor
antagonist

Individuals with FPIES demonstrated to re-
solve symptoms with Ondansetron

[159–
161]

Anti-IL-
33 [MIM:
608678]

Knocking out the IL-33 receptor, ST2, in a
mouse model showed this pathway is nec-
essary for driving the Th2 cellmediated al-
lergic response

[162,
163]

GSK3
inhibitors

GSK3 promotes inflammation, and it has
been associated with diseases that involve
inflammation, including Alzheimer’s dis-
ease, diabetes, and cancer

[164,
165]

Apoptosis of
T and B cells

Azathioprine is a corticosteroid sparing
agent and has been used for the treatment
of asthma and eosinophilic enteritis

[166]

Continued on next page
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Table 1.7 – continued from previous page

Type Strategy Description Ref

Toll like
receptors
antagonists

R848, a TLR7 agonist, was found to de-
crease airway inflammation. TLR4 agonist
has been effective in treating pollen allergy

[167–
169]

Others
Peanut vac-
cine

Demonstrated in mice using oral delivery
of a DNA plasmid encoding the Ara h 2 pro-
tein on a nanoparticle carrier. Subsequent
Ara h 2 expression in the gut epithelium
resulted in partial protection from anaphy-
laxis. A clinical trial is currently underway
to test a DNA vaccine for peanut allergy

[167]

1.3.7 Animal models

Multiple animal models have been used to investigate the pathogenesis
of allergic diseases in vivo [120, 170, 171]. Animal models vary in terms
of animal used (rat, mouse, pig, guinea pig, dog), methods used (mea-
surement of inflammatory mediators, morphologic studies, functional
assays of gut function) or sensitization protocols (type of food allergen,
route of administration, dose).

However, despite the benefits and the advances on the study of
food allergy that these studies provided, there is no animal model that
can mimic the human food-allergic sensitization and allergic responses.
Therefore, it is still a challenge to extrapolate results observed in animal
models to human.
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1.3.8 Prevention

Common recommendations in infants with GI food allergy have been
made. These include the exclusive use of breast-feeding and delayed
introduction of solid foods up to 4-6 months, avoidance of all cow’s
milk protein and, if formula is needed, the use of extensively hydrolysed
or amino acid-based formula [118]. Probiotics have been suggested to
be beneficial in food allergies. For example, Lactobacillus rhamnosus
was given to pregnant woman during the last 4 weeks of pregnancy and
subsequent breast-feeding until infants were three months of age resulted
in only 15% of offspring presenting allergic eczema, compared to the
47% that received placebo [172]. However, beneficial results were not
observed in a different study of young adults and teenagers with oral
allergy syndrome [173], and it was suggested that the use of probiotics
in allergic diseases is especially beneficial shortly after birth, when the
normal enteric flora has just been established.

1.3.9 Heritability of food allergy

The association between genetic variants of nearly a dozen candidate
genes and food allergies were first identified via positional cloning
and candidate gene approaches. Mutations in proteins that play a role
in the gut motility, inflammation, microflora, visceral hypersensitivity,
and dietary factors were identified to be relevant. For example, LOF
mutations in FLG gene [MIM: 135940] (which encodes for filaggrin
protein) play a role in food allergy, since it is involved in the maintenance
of an effective skin barrier including allergens. Children with LOF
variants in FLG were 1.5 times more likely to react during food challenge
to at least one food as compared to carriers of the wild-type alleles [116].
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From GWAS studies, the search for common variants across the
genome showed that HLA-DR and HLA–DQ regions at locus 6p21.32
were significantly associated with peanut allergy in a cohort of 2,197
US subjects of European ancestry [174]. Another study identified that
copy number variants in CTNNA3 [MIM:607667] and RBFOX1 [MIM:
605104] were associated with food allergy [175] and that knockdown of
CTNNA3 resulted in up-regulation of CD63 and CD203c in mononuclear
cells, suggesting a role in sensitisation to allergen.

After the introduction of NGS technologies, the role of rare coding
variants was also considered for food allergy and other atopic pheno-
types such as asthma, eczema and atopic dermatitis. Consequently, rare
coding variants in the genes PDE4DIP [MIM: 608117], CBLB [MIM:
251110], KALRN [MIM: 604605], DPP10 [MIM: 608209], IL12RB1
[MIM: 601604], IKBKAP [MIM: 603722] and AGT [MIM: 106150]
were reported in patients with asthma [176, 177].

1.3.10 Environmental factors

During the past years the prevalence of allergic diseases has been ris-
ing more rapidly than changes to the genome sequence would indicate,
suggesting an important role of environmental factors. Numerous hy-
potheses have been postulated to lead to an increased prevalence of
allergic diseases. For example, the hygiene hypothesis, postulated in
1989 by Strachan, proposed that increased prevalence of allergic diseases
could be affected by an increased cleanliness, decreased family size and
decreased childhood infections [116]. Since then, other life environmen-
tal and style characteristics have also been considered. A summary of the
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environmental factors that have been proposed to influence food allergy
or sensitisation are described in the following Table 1.8.

Table 1.8 Environmental factors of food allergy.

Factor Evidences References

Hygiene
hypothesis

Proposes that the lack of early childhood exposure to
infectious agents, gut flora, and parasites increases
susceptibility to allergic diseases by modulating im-
mune system development, although limited data for
the hygiene hypothesis exist with respect to FA

[178]

Microbiota

Gut microbial composition and colonisation early
in life influence the development of atopic diseases.
Differential composition of the microbiome could be
explained by the fact that specific intestinal micro-
organisms can downregulate inflammation by coun-
terbalancing type-2 T-helper cell responses, enhanc-
ing then allergen exclusion through an immunologi-
cal response

[179–
184]

Skin

Skin damage, such as eczema, is frequently associ-
ated with food allergy, and approximately one in five
infants with infantile eczema will go on to develop a
food allergy. This occurs because in damaged skin,
depending on the nature of the allergen, epithelial
cells can produce cytokines that instruct dendritic
cells on the skin

[185, 178]

Exposure to
foods

Late introduction of allergenic foods into the diet
has been associated with higher risks of food allergy,
compared with an early introduction

[186]

Continued on next page
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Table 1.8 – continued from previous page

Factor Evidences References

Genetic sex

The male/female ratio of children with food allergy
is 1.8, whereas for adults, it is 0.53. Studies identi-
fied even higher disparity for specific food allergens,
such as peanut, where the male/female ratio in chil-
dren was almost five, whereas for adults it was less
than one. This disparity has been usually ascribed to
sex hormones, since these are one of the most obvi-
ous physiological differences between adult males
and females, and their impact on immune system
function is well recognised

[187–
189]

Dietary
factors

Exposure to an increased diversity of allergenic
foods in early life is inversely associated with allergic
diseases including food allergy. It’s been proposed
that the increased consumption of fatty acids from
margarine and vegetable oils, and through reduced
consumption of animal fats, led to an increase in al-
lergies. Also, breast milk modulates microbiota and
confers immunological protection when the infant’s
immune system is immature (it contains, hormones,
growth factors and cytokines among many others)

[190, 187,
191]

Dietary
antioxidants

Increased beta-carotene intake was associated with a
reduced risk of allergic sensitisation and lower IgE
levels in 5- and 8-year-old children

[192]

Obesity
It induces an inflammatory state associated with an
increased risk of atopy and theoretically could lead
to an increased risk of FA

[187]

Continued on next page
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Table 1.8 – continued from previous page

Factor Evidences References

Vitamin D

Epidemiological and immunologic data that suggest
that either excessive vitamin D or, conversely, vi-
tamin D deficiency (predominantly caused by low
sunlight exposure) results in increased allergies

[187]

Contamination
Chemical contamination affecting plant foods have
been suggested to influence on plant food allergens

[193]

Another interesting aspect are the different effects of the environment
on individuals with specific variants (also called gene-environment in-
teractions). These reflect the complex interplay between environmental
exposures (including lifestyle and diet) and genetic predispositions to
modify disease risk, and could explain why food allergies, like many
other complex diseases, exhibit a heritable component but do not fol-
low Mendel’s laws. Recent studies have shown that gene-environment
interactions may explain a proportion of phenotypic variance.

For example, the GSTP1 [MIM: 134660] NP_000843:p.Ile105Val
polymorphism modifies the effect of air pollution on allergic sensitisation
to inhalant and/or food allergens [194], and the NM_000591:c. 159
CC>TT polymorphism in the CD14 gene [MIM: 158120], which has
an increased protection from eczema with dog exposure [195], could
depend on the microbial stimulation from the environment [195–197].

On the other hand, gene-gene interactions are also likely to contribute
to the complexity of food allergies, where genetic variants in genes
involved (e.g. in the Th2-cell differentiation and signalling pathways) can
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also contribute to the allergic phenotype. A study performed in Germany
with 1,120 children aged from nine to eleven years old genotyped several
polymorphisms in the respective genes of the IL-4/IL-13 pathway. They
observed that combining polymorphisms leads to an increased risk for
asthma and high serum IgE levels, compared with the maximum effect
of any single polymorphism [198].

1.3.11 Epigenetics

Epigenetics mechanisms such as methylation, acetylation, phosphory-
lation, ubiquitylation, and sumoylation play an important role in gene
expression patterns and can be inherited independently of changes in
DNA sequence. An increasing number of studies suggest that allergic
disorders can also be affected by epigenetic regulations. Syed, et al.
[199] found that CpG sites in FOXP3 [MIM: 300292] were differentially
demethylated in children with immune tolerance of peanut allergy com-
pared to children without tolerance. At the same time, Martino et al.
[200, 201] examined DNA methylation profiles in CD4+ T-cells in 24
infants with and without IgE-mediated FA diagnosed at 12 months. The
authors suggested that the allergic phenotype may be affected by dys-
regulated DNA methylation in genes involved in the mitogen-activated
protein kinase (MAPK) cascade during early CD4+ T-cell development.
Therefore, DNA methylation in the regions of genes related to T-cell
differentiation and balance between Th1 and Th2 during the critical
period of early life may be potential mechanisms of allergic disease
development.
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1.3.12 GI food allergies summary

Food allergy is a complex disorder presenting with a wide variety of
phenotypes that make the proper diagnosis and management difficult.
The molecular mechanisms of this disease still remain poorly charac-
terised, and the absence of a suitable treatment also reveals the need for
understanding the molecular mechanism of the disease. This disorder
is likely to be a result of a complex interplay between epigenetics, envi-
ronmental factors and genetics. In order to elucidate the genetics part,
numerous studies have been focused in the study of common variants in
food allergies by GWAS. However, results have been modest so far and
the understanding of the complex biological pathways and mediators
involved remains unknown.

Recent advances in NGS have increased the analysis throughput
while reducing costs, turning it into a candidate technology to pursue
other types of genetic variation of interest to food allergy. Therefore,
when eight affected individuals from seven families with severe GI
food allergy to multiple food proteins where gathered by INCLIVA
research institute (Valencia, Spain), exome sequencing was selected as
technology to investigate the effect of rare variants in the phenotype of
these individuals.

1.4 Clinical case

Eight children from seven families affected with severe GI food allergy
to multiple food proteins were identified. Affected individuals presented
non-IgE mediated allergic responses after the ingestion of most solid
foods since their first year of life. These individuals presented with vom-
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iting, diarrhoea, abdominal weakness and severe pain after the ingestion
of multiple solid foods. Most of the patients had abnormal breastfeeding
and manifested the phenotypes in the first month of life. Due to sever-
ity of the phenotypes, food intolerance was promptly discarded. EoE,
gastritis and Coeliac disease were also discarded for some patients by
endoscopic biopsies. Affected individuals were under examination for
many years without a clear diagnosis. After a long diagnostic odyssey,
the majority of them were diagnosed with severe FPIES (Food Protein-
Induced Enterocolitis Syndrome). These individuals could only be fed
by a Percutaneous Endoscopic Gastrostomy (PEG) or with Neocate, a
hypoallergenic amino acid-based infant formula for the dietary man-
agement of different kinds of allergies. In early adolescence, specific
cases started tolerating some types of aliments. All this together, and
the presence of blood in stools and transition to IgE positivity in some
cases, was consistent with the FPIES diagnosis. However, the phenotypic
presentation of these individuals was somewhat different.

Whereas FPIES is triggered by specific offending foods (e.g. cow’s
milk, soy and rice), these children were symptomatic after the exposure
to multiple types of solid food, triggering similar symptoms of FPIES.
Extreme presentations of suspected FPIES have also been reported,
where individuals were symptomatic with the introduction of most solid
foods [202]. In this work, authors argued that this could be a presumed
severe form of non-IgE mediated food allergy, but it could also represent
a new syndrome. These individuals fulfilled three main criteria: 1)
non-IgE mediated cow’s milk and soy allergy commencing in infancy,
2) asymptomatic on amino acid-based formula, and 3) GI symptoms
(diarrhoea, vomiting, abdominal distension and severe irritability) with
the introduction of a broad range of foods. This criteria was consistent
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with the one our patients presented. Most of them were also males
(87%).

Interestingly, a strong family history of allergic phenotypes was ob-
served in almost all the families, and relatives often presented lactose
intolerance, pollen and food allergies or other diarrhoea issues. Due to
these correlations and the role that genetic factors play in food allergies,
the demand for discovering new genes that may be involved in the patho-
genesis of this disease was raised. Furthermore, because the affected
individuals were very severely affected, they were suspected to harbour
more deleterious variants in candidate genes than individuals mildly
affected. Identification of these genes could help us to understand the
molecular basis of the disease, which is important to perform adequate
diagnosis, and to discover new therapeutic targets.

Given the capacity for discovering genetic variations contributing to
rare diseases and the availability of resources, WES was chosen as first
approach for the study of rare variation in these eight patients with severe
GI food allergies induced by multiple food proteins and their relatives.
This work is the first study of individuals with this phenotype, and
presents potentially interesting results that could allow us to understand
the pathogenesis of this complex disease.



Chapter 2

Hypothesis and Aims

2.1 Hypothesis

The hypothesis of this work are that:

• Rare genetic variants contribute to the development of GI food
allergies induced by multiple food proteins, and these are likely to
be present in coding regions of one or multiple genes.

• Whole-exome sequencing is a powerful technology to investigate
multiple types of genomic variation in these affected individuals.

• Identification and interpretation of these variants in eight severely
affected individuals could facilitate the understanding of its patho-
genesis, hence providing a better diagnosis and management of
other cases affected with this disorder.
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2.2 Aims

The main aim of this work is:

• To characterise the mutational spectrum of seven families affected
with gastrointestinal food allergy induced by multiple food pro-
teins, in order to investigate the role that rare genetic variants may
play in the development of the disease.

The detailed aims of this work are:

• To develop a workflow to process the exome sequencing data from
raw signal to genetic variants, including SNV/indels, CNVs and
HLA haplotypes.

• To assemble a list of candidate genes associated with immunologi-
cal disorders.

• To perform a comprehensive quality control analysis of the data
obtained.

• To identify rare genetic variants and pathways associated with the
disease, and to assess the possible contribution they may have in
the development of gastrointestinal food allergy.



Chapter 3

Methods

In this chapter the recruitment criteria for the affected individuals, as well
as the methods for the WES analysis are described. Because sequencing
was performed in multiples batches, data had to be merged and filtered
in order to remove errors from the sequencing. Therefore, a number of
recommendations that can be used in order to maximise calling of true
sites of variation are suggested. The workflow for the automated analysis
of rare SNVs/indels and CNVs, as well as HLA typing is presented.
Finally, the quality control analysis of the data is also included in the
workflow.

3.1 Patient recruitment

Recruitment was performed by the collaboration between the Genotyping
and Genetic Diagnosis unit of the INCLIVA research institute (Hospital
Clínico de Valencia, Valencia, Spain), Garmitxa association (Basque
Country, Spain), Euskal BioBankoa (Basque Country, Spain) and the
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Institute of Medical and Molecular Genetics (INGEMM, Hospital Uni-
versitario la Paz, Madrid, Spain). The criteria for selecting individuals
for sequence analysis were i) affected individuals had to present with
gastrointestinal food allergy after the ingestion of most solid foods, ii)
no known genetic cause of disease previously identified and iii) family
pedigree had to be available for further study and sequencing.

The cohort consisted of DNA samples from 31 individuals from
seven families, eight of which were affected. Within research ethical
framework (IRAS 03/0/014 and 13/EE/0325) participants, parents or
guardians provided written informed consent to participate in the study.
Family pedigrees are presented in Table 3.1. Individual identifiers were
constituted by the family number followed by the individual identifier
based on the family relationship to the proband. Therefore, affected
probands have the extension 01, then mothers have 02, fathers 03 and
siblings, if present, 04. For larger pedigrees, IDs were given by proximity
of relationship to the proband.
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Table 3.1 Familial pedigree structures. Affected individuals are indicated with a P
(of proband). Sequenced individuals are shown with an asterisk. Individual IDs are
only provided for sequenced individuals.

Family Pedigree structure Relationship
Individual
ID

F01

I-1 Paternal grandfather
I-2 Paternal grandmother
I-3 Maternal grandfather
I-4 Maternal grandmother
II-1 Father
II-2 Mother
III-1 Proband
III-2 Sister

F01_05
F01_06
F01_07
F01_08
F01_03
F01_02
F01_01
F01_04

F02

I-1 Father
I-2 Mother
II-1 Proband
II-2 Sister

F02_03
F02_02
F02_01
F02_04

F03

I-1 Father
I-2 Mother
II-1 Proband
II-3 Half-sister

F03_03
F03_02
F03_01
F03_04

F04

I-1 Father
I-2 Mother
II-1 Proband
II-2 Sister

F04_03
F04_02
F04_01
F04_04

F05

I-1 Father
I-2 Mother
II-1 Proband
II-2 Half-sister

F05_03
F05_02
F05_01
F05_04

Continued on next page
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Table 3.1 – continued from previous page

Family Pedigree structure Relationship
Individual
ID

F06
I-1 Father
I-2 Mother
II-1 Proband

F06_03
F06_02
F06_01

F07

I-1 Father
I-2 Mother
II-1 Sister
II-2 Proband

F07_03
F07_02
F07_01
F07_04

3.2 Exome Sequencing

Exome sequencing is based on the sequencing of millions of short length
reads of DNA, which are enriched for the exome sequence. WES se-
quencing workflow is based on three main steps: library preparation
(from nucleic acid sample), amplification (to produce clonal clusters)
and sequencing (using massively parallel synthesis).

In this study, sample preparation was done using two different pro-
tocols: SureSelectXT Human All Exon V5 + UTRs kit (Agilent Tech-
nologies, Santa Clara, CxA, USA) [203], and Nextera Rapid Capture
Exome kit (Illumina, San Diego, CA, USA) [204], termed later for short
SureSelect and Nextera. Sequencing was performed in three different
platforms (HiScanSQ and HiSeq1500 for Nextera, and HiSeq2000 for
SureSelect), and in order to reach high coverage, seven different batches
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of sequencing for different samples were done, across three different
centres: INCLIVA (Valencia, Spain), Health in Code (HIC, La Coruña,
Spain) and Centre for Genomic Regulation (CRG, Barcelona, Spain).

3.2.1 Sample preparation

The genomic library is formed by genomic fragments of DNA (gDNA)
with the adapters added at the ends of the fragments, ready for further
amplification and sequencing. In order to obtain the libraries, DNA needs
to be fragmented into smaller fragment size (ranged from 200 to 800 bp),
since the platforms that were used here can read sequences until 100-
150 bp of length from both ends of the fragment. Then the sequencing
adapters with the barcodes are added, constituting the genomic library.
Finally, this is enriched for the exome by using probes marked with
biotin, that will hybridise to the complementary DNA, and will then be
captured back using streptavidin beads.

Genomic libraries

gDNA from 31 individuals was obtained from blood extraction using
Chemagen o Maxwell systems following the corresponding protocols,
and quantified with Quant-iTTM PicoGreen® dsDNAAssay Kit (Invitro-
genTM). Measures were done by spectrofluorometer GLOMAX® Multi
Detection System (Promega) following the specifications. All samples
were diluted to start thereby with the DNA recommended by Illumina
(1µg of gDNA for SureSelect and 50ng for Nextera).

Of the seven batches of sequencing performed, five had libraries
constructed with Nextera and two with SureSelect. The main difference
between the protocols is that in Nextera, fragmentation and adapter
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ligation occurs simultaneously since this is mediated by tagmentation
(which involves transposons cleaving and tagging the double-stranded
DNA, with a minimum distance of 300 bp) (Figure 3.1 A).

Instead, SureSelect protocol needs the gDNA to be fragmented, ends
repaired and adapters ligated in different steps (Figure 3.1 B). Here,
Covaris S220 technology, a focalized utrasonicator, was used to fragment
the DNA. Settings were as recommended by Illumina, and fragmentation
was done making 200-300 bp length fragments of DNA (Figure 3.1 B-A).
After fragmentation, an End-Repair Mix with a 3’ to 5’ exonuclease was
used to remove the 3’ overhangs and the polymerase activity filled in the
5’ overhangs (Figure 3.1 B-B). Then, a single ’A’ nucleotide was added
to the 3’ ends of the blunt fragments to prevent them from ligating among
themselves during the adapter ligation reaction. A corresponding single
’T’ nucleotide on the 3’ end of the adapter provides a complementary
overhang for ligating the adapter to the fragment. This strategy ensures a
low rate of chimera (concatenated template) formation (Figure 3.1 B-C).
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Fig. 3.1 Library preparation steps. (A) Schema of Nextera one-step protocol. (B)
Schema of SureSelect four-step protocol.

The adapters, that are required for both SureSelect and Nextera
protocols, are formed by different sequences, important for posterior
steps during the sequencing:

• P5 and P7 are primers that contain an attachment site to the flow
cell.

• Rd1 SP and Rd2 SP are complementary to the primers that start
the sequencing of the fragment.
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• Index: is a unique identifier of 6 bp for each sample. It allows
multiplexed sequencing, running multiple individual samples in
one lane. After the sequencing, all the reads are mixed together,
and they will be separated (demultiplexed) by sample using this
unique identifier.

Different combinations of indexes were used for each sample, fol-
lowing the Illumina recommendations. The genomic library was finally
enriched by PCR for those fragments that have adapter molecules on both
ends. The PCR was performed with a PCR primer cocktail that anneals
to the ends of the adapters, following the instructions from the manufac-
turer. This final mixture contained the genomic library, amplified and
ready for enrichment.

Exome enrichment

Target enrichment was performed with SureSelect and Nextera. Specifi-
cations for targeted regions are shown in Table 3.2.

Nextera and SureSelect systems use different types of baits for en-
richment. SureSelect uses biotinylated cRNA baits, and Nextera uses
biotinylated DNA baits to capture known coding DNA sequences (CDS)
from the NCBI Consensus CDS Database, as well as other major RNA
coding sequence from databases like miRbase (microRNA database from
Sanger institute). Genomic libraries were hybridised with these biotiny-
lated baits, complementary to CDS. The captured sequences were then
enriched with streptavidin-conjugated paramagnetic beads and further
amplified before being subjected to Illumina sequencing (Figure 3.2).
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Table 3.2 Enrichment set characteristics

SureSelect Nextera

Target size 75 Mb 62 Mb

Number of exons 359,555 201,121

Overall workflow 1.5 days 1.5 days

Genomic DNA input 1 µg 50 ng

Adapter ligation Ligation Transposase

Baits Biotinylated cRNA Biotinylated DNA

Expected on-target reads >80% >70%

The size of the DNA fragments was checked throughout the protocol
procedure, using a capillary electrophoresis gel technology (QIAxcel
DNA Screening Kit from QIAxcel (Qiagen)), since it is more sensitive
than traditional agarose gel method.
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A)

B)

C)

D)

Fig. 3.2 Exome enrichment steps. (A) Denaturalization of double-stranded DNA
library (for simplicity, adapters and indexes are not shown); (B) Hybridisation of
biotinylated probes to targeted regions; (C) Enrichment using streptavidin beads; (D)
Elution from beads.

3.2.2 Clonal amplification

Prior to sequencing, single-molecule DNA templates were bridge ampli-
fied to form clonal clusters inside the flow cell. Clonal amplification for
each single-molecule DNA was performed with the cBOT system from
Illumina (San Diego, CA, USA). Essentially, clonal amplification has
three steps:

1. Immobilisation of single-molecule DNA templates: hundreds of
millions of templates are hybridised to the flow cell surface and
copied using a DNA polymerase. The original templates are de-
natured, leaving the copies immobilised on the flow cell surface
(Figure 3.3-A).
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2. Isothermal bridge amplification: immobilised DNA template co-
pies are then amplified by isothermal bridge amplification to create
millions of individual, dense clonal clusters containing ∼2,000
molecules (Figure 3.2-B).

3. Linearization, blocking, and primer hybridisation: each cluster of
double strand DNA bridges is denatured, and the reverse strand is
removed, leaving only the forward DNA strand. The sequencing
primer is hybridised to the complementary sequence on the Illu-
mina adapter, and this is ready to be sequenced. At this point the
flow cell contains >200 million clusters with ∼1,000 molecules/-
cluster (Figure 3.2-C).

Fig. 3.3 Cluster generation. Cluster generation from single-molecule DNA templates
occurs within the sealed Illumina flow cell on the cBOT instrument, and involves
immobilisation and 3’ extension, bridge amplification, linearization, and hybridisation.

3.2.3 Sequencing

Posterior to the clonal amplification, sequencing of 100bp paired-end
reads was carried out on different Illumina HiSeq systems. Illumina
sequencers are based on Sequencing By Synthesis (SBS) technology, that
uses four fluorescently labelled nucleotides with reversible terminators
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[205] to sequence the tens of millions of clusters on the flow cell surface
in parallel. During each of the 100-150 sequencing cycles, a single
labelled deoxyribonucleoside triphosphate (dNTP) with reversible termi-
nator is added to the nucleic acid chain. If the nucleotide is incorporated,
it acts as a terminator for polymerisation, and the fluorescent dye is im-
aged to identify the base and then the terminator and the fluorescent tag
are cleaved enzymatically to allow incorporation of the next nucleotide.
Base calls are made directly from signal intensity measurements during
each cycle. (Figure 3.4).

Fig. 3.4 Sequencing by synthesis. Each dNTP has a corresponding fluorophore
attached to it. When the DNA polymerase elongates the strand with a fluorescently-
labelled dNTP, the clusters are then excited by a light source and the colour is recorded
by an optical detector. After incorporation occurs, the fluorophore is cleaved, unblock-
ing for the next nucleotide to be incorporated in the next cycle. Since each cycle
one permits the elongation of a single dNTP at a time, homopolymers are determined
precisely.

3.3 Data processing

The first computational step entails the conversion of the raw data (flu-
orescent signal) into nucleotide bases. This process is termed "base
calling" and, as mentioned above, it occurs in the sequencing machine.
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The output are the sequenced reads in a text file. A general workflow
for variant discovery is based on the alignment of these reads to the
genome of reference and the subsequent identification of those positions
that differ from the reference which will be called as variants. Variants
are then annotated with additional information and filtered by different
criteria for further investigation. In order to carry out this analysis, a
customised workflow was developed to perform an automated analysis
of the data, using a specific selection of the most suitable algorithms.
In this pipeline, the Genome Analysis Toolkit (GATK, Broad Institute)
Best Practices recommendations [206] were followed, using multiple
programs and custom scripts. All the programs and commands used are
publicly available in GitHub (http://github.com/alsanju/wes-pipeline).
A schema with more detailed information of the workflow, that will be
explained in this section, is shown in (Figure 3.5).
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3.3.1 Image analysis and demultiplexing

Illumina sequencing instruments generated per-cycle BCL basecalled
files as primary sequencing output, which were converted to FASTQ
files by the software bcl2fastq (Illumina, San Diego, CA, USA). This
also performed the demultiplexing, where samples were separated into
individual ones by their specific indexes (the 6 bp sequences that were
in the adapter, and were unique for each sample).

FASTQ files store the sequences and their corresponding quality
scores, encoded as a single ASCII character for pairing the array of
letters with the array of its qualities. These files use four lines per
sequence, as shown in Figure 3.6.

Identifier	
Sequence	

‘+’	sign	
Quality	scores	

Fig. 3.6 FASTQ file format. Shows the information for one read in a FASTQ file: first
line is the read identifier, second line is the read sequence, third line is the ’+’ sign and
fourth line are the quality scores for each of the bases in line two.

3.3.2 Alignment

The sequencing reads were aligned to the human genome reference
sequence (with decoy, hs37d5), based on the GRCh37 assembly, us-
ing Burrows-Wheeler Alignment (BWA) tool [207]. The decoy human
genome integrates the reference sequence of the GRCh37 primary assem-
bly (chromosomal plus unplaced contigs), the revised Cambridge Refer-
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ence Sequence (rCRS) mitochondrial sequence (AC:NC_012920), Hu-
man herpesvirus 4 type-1 (AC:NC_007605) and the concatenated decoy
sequences (concatenated sequences with 20 "n" bases filled between adja-
cent sequences) (ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
phase2_reference_assembly_sequence/hs37d5.fa.gz). Therefore, when
doing the alignment against the decoy genome as a reference, some
reads will quickly find a very confident alignment in the decoy, avoiding
countless compute cycles spent trying to Smith-Waterman align it to
someplace it doesn’t belong. This results in a significantly higher speed
of the alignment step.

After the alignment step, the output are BAM files, the compressed
binary version of the Sequence Alignment Map (SAM) format, a compact
and index-able representation of nucleotide sequence alignments. They
had information for the coordinates of the mapped read, as well as for
the read quality, length, read group, flow cell and library information
among others (Figure 3.7).

Flags	 Chr	 Start	
MAPQ	

CIGAR	
Mate	information	

Read	sequence	Read	name	

Metadata	Quality	scores	

Fig. 3.7 BAM file format. For one read, the following information appears in the
BAM file: the read name, flags, chromosome, start position of the alignment, mapping
quality, CIGAR string, information about the mate, the actual read sequence, quality
scores and metadata that contains additional information about the read.

The resulting BAM files needed to be processed. First, BAM files
were sorted and merged by sample using Samtools (a suite of programs

ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
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for interacting with HTS data), options sort and merge respectively. How-
ever, because samples had been sequenced in different lanes/runs/centres
and by different staff, they were merged after a relatedness analysis
corroborated the identity of each sample, avoiding possible labelling
mistakes or sample swaps while processing the sequencing libraries. The
methods for the relatedness analysis are next described in Section 3.4.3.
Duplicates can arise during PCR amplification steps, incorrectly detected
as multiple clusters by the optical sensor of the sequencing instrument.
These duplication artefacts were flagged and taken into account for fu-
ture steps using Picard tool (option MarkDuplicates) which locates and
tags duplicate reads in a BAM file.

Afterwards, IndelRealignment was also used to perform a local re-
alignment of specific reads to minimise the number of mismatching
bases. This two-step indel realignment process first identifies such re-
gions where alignments may potentially be improved (which are those
with indels or repetitive regions), then realigns the reads in these regions
using a consensus model that takes all reads in the alignment context
together.

Lastly, the quality base score was recalibrated by adjusting the phred
quality scores (quality of each base that has been read by DNA sequencer
machine) to be more accurate, using GATK recommendations, as spec-
ified in the workflow. All commands used are publicly available in
GitHub (http://github.com/alsanju/wes-pipeline).
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3.3.3 Variant calling and annotation

SNVs and indels

Variant calling was performed to identify the sites where there was
variation respect to the reference genome, then presented in VCF format
(Figure 3.8). The calling depends heavily on accurate mapping to the
reference genome, and is accomplished by statistical modelling methods
that are optimised to distinguish genuine variation from sequencing
errors [208]. One such improvement was the incorporation of a level of
uncertainty for calling a genotype at a specific position, rather than just
simply determining the genotype based on read counts.

The average error rate of NGS per single read is reported to be 0.1%
per nucleotide, most of which are single nucleotide substitutions [209].
This is higher than the error rate of Sanger sequencing, that can read
lengths of up to ∼1,000 bp at a per-base accuracy of 99.999%. As
these errors are mainly random, the problem is usually attenuated by
sequencing at a high depth. This was approached by the design of this
study, which aimed for a high coverage (>= 50x/sample), and by down-
stream QC of variants and samples. Additionally, joint variant calling
was performed using GATK HaplotypeCaller [206], which calculates
the likelihoods of each possible genotype, and selects the most likely by
applying a Bayesian model.

HaplotypeCaller is one of the best-established tools for calling SNVs
and indels, and was the one used in this workflow [206]. This has
two separate steps: per-sample calling and genotyping across samples.
HaplotypeCaller runs first on each sample separately in gVCF mode, to
produce an intermediate file format called gVCF (for genomic VCF). A
gVCF is similar to the VCF format, so that the basic format specification
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is the same, but a genomic VCF contains not only the sites with variation
but also extra information with all sites with no variation, allowing to
differentiate homozygous reference positions from no calls. A gVCF
therefore has records for all sites, whether there is a variant call there
or not. It contains information for the coordinates of the variant, the
reference and alternative alleles, and genotype quality scores (Figure
3.8).

Chr	 Position	 Reference	 Alternate	 Quality	 Metadata	
ID	

Format	 Sample	info	

Fig. 3.8 VCF file format. In the variant call format file, there is an entry per variant
called. For each variant, there is information for: chromosome, position, identifier
(if the variant already has been reported), reference allele, alternate allele, quality
information, metadata, format and sample information, which includes, among others,
genotype and PL values (probabilities of the variant for being homozygous for the
reference allele, heterozygous, or homozygous for the alternate allele).

The gVCFs of multiple samples are then run through a joint genotyp-
ing step using GenotypeGVCFs, to produce a multi-sample VCF callset,
which can then be filtered to balance the sensitivity and specificity as
desired. The multi-sample joint calling merges the records at each posi-
tion of the input gVCF, producing correct genotype likelihoods. It also
resolves the so-called N+1 problem. The N+1 problem occurs when
a large number of samples sequenced in different batches is obtained.
When new sample/s sequence are included, if a true joint analysis is de-
sired, the re-call of all samples from scratch would need to be performed
every time. Running HaplotypeCaller on each sample separately and



80 Methods

then performing a joint genotyping by family scales better and resolves
the problem.

After the variant calling, the GATK Best Practices suggest perform-
ing a variant quality score recalibration to filter the variants and identify
annotation profiles of variants that are likely to be real. However, this
step was not performed in this workflow since this method requires a
large callset (and there were only 31 samples included in this study).
The number of variants identified at this point depends on many fac-
tors, but it can range from 10,000-50,000 variants in exome sequences.
While these numbers represent a challenge in interpretation, there are
several biological annotations that are normally added at this stage to
facilitate downstream genetic analyses and extract meaningful biological
information from the data itself.

Functional-based annotations determine the effect of a variant on the
transcript/s and encoded protein/s, based on the resulting amino acid
change. For this, Variant Effect Predictor (VEP) version 88 [210] was
used, providing well-defined terms for each variant (Figure 3.9).



3.3 Data processing 81

Fig. 3.9 Functional consequences at the protein level. The diagram illustrates the
functional terms given by VEP tool. Detailed descriptions of each term are represented
in: http://www.ensembl.org/info/genome/variation/predicted_data.html.

Annotation of deleteriousness of changes on the resulting protein
can also be done, taking into account sequence conservation in homolo-
gous sequences (eg. SIFT, CADD) or structural properties, such as the
impact in the tri-dimensional protein structure (e.g. PolyPhen). Finally,
annotation with allele frequency information from population databases
is a crucial step to differentiate between common and rare/ultra-rare
variation. A list of the sources for variant annotation used in this study is
represented in Table 3.3.

Copy Number Variants

Copy number changes (deletions and duplications) were detected based
on the read depth using the eXome Hidden Markov Model (XHMM)
program [100]. Because CNV detection from WES data is challenging
due the variable coverage across the genome, only samples with an
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Table 3.3 Annotation sources

Source Description

SIFT

Predicts whether an amino acid substitution affects protein
function based on sequence homology and the physical
properties of amino acids. Substitutions with a score <
0.05 are called ’deleterious’ and all others are called ’tol-
erated’. Version: sift5.2.2

PolyPhen

Predicts possible impact of an amino acid substitution
on the structure and function of a human protein using
straightforward physical and comparative considerations.
Values nearer one are more confidently predicted to be
deleterious. Version: 2.2.2

CADD

Tool for scoring the deleteriousness of single nucleotide
variants as well as insertion/deletions variants in the hu-
man genome [211]. It uses many different annotations
for its combined score. A scaled C-score of greater of
equal 10 indicates that this variant is predicted to be the
10% most deleterious substitutions that you can do to the
human genome, a score of greater or equal 20 indicates
the 1% most deleterious and so on. Version: v1.4

Minor Allele Fre-
quencies

Data for existing variants from major genotyping projects:
1000 Genomes Project: contains variation and genotype
data from 1000 individuals from different ancestries (Ver-
sion: phase3). NHLBI-ESP: well phenotyped populations
from the United States of more than 200,000 individuals
with different disorders (Version: 20141103). gnomAD:
resources of sequencing data from 123,136 exomes and
15,496 genomes from unrelated individuals sequenced as
part of various disease-specific and population genetic
studies (Version: r2.0.2) [26]

ClinVar

Archive of human variations and phenotypes, with sup-
porting evidence. It allows identification of variants previ-
ously that have been reported as associated with disease.
Version: 20170530

GTEx

Resource of tissue-specific gene expression and regulation
data from 53 non-diseased tissue sites across nearly 1000
individuals. Version used: GTEx Analysis Release V7
(dbGaP Accession phs000424.v7.p2)
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average coverage higher than 80x were considered for this analysis
(23 individuals). The key steps in running XHMM include 1) running
coverage calculations from alignment files, 2) data normalisation, 3)
CNV calling and 4) statistical genotyping.

XHMM relies on read depth as the sole source of information on
CNV events, ignoring split read and read pair information. To handle
normalisation, it creates a matrix of the depth of all exons in all samples,
and the principal components of this matrix are expected to capture
many of the non-CNV factors that affect an exon’s read depth. XHMM
performs better in detecting rare CNVs, whereas common CNVs may go
undetected since they are present in the reference samples used for PCA.

After normalisation, XHMM calls CNVs using a Hidden Markov
Model (HMM). HMM is based on the fact that (sufficiently large) CNVs
will affect a whole contiguous swath of exons, so the probability of
an exon to be deleted/duplicated would be considerably higher if the
neighbour exon is (Figure 3.10). M. Fromer et al. previously described
how to run XHMM [107], and this script was implemented in the pipeline.
This sofware was selected because its has been largely implemented to
study CNVs in 60,642 individuals [212], which data was used to annotate
the variants obtained in this study.
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Fig. 3.10 XHMM strategy. Hidden Markov models rely on probabilities of transitions
between states, and the XHMM needs just two quantities from which to base all of
its probabilities. p is the rate of exonic CNVs, and q is the reciprocal of the average
CNV length (number of exons). From http://www.cureffi.org/2014/01/17/comparison-
of-tools-for-calling-cnvs-from-sequence-data.

HLA typing

HLA haplotypes were inferred using HLA*PRG [112]. HLA*PRG
addresses the unique challenges of calling HLA haplotypes by aligning
reads from the HLA genes to a Population Reference Graph (PRG) of the
HLA genes and then evaluating the graph-aligned reads in a likelihood
framework. A PRG is a graphical model for genetic variation, where
alternative alleles, insertions and deletions are represented as alternative
paths through the graph [213]. The reads from the HTS that are likely to
arise from the HLA region are mapped directly to the graph structure,
thus enabling the identification of the greatest continuity along a path
(Figure 3.11). This step is very expensive computationally and needs
70-80GB of memory per sample.
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Fig. 3.11 Schematic HLA type inference. The aligned sequence of the read is dis-
played below the PRG, and the alignment path is highlighted. The red component
of the alignment path corresponds to the exact-match component of the alignment,
whereas the yellow components correspond to those components of the alignment
where mismatches are allowed. From [112]

Each HLA allele name has an HLA prefix followed by the gene, a
separator and a unique number corresponding to up to four sets of digits
separated by colons (Figure 3.12). The digits between the separator
and the first colon describe the type, which often corresponds to the
serological antigen carried by an allotype (allele of the antibody). The
next set of digits provide information about the subtypes, synonymous
nucleotide substitutions and non-coding substitutions in the third and
fourth set of digits respectively.

Fig. 3.12 Nomenclature for factors of the HLA system. Each allele name has a
unique corresponding set of numbers and letters. HLA prefix is followed the by
HLA gene before the separator. Then, the different fields are comma separated.
First appears the allele group, followed by the specific protein, synonymous sub-
stitutions within the coding regions, and differences in a non-coding region. Source:
http://hla.alleles.org/nomenclature/naming.html
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Here, Sequence Based Typing (SBT) was carried out at 6-digit "G"
resolution (three sets of digits). Only sequences of the exons encoding
the peptide binding groove - exons two and three of the class I genes
(HLA-A, -B, -C), and the exon two of the class II genes (HLA-DQA1,
-DQB1, -DRB1, -DRA1, -DPB1) - were considered. In order to get good
quality HLA types, HLA*PRG was run on samples with an average
coverage greater than 80x (23 individuals). In order to perform later an
association test, HLA typing was also done on 120 internal controls with
no reported food allergy.

3.4 Quality control

Before starting with the variant interpretation, a series of quality control
(QC) assessments were performed at different stages of the analysis, to
make sure the sequencing data were of high quality. Because in this study
samples were recruited at different times by different centres, involving
multiple associated staff performing independent data collection, there
was a need to perform exhaustive quality control of the genomic data.

3.4.1 Assessing sequencing quality

Quality of the sequenced samples was assessed by detecting: 1) the per
base quality, 2) exome coverage, 3) the ratio of transitions (interchanges
of two-ring purines (A G) or pyrimidines (C T)) to transversions (inter-
changes of purine for pyrimidine bases) (Ts/Tv ratio), and 3) the number
of variants called.

The per base quality was obtained running FastQC software on the
FASTQ files. Additional information such as read length distribution
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and GC content of the sequences was also obtained by this software
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc).

Alignment performance was checked using different mapping statis-
tics (such as percentage of mapped reads, or percentage of properly
paired reads) obtained from the BAM files using Samtools stats option.
Samtools was also used to calculate coverage in the exome, with the
depth option. Variant evaluation metrics were obtained using CollectVari-
antCallingMetrics tool from Picard, which calculates general statistics,
such as the number of SNPs and indels, and the Ts/Tv ratio.

3.4.2 Computation of genomic sex

Genomic sex was estimated from the BAM files. For each sample and
chromosome, the number of aligned reads (obtained running Samtools
idxstats option) was normalised by dividing them by the number of bases
which are non-N in the reference genome. The X/Auto and Y/Auto ratios
were defined as the normalised read counts on X and Y divided by the
median of the normalised read counts on the autosomes (Auto).

Females should have higher X/Auto ratio (theoretical 1) than males
(theoretical 0.5), and males should present with higher Y/Auto (theo-
retical 0.5) than females (theoretical 0). Here, it was established that if
the X/Auto – Y/Auto was higher than 0.5, the sample was deemed to be
female; if smaller, it was deemed to be male.

3.4.3 Inferring relatedness status

Genetically inferring the relatedness status is important for multiple
reasons. First, it is used as a QC before merging data from different
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Table 3.4 Kinship coefficients. Theoretical value and observed range of kinship
coefficients per relationship type. MZ=monozygotic.

Relationship Theoretical Value Range

MZ twins / Self 0.5 >0.354

1st Degree 0.25 [ 0.177, 0.354 ]

2nd Degree 0.125 [ 0.0884, 0.177 ]

3rd Degree 0.0625 [ 0.0442, 0.0884 ]

lanes/runs/centres, to confirm sample identity. Second, checking family
relationships facilitates the identification of any discrepancies. And third,
the presence of consanguinity needs to be determined, since offspring
of related parents will present a higher number of homozygous variants
[214].

To obtain kinship coefficients and relationships, the method of Mani-
chaikul et al., [215] was used. This implements the same algorithm
used in KING (a toolset to explore genotype data from a genome-wide
association study (GWAS)), and works in a fast and robust manner for
pedigrees with WES data. The input was the merged VCF file, and the
output was a relatedness2 file with the kinship coefficient (relatedness
phi) each sample comparison. This coefficient value changes for the
different relations between individuals as follows (Table 3.4).

3.4.4 Inferring ancestry origin

Ancestry origin of a sample can lead to different genomic metrics. For
example, individuals with African ancestry have higher number of vari-
ants compared to individuals with European genetic background, due to
the higher genetic diversity across African genomes [216].
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The genetic background of the individuals was inferred to check
if the samples were genetically homogeneous and to asses to which
ancestries they were more similar. This information was used to interpret
variants using specific population allele frequencies. For that, assessment
of the ancestry origin of each individual was done using the R package
EthSEQ [217]. EthSEQ categorises each individual in a VCF file into
European, African, East Asian or South Asian ancestries. As input the
tool requires a merged VCF file of individuals with unknown ethnicity
and a reference model (genotype data at SNPs positions for a set of
individuals with known ethnicity, obtained from 1000 Genome Project).

EthSEQ first builds a reference model from 1,000 Genome Project
individual’s genotype data for which ethnicity is known at 4,561 SNPs
positions for the Exome dataset. Then, a target model is similarly created
for the individuals with unknown ethnicity. Principal component analysis
(PCA) is next performed using SNPRelate R package on aggregated
target and reference models genotype data. The space defined by the first
two PCA components is then inspected to generate the smallest convex
sets, identifying the ethnic groups described in the reference model and
next to annotate individuals with unknown ancestry origin.

3.5 Variant interpretation

Variant interpretation is one of the most challenging steps, where patho-
genic mutations have to be identified among thousands of non-pathogenic.
Here, different strategies were applied depending on the type of variants.
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3.5.1 SNVs and indels

The merged VCF file was uploaded to Genome MINIng (GEMINI)
framework, version 0.19.1 [218], along with a pedigree file (tabular file
describing meta-data about the samples and their relationship). GEMINI
stores all the information in a portable SQLite database, allowing easy
exploration of the data.

Single nucleotide variants (SNVs) and indels variants were filtered
by rare frequency, MAF <= 0.01 in control datasets (gnomAD). Next,
a filter by consequence in the protein was applied. The consequences
considered to have a functional effect in the protein were defined as any
that fell in the following consequence classes: transcript ablation, splice
acceptor variant, splice donor variant, stop gained, frameshift variant,
stop lost, start lost, transcript amplification, inframe insertion, inframe
deletion, missense, variant, and splice region variant. Candidate disease
causing mutations were then identified using two different strategies
(Figure 3.13).
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All variants

Consequence

MAF <= 0.1 
in gnomAD

Deleteriousness 
score or pathogenic 

in ClinVar

Mode of inheritance Gene list

Manual evaluation Manual evaluation

Fig. 3.13 Filtering strategy used to identify candidate variants.

1) Variants in genes that followed a Mendelian mode of inheritance
(MOI). This focused on identification of variants that were in biallelic
status (either autosomal recessive or compound heterozygous variants),
X-linked recessive (XLR, where the mother was heterozygous and the
affected male individual was hemizygous) or de novo (present in the
child but not in the parents).

2) In order to consider variants in genes that did not follow a Mende-
lian model (due to eg. incomplete penetrance, polygenic traits), those
present in a list of candidate genes previously associated with immune
system disorders were considered. The gene list was assembled from
literature searches for allergy and immunodeficiency, as well as associ-
ated Human Phenotype Ontology (HPO) terms (accessed March 2018),
comprising a total number of 1,346 genes. The distribution of HPO
terms is shown in Figure 3.14. The gene list is listed in Appendix.
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Fig. 3.14 Gene list. Heatmap of the HPO terms distribution of genes included in
the gene list. Data accessed on March 2018. Manual=genes included from literature
searches.

Due to a large number of candidate variants, stricter filters were
applied in this case. Only mutations with high predicted deleterious
score (CADD phred >= 20) or that had been previously reported as
pathogenic in ClinVar were kept.

3.5.2 Copy Number Variants

The large number of CNVs were filtered by quality to get those that have
a high probability to be real, as previously recommended [107]. CNVs
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were also filtered by internal overlap removing those that occur in more
than 10% of all samples in our cohort (a relatively liberal frequency
threshold to remove only common CNVs and artefacts). IntersectBed
function from Bedtools toolset was used to get the number of overlapped
samples, requiring a reciprocal 50% of overlapping.

Lastly, CNVs were annotated with gene information from Ensembl
(http://www.ensembl.org), in order to identify which genes were present
within each structural variant. Due to the high number of false positive
CNVs obtained from WES analysis, three situations were considered:
CNVs only present in the proband (de novo), CNVs in genes from the
gene list, and CNVs overlapping genes that had a candidate variant
from the SNV/indel analysis. All of these were carefully evaluated and
inspected using Integrative Genomics Viewer (IGV) [219].

3.5.3 HLA typing

Results from the HLA typing were analysed with PyHLA [220]. PyHLA
is a tool for the association analysis between diseases and HLA types
inferred from NGS data. It detects HLA association in antigen (two-
digit allele level), protein (four-digit allele level) and amino acid levels.
Zygosity tests examine monoallelic and biallelic zygosity associations.





Chapter 4

Results

4.1 Patients and phenotypes

A total number of 31 individuals from seven families with eight af-
fected children were enrolled in this study. All the affected individuals
presented severe gastrointestinal (GI) food allergies to multiple food pro-
teins, and the majority of them had been diagnosed with severe FPIES.
Allergic responses after the ingestion of most solid foods included vomit-
ing, diarrhoea, abdominal weakness and severe pain since their first year
of life. Seven of the eight affected individuals were males (87%). All
members were part of the Garmitxa association (http://garmitxa.org/es),
founded by the parents of these children. Phenotypic information was
collected and is presented in Table 4.1.
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4.2 Quality control

Overall, the data generated were of high quality. Sequencing was done
by three different centres, in seven batches, using two different platforms
and pulldown arrays. Therefore, a thorough quality control analysis was
performed.

4.2.1 Per base quality

Median quality score by position in the read sequenced was analysed for
the seven different batches of sequencing. The sequencing quality score
of a given base (Q), is defined by the phred quality score [221, 222] in
the following equation:

Q =−10log10(e)

Where e is the estimated probability of the base call being wrong. A
higher Q score means a smaller probability of error. For example, a qual-
ity score of 20 represents an error rate of 1 in 100, with a corresponding
call accuracy of 99%.

FastQC was used to obtain per base quality scores for each batch
of sequencing (Andrews S. (2010), available online at: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). In Figure 4.1 it is shown
that all batches of sequencing had good median quality scores (over 25,
as recommended by FastQC). However, quality of the INCLIVA batch
was not only lower than the others, but also had higher dispersion. This
is because the platform used for this batch was HiScanSQ while the
others were HiSeq1500 and HiSeq2000, that have higher throughput and
sequencing quality.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Additionally, the relative lower quality of the first eight bases was
due to technical reasons, since the first cycles of sequencing are used
for cluster calling and for establishing metrics (that are used to correct
subsequent calls), as well as by possible artefacts due to non-random
fragmentation performed during the sample preparation. Otherwise,
quality scores behaved as expected.

Fig. 4.1 Quality score results. Data obtained for each batch of sequencing using
FastQC. A threshold of 25 (horizontal grey line) was set to determine good quality
scores.

4.2.2 Coverage

The coverage distribution of the exome was compared across the dif-
ferent samples. There were three major groups: individuals that had
been sequenced only with Nextera at INCLIVA and HIC centres (IN-
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CLIVA_HIC), individuals sequenced only with SureSelect at CRG, and
individuals sequenced at both centres with both sets.

As expected, those that were only sequenced with Nextera (IN-
CLIVA_HIC) had lower coverage since the amount of Giga bases (GB)
sequenced by sample was lower due to technical reasons (sequencing
with HiScanSQ or HiSeq 1500, which have lower throughput) and ex-
perimental limitations (lower coverage in general aimed by sample).
Additionally, the HiScanSQ machine was at the end of its life span, also
explaining the lower amount and poorer quality of data produced. This
is shown in Figure 4.2. INCLIVA_HIC sequenced individuals had a
minimum coverage of 20x for 50% of the exome, while those that were
sequenced at CRG or both had 90% of the exome at a minimum coverage
of 20x.

Fig. 4.2 Coverage results. Percentage of exome covered at a minimum depth. Each
line is a sample. Colours are shown by centre of sequencing.
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While coverage for clinical WES has to be higher than 80-120x,
research WES is endorsed to be performed at a minimum coverage of
20-30x for accurate detection of variants [223, 224]. In this project, eight
individuals had lower coverage, with only the 50% of the exome at a
minimum coverage of 20x: F01_04, F01_05, F01_06, F01_08, F02_01,
F02_02, F02_03 and F02_04, although only one (F02_01) was an af-
fected individual. The consequence of lower coverage is an increased
number of false negatives, as well as false positives due to bad mapping
and wrong calling, that difficult variant filtering and interpretation. This
was taken into account when performing analysis of these individuals.

4.2.3 Variant metrics

The number of variants that are identified in exome sequencing studies
varies greatly, depending on the exome enrichment set used, the coverage
reached, the sequencing platform and the algorithms used for mapping
and variant calling. Here, the number of total variants detected per
sample was compared by enrichment set used: Nextera and SureSelect.
The median number of variants called per sample and enrichment set
were 102,630 SNVs and 14,241 indels with Nextera, and 136,073 SNVs
and 23,589 indels with SureSelect. The number of variants were similar,
although slightly higher with SureSelect (Figure 4.3 A-B).

When only considering high quality variants (defined by depth and
mapping quality higher than 20), the median number of SNVs (42,444)
and indels (4,171) identified with Nextera were much lower than the
median number of SNVs (103,021) and indels (15,181) identified with
SureSelect (Figure 4.3 C-D). These numbers were within the expected
range seen in other exome studies [225–227], and were also consistent
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with the fact that i) SureSelect enrichment kit contains more regions than
Nextera, including UTR regions and miRNAs, and ii) SureSelect variant
calls were more reliable and had better quality due to a higher coverage.

Additionally, it has been seen that SureSelect outperforms Nextera
in coverage uniformity, quality of the mapping and variant calls, exome
capture rates and low PCR duplicate rates [228, 229]. The results shown
in Figure 4.3 supported this, where the the number of raw SNVs/indels
was comparable between both capture methods, but was higher for
SureSelect calls when considering high quality variants only.
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A B

C D

Fig. 4.3 Number of variants per sample and enrichment set. Number of variants
are coloured by region, depending on if they are located in the regions present in both
enrichment sets (blue) or in the unique ones (red). A) Total number of SNVs called. B)
Total number of indels called. C) Number of SNVs passing QC called. D) Number of
indels passing QC called. PASS=variant with depth and mapping quality higher than
20

The transition/transversion (Ts/Tv) ratio is also a useful metric be-
cause, in nature, transitions (A<-> G and C <-> T) occur much more
often than transversions (A <-> C, A <-> T, G <-> C or G <-> T). For
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exome datasets, the ratio should be a little above 2.0 [225]. Here, the
ratio obtained in average were 2.32 for SureSelect samples and 2.37 for
Nextera, as expected (Figure 4.4-A).

The heterozygosity to non-reference homozygosity ratio (Het/Alt)
is another quality control parameter for DNA sequencing. For genome se-
quencing data, this ratio should be around 2.0 for variants in Hardy–Weinberg
equilibrium, and little below for exome sequencing. In this case, the
average Het/Alt obtained was 1.8, close to the expected value [230]
(Figure 4.4-B).

A B

Fig. 4.4 Ts/Tv and Het/Alt ratios. A) Transitions to transversions ratio (Ts/Tv) per
sample and enrichment set. B) Heterozygous to homozygous (alternative allele) ratio
per sample and enrichment set.

Overall, a total number of 293,092 SNVs and indels, with an average
coverage and mapping quality across the 31 individuals higher than 20,
were called for all samples. Of these, 70,443 were rare (MAF <= 0.01 in
gnomAD).
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A B

Fig. 4.5 Number of variants per chromosome. A) Number of variants per chromo-
some. B) Number of variants normalised by coding base pairs in each chromosome.

The number of variants per chromosome is represented in Figure
4.5-A. This was normalised by the number of exonic base pairs by
chromosome (Figure 4.5-B). A uniform distribution of the number of
variants was observed for the autosomal chromosomes, but not in the
chromosome X. This is consistent with previous results [231], where it
has been observed that the number of genes constrained for LOF variants
is higher on chromosome X, so rare variants, which are more likely
to have a moderate or high effect, are less likely to be found on that
chromosome.

4.2.4 Ancestry origin

The ancestry origin of each individual was determined using the R
package ’EthSEQ’ [217]. This performed a principal component analysis
(PCA) on the 31 individuals, and placed them into a reference PCs,
space constructed from the reference model (individuals from the 1000G
project, with known ancestries). PCA analysis revealed that all the
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samples were of European ancestry (Figure 4.6). Therefore, European
MAF was used later for filtering rare variants.

Fig. 4.6 Ancestry origins. PCA results from the ancestry analysis performed on the
31 individuals. The black dots represent individuals in this study.

4.2.5 Relatedness status

Relatedness between individuals was estimated using KING: Kinship-
based INference for Gwas [215]. This was performed at a library level,
and samples prepared with Nextera and SureSelect enrichment sets
were compared amongst themselves, to not only confirm relatedness
between individuals, but also to confirm self-identity (defined by PHI
score of 0.5). This analysis is of especial importance when data has been
prepared in different laboratories, using different methodologies and
platforms. Therefore, the KING analysis was performed on the VCFs
obtained from individual BAM files, before being merged by sample.
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The kinship coefficient obtained was compared to the expected kinship
for all individuals, and observed to correspond as expected (Figure 4.7).
No consanguinity was identified in any of the families, and all them
confirmed self-identity.

Fig. 4.7 Kinship coefficient results. Heatmap representation of the phi scores obtained
from the relatedness analysis.

4.2.6 Genomic sex

After the relatedness analysis, genomic sex was compared to declared
gender for all individuals. For that, normalised read counts on chromo-
somes X and Y divided by the median of the normalised read counts on



110 Results

the autosomes was obtained and represented in Figure 4.8. All individ-
uals’ ratio clustered into their declared gender and no discrepancy was
identified.

Fig. 4.8 Genomic sex. Representation of normalised read counts on X and Y divided
by the median of the normalised read counts on the autosomes, showed as X/Auto and
Y/Auto respectively.

4.3 Variant filtering and prioritisation

Following the QC analysis, the identification of candidate rare variants
in the seven families was performed for high quality variants, following
the two different strategies previously described (Methods, Figure 3.13).
The MIM (Mendelian Inheritance in Man) numbers for all the genes in
this chapter can be found in Appendix, Section 7.2 (Gene information).
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Strategy one, based on filtering by mode of inheritance (MOI), iden-
tified a total number of nine candidate variants in eight different genes
(Table 4.2), of which four were X-linked recessive, one de novo and four
biallelic compound heterozygous. Regarding the consequences, one was
predicted to be a splice donor variant and one was a splice region variant.
The rest of the variants were missense. None of the them had previously
been reported as pathogenic in ClinVar database.

Seven of these genes had been previously associated with the immune
system, and observed to be involved in a variety of processes, including
cytokine signalling, antigen processing and presentation, innate immune
system and cell cycle control. Only MAP3K15 had not been reported
as linked to the immune system, but was also a candidate because two
unrelated probands had hemizygous variants in this same gene.

The results of strategy two, based on the analysis of rare variants
in genes associated with immune-related disorders, are shown in Table
4.3. Single variants in recessive genes (or suspected to be recessive
due to pRec >= 0.9, which is the pLI equivalent for falling into the
recessive category [231]), were not considered, as well as those where
the phenotype was clearly not consistent. A total number of seven
variants in six different genes were identified (variants in NLRP12 were
found in two unrelated families). Two of them were frameshift and the
others were missense. All these genes play a role in the regulation of the
immune system, and two of them have already been seen in genes with
incomplete penetrance (NLRP12 and ANKZF1).

Other variants, apart from the ones reported in Table 4.2 and Table 4.3
were also identified. However, they were in genes previously associated
with different phenotypes, therefore their consideration was not pertinent
in this study.
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As additional quality control, all affected individuals were observed
to have a mean coverage of at least 20x across all candidate genes
identified by gene list or MOI filtering (Table 4.2 and Table 4.3). This
was important to exclude the presence of another individual with a rare
variant in one of the candidate genes that had not been called because of
low coverage.

4.3.1 Pathway analysis

Analysis of the pathways in which these genes were involved was per-
formed using Reactome [232], a curated and peer-reviewed pathway
database (http://reactome.org, date of accession 12/04/2019). Genes
whose function had not been previously demonstrated to play a role
in a specific pathway were: NLRP12, MAP3K15, ANKZF1, GFI1 and
GPR50.

Five of the nine genes that were present in Reactome had been
associated with the immune system: LAMA5, ZNF645, TNFRSF1A,
IL13RA2, and PPL (p-value of 1.98E-2). Three of them played a role
in signalling by interleukins (LAMA5, TNFRSF1A, IL13RA2, with a
p-value of 5.73E-4) (Figure 4.9), more specifically, the IL-10, IL-4 and
IL-13 signalling pathways.
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Fig. 4.9 Reactome enrichment analysis. From http://reactome.org [232].

The other four genes had been associated in Reactome to the follow-
ing pathways: SKIV2L to Metabolism of RNA (mRNA decay by 3’ to 5’
exoribonuclease) and Metabolism of proteins (Association of TriC/CCT
with target proteins during biosynthesis); INO80 to DNA repair (DNA
Damage Recognition in GG-NER); CAPN14 to Extracellular matrix
organisation (Degradation of the extracellular matrix); and STAB1 to
Vesicle mediated transport (Scavenging by Class H Receptors).

From manual interpretation of the candidate genes, it was noticed
that three of them play a role in the NF-κβ pathway: GFI1 (which an-
tagonises NF-κβ p65 [233]), NLRP12 (which suppresses non-canonical
NF-κβ pathway [234]), and TNFRSF1A (which activates NF-κβ sig-
nalling [235]). Mutations in TNFRSF1A have already been reported
as associated with autosomal dominant auto-inflammatory disorder by
enhanced activation of NF-κβ and cytokine secretion, constitutive acti-
vation of IL-1R pathway and inhibition of apoptosis [236]).
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4.3.2 Family 1: ANKZF1 and NLRP12

Family 1, the biggest pedigree family that enrolled this study, consists of
one affected individual, both parents, one sister and the four grandparents.
Two variants were identified in ANKZF1 and NLRP12 genes, in the
affected individual and multiple relatives.

ANKZF1: Ankyrin Repeat and Zinc Finger Domain Containing 1

First, compound heterozygous variants in ANKZF1 were identified
in trans in the proband (F01_01) and the unaffected sister (F01_04)
(ENSP00000321617.5, p.Arg585Gln and p.Arg617Gln). Both SNVs
were missense variants, very rare and predicted to be damaging. ANKZF1
plays a role in the cellular response to hydrogen peroxide and in the main-
tenance of mitochondrial integrity under conditions of cellular stress.
Although the gene is not constrained for recessive LOF variation in gno-
mAD, it has been previously reported as associated with infantile-onset
inflammatory bowel disease (IO IBD) [237]. Specifically, one of the
variants (p.Arg585Gln) has been observed in one individual with IO
IBD.

IO IBD is an early onset form of IBD, a chronic inflammatory condi-
tion of the gastrointestinal tract. The symptoms include abdominal pain,
diarrhoea, and blood in stool being most common [238]. Our patient had
diarrhoea, blood in sediments, vomiting and muscular and articular pain,
presenting overlapping features with IO IBD.

Upon cellular stress conditions, the protein encoded by ANKZF1 is
located diffusely in the cytoplasm and translocates to the mitochondria.
Depletion of ANKZF1 reduces mitochondrial integrity and mitochondrial
respiration under conditions of cellular stress. Mutations in this gene,
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including p.Arg585Gln, result in an increased level of apoptosis in
patients’ lymphocytes, a decrease in mitochondrial respiration in patient
fibroblasts, and an inability to rescue the phenotype of yeast deficient in
Vms1, the yeast homologous of ANKZF1 [237].

Fig. 4.10 Suggested pathogenesis mechanism of ANKZF1. A) Healthy cell.
B) Cell with dysfunctional ANKZF1. From: http://cofferlab.science/new-
blog/2017/8/4/ankyrin-repeat-and-zinc-finger-domain-containing-1-mutations-are-
associated-with-infantile-onset-inflammatory-bowel-disease.

Nevertheless, both p.Arg585Gln and p.Arg617Gln were observed
to be in homozygous individuals in gnomAD (12 and four individuals,
respectively). However, it has been suggested that mutations in this gene
could present incomplete penetrance [237], and this could explain the
observation of homozygous and healthy individuals in gnomAD and
the presence of the variants in this combination in the unaffected sister
(F01_04).
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To prove if these variants are causal, mRNA and protein expression
of ANKZF1 analyses could be performed, since these have been seen
to be reduced in patients with IO IBD and the p.Arg585Gln mutation
[237]. Additionally, functional studies could also be done to determine
if increased level of apoptosis and decreased mitochondrial respiration
under conditions of cellular stress in lymphocytes are observed.

NLRP12: NLR Family Pyrin Domain Containing 12

The second variant identified in this family was in NLRP12 gene. This
was a heterozygous mutation in ENSP00000319377.6, p.His304Tyr,
predicted to be damaging, and present in the affected individual, the
father, the sister and two grandparents. This variant, however, is observed
to be in 1250 heterozygous individuals and four homozygous in gnomAD
and has conflicting interpretations of pathogenicity (likely benign and
VUS) in ClinVar. This exact mutation has also been observed to be in
compound heterozygosity with p.Ala629Asp [239] in an affected female,
but with more severe phenotype of common variable immunodeficiency.

Fig. 4.11 Schematic representation of NLRP12. First track represents the exons of
this gene followed by the gnomAD missense count. Representation of homozygous
missenses and LOF variants in this gene are also shown, and line up with the secondary
structure of the protein. Pathogenic variants in ClinVar are shown under the protein in
yellow (missense) and red (LOF) triangles. Data obtained from DECIPHER [240].
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Heterozygous mutations in NLRP12 are associated with periodic
fever syndromes and atopic dermatitis in humans, by negatively regu-
lating pathogenic T cell responses [241]. Phenotype of mutations in
this gene include fever, severe fatigue and musculoskeletal symptoms,
which are typically activated or worsened by cold exposure. The protein
encoded by NLRP12 inhibits the transcription factor NF-κβ , and when
mutated, an elevated non-canonical NF-κβ activation and increased
expression of target genes has been observed. Reduced NLRP12 expres-
sion increased the activation of NF-κβ and proinflammatory cytokine
expression, leading to subverted pattern of inflammation. Interestingly,
this mutation is in the NACHT domain, which is a key region in the
clinical molecular diagnosis of Familial Cold Auto-inflammatory syn-
drome [242], and where the only pathogenic missense variant has been
identified [243]. Although the gene is not constrained for dominant or
recessive LOF variation in gnomAD, low penetrance has been reported
[243]. Therefore, it could be possible that dysregulation of NF-κβ path-
way could accentuate the severe phenotype present in the individual
F01_01, and that this variant is acting as risk factor rather than likely
Mendelian pathogenic variant.

4.3.3 Family 2: IL13RA2 and ZNF645

Family 2 is composed by the proband, father, mother and sister. Two
candidate variants in the IL13RA2 and ZNF645 genes were identified in
this family by filtering by MOI.
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IL13RA2: Interleukin 13 Receptor Subunit Alpha 2

The mutation in IL13RA2 was de novo (Figure 4.12) and missense
(ENSP00000243213.1:p.Ile76Phe), and was not observed to be present
in any other individual in the cohort or in gnomAD. Although this
variant had a relatively low CADD phred score, it caused the change of
the hydrophobic side chain Isoleucine to a Phenylalanine, which has a
bigger side chain and could have consequences in the protein structure.

Fig. 4.12 De novo variant in IL13RA2. Integrative Genomics Viewer snapshot of the
reads of the four individuals in this family, showing that the variant in IL13RA2 is de
novo in the proband. Alignment tracks correspond to the proband, father, mother and
sibling.

IL13RA2 encodes for a membrane bound protein (IL-13Rα2) that
binds IL-13 with high affinity. Although it does not appear to function
as a signal mediator since it lacks any significant cytoplasmic domain,
this protein can act as a decoy receptor regulating the effects of IL-13
and its internalisation.
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IL-13 is a cytokine that acts as central regulator in IgE synthesis; it
influences isotype class switching to IgE and is a mediator of allergic
inflammation and eosinophil chemotaxis. This cytokine is critical to
the induction and perpetuation of the T-helper type 2 (Th2)-mediated
allergic immune responses (Figure 4.13), and has been implicated in
multiple atopic diseases [244].

Variants in IL13 gene have already been associated with IgE-mediated
paediatric food allergy [245] and EoE [246]. IL-13 is the chief stimulus
for the production of eotaxin-3, an eosinophil-selective chemo-attractant
and activating cytokine, along with CAPN14 from oesophageal epithelial
cells.

IL-13 signalling begins through a heterodimer receptor complex con-
sisting of alpha IL-4 receptor (IL-4Rα) and alpha Interleukin-13 receptor
(IL-13Rα1). Heterodimerisation activates STAT6 (a transcription factor)
signalling, which is important in initiation of the allergic response [247].
The other receptor of IL-13 is IL-13Rα2, encoded by IL13RA2 gene,
which has 50-times greater affinity to IL-13 than IL-13Rα1. However,
IL-13Rα2 lacks a signalling motif and has a truncated cytoplasmic do-
main suggesting that it functions as a decoy receptor for IL-13 (Figure
4.13).
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Fig. 4.13 Receptor system for IL-4 and IL-13. Both, IL-4 and IL-13 bind the type
II receptor complex. IL-13 also binds IL-13Rα2 with higher affinity than IL-13Rα1.
Binding of these cytokines to their respective receptor complexes leads to activation
of protein kinases, JAK1 or JAK3, or Tyk2 and subsequently phosphorylation of the
transcription factor, STAT6. Phosphorylated STAT6 dimerises and translocates to the
nucleus to activate IL-4- and IL-13-induced genes transcription (e.g. periostin) [244].

The association of IL-13 to atopic disease, along with other Type 2
response cytokines (IL-4), has been widely reported. Interestingly, the
use of dupilumab (Regeneron and Sanofi), a fully human monoclonal
antibody that blocks both IL-4 and IL-13 signalling, has demonstrated to
have unprecedented efficacy on multiple atopic diseases [244]. Therefore,
the fact that this mutation was observed to be de novo in the proband,
and present in the receptor of IL-13, which has been associated with
food allergy, makes it a good candidate to be associated with the FPIES
present in this affected individual, though functional analysis would be
required to elucidate the exact mechanism of pathogenesis.
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ZNF645: Cbl Proto-Oncogene Like 2

A hemizygous missense variant was also identified in ZNF645 (ENSP000
00323348.1:p.Ile276Met). The mother was a carrier of this variant,
which was observed in four hemizygous individuals in gnomAD. The
gene was not constrained for missense variation, but was observed to be
constrained for hemizygous LOF variants (with a pRec of 0.89) therefore
a recessive mechanism was suspected. This gene, also known as CBLL2,
encodes a member of the zinc finger domain-containing protein family,
and it may function as an E3 ubiquitin-protein ligase. Although there is
not much known about the gene, protein localisation suggests a role in
human sperm production and quality control [248], and gene expression
studies showed high gene expression in testis (GTEx). However, it
has also been related to Class I MHC mediated antigen processing and
presentation (Reactome identifier: R-HSA-8851646), so a possible role
in the immune system cannot be ruled out.

4.3.4 Family 3: LAMA5, MAP3K15, TNFRSF1A and
SKIV2L

Family 3 is formed by the affected individual and the father, mother
and half-sister. Four candidate variants were identified in the affected
individual of this family. Three of them were identified by the filtering
by inheritance (in LAMA5, MAP3K15 and TNFRSF1A), and one by the
gene list filtering (in SKIV2L).
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LAMA5: Laminin Subunit Alpha 5

The first gene was LAMA5, which encodes for laminin α5, one of the
vertebrate laminin alpha chains, an extracellular matrix glycoprotein.
A compound heterozygous variant in this gene was identified in the
affected individual of this family. This was formed by one missense
variant inherited from the father (ENSP00000252999.3, p.Arg3078Gln)
and two missense variants inherited from the mother (p.Ala1435Thr,
p.Thr774Ile).

LAMA5 is a constrained gene for LOF variation, and has not been
previously associated with disease. However, it’s been seen that laminin
α5 deletion in mice leads to a number of developmental abnormalities,
including hyper-proliferation of basal keratinocytes and a delay in hair
follicle development [249, 250]. Loss of laminin α5 has resulted in
increased numbers of CD45+, CD4+ and CD11b+ immune cells in
the skin, indicating that immune cell changes are the consequence of
keratinocyte hyper-proliferation.

Furthermore, dominant mutations in this gene have been associated
with Ehlers-Danlos syndrome, a complex multi-system syndrome due
to dysfunction of the extracellular matrix [251]. Affected individuals
presented with kin anomalies, impaired scarring, night blindness, mus-
cle weakness, osteoarthritis, joint and internal organs ligaments laxity,
malabsorption syndrome and hypothyroidism.

LAMA5 is largely expressed across multiple human cells, includ-
ing oesophagus (GTEx). Interestingly, because this gene encodes for
a laminin alpha chain, it plays an important role in extracellular ma-
trix organisation. Previous genes involved in matrix organisation have
already been associated with GI disorders, such as CAPN14, which is
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associated with EoE. Nevertheless, the loss of laminin α5 has not been
investigated yet as associated with GI disorders, and this finding opens
new possibilities of research in the field, which would be required to
confirm the role of this gene in FPIES.

MAP3K15: Mitogen-Activated Protein Kinase Kinase Kinase 15

A hemizygous missense variant was also identified in MAP3K15 (ENSP0
0000345629.4:p.Ala968Val), and the mother of this individuals was seen
to be carrier of the variant. The protein encoded by this gene, also known
as ASK3, is a member of the mitogen-activated protein kinase (MAPK)
family. The gene has not previously been associated with disease and is
not constrained for LOF (pLI = 0) or missense variation (Z score = -0.78)
in gnomAD. However, MAP3K15 was considered to be relevant because
two unrelated probands in this study (F03_01 and F06_01) presented a
rare hemizygous variant in this gene.

Kaji et al. demonstrated that knockdown of MAP3K15 protected
HeLa cells against cytotoxicity induced by anti-Fas monoclonal antibody,
TNF-α , or oxidative stress [252], suggesting that MAP3K15 is a member
of apoptosis signal-regulating kinases and that it plays a pivotal role
in the signal transduction pathway implicated in apoptotic cell death
triggered by cellular stresses. The gene is highly expressed in Adrenal
gland (GTEx). Furthermore, proteins from the same family of kinases
have been previously associated with inflammation [253]. Tartey et al.
observed that apoptosis signal–regulating kinases 1 and 2 (ASK1 and
ASK2) mediated footpad inflammation by controlling proinflammatory
signalling in the neutrophils. The possible role of ASK3 in inflammation
and how mutations in this gene could be involved in FPIES is yet to be
determined.
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TNFRSF1A: TNF Receptor Superfamily Member 1A

A compound heterozygous variant was identified in TNFRSF1A gene
(ENSP00000162749.2, p.Leu338Phe and p.Pro75Leu). This is a con-
strained gene for LOF and missense (Z score = 2.1) mutations and
encodes a member of the TNF receptor super-family of proteins. The
ligand of this receptor is tumour necrosis factor alpha (TNF-α), and
when it binds its receptor, it induces receptor trimerisation and activa-
tion, which plays a role in cell survival, apoptosis, and inflammation.
Mutations in this gene may also be associated with multiple sclerosis in
human patients.

TNF-α is a principal mediator of the acute inflammatory response,
and has been previously associated with IBD and several other immune-
driven disorders. Currently, anti-TNF treatments are already in use to
treat IBD and other GI disorders [254, 255].

The greatest producers of TNF-α are activated macrophages and
monocytes, particularly when stimulated with lipopolysaccharide (LPS),
though the gene is widely expressed across different cell types (GTEx).
Uncontrolled TNF-α release can cause chronic inflammation, cachexia,
septic shock, and many inflammatory diseases, including IBD [256].
IBD is characterised by unregulated inflammation of the intestinal tract,
and it’s been seen that affected individuals with IBD have higher TNF-α
concentrations than controls.
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Fig. 4.14 TNF-induced cell survival and cell death pathways. Binding of TNF to
its receptor TNFRSF1A regulates cycle cell. Activation of IKK leads to Iκβ (NF-κβ

inhibitor) phosphorylation and degradation. This process allows translocation of the
NF-κβ p50-p65 heterodimer to the nucleus to bind DNA and induce gene expression
for cell survival. However, if NF-κβ is not activated upon TNFRSF1A-mediated
signalling, apoptotic pathway is induced leading to cell death [257].

Therefore, dysregulation of a TNF-α receptor could lead to intestinal
inflammation, which is consistent with our patient’s phenotype. The
exact mechanism is yet to be elucidated.

SKIV2L: Ski2 Like RNA Helicase

Two more mutations were identified in this individual in SKIV2L gene
by gene list filtering. Both of them were missense, predicted to be dam-
aging, and present in the mother and the sister, therefore in the same
allele (in cis). Considering the canonical transcript ENSP00000364543.2,
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p.Pro619Thr was not present in gnomAD, while p.Arg324Trp was rel-
atively common (AC = 2225) and observed to be in 17 homozygous
in gnomAD. The latter was also present in ClinVar as associated with
Immunodeficiency common variable, although posterior studies reported
it as likely benign, due to the high frequency in the population. This gene
is not constrained for LOF variants (pLI = 0) but it is for recessive LOF
variants (pRec = 0.96). Autosomal recessive mutations in SKIV2L cause
trichohepatoenteric syndrome (syndromic diarrhoea) [258], thus phe-
notype could be relevant for this affected individual since she presents
severe diarrhoea.

Although the specific function of SKIV2L is not very well understood,
it could be possible that these two mutations, in combination with others
present in the proband not in the relatives, could contribute to the patient’s
phenotype, especially since this gene has been seen in a digenic form
with AKR1D1 to cause severe infantile liver disease [259].

4.3.5 Family 4: PPL and NLRP12

Family 4 is formed by a proband and mother, father and sister. Two
candidate variants were identified in this family in PPL and NLRP12
genes.

PPL: Periplakin

Compound heterozygous variants were identified in the PPL gene. One
of the variants was missense (ENST00000345988.2, c.3151_3152delins
GT) and the other was in the splice region, at position -5 (c.63-5C>T).
They were observed to be in trans in the affected child, and absent in
this combination in the unaffected sibling. Although both mutations
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had a CADD phred lower than 20, the missense was absent in homozy-
gous individuals in gnomAD and the splice region variant had only a
homozygous count of one, so both were very rare in biallelic state.

The protein encoded by this gene is a component of desmosomes and
of the epidermal cornified envelope in keratinocytes. PPL acts as a link-
ing protein: its N-terminal domain interacts with the plasma membrane
and its C-terminus interacts with intermediate filaments. AKT1/PKB,
a protein kinase mediating a variety of cell growth and survival sig-
nalling processes, has been seen to interact with this protein, suggesting
a possible role as a localisation signal in AKT1-mediated signalling
[260].

PPL is highly expressed in oesophagus (Figure 4.15). This is relevant
because genes that play a role in the maintenance of the oesophagus mu-
cosa, such as CAPN14, have already been associated with GI disorders.
Therefore, mutations in genes involved in the pathway could also lead to
similar phenotypes.
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Fig. 4.15 Gene expression of PPL. Gene expression of PPL across different tissues.
From GTEx. TPM = Transcripts Per Million.

NLRP12: NLR Family Pyrin Domain Containing 12

As in Family 1, a missense variant was identified in NLRP12 in Family
4. This variant was ENSP00000319377.6:p.Thr431Ile in the protein, and
it was present in the unaffected mother and sister. The exact mutation
was absent in gnomAD and predicted to be damaging.

This gene negatively regulates T cell responses and inhibits the
transcription factor NF-κβ . Since low penetrance has been reported,
and the phenotype is very variable, it is potentially interesting that two
different families present mutations in this gene. Both are rare and
damaging, and could be contributing to the regulation of the T cell
signalling.
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4.3.6 Family 6: GPR50, MAP3K15, STAB1, GFI1 and
INO80

Family 6 is a trio, formed by the affected individual and both parents.
Three variants identified in the GPR50, MAP3K15 and STAB1 genes
were observed in the affected child of this family after performing the
filtering by inheritance. Two other variants were identified in the filtering
by gene list: a frameshift mutation in GFI1 present in the affected child
and the mother, and a missense mutation in INO80 present in the affected
child and the father.

GPR50: G Protein-Coupled Receptor 50

A hemizygous missense variant in the transmembrane receptor do-
main of GPR50 was observed to be in F06_01 (ENSP00000218316.3:
p.Ile130Asn). This was absent in gnomAD and predicted to be damaging,
with a CADD phred score of 28. The mother was observed to be a carrier
of this variant.

GPR50 gene encodes for a G-protein coupled receptor that inhibits
melatonin receptor function through heterodimerisation. Variants in this
gene have been previously associated with bipolar affective disorder and
depression in women [261, 261–263].

Melatonin, a hormone secreted by the pineal gland, plays a role
in regulating sleep and circadian rhythm as well as a possible role in
gut-brain signalling [264]. Extrapineal melatonin has been detected
in multiple tissues such as the skin, lymphocytes, mast cells, airway
epithelium and GI tract among others [265]. This "sleep" hormone has
demonstrated to play a role in oesophagitis and chronic inflammation
[266] (Figure 4.16).
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Fig. 4.16 Mechanistic effects of melatonin in the GI tract. From [266].

Recent discoveries suggested that changes in the microbiota modulate
the host immune system by modulating Tryptophan (Trp) metabolism.
Endogenous Trp metabolites include serotonin and melatonin [267].
Abnormal regulation of serotonin (5-HT) has already been associated
with GI disorders, such as IBD and IBS. In fact, administration of on-
dansetron, a serotonin 5-HT3 receptor antagonist, has already been used
to treat FPIES reactions, suggesting the potential role for serotonin in
the pathophysiology of acute FPIES [268, 129]. Therefore, mutations in
GPR50 could impair the metabolism of melatonin, affecting the mainte-
nance of the homeostasis in the GI tract.

MAP3K15: Mitogen-Activated Protein Kinase Kinase Kinase 15

A splice donor mutation was identified in MAP3K15 (ENST00000338883
.4:c.3294+1G>T). This was the second affected child with a hemizygous
mutation in this gene (also F03_01). As it was previously mentioned,
this gene is highly expressed in the adrenal gland, and plays a pivotal role
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in the signal transduction pathway implicated in apoptotic cell death trig-
gered by cellular stresses and inflammation. Its role in immune system
is yet to be determined.

STAB1: Stabilin 1

A compound heterozygous variant in STAB1, formed by two missense
mutations (ENSP00000312946.6, p.Gly448Arg and p.Thr2530Ile), was
observed to be in trans in F06_01. One of the variants, p.Gly448Arg, was
located in the Fasciclin domain, while p.Thr2530Ile was nearly at the
end of the protein (full size of 2570aa). Both variants were in conserved
positions and predicted to be damaging (CADD phred > 20). This gene
is highly conserved for recessive LOF variants. Neither of the variants
were in any homozygous individual in gnomAD.

The protein encoded by this gene (Satb1) is a genome organiser
expressed by T cells. Satb1 plays an essential role in the establishment
of immune tolerance, and in the null mice, T cell development is severely
impaired.

Because STAB1 null mice die by week three of age, Kondo et al.
studied STAB1 conditional knockout (cKO) mice, in which the STAB1
gene was deleted from all hematopoietic cells [269]. They observed that
i) STAB1 cKO mice developed autoimmune diseases within 16 weeds
after birth, ii) suppressive functions of T regulatory cells, which play a
major role in establishment of peripheral tolerance, were affected in the
absence of STAB1, and iii) negative selection during T cell development
in the thymus was severely impaired in STAB1 deficient mice.

Therefore, although the role of STAB1 in GI food allergy remains
unknown, previous results suggest this protein plays an important role in
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T cell development and peripheral tolerance, and this could be related to
the phenotype presented in this individual. Further investigation would
be required to confirm this association.

GFI1: Growth Factor Independent 1 Transcriptional Repressor

A frameshift mutation was identified in GFI1 in F06_01 (proband) and
F06_02 (mother), at the position 132 of the protein (of 422 amino acids)
(ENSP00000294702.5:p.Leu132ArgfsTer66). This was absent in gno-
mAD and in any other population databases. Heterozygous mutations
in GFI1 have been associated with severe congenital Neutropenia. The
protein encoded by this gene, Gfi1, is a transcriptional repressor that
promotes T helper type 2 (Th2) cell development and inhibits Th17 and
inducible regulatory T-cell differentiation [270]. This happens because
Gfi1 inhibits the induction of the Th1 programme in activated CD4 T
cells. It has been suggested that it regulates the Th1-type immune re-
sponse by binding to the gene loci of TBX21, EOMES and RUNX2, and
reducing the histone H3K4 methylation levels in part by modulating
Lsd1 recruitment (a Lysine-specific histone demethylase). Though the
gene was not constrained for LOF variation in gnomAD, manual investi-
gation of the LOF variants in gnomAD revealed that actually only nine
mutations were present in this gene, all of them with an allele count of
one, therefore being very rare.

Dysregulation of T helper cell response could impair the immune
system and response to food exposure. Noval Rivas M et al. previously
reported that regulatory T cell reprogramming toward a Th2-cell-like
impairs oral tolerance and promotes food allergy [271], therefore high-
lighting the possible association of this gene with food allergy. The fact
that the mutation is also present in the mother and that nine individu-
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als in gnomAD carry a LOF variant could be explained by a possible
incomplete penetrance.

INO80: INO80 Complex Subunit

A missense mutation in INO80 was also identified in this family (ENSP0
0000384686.3:p.Lys124Gln). This was absent in gnomAD and predicted
to be damaging. The variant was present in the affected child and the
father.

INO80 encodes the catalytic ATPase subunit of the chromatin remod-
elling complex INO80, which is suspected to be required for turnover of
RNA Polymerase II [272]. Mutations in this gene have previously been
associated with immunoglobulin class-switch recombination defects
(rare primary immunodeficiencies characterized by impaired production
of immunoglobulin isotypes and normal or elevated IgM levels) [273].

This gene is constrained for LOF variation in gnomAD (pLI = 1) and
is also constrained for missense variation (Z score = 3.13, which is in the
top 10% constraint genes for missenses in the genome) [231]. Therefore,
it could be possible that incomplete penetrance of these variants would
be contributing to the phenotype of this affected individual. However,
the role of INO80 in the pathogenesis of FPIES is still unknown.

4.3.7 Family 7: CAPN14

The last family was formed by two affected siblings and the unaffected
parents. A variant was identified in CAPN14 genes, present in both
affected individuals but also in the father.
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CAPN14: Calpain 14

A frameshift variant was identified in CAPN14 (ENSP00000385247.3:
p.His254LeufsTer11). This variant was very rare, present in one het-
erozygous in gnomAD, and was at the position 254 of the protein (of
684 amino acids), with expected activation of the NMD pathway and
gene haploinsufficiency.

CAPN14 is a cytosolic calcium-activated cysteine protease, that be-
longs to the calpain large subunit family, which are involved in a variety
of cellular processes including apoptosis, cell division, modulation of
integrin-cytoskeletal interactions, and synaptic plasticity [274].

This gene has previously been associated with a specific type of GI
food allergy, Eosinophilic Esophagitis (EoE), a chronic inflammatory
disorder triggered by allergic hypersensitivity to food [275]. Symptoms
of EoE include dysphagia, vomiting, and severe chest pain, which is
highly consistent with the phenotype of both affected siblings. The
affected male had been diagnosed with chronic oesophagitis grade I,
although the sister, who presented the same response to food ingestion,
did not present any oesophagitis, and was less severely affected.

CAPN14 is expressed at the highest level in the oesophagus and has
been identified as a tissue identity marker (Figure 4.17). It has been hy-
pothesised the protein encoded by CAPN14 might be a protective protein
of the integrity of oesophageal tissue, because oesophageal epithelium is
prone to damage because of food consumption.
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Fig. 4.17 Gene expression of CAPN14. Gene expression of CAPN14 across different
tissues. From GTEx. TPM = Transcripts Per Million.

In patients with active EoE, there is a 2- to 6-fold increase in CAPN14
mRNA levels, and this correlates with disease activity. EoE is driven
in part by increased levels of IL-13 in the oesophagus, which leads to
disruption of epithelial cell architecture and impaired barrier function.
Nevertheless, the lack of CAPN14 also disturbs IL-13–induced epithelial
cell changes, as demonstrated by increased dilated intercellular spaces
and basal cell disorder [276]. Even though this gene is generally over-
expressed in EoE compared with controls, an EoE risk allele is also
associated with reduced oesophageal CAPN14 expression. In this case,
the LOF mutation identified in CAPN14 gene is a candidate to be associ-
ated with FPIES, and incomplete penetrance would be suggested since
the father also has the mutation and LOF variants in gnomAD have been
observed.
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4.4 Copy Number Variants

CNVs were analysed using XHMM software. A total number of 1,506
variants were called for all individuals with at least a median coverage of
80x. Due to the large number of false CNVs that are usually identified
from WES data, these were filtered by high quality (as previously recom-
mended, [107]). Next, only variants that were suspected to be unique in
the probands (de novo), that were overlapping genes present in the gene
list or that were overlapping genes with a candidate SNV/indel from Sec-
tion 4.3 were considered. A total number of 21 CNVs were obtained, and
all of them were manually reviewed with Integrative Genomics Viewer
(IGV) [219].

Manual review was based on observation of the SNVs present within
the CNV boundaries. An example is further explained in Figure 4.18.
In this case, a duplication was called at Chr1:161,487,614-161,518,973
in F05_01. The duplication was overlapping the FCGR3A gene, which
has been previously associated with Immunodeficiency, is present in
the gene list. By looking at the SNVs in the highlighted region, it was
possible to discern that the proband and the father had a coverage ratio
of 2:1 for SNVs in these region, while the mother and the sibling had a
ratio 1:1, suggesting that the duplication in the proband was likely to be
real and inherited from the father.

FCGR3A mutations cause Immunodeficiency in an autosomal reces-
sive way. Thus, the possibility that the affected F05_01 had a second
SNV/indel in trans was considered. However, no second SNV/indel was
identified in this gene for this individual, and the variant was deemed to
be likely benign.
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Fig. 4.18 Copy number variant overlapping FCGR3A in Family 5. IGV plot of the
alignments where the duplication was called in F05_01 and F05_03. The ratio of reads
supporting the alternate allele was 65% approximately, consistent with a duplication
event.

No pathogenic or candidate CNVs were identified from this analysis.
However, WES technology is limited for calling CNVs primarily due to
non-uniform coverage. The combination of WES with microarray, or
WGS, would be a powerful approach to better identify CNVs.

4.5 HLA typing

HLA typing was performed using HLA*PRG [112] on all individuals
with a minimum median coverage of 80x. Because the aim was to
identify a possible HLA locus that could be associated or contributing
to the disease, the analysis was ran on these participants (cases and
relatives), and also on 120 internal controls for which the lab at INCLIVA
had previously performed WES.
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Stricter filters were applied before further analysis, including a min-
imum average coverage by locus of 15x and high quality. DRB3 and
DRB4 loci were excluded of the analysis due to low coverage. For the
remaining loci in the 31 individuals from the seven families, HLA hap-
lotypes were observed to be segregating as expected within the family.
PyHLA was used to perform an association test between HLA alleles
[220]. The 120 controls were compared to six unrelated cases (Family
2 did not have enough coverage to perform the analysis). For Family 7,
which had two affected individuals, the most severely affected individual
was selected (the male, F07_04).

First, the data summary function was executed and allele level sum-
mary of the frequency was produced in the case and control populations
(Figure 4.19).

Fig. 4.19 Frequency of HLA alleles by group. Stacked bar plots show frequencies
for the different HLA class I alleles, and are coloured by case or control status.
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Table 4.4 Output for the Fisher’s exact test with adjusted p-value > 0.05. Allele:
Allele name; A_case: Count of this allele in cases; B_case: Count of other alleles in
cases; A_ctrl: Count of this allele in controls; B_ctrl: Count of other allele in controls;
F_case: Frequency of this allele in cases; F_ctrl: Frequency of this allele in controls;
Freq: Frequency of this allele in cases and controls; P_FET: P-value for Fisher’s exact
test; OR: Odds ratio; P_adj: Multiple testing adjusted p-value.

Allele A_case B_case A_ctrl B_ctrl F_case

C*07:02 4 8 10 230 0.3333

B*07:02 4 8 15 225 0.3333

Allele F_ctrl Freq P_FET OR P_adj

C*07:02 0.0417 0.0556 0.0023 11.5 0.0116

B*07:02 0.0625 0.0754 0.0079 7.5 0.0236

Then, PyHLA Fisher’s exact test was performed. Fisher’s exact test
first calculates the exact probability of the 2x2 contingency table of the
observed values. p-values were adjusted by using the false discovery rate
(FDR) correction. Two significant p-values, which results are in Table
4.4, were identified, for C*07:02 and B*07:02 alleles.

These two alleles were present in five affected individuals, the four
included in the Fisher’s exact test and also in F07_01, the affected sibling
of F07_04 (Figure 4.20). The individual F06_03 (father of F01_01)
was also a carrier of these alleles. Interestingly, he presented severe
intolerance to milk during the first months of life, and was in hospital
for six months. These alleles have not been previously reported alone
or in combination as associated with any disease, or to any kind of
allergic response to food, hence their role in GI food allergy remains to
be confirmed.
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Fig. 4.20 HLA haplotypes in locus B and C in families 4, 5, 6 and 7. Affected
individuals are represented in black. NS=not sequenced.

In conclusion, HLA typing was performed to all individuals and 120
controls. Association tests showed a significant association of C*07:02
and B*07:02 alleles, present in combination in six affected individuals
(Figure 4.20). Further investigations and HLA typing of larger cohorts
of individuals with food allergy are required to interpret the contribu-
tion of these alleles to the gastrointestinal food allergy in the affected
participants.



Chapter 5

Discussion

5.1 Summary of findings

During the past few years, exome sequencing has successfully been
used to identify common and rare variants that confer substantial risk
for multiple disorders. In this thesis, WES has been used to study the
genetic basis of gastrointestinal food allergy induced by multiple food
protein.

Seven families with affected children with severe manifestations of
this disorder, diagnosed with FPIES, were whole-exome sequenced, ac-
counting for a total number of 31 individuals. A pipeline was developed
to study the possible contribution of rare variants in those individuals.
First, an exhaustive quality control of the data was performed. Then,
due to the uncertain aetiology of the disorder, candidate variants were
identified by mode of inheritance and gene list filtering. A list of can-
didate variants was obtained. While many of them were in genes that
had not been previously described as associated with GI food allergy,
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potentially interesting genes were observed to have rare variants in the
affected individuals.

In this thesis, WES was also used to analyse CNVs and HLAs in
these families. Although no candidate CNV was identified, study of
the HLAs uncovered the presence of two alleles that were significantly
associated with affected individuals. This work presents the utility of
exome sequencing to study, in a single pass, rare SNVs/indels, CNVs
and HLAs haplotypes, which could be associated with severe FPIES.
This is also the first systematic study of individuals with FPIES by NGS.

5.2 Utility of exome sequencing

Identification of rare variants by exome sequencing

Family-based exome sequencing is an effective strategy that reduces
analytic cost and allows the identification of candidate variants in the
entire exome, permitting gene discovery. Here, family-based exome
sequencing was used to identify candidate variants with and without the
use of a gene list. This was crucial because, although 11 candidate vari-
ants were identified in genes associated with immune system, additional
17 were observed in genes that had not previously been associated with
any disorder.

Because CNVs have been previously associated with paediatric food
allergy [175], in this work the identification of CNVs was also per-
formed. However, exome sequencing is a limited technology to detect
copy number changes due to the non-uniform coverage distribution and
biased amplification of specific regions. For that reason, identification
of CNVs in this study was limited to i) de novo mutations, ii) genes
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from the gene list and iii) genes with a candidate SNV/indel identified in
this SNV/indels analysis. However, no candidate CNVs was identified.
Nevertheless, the absence of CNVs does not necessarily mean that there
are not any CNVs in coding regions contributing to the phenotype. It
could be possible that the variant calling of the CNVs in those regions
was not possible due to biased amplification and/or low sensitivity of
the variant caller algorithm. Or it could also be possible that CNVs are
present in a gene not included in the gene list.

Lastly, exome sequencing data was used to perform HLA typing. Be-
cause previous HLA haplotypes have been associated with food allergy
[277, 174, 278], there was an interest to identify HLA types that could
be associated with the phenotype in these affected children. Therefore, a
specific algorithm to type HLAs from WES data was used. Association
test revealed the presence of two alleles, B*07:02 and C*07:02, that were
present in this combination in five of six affected individuals that were
considered for this analysis (1 affected individual did not have enough
coverage), with an adjusted p-value of 0.0236 and 0.0116 respectively.
Since the typing for all individuals was available, it was possible to per-
form phasing of the alleles and check inheritance, which was consistent
in all cases. These results showed that WES can indeed be used for HLA
typing, at least in a research context.

Altogether, results arising from this thesis show how WES is an good
approach to perform a comprehensive analysis of genomic variation
in a single pass, including the study of SNVs/indels, CNVs and HLA
haplotyping, that can be used to investigate the genetic basis of severe
FPIES in affected individuals.
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Importance of quality control analysis

In order to identify potential disease-causing mutations with high sen-
sitivity and specificity, multiple quality control analyses needed to be
performed at different stages of the pipeline. In this work, quality con-
trol was performed on the raw reads, aligned reads and variants called.
Overall, all samples passed the quality controls.

Because samples were sequenced at different centres and by different
methods, coverage differed between those who had been sequenced with
Nextera kit only (at INCLIVA and HIC centres, with lower coverage),
those who had been sequenced with SureSelect kit only (at CRG, with
higher coverage), and those who had been sequenced by both. A total
number of eight individuals in the project did not accomplish the goal of
80x median coverage, therefore they were not included in the CNV and
HLA analyses.

Relatedness and gender analyses were also relevant quality control
steps since sample extraction and library preparation had been done
at different centres. These were used to demonstrate the identity of a
sample and its relatedness with the expected relatives. Results showed
that genomic data was consistent with expected pedigrees and genders.
If this had not been performed and it had been a sampling problem, this
would have been identified at the end of the workflow, when a high
number of false de novo variants would have been observed. However,
these analyses provide identification of these kind of problems in early
stages of the pipeline, allowing an improved performance of the analysis.
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Limitations of Whole-Exome Sequencing

Although short-read WES is a powerful approach, it also presents some
limitations that need to be taken into account.

First, variants in regions not covered by design are missed. This
is the case of i) non-coding variants, which are particularly relevant in
the context of this study since mutations in these areas have previously
been associated with food allergy [279, 280], and ii) variants in exons
that are not considered in the pull-down array, such as genes from the
mitochondrial genome. Mitochondrial variants could play a role in the
development of FPIES since two candidate variants in this study are in
genes involved in mitochondrial regulation and function (ANKZF1 in
Family 1 and CAPN14 in Family 7). Although there are techniques to
analyse off target reads [281], these are still experimental and unreliable
at current standard WES mean coverage.

Second, amplification steps lead to biased amplification of specific
regions, where some are over-amplified above others. For example, GC-
rich regions tend to be poorly covered due to their high stability and
consequent resistance to standard denaturation protocols [37]. Although
there are free-PCR WES protocols, these are still less commonly used
due to the higher amount of input DNA that is required.

Third non-uniform coverage distribution affects performance of i)
variant calling, where variants in regions of low coverage will present
higher error rates or will not be called at all, and ii) CNV detection,
which is only limited to large copy number gains and losses of exonic
regions due to challenges when performing data normalisation.

Additionally, WES is also limited to identify short tandem repeat
(STR) expansions and SVs that do not produce any copy number change,
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like inversions, large insertions and translocations, due to the very low
probability of the breakpoints to be covered by WES reads. Similarly,
it also fails to detect other types of variation such as more complex
structural rearrangements [28].

Lastly, highly repetitive regions, genes with corresponding pseu-
dogenes or other highly homologous sequences are generally poorly
covered in short-read sequencing data, due to the difficulty of uniquely
mapping the reads in these regions to the genome.

Most of these limitations can be addressed with the use of WGS,
which performs the sequencing of all coding and non-coding regions
of the genome, as well as mitochondrial DNA. With the absence of
pulldown arrays and the PCR-free sequencing protocols, the coverage
achieved is much more uniform, facilitating detection of variant in GC-
rich regions and the detection of all types of SVs [37, 282], with high
precision, often to single base pair resolution. Additionally, regions of
bad mappability due to highly repetitive sequences may be overcome
with the use of long-read sequencing technologies such as Nanopore,
either in combination with another technology or as a first line approach.
These have the advantage of reads of 10–100 Kb allowing for more
accurate mapping particularly over repetitive regions and facilitating
phasing [28].

Another approach to overcome the limitations of WES could be
the combination of technologies, for example, WES with low coverage
WGS. However, although in the future WGS may replace WES, the fact
that assessing pathogenicity is still mainly linked to coding regions, as
well as the substantial extra cost and bioinformatics challenges faced
with handling the larger WGS data, makes WES currently the standard
NGS technology.
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5.3 Variant discovery in FPIES

From this study, at least one SNV/indel or HLA allele has been priori-
tised and selected for discussion for all affected individuals. Candidate
mutations in different genes were identified, highlighting the possible
genetic heterogeneity of food allergies. Additionally, variants were
identified in genes involved in different pathways and presenting with
mutational mechanisms.

The importance of interleukins (IL) signalling was highlighted, as
well as the possible role of proteins in the NF-κβ pathway and extra-
cellular matrix organisation. Interestingly, variants in genes involved in
mechanisms that have been recently associated with GI food allergies
were also identified, including mitochondrial stress and neuroimmune
regulation and homeostasis. A summary for the candidate SNVs/indels
identified is shown in 5.1. These results altogether highlight the complex
spectrum of GI disorders, and could be the reason why the genetic study
of this disease has been hindered during all this time. They also display
and reveal important insights into the complex genetic architecture of
FPIES, that are thereafter described.
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Table 5.1 Summary of candidate variants. Genes are grouped by function/pathway
involved. Those with multiple functions/pathways have the number of entries between
parenthesis. MOI = mode of inheritance.

Individual Gene Function / pathway Inheritance Consequence 

Interleukins signalling pathway 

F02_01 IL13RA2 
Cytokine Signalling in 
Immune system 

De novo Missense 

F03_01 

TNFRSF1A (2) 
Cell survival, apoptosis, 
and inflammation; NFKB 
pathway; Immune system 

Comp. het Missense 

Comp. het Missense 

LAMA5 
Cytokine Signalling in 
Immune system 

Comp. het Missense 

Comp. het Missense 

NF-kb pathway

F06_01 (F06_02) GFI1 (2) Transcriptional repressor Inherited Frameshift 

F01_01 (F01_03, 
F01_04, F01_05, 
F01_06) 

NLRP12 
Attenuating factor of 
inflammation 

Inherited Missense 

F04_01 (F04_02, 
F04_04) 

NLRP12 
Attenuating factor of 
inflammation 

Inherited Missense 

F03_01 TNFRSF1A (2) 
Cell survival, apoptosis, 
and inflammation; NFKB 
pathway; Immune system 

Comp. het Missense 

Comp. het Missense 

F06_01 MAP3K15 Apoptotic cell death XLR Splice donor 

T-cell development

F06_01 STAB1 
Angiogenesis, cell 
adhesion, or receptor 
scavenging 

Comp. het Missense 

Comp. het Missense 

Extracellular matrix organization 

F07_01, F07_04, 
(F07_03) 

CAPN14 Cell proliferation Inherited Frameshift 
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Continued from previous page

Individual Gene Function / pathway Inheritance Consequence 

F04_01 PPL Linking protein 
Comp. het Missense 

Comp. het Splice region 

Mitochondrial stress 

F01_01 (F01_04) ANKZF1 
Maintenance of 
mitochondrial integrity 

Inherited Missense 

Inherited Missense 

Neuroimmune regulation and homeostasis 

F06_01 GPR50 
Inhibition of melatonin 
receptor 

XLR Missense 

Gene expression and chromatin remodelling 

F06_01 (F06_02) GFI1 (2) Transcriptional repressor Inherited Frameshift 

F06_01 (F06_03) INO80 
Chromatin remodelling 
complex 

Inherited Missense 

Others 

F03_01 (F03_02, 
F03_04) 

SKIV2L Cell proliferation 
Inherited Missense 

Inherited Missense 

F02_01 ZNF645 
Class I MHC mediated 
antigen processing & 
presentation 

XLR Missense 

 

5.3.1 Interleukins signalling pathway

The important role of IL signalling pathways was underscored by the
identification of variants in the genes IL13RA2 (receptor of IL-13), TN-
FRSF1A (receptor of TNF-α) and LAMA5 (up-regulated by IL-4 and
IL-13 signalling [283, 284]). IL are secreted proteins that bind to spe-
cific receptors and play a role in intercellular communication among
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leukocytes. Several IL have been associated with atopic responses,
such as IL-4 and IL-13, which have been used in clinical trials for the
treatment of asthma and atopic dermatitis [285]. Furthermore, recent
studies showed positive effect of anti-IL-13 treatment on oesophageal
eosinophilia in patients with eosinophilic oesophagitis [286, 287]. This,
and also the fact that IL-4 and IL-13 are cytokines of type-2 immune
response [288], highlight the possible role of IL in the pathogenesis
of FPIES, which has been suggested to be part of a type-2 mechanism
response.

Furthermore, TNF-α is not a type-2 immune response specifically,
but is an important pleiotropic cytokine involved in host defence, inflam-
mation, and apoptosis, and has also been associated with allergic diseases
such as asthma and atopic dermatitis [289, 290]. TNF-α blockers have
already been used for the treatment of inflammatory bowel disease, thus
the role of TNF-α in GI maintenance is of potential interest. These
results suggest that IL pathways could be involved in the pathogenesis
of FPIES.

5.3.2 NF-κβ pathway

Another relevant signalling pathway highlighted in this study was the
NF-κβ pathway. Activation of NF-κβ has already been observed in
allergic responses [291, 292], but never demonstrated to play a role in
pathogenesis of FPIES. Here, mutations in three genes that directly regu-
late the NF-κβ pathway were reported: GFI1, NLRP12 and TNFRSF1A.
Additionally, two affected individuals from two different families were
identified to have a XLR mutation in the MAP3K15 gene, previously
associated with apoptosis. Although no previous associations to NF-
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κβ activation have been reported, this gene belongs to the family of
MAP3Ks, some of them notable activators of NF-κβ pathway, such as
NRK [293]. This could suggest a possible role of MAP3K15 in NF-κβ

regulation, and altogether these variants emphasised the interplay of
NF-κβ in allergic diseases, and open a new discussion for its role in the
pathogenesis of FPIES.

5.3.3 Mitochondrial dysfunction

Mitochondrial dysfunction has been associated with GI disorders. In
general, mitochondrial pathology (as for example, electron transport
chain complex dysfunction, diminished mitochondrial membrane po-
tential and changed mitochondrial morphology), have been observed
in patients with IBD and EoE [237]. Therefore, and underlined by the
findings in ANKZF1, these results suggest a role for mitochondrial dys-
function in FPIES, highlighting the phenotypic overlap between different
GI disorders (IBD and FPIES).

5.3.4 T cell development

One affected individual presented a compound heterozygous variant in
STAB1. This gene plays an important role during T cell development
and negative selection in the thymus. Negative selection of the T-cell
antigen receptors occurs in the thymic cortex, after being generated
by recombination. The negative selection shapes the T-cell repertoire
to avoid self-reactivity, which powerfully contributes to the avoidance
of autoimmunity. This negative selection in the thymus functions as
the major mechanism of central immune tolerance. Therefore, the fact
that one candidate variant was identified in STAB1 highlights the role
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that problems during proper regulation of T-cell development to avoid
autoimmunity reactions could play in the development of FPIES.

5.3.5 Extracellular matrix organisation

Two of the variants identified were in genes previously associated with
extracellular matrix organization: CAPN14 and PPL. The first one,
CAPN14, has been associated with EoE and impairs epithelial barrier
function by diminishing the expression of DSG1, a cadherin-like trans-
membrane glycoprotein that is major component of the desmosome
[276]. The second one, PPL, is a component of desmosomes and of the
epidermal cornified envelope in keratinocytes.

Desmosomes are cell-cell junctions that help resist shearing forces
and are found in high concentrations in cells subject to mechanical stress.
Impairments in the desmosome function can lead to extracellular matrix
disorganization, specific cell type infiltrations, and cause an increased
expression of proinflammatory extracellular matrix molecules. These
results emphasize the importance of an appropriate extracellular matrix
homeostasis, and how its impairment could lead to proinflammatory
responses, including GI disorders.

5.3.6 Neuroimmune regulation and homeostasis

The immune system and nervous system are anatomically connected,
mechanistically communicate and reciprocally influence the other’s func-
tion. It has been suggested that enteric neurons and intestinal immune
cells share common regulatory mechanisms and can coordinate their
responses to specific challenges [294].
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Melatonin has been associated with oesophagitis and chronic inflam-
mation [266]. Furthermore, it is a Trp metabolite like serotonin, which
was previously associated with FPIES [268, 129]. The variant identified
in GPR50 gene, which encodes for a protein that inhibits the melatonin
receptor, is an interesting finding that reinforces the possible role of
neuroimmune regulation in the pathogenesis of GI disorders, such as
FPIES.

5.3.7 Gene expression and chromatin remodelling

Expression and/or repression of specific genes are important factors to
consider when studying the pathogenesis of multiple diseases. For that
reason, mutations identified in genes that encode for transcription factors
(such as GFI1) or the chromatin remodelling complex (such as INO80)
were of particular interest.

GFI1 encodes for a transcriptional repressor which is important for
Th2 cell differentiation [295]. More specifically, Gfi1 plays an important
role in the regulation of IL-5 and IFN-γ production in Th2 cells, as well as
the regulation of GATA3. Therefore, the cooperation of transcriptional
factors such as Gfi1 and GATA3 is required for the proper Th2 cell
differentiation.

Similarly, INO80 is proposed to bind DNA and be recruited by spe-
cific transcription factors to activate certain genes and repress inappro-
priate transcription at promoters in the opposite direction to the coding
sequence. Although the molecular mechanism of INO80 is uncertain, it
appears to be associated with immunodeficiency. These data emphasise
the role that transcription factors and/or chromatin remodelling proteins
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have over Th2 cell differentiation and specific gene expression, possibly
playing an important role in the pathogenesis of GI food allergies.

5.3.8 HLA variation and disease

Previously HLA alleles have been associated with diseases such as
multiple sclerosis [296], T1D [297] and Coeliac disease [298]. Other
works have found association of certain HLA alleles to peanut allergy
[277]. However, the role of HLA in food allergy, especially GI food
allergy, is not yet fully understood. It is suspected that HLA class I and
II molecules play an important role in the pathogenesis of food allergy
due to their crucial role in presenting a vast array of antigenic peptides
to T cells [109].

The majority of autoimmune disease-HLA associations for which
molecular mechanisms of actions have been identified are in HLA-DR
and HLA-DQ alleles. There is not much known about a possible role
of HLA-B and HLA-C in FPIES (although a specific HLA-C allele has
been observed in individuals with Crohn’s disease [109]). Therefore,
the suggestive association of HLA-C*07:02 and HLA-B*07:02 alleles to
FPIES identified in this work expands the concept about HLA variation
and disease.

Nevertheless, there is a limitation in this analysis that needs to be
taken into account: the low power of the association test due to the
sample size. This could also be one of the reasons why the p-values from
this work, although significant, are at the order of 1e-2, while previous
large-scale cohort analysis have reported HLA associations with a p-
value of the order of at least 1e-8 [296, 298, 297, 299]. Therefore, larger
case-control studies would be required to confirm.
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Solving this problem is not straight forward, since affected individu-
als with severe FPIES are very rare in the population. Therefore, it would
be a challenge to recruit a large number of patients with this phenotype,
avoiding those with similar symptoms but different aetiologies. Different
projects have performed large-scale genome sequencing on patients with
rare diseases [25, 53], but ideally this could be achieved at a national
level, through the national health service.

Another possibility to consider is that specific HLA allele/s could be
contributing to the manifestation of disease, in combination with other
causal mechanisms such as the presence of SNVs or CNVs. This is one
of the reasons why WES is a good technology for the study of patients
with GI food allergies, because with only one experiment it is possible to
perform a comprehensive analysis that allows consideration of multiple
types of genome variation.

5.4 Gender bias

Gender differences in the development and prevalence of human diseases
have long been recognised, and there is an increased interest in the under-
standing the different factors that may be responsible for this disparity
in the homeostasis of immunity [189]. A slight male predominance of
60:40 has been reported in FPIES [300]. This is consistent with the sex
disparity observed among children with food allergies (65:35). Interest-
ingly, this ratio inverts in adulthood, were 65% are females, compared
to 35% males [301]. Although different factors may be responsible for
this disparity (including gender-specific behaviour or specific intake of
medications), recent studies have focused on the study of the hormonal
effects.
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The direct effect of sex hormones has rarely been investigated in
food allergies. However, it is well known that women show higher anti-
body responses against infections and vaccines [302]. This is because
oestrogens can promote autoimmunity since they enhance humoral im-
mune responses; on the contrary, androgens and progesterone have an
immunosuppressive effect.

In this study, a candidate compound heterozygous variant in ANKZF1
gene was identified in the proband of Family 1 and in the asymptomatic
sister. A situation like this could be explained by many reasons, including
1) incomplete penetrance, 2) the variant is partially contributing to the
phenotype, 3) the female has an additional protective variant, or if, as
here suggested, 4) the response in the female is currently less severe due
to the interplay of specific hormones. Hence, if pathogenicity of this
mutation is demonstrated in the proband by functional assays, and the
latter is true, its possible effect on the sister in a long term should be
considered.

5.5 Effect of genetic variants in multiple genes

Oligogenic disorders are either caused or modulated by the action of
a small number of loci. Some examples of oligogenic disorders are
Usher syndrome type I and Nephrotic syndrome, among many others
[303], where mutations in multiple genes from the same pathway or with
similar functions contribute to disease.

The affected proband of Family 4 presented two different variants,
one in GFI1 gene inherited from the mother, and one in INO80 gene
inherited from the father. The role these two variants play in disease
pathogenesis remains unknown, though a possible hypothesis could
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be that impairment of both genes, which play important roles in tran-
scriptional regulation, could be affecting expression of immune system
genes.

Likewise, polygenic inheritance, involving many common genetic
variants of small effect, can play a greater role than rare monogenic muta-
tions for many common diseases [304]. This is based on the combination
of multiple risk alleles, on the basis that there may be an accumulation of
weak effects on the key genes and regulatory pathways that drive disease
risk. Recent studies utilising large datasets have established polygenic
risk predictors in different common diseases, as for example, in inflam-
matory bowel disease [304]. Therefore, it would not be surprising that
polygenic risk can play an important role in the pathogenicity of GI food
allergies.

For several diseases, when a specific gene is associated with disease,
the study of genes with similar function or in the same pathway helps
to highlight specific molecular processes, like the role of autophagy in
Crohn’s disease [305], and roles for adipocyte thermogenesis and central
nervous system genes in obesity [306, 285, 307]. However, a recent
hypothesis, proposed by Boyle et al [308], postulates that some complex
disorders could be omnigenic. The omnigenic model posits the existence
of a small number of core genes having biologically interpretable roles
in disease, along with a much greater quantity of peripheral genes regu-
lating the core genes. Because the number of peripheral genes is much
greater than core genes, they account for a greater proportion of the
variability than the core genes (Figure 5.1). This is a recent hypothesis,
and separating these two classes will require more research.

The polygenic and omnigenic models are exciting fields of study.
The main limitation is that a large number of data sets are required to
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perform the analyses. Nevertheless, with the advent of HTS technologies,
the investigation of the effect of multiples genes in the pathogenesis of
GI food allergies might be facilitated.

Fig. 5.1 Omnigenic model of complex traits. For any given disease phenotype, a
limited number of genes have direct effects on disease risk. However, by the small
world property of networks, most expressed genes are only a few steps from the nearest
core gene and thus may have non-zero effects on disease. Since core genes only
constitute a tiny fraction of all genes, most heritability comes from genes with indirect
effects.

5.6 Translation into the clinic

Thanks to large-scale sequencing studies we are likely to see the rapid
accumulation of known loci associated with complex traits like FPIES in
the near future. It is hoped that geneticists will be able to complete the
picture of missing heritability and explain the role of genetics in these
kinds of disorders. However, it is important to interrogate the benefits
these discoveries will provide to those individuals that are affected today.
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First of all, providing a diagnosis would end with the diagnostic
odyssey the patients and relatives are exposed to. Participants of this
work have had a large number of investigations undertaken in an attempt
to define and diagnose the cause of the symptoms, and some of them
never even received a proper diagnosis. Therefore, knowing what is the
cause of the disease, especially after many years of research, could be a
relief for the family and ends the turmoil they are exposed to.

Moreover, a genetic diagnosis may lead to a specific treatment, if
available. Unfortunately, there are no European Medicines Agency
(EMA) approved treatment options for FPIES, and the current mainstay
of treatment of food allergies is allergen avoidance. Nevertheless, the
findings of this work expand the molecular biology of FPIES which
could possibly lead to the development of new drugs, or even bring
to light possible treatments that are already known to regulate certain
pathways that now are associated with the pathogenesis of FPIES. For
example, different variants in genes involved in the NF-κβ pathway
were identified in multiple families, and numerous drugs and substances
have been seen to regulate the NF-κβ pathway (listed in Table 5.2). A
candidate variant was also identified in IL13RA2, a receptor involved in
signalling mediated by IL-4/IL-13 cytokines, and dual blockade of IL-4
and IL-13 with dupilumab demonstrated significant efficacy in allergic
diseases.

Additionally, anti-TNF treatments have been seen to be effective in
different atopic diseases, and genetic variants were found in TNFRSF1A.
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Table 5.2 Therapeutic strategies for NF-κβ regulation. Adapted from [309].

Therapeutic
strategy

Mechanism References

IKK-β -
dominant-
negative gene
therapy

Prevents TNF-α–mediated NF-κβ nuclear
translocation and proinflammatory gene ex-
pression in synoviocytes

[310]

NF-κβ decoy
oligonucleotides

By increasing apoptosis and suppressing cy-
tokine gene expression - suggested

[311, 312]

T-cell specific
NF-κβ inhibitor

Significantly decreased arthritis severity in CIA
in mice. NF-κβ -directed therapy is also effec-
tive in a model of inflammatory bowel disease
induced by 2, 4, 6,-trinitrobenzene sulfonic
acid

[313, 314]

Corticosteroids Inhibition of NF-κβ activation [315]

Sulfasalazine
Block nuclear translocation of NF-κβ through
inhibition of IκBα degradation

[315]

5-aminosalicylic
acid

Inhibit the production of cytokines and inflam-
matory mediators

[316, 317]

Aspirin Function as a competitive inhibitor of IKK-β [315]

Tepoxalin
Inhibit the production of cytokines and inflam-
matory mediators

[318]

Leflunomide
Block nuclear translocation of NF-κβ through
inhibition of IκBα degradation

[315]

Continued on next page
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Table 5.2 – continued from previous page

Therapeutic
strategy

Mechanism References

Others

Curcumin suppresses IKK/IκB/NF-κβ and c-
Raf/MEK/ERK inflammatory cascades as well
as prevents their translocation into the nucleus.
Vanillin suppresses the expression of protea-
some and other antioxidants, such as resver-
atrol, can inhibit the activities of NF-κβ and
Iκβ kinase.

[319–322]

Elucidating the central disease pathways in FPIES holds the potential
to identify not only new therapies to provide temporary symptomatic
relief, but also to investigate if benefits of already existing drugs or
natural products is achievable.

For example, oral administration of TGF-β1 has been reported to
protect the immature gut from injury by suppression of NF-κβ signalling
and proinflammatory cytokine production, and suggested to protect
against gastrointestinal diseases [323].

A natural product is curcumin, which has numerous pharmacolog-
ical benefits including anti-inflammatory activities. Previous studies
observed that curcumin induces suppression of Iκκ/Iκβ /NF-κβ and c-
Raf/MEK/ERK inflammatory cascades as well as prevents their translo-
cation into the nucleus [320]. This suppression showed promising anti-
inflammatory activity by significantly inhibited IL-6 production (which
modulates allergic inflammation in skin) in HaCaT cells. Additionally,
vanillin (4-hydroxy-3-methoxybenzaldehyde) has also been seen to play
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a role in NF-κβ pathway, a potent NF-κβ inhibitor. Vanillin is a natural
component which has been reported to have anti-inflammatory activities,
improves and prevents colitis in mice and ameliorates the development of
cancers in mice with induced colitis-associated colon cancer [322, 319].
It has been suggested that vanillin suppresses the expression of protea-
some and subsequently alters NF-κβ and MAPK pathways, which in
turn suppress the proliferation of cells and the infiltration of immune
cells.

This work emphasises the possible role that different signalling path-
ways may play in FPIES, and reveals possible therapeutic strategies that
could be beneficial for the affected individuals.

5.7 The microbiome

The investigation of the interaction between an individual’s genome
and their environment is another area that offers particular promise for
the translation of genetic findings. The GI microbiota plays an im-
portant role in disease pathogenesis, where the epithelial barrier and
autophagy pathways are implicated [324]. Microbiome studies in in-
dividuals with allergic disease have reduced beneficial bifidobacterial
species and increased numbers of clostridia and staphylococci compared
to non-allergic infants [325]. Similarly, studies on infants with EoE
demonstrated that distal oesophageal biopsies from healthy subjects are
dominated by Streptococcus species, while affected individuals with oe-
sophageal inflammation have predominantly gram-negative anaerobes or
microaerophilic bacteria [326]. However, it is uncertain if the disturbed
microbiome arises as a result of an extensive inflammatory response
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caused by a different reason (such as genetic variation), or if it triggered
the response.

It has been suggested that FPIES pathogenesis involves an interplay
of environmental and genetic factors, so it could be possible that mu-
tations in genes involved in maintenance of the epithelial barrier and
autophagy could cause dysbiosis that might contribute to an aberrant or
exaggerated inflammatory response. However, genetics is not the only
factor that alters the microbiome; it can also be perturbed by maternal-
foetal interaction, place and mode of delivery, early feedings strategies
and the use of antibiotics, making it difficult to unravel cause and effect.

Understanding the role of the microbiome in FPIES is important
due to the recent success of faecal microbiota transplants (FMTs) as
treatment for allergic colitis [327]. FMTs aim to change the gut micro-
bial composition of an affected individual and confer a health benefit
by the administration of stool from a healthy donor [328]. FMTs have
been used in gut microbiota dysbiosis, such as Clostridium difficile in-
fection [329, 330], inflammatory bowel disease [331, 332], and irritable
bowel syndrome [333, 334, 331]. Moreover, FMT is currently being
investigated as a therapy for paediatric allergic disorders [335].

To determine whether the association between environmental factors
such as microbiota dysbiosis and the presence of FPIES is consistent
with a causal effect, a bidirectional Mendelian randomisation technique
has to be considered [336]. Essentially, this is based on the fact that
an individual genotype can affect the phenotype, and both phenotype
and environment can interact with each other, but not with the genotype
(except in somatic mutations) (Figure 5.2). Hence, genetic variation
always acts as a causal ’anchor’. For that reason, its study is a useful
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start for understanding the relationship between environmental factors
and the development of disease.

Confounders
(e.g. diet)

FPIES Microbiome 
dysbiosis

Genetic variants 
of FPIES

Genetic variants of 
microbiome 

dysbiosis 

Fig. 5.2 Mendelian randomisation in FPIES. In this case, Mendelian randomisation
can be used to infer a causal relationship between FPIES and the microbiome. If the
correlation has arisen because FPIES causes microbiome dysbiosis, then any variable
that affects FPIES (such as genetic variants) should also affect microbiome, but not
vice versa.

Therefore, genetics could provide a valuable opportunity to unravel
the role of the microbiome in FPIES, and exome sequencing is a powerful
technology by which to achieve this. Microbiome study may even
allow us to understand why individuals with susceptible genetic variants
develop disease, while others do not.
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5.8 Future perspectives

Exome sequencing has been successfully used in this dissertation to study
rare variation and HLA haplotypes in individuals with severe FPIES and
their relatives.

The full elucidation of the genetic basis of FPIES through this study
was not possible because of the very small sample size, the variable
quality of the sequencing data and the limitations of WES, that have
been discussed. Research on this and similar phenotypes suggest that the
disease is likely to be genetically heterogeneous, and it also is probably
not a straightforward Mendelian phenotype so common variants and
non-genetic factors may contribute, suggesting that large sample sizes
may be required. This will be challenging given the low prevalence of
the disease, but in the future, developments such as patient registries may
make it possible.

Nevertheless, results from this work give insight into the pathogenesis
of this disorder by the observation of inherited and sporadic mutations in
genes which play an important role in regulation of the immune system.
However, despite substantial progress in understanding the underlying
mechanisms of FPIES, many questions in the field of food allergy remain
to be answered.

First, functional assays of candidate variants would need to be per-
formed to assess the pathogenicity of these mutations, especially the
missense mutations. Design of the different types of assays, or the selec-
tion of an appropriate animal model, would depend on the consequence
of the variants at cellular, tissular, physiological and immunological
level.
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Second, a different technology may be appropriate to study genetic
variation in individuals with FPIES. Although WES has successfully
identified SNVs and indels, CNVs and HLA haplotypes, WGS by short
or long reads provides not only higher performance on the detection of
these types of variants, but also the identification of others that could also
be involved in the pathogenesis of the disease and are missed by WES.
These include non-coding variants, mitochondrial variants, copy-neutral
SVs, complex structural rearrangements and STR expansions. It is hoped
that additional technological improvements and software development
will lower costs and make these technologies accessible for the routine
use in the scientific research.

Third, the study of common variants and polygenic/omnigenic risk
scores would also be required to assess pathogenicity, since previous
studies observed that common variants may contribute to other types of
GI disorders such as IBD [337]. However, in order to perform these anal-
yses, a much larger cohort of affected individuals would be required, and
this is a challenge due to the rareness of the disease and the overlapping
phenotype spectrum of FPIES with other types of GI disorders.

Finally, due to the important weight of the environment in this dis-
order, the study of not only the genome, but also the epigenome, gene
expression and/or microbiota in affected individuals may also be of
interest to fully understand the disease pathogenesis of FPIES.



Chapter 6

Conclusions and final remarks

6.1 Conclusions

In this dissertation, the following has been accomplished:

• The development of a workflow to process the exome sequencing
data from seven families affected with gastrointestinal food allergy
induced by multiple food proteins. This has been released into the
public domain (http://github.com/alsanju/wes-pipeline).

• The assembly of a list of candidate genes associated with immuno-
logical disorders, that future larger studies may be able to use to
prioritise their own variants.

• The performance of thorough quality control, that showed i) good
sequencing and variant quality, ii) good coverage of the exome,
iii) that no relatedness between families or sex discrepancies were
identified.

http://github.com/alsanju/wes-pipeline
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• The identification of candidate SNVs/indels and HLA haplotypes
across multiple genes in all the families, supporting (with different
levels of evidence) that rare genetic variants can be involved in
the pathogenesis of the disease, and confirming that this disease is
unlikely to be caused by rare mutations in a single gene.

• The identification of possibly associated pathways with the disease,
which included i) interleukins signalling pathway, ii) NF-κβ path-
way, iii) T-cell development, iv) extracellular matrix organisation,
v) mitochondrial dysfunction, vi) neuroimmune regulation and
homeostasis and vii) gene expression and chromatin remodelling.

6.2 Final remarks

The worldwide prevalence of allergy, including FPIES, has increased
dramatically over the last decades. Although not much is known about
the pathogenesis of this disorder, genetic predispositions, environmental
factors, and social behaviour interplay to orchestrate the scenario of
allergy manifestation. Over the past few years, there have been dramatic
advances in the genetic study of multiple disorders, especially thanks to
WES technology, which gives us the ability to sequence large cohorts of
individuals and perform analysis of rare variation at an affordable cost.

It is possible that the complete picture of heritability in FPIES will
be resolved in the next decades. Studies like this one will be crucial in
uncovering the biological mechanisms that underlie disease pathogenesis,
and in offering insights that can be used for the development of new
therapeutics. Ultimately, understanding the causes of GI food allergies
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will lead to improvements in the lives of people suffering from these
disorders.
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Chapter 7

Appendix

7.1 Software

The versions of the featured software used to perform the WES analysis
can be found below. Additional details on the reproducible conda envi-
ronment file can be found in the github repository: http://github.com/
alsanju/wes-pipeline

• bcftools=1.2

• bedtools=2.25.0

• bwa=0.7.12

• cutadapt=1.9.1

• fastqc=0.10.1

• gatk=3.4-46

• gemini=0.17.2

• htslib=1.2

• parallel=20150922

• picard=1.140

• python=2.7.6

• r=3.2.3

• samtools=1.2

• vcftools=0.1.14

• vep=84

http://github.com/alsanju/wes-pipeline
http://github.com/alsanju/wes-pipeline
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7.2 Gene information

The MIM and ensembl IDs for all the genes mentioned in this dissertation
can be found in the next table.
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Gene symbol MIM Ensembl Gene ID

AGT 106150 ENSG00000135744

AKR1D1 604741 ENSG00000122787

ANKZF1 617541 ENSG00000163516

CAPN14 610229 ENSG00000214711

CBLB 251110 ENSG00000114423

CD14 158120 ENSG00000170458

CD40L 300386 ENSG00000102245

CEP290 610142 ENSG00000198707

CTNNA3 607667 ENSG00000183230

DHODH 126064 ENSG00000102967

PARK7 602533 ENSG00000116288

DPP10 608209 ENSG00000175497

EOMES 604615 ENSG00000163508

FCGR3A 146740 ENSG00000203747

FLG 135940 ENSG00000143631

FOXP3 300292 ENSG00000049768

GBA 606463 ENSG00000177628

GFI1 600871 ENSG00000162676

GPR50 300207 ENSG00000102195

GSTP1 134660 ENSG00000084207

HLA-A 142800 ENSG00000206503

HLA-B 142830 ENSG00000234745

HLA-C 142840 ENSG00000204525

HLA-DPA1 142880 ENSG00000231389

HLA-DPB1 142858 ENSG00000223865

HLA-DQA1 146880 ENSG00000196735

HLA-DQA2 613503 ENSG00000237541

HLA-DQB1 604305 ENSG00000179344

HLA-DQB2 615161 ENSG00000232629

HLA-DRA 142860 ENSG00000204287

HLA-DRB1 142857 ENSG00000196126

HLA-DRB2 604776 ENSG00000227442

HLA-DRB3 612735 ENSG00000196101

HLA-DRB4 142857 ENSG00000227357

HLA-DRB5 604776 ENSG00000198502

HLA-E 143010 ENSG00000204592

HLA-F 143110 ENSG00000204642

HLA-G 142871 ENSG00000204632

IKBKAP 603722 ENSG00000070061

IL-10 124092 ENSG00000136634

IL12A 161560 ENSG00000168811

IL13 147683 ENSG00000169194

Gene symbol MIM Ensembl Gene ID

IL4 147780 ENSG00000113520

IL5 147850 ENSG00000113525

IL12RB1 601604 ENSG00000096996

IL13RA2 300130 ENSG00000123496

INO80 610169 ENSG00000128908

KALRN 604605 ENSG00000160145

KMT2B 606834 ENSG00000272333

LAMA5 601033 ENSG00000130702

MAP3K15 300820 ENSG00000180815

NFKB1 164011 ENSG00000109320

NRK 300791 ENSG00000123572

NLRP12 609648 ENSG00000142405

PARK2 600116 ENSG00000185345

PDE4DIP 608117 ENSG00000178104

PPL 602871 ENSG00000118898

RBFOX1 605104 ENSG00000078328

RUNX2 600211 ENSG00000124813

SKIV2L 600478 ENSG00000204351

STAB1 608560 ENSG00000010327

TBX21 604895 ENSG00000073861

TCF4 602272 ENSG00000196628

TNFRSF1A 191190 ENSG00000067182

ZNF645 - ENSG00000175809
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7.3 Gene list

This gene list has been assembled from literature searches for allergy and
immunodeficiency, as well as associated Human Phenotype Ontology
(HPO) terms [338] (accessed March 2018), comprising a total number
of 1,346 genes. The HPO terms considered were those containing the
words: *allerg*, *asth*, *immun*, *food*, *diarr*.

If the reason for inclusion was literature searches, the reference is
specified in the following table. If it was by HPO term inference, the
minimal set in the sense of the ontology’s directed acyclic graph is
included in the table. Abbreviations are as follows:

Abnormality of the immune system=AIS, Abnormality of immune
system physiology=AISP, Diarrhea=DIA, Abnormality of cellular im-
mune system=ACIS, Immunodeficiency=IDEF, Autoimmune thrombo-
cytopenia=AT, Cellular immunodeficiency=CEI, Combined immunodefi-
ciency=COI, Immune dysregulation=IDYS, Allergy=ALL, Asthma=AST,
Autoimmune antibody positivity=AAP, Autoimmune hemolytic ane-
mia=AHA, Chronic diarrhea=CD, Immunoglobulin IgG2 deficiency=IID,
Severe combined immunodeficiency=SCI, Abnormal immunoglobulin
level=AIL, Autoimmunity=AUTO, Food intolerance=FI, Intermittent
diarrhea=INTD, Protracted diarrhea=PD, Abnormality of humoral immu-
nity=AHI, Immunologic hypersensitivity=IH, Intractable diarrhea=INTD,
Autoimmune neutropenia=AN, Allergic rhinitis=AR, Severe T-cell im-
munodeficiency=STI, Cow milk allergy=CMA, Secretory diarrhea=
SECD, Abnormality of immune serum protein physiology=AISPP, Aspi-
rininduced asthma=AIA.
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Gene symbol Ensembl gene ID Source

A2ML1 ENSG00000166535 AIS

ABCA1 ENSG00000165029 AIS

ABCA12 ENSG00000144452 AISP

ABCB11 ENSG00000073734 AIS;DIA

ABCB4 ENSG00000005471 AISP;DIA

ABCC6 ENSG00000091262 AISP

ABCC8 ENSG00000006071 AIS;DIA

ABCC9 ENSG00000069431 ACIS

ABCD3 ENSG00000117528 AIS

ABCD4 ENSG00000119688 ACIS

ABCG5 ENSG00000138075 AIS

ABCG8 ENSG00000143921 AIS

ABL1 ENSG00000097007 ACIS

ACD ENSG00000102977 ACIS;IDEF

ACP5 ENSG00000102575 ACIS;AT;CEI;COI

ACSF3 ENSG00000176715 DIA

ACTA1 ENSG00000143632 AISP

ACTB ENSG00000075624 IDEF

ACTC1 ENSG00000159251 ACIS

ACTG2 ENSG00000163017 AISP

ACTN2 ENSG00000077522 ACIS

ACVR2B ENSG00000114739 AIS

ACVRL1 ENSG00000139567 DIA

ADA ENSG00000196839 ALL;AST;CD;IID;SCI

ADAM17 ENSG00000151694 ACIS;AISP;DIA

ADAMTS2 ENSG00000087116 AISP

ADAMTS3 ENSG00000156140 AIL

ADNP ENSG00000101126 AISP

AFF4 ENSG00000072364 AISP

AGA ENSG00000038002 ACIS;AISP;DIA

AGL ENSG00000162688 IDEF

AGPAT2 ENSG00000169692 IDEF

AGT ENSG00000135744 [339]

AGXT ENSG00000172482 AISP

AICDA ENSG00000111732 AIL;IDEF

AIP ENSG00000110711 AISP

AIRE ENSG00000160224 AUTO;DIA

AK2 ENSG00000004455 AIL;CEI;DIA;SCI

AKR1D1 ENSG00000122787 AIS;DIA

AKT1 ENSG00000142208 CEI

AKT2 ENSG00000105221 AIS

ALAD ENSG00000148218 DIA

Gene symbol Ensembl gene ID Source

ALAS2 ENSG00000158578 AIS

ALDH3A2 ENSG00000072210 AISP

ALDOA ENSG00000149925 AIS

ALG1 ENSG00000033011 AISP

ALG12 ENSG00000182858 AISP

ALG13 ENSG00000101901 AISP

ALG3 ENSG00000214160 DIA;FI

ALG9 ENSG00000086848 AIS

ALMS1 ENSG00000116127 AST

ALOX12B ENSG00000179477 AISP

ALOXE3 ENSG00000179148 AISP

ALPL ENSG00000162551 AISP

AMACR ENSG00000242110 AISP

ANK1 ENSG00000029534 AIS

ANKRD1 ENSG00000148677 ACIS

ANKRD11 ENSG00000167522 AISP

ANKRD55 ENSG00000164512 AAP

ANO5 ENSG00000171714 AISP

ANTXR2 ENSG00000163297 CD;IDEF

AP1S1 ENSG00000106367 DIA

AP2S1 ENSG00000042753 AISP

AP3B1 ENSG00000132842 ACIS;AISP

AP3D1 ENSG00000065000 ACIS;IDEF

APC ENSG00000134982 AISP

APC2 ENSG00000115266 AISP

APOA1 ENSG00000118137 AISP

APOC2 ENSG00000234906 AISP

APOE ENSG00000130203 ACIS;AISP

APRT ENSG00000198931 AISP

ARHGAP26 ENSG00000145819 ACIS

ARHGAP31 ENSG00000031081 ACIS

ARID1A ENSG00000117713 AISP

ARID1B ENSG00000049618 AISP

ARID2 ENSG00000189079 AISP

ARMC4 ENSG00000169126 AISP

ARSB ENSG00000113273 AISP

ARVCF ENSG00000099889 AST;AUTO;IDEF

ARX ENSG00000004848 DIA

ASAH1 ENSG00000104763 ACIS;AISP

ATL3 ENSG00000184743 AISP

ATM ENSG00000149311 CEI;IID

ATP6AP1 ENSG00000071553 AIL
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Gene symbol Ensembl gene ID Source

ATP6V0A2 ENSG00000185344 AISP

ATP7A ENSG00000165240 AISP;CD

ATP7B ENSG00000123191 AISP

ATP8B1 ENSG00000081923 AISP;DIA

ATRX ENSG00000085224 ACIS;IDEF;INTD;PD

AVP ENSG00000101200 DIA

AXIN1 ENSG00000103126 AISP

B2M ENSG00000166710 AIL;CD;INTD

B9D1 ENSG00000108641 AIS

B9D2 ENSG00000123810 AIS

BACH2 ENSG00000112182 [340]

BAG3 ENSG00000151929 ACIS

BAP1 ENSG00000163930 AISP

BAZ1B ENSG00000009954 AISP

BBS1 ENSG00000174483 AST

BBS4 ENSG00000140463 AST

BCKDHA ENSG00000248098 AISP

BCKDHB ENSG00000083123 AISP

BCL10 ENSG00000142867 AIL;IDEF

BCL11B ENSG00000127152 SCI

BCL2 ENSG00000171791 AISP

BCL6 ENSG00000113916 AISP

BCOR ENSG00000183337 AISP

BCR ENSG00000186716 ACIS;IDEF

BCS1L ENSG00000074582 AISP

BIRC3 ENSG00000023445 AISP

BLM ENSG00000197299 AIL;DIA

BLNK ENSG00000095585 AIL;DIA;IDEF

BLOC1S6 ENSG00000104164 ACIS

BMPR1A ENSG00000107779 DIA

BPGM ENSG00000172331 AIS

BRAF ENSG00000157764 AISP

BRCA1 ENSG00000012048 AISP;INTD

BRCA2 ENSG00000139618 ACIS;AISP;INTD

BRIP1 ENSG00000136492 ACIS;AISP

BSCL2 ENSG00000168000 IDEF

BTD ENSG00000169814 AISP;DIA

BTK ENSG00000010671 AIL;AUTO;CD;IDEF

BTNL2 ENSG00000204290 ACIS;AISP

BUB1 ENSG00000169679 ACIS;AISP

BUB1B ENSG00000156970 ACIS;COI

BUB3 ENSG00000154473 ACIS;AISP

Gene symbol Ensembl gene ID Source

C11orf30 ENSG00000158636 [341]

C15orf41 ENSG00000186073 AIS

C1GALT1C1 ENSG00000171155 AUTO

C1orf172 ENSG00000175707 AISP

C1QA ENSG00000173372 AHI;AUTO

C1QB ENSG00000173369 AHI;AUTO

C1QC ENSG00000159189 AHI;AUTO

C1R ENSG00000159403 AHI;AUTO

C1S ENSG00000182326 AHI;AUTO

C2 ENSG00000166278 AUTO

C21orf2 ENSG00000160226 AISP

C21orf59 ENSG00000159079 AISP

C3 ENSG00000125730 AHI

C4A ENSG00000244731 AHI;AUTO;IH

C4B ENSG00000224389 AHI

C5 ENSG00000106804 AHI;INTD

C5orf42 ENSG00000197603 AIS

C6 ENSG00000039537 AHI

C6orf25 ENSG00000204420 AIS

C7 ENSG00000112936 AHI

C8A ENSG00000157131 AHI;AUTO

C8B ENSG00000021852 AHI

C9 ENSG00000113600 AHI

CA2 ENSG00000104267 AIS

CACNA1C ENSG00000151067 AISP

CALR ENSG00000179218 ACIS

CAPN14 ENSG00000214711 [342]

CAPN3 ENSG00000092529 ACIS

CAPN5 ENSG00000149260 AISP

CARD11 ENSG00000198286 AIL;IDEF

CARD14 ENSG00000141527 AISP

CARD9 ENSG00000187796 IDEF

CASP10 ENSG00000003400 AIL;AAP;AHA;AN;AT

CASP8 ENSG00000064012 ACIS;AST;CD

CASR ENSG00000036828 ACIS;AISP

CAV1 ENSG00000105974 AUTO;IDEF

CBL ENSG00000110395 ACIS

CBLB ENSG00000114423 [343]

CBS ENSG00000160200 AISP

CC2D2A ENSG00000048342 AIS

CCBE1 ENSG00000183287 AIL

CCDC103 ENSG00000167131 AISP
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Gene symbol Ensembl gene ID Source

CCDC114 ENSG00000105479 AISP

CCDC115 ENSG00000136710 AIS

CCDC151 ENSG00000198003 AST

CCDC22 ENSG00000101997 AISP

CCDC39 ENSG00000145075 AISP

CCDC40 ENSG00000141519 AISP

CCDC65 ENSG00000139537 AISP

CCND1 ENSG00000110092 AIL

CCNO ENSG00000152669 AISP

CCR1 ENSG00000163823 IH

CCR6 ENSG00000112486 AUTO

CCT5 ENSG00000150753 AISP

CD14 ENSG00000170458 [344]

CD151 ENSG00000177697 AISP

CD19 ENSG00000177455 AIL;AT;DIA;IDEF

CD247 ENSG00000198821 ACIS;AAP;IDEF;PD

CD27 ENSG00000139193 AIL

CD28 ENSG00000178562 AIL;IDEF

CD3D ENSG00000167286 ACIS;DIA;IDEF

CD3E ENSG00000198851 ACIS;IDEF

CD3G ENSG00000160654 ACIS;AHA;IDEF

CD4 ENSG00000010610 ACIS

CD40 ENSG00000101017 AIL;IDEF

CD40LG ENSG00000102245 AIL;DIA;IDEF

CD55 ENSG00000196352 DIA

CD79A ENSG00000105369 AIL;DIA;IDEF

CD79B ENSG00000007312 AIL;DIA;IDEF

CD81 ENSG00000110651 AIL;AT;IDEF

CD8A ENSG00000153563 ACIS;AISP

CD96 ENSG00000153283 AISP

CDAN1 ENSG00000140326 AIS

CDC73 ENSG00000134371 AISP

CDCA7 ENSG00000144354 AIL;CEI

CDH23 ENSG00000107736 IDEF

CDH3 ENSG00000062038 IH

CDK4 ENSG00000135446 AIS

CDKN1A ENSG00000124762 AISP;DIA

CDKN1B ENSG00000111276 AISP;DIA

CDKN2A ENSG00000147889 AIS;INTD

CDKN2B ENSG00000147883 AISP;DIA

CDKN2C ENSG00000123080 AISP;DIA

CDKN2D ENSG00000129355 AIS

Gene symbol Ensembl gene ID Source

CDON ENSG00000064309 AIS

CDSN ENSG00000204539 AIL;AST

CEBPA ENSG00000245848 ACIS

CEBPE ENSG00000092067 ACIS;AISP

CEP290 ENSG00000198707 AIS

CEP57 ENSG00000166037 ACIS;AISP

CERS3 ENSG00000154227 AISP

CFB ENSG00000243649 AHI

CFC1 ENSG00000136698 AIS

CFD ENSG00000197766 AHI

CFH ENSG00000000971 AHI

CFHR5 ENSG00000134389 AISP

CFI ENSG00000205403 AHI

CFP ENSG00000126759 AHI

CFTR ENSG00000001626 AIL;AST;IDEF

CHAMP1 ENSG00000198824 AISP

CHAT ENSG00000070748 AIS

CHD7 ENSG00000171316 ACIS;AUTO;CD;SCI

CHRM3 ENSG00000133019 AISP

CHRNE ENSG00000108556 AIS

CHST14 ENSG00000169105 AISP

CIDEC ENSG00000187288 AISP

CIITA ENSG00000179583 AIL;PD

CISD2 ENSG00000145354 AISP

CLCA4 ENSG00000016602 AIL;IDEF

CLCN7 ENSG00000103249 ACIS;AISP

CLDN1 ENSG00000163347 AISP

CLDN16 ENSG00000113946 AISP

CLDN19 ENSG00000164007 AISP

CLEC7A ENSG00000172243 AISP

CLIP2 ENSG00000106665 AISP

CLMP ENSG00000166250 CD

CLN3 ENSG00000188603 ACIS

CLPB ENSG00000162129 ACIS;AISP

CMA1 ENSG00000092009 [344]

CNBP ENSG00000169714 AIL

COG2 ENSG00000135775 AIS

COG4 ENSG00000103051 AISP;CD;INTD

COG6 ENSG00000133103 AIL;CD

COG7 ENSG00000168434 AISP

COL11A2 ENSG00000204248 AISP

COL13A1 ENSG00000197467 AISP
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Gene symbol Ensembl gene ID Source

COL18A1 ENSG00000182871 AIS

COL1A1 ENSG00000108821 AIL

COL2A1 ENSG00000139219 AISP

COL3A1 ENSG00000168542 AISP

COL4A3 ENSG00000169031 AISP

COL4A4 ENSG00000081052 AISP

COL4A5 ENSG00000188153 AISP

COL5A1 ENSG00000130635 AISP

COL5A2 ENSG00000204262 AISP

COL6A1 ENSG00000142156 AISP

COL6A2 ENSG00000142173 AISP

COL6A3 ENSG00000163359 AISP

COL7A1 ENSG00000114270 AISP

COLQ ENSG00000206561 AIS

COMT ENSG00000093010 AST;AUTO;IDEF

CORO1A ENSG00000102879 ACIS;IDEF

COX4I2 ENSG00000131055 AR;AST

CPA1 ENSG00000091704 ACIS;AISP

CPLX1 ENSG00000168993 IDEF

CPOX ENSG00000080819 AIS;DIA

CPT1A ENSG00000110090 DIA

CR2 ENSG00000117322 AIL;AT;CD;IDEF

CREBBP ENSG00000005339 AISP

CRIPT ENSG00000119878 AISP

CRKL ENSG00000099942 IDEF

CRYAB ENSG00000109846 ACIS

CSF3R ENSG00000119535 ACIS;AISP

CSNK2A1 ENSG00000101266 AIL

CSPP1 ENSG00000104218 AIS

CSRP3 ENSG00000129170 ACIS

CSTA ENSG00000121552 ALL

CTBP1 ENSG00000159692 IDEF

CTC1 ENSG00000178971 ACIS;CEI

CTLA4 ENSG00000163599 AIL;AHA;AT;DIA

CTNNA3 ENSG00000183230 [345]

CTNNB1 ENSG00000168036 AISP

CTNS ENSG00000040531 AIS

CTPS1 ENSG00000171793 IDEF;IID

CTRC ENSG00000162438 ACIS;AISP

CTSA ENSG00000064601 AIS

CTSB ENSG00000164733 AISP

CTSC ENSG00000109861 AISP

Gene symbol Ensembl gene ID Source

CTSK ENSG00000143387 AISP

CUL4B ENSG00000158290 IDEF

CXCR4 ENSG00000121966 AIL

CYBA ENSG00000051523 ACIS;AISP

CYBB ENSG00000165168 ACIS;AISP

CYP26C1 ENSG00000187553 ACIS

CYP27A1 ENSG00000135929 DIA

CYP4F22 ENSG00000171954 AISP

CYP7A1 ENSG00000167910 AISP

CYP7B1 ENSG00000172817 AISP;DIA

CYSLTR2 ENSG00000152207 AISP

DAXX ENSG00000204209 AIS;INTD;PD

DBT ENSG00000137992 AISP

DCDC2 ENSG00000146038 AISP

DCLRE1C ENSG00000152457 AIL;AUTO;CD;SCI

DCTN4 ENSG00000132912 AIL;IDEF

DDB2 ENSG00000134574 AISP

DDC ENSG00000132437 DIA

DDOST ENSG00000244038 AISP

DDR2 ENSG00000162733 AISP

DDRGK1 ENSG00000198171 AIS

DEAF1 ENSG00000177030 AISP

DENND1B ENSG00000213047 [341]

DES ENSG00000175084 ACIS;DIA

DGAT1 ENSG00000185000 DIA

DGCR14 ENSG00000100056 AISP

DGCR2 ENSG00000070413 AISP

DGCR6 ENSG00000183628 AISP

DGCR8 ENSG00000128191 AISP

DGUOK ENSG00000114956 AIS

DHCR24 ENSG00000116133 AIS

DHCR7 ENSG00000172893 AISP

DIS3L2 ENSG00000144535 AIS

DKC1 ENSG00000130826 ACIS;CEI

DLEC1 ENSG00000008226 AIS

DLL3 ENSG00000090932 AISP

DLL4 ENSG00000128917 ACIS

DMD ENSG00000198947 ACIS

DNAAF1 ENSG00000154099 AISP

DNAAF2 ENSG00000165506 AISP

DNAAF3 ENSG00000167646 AISP

DNAH1 ENSG00000114841 AISP



7.3 Gene list 225

Gene symbol Ensembl gene ID Source

DNAH11 ENSG00000105877 AISP

DNAH5 ENSG00000039139 AISP

DNAI1 ENSG00000122735 AISP

DNAI2 ENSG00000171595 AISP

DNAJB13 ENSG00000187726 AISP

DNAJC21 ENSG00000168724 ACIS;AISP

DNAL1 ENSG00000119661 AISP

DNASE1L3 ENSG00000163687 AHI;AUTO;DIA;IH

DNMT1 ENSG00000130816 AISP

DNMT3B ENSG00000088305 AIL;CEI;DIA

DOCK2 ENSG00000134516 IDEF

DOCK6 ENSG00000130158 ACIS

DOCK8 ENSG00000107099 AIL;AST

DOK7 ENSG00000175920 AIS

DOLK ENSG00000175283 ACIS

DPM1 ENSG00000000419 AIS

DPP10 ENSG00000175497 [339]

DRC1 ENSG00000157856 AISP

DSG1 ENSG00000134760 AISP

DSG2 ENSG00000046604 ACIS

DYNC2LI1 ENSG00000138036 ACIS

DYX1C1 ENSG00000256061 AISP

EBP ENSG00000147155 AISP

ECE1 ENSG00000117298 AISP;DIA

ECM1 ENSG00000143369 AISP

EDA ENSG00000158813 AISP

EDAR ENSG00000135960 AISP

EDARADD ENSG00000186197 AISP

EDN3 ENSG00000124205 AISP;DIA

EDNRB ENSG00000136160 AISP;DIA

EFEMP2 ENSG00000172638 AISP

EFTUD1 ENSG00000140598 ACIS;AISP

EGFR ENSG00000146648 AISP

EHMT1 ENSG00000181090 AISP

EIF2AK3 ENSG00000172071 ACIS

ELANE ENSG00000197561 AIL

ELN ENSG00000049540 IH

EMP2 ENSG00000213853 AISP

ENG ENSG00000106991 DIA

ENPP1 ENSG00000197594 AISP

EOGT ENSG00000163378 ACIS

EP300 ENSG00000100393 AISP

Gene symbol Ensembl gene ID Source

EPCAM ENSG00000119888 INTD

EPG5 ENSG00000152223 CEI;IID

ERAP1 ENSG00000164307 IH

ERCC1 ENSG00000012061 AISP

ERCC2 ENSG00000104884 AIL;AST;CD

ERCC3 ENSG00000163161 AISP

ERCC4 ENSG00000175595 ACIS;AISP

ERCC5 ENSG00000134899 AISP

ERCC6 ENSG00000225830 AISP

ERCC6L2 ENSG00000182150 ACIS

ERCC8 ENSG00000049167 AIS

ERF ENSG00000105722 AISP

ESCO2 ENSG00000171320 AIS

ESR1 ENSG00000091831 AISP

ETHE1 ENSG00000105755 CD

ETV6 ENSG00000139083 ACIS

EVC ENSG00000072840 ACIS

EVC2 ENSG00000173040 ACIS

EWSR1 ENSG00000182944 AIS

EXD3 ENSG00000187609 ACIS;IDEF

EXT1 ENSG00000182197 AISP

EXTL3 ENSG00000012232 AIL

EYA4 ENSG00000112319 AISP

F5 ENSG00000198734 AISP

FADD ENSG00000168040 AAP

FAH ENSG00000103876 AIS

FAM105B ENSG00000154124 ACIS;DIA

FAM111A ENSG00000166801 AIS

FAM111B ENSG00000189057 AISP

FAM134B ENSG00000154153 AISP

FANCA ENSG00000187741 ACIS;AISP

FANCB ENSG00000181544 ACIS;AISP

FANCC ENSG00000158169 ACIS;AISP

FANCD2 ENSG00000144554 ACIS;AISP

FANCE ENSG00000112039 ACIS;AISP

FANCF ENSG00000183161 ACIS;AISP

FANCG ENSG00000221829 ACIS;AISP

FANCI ENSG00000140525 ACIS;AISP

FANCL ENSG00000115392 ACIS;AISP

FANCM ENSG00000187790 ACIS;AISP

FAS ENSG00000026103 AIL;AAP;AHA;AN

FASLG ENSG00000117560 AIL;AAP;AHA;AN
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FAT4 ENSG00000196159 AIL

FBLN5 ENSG00000140092 AISP

FBXL4 ENSG00000112234 ACIS;AISP

FCER1A ENSG00000179639 [341]

FCGR2C ENSG00000244682 AAP

FCGR3A ENSG00000203747 IDEF

FCN3 ENSG00000142748 IDEF

FECH ENSG00000066926 AISP

FERMT1 ENSG00000101311 AISP

FERMT3 ENSG00000149781 ACIS;AISP

FGA ENSG00000171560 AISP

FGB ENSG00000171564 AIS

FGF3 ENSG00000186895 AISP

FGFR2 ENSG00000066468 AISP

FGFR3 ENSG00000068078 AISP

FGFRL1 ENSG00000127418 IDEF

FGG ENSG00000171557 AIS

FHL2 ENSG00000115641 ACIS

FKTN ENSG00000106692 ACIS

FLG ENSG00000143631 AST

FLI1 ENSG00000151702 AISP

FLII ENSG00000177731 AISP

FLNA ENSG00000196924 AISP

FLT3 ENSG00000122025 ACIS

FLT4 ENSG00000037280 AIS

FLVCR1 ENSG00000162769 AISP

FMO3 ENSG00000007933 ACIS;AISP

FMR1 ENSG00000102081 AISP

FOS ENSG00000170345 IDEF

FOXC2 ENSG00000176692 AISP

FOXE1 ENSG00000178919 AIS

FOXF1 ENSG00000103241 AIS

FOXN1 ENSG00000109101 ACIS;STI

FOXP1 ENSG00000114861 AISP

FOXP3 ENSG00000049768 ACIS;AHA;DIA;IDYS

FRAS1 ENSG00000138759 STI

FREM2 ENSG00000150893 STI

FTCD ENSG00000160282 ACIS

FUCA1 ENSG00000179163 ACIS;AISP

G6PC ENSG00000131482 AISP;INTD

G6PC3 ENSG00000141349 ACIS;AISP

GAA ENSG00000171298 AISP

Gene symbol Ensembl gene ID Source

GABRD ENSG00000187730 AIS

GALC ENSG00000054983 AT

GALE ENSG00000117308 AIS

GALNS ENSG00000141012 AISP

GALT ENSG00000213930 AISP;DIA

GAS8 ENSG00000141013 AISP

GATA1 ENSG00000102145 ACIS;IDEF

GATA2 ENSG00000179348 ACIS;IDEF

GATA3 ENSG00000107485 AISP

GATA6 ENSG00000141448 INTD

GATAD1 ENSG00000157259 ACIS

GBA ENSG00000177628 AIL

GBE1 ENSG00000114480 AIS

GCK ENSG00000106633 AIS

GDF1 ENSG00000130283 AIS

GDNF ENSG00000168621 AISP;DIA

GFI1 ENSG00000162676 ACIS

GFI1B ENSG00000165702 AIS

GFPT1 ENSG00000198380 AIS

GH1 ENSG00000259384 AIS

GIF ENSG00000134812 AIS

GJA1 ENSG00000152661 AISP

GJB2 ENSG00000165474 AISP

GJB3 ENSG00000188910 AISP

GJB4 ENSG00000189433 AISP

GJB6 ENSG00000121742 AISP

GJC2 ENSG00000198835 AISP

GLA ENSG00000102393 DIA

GLB1 ENSG00000170266 ACIS;AISP

GLI1 ENSG00000111087 ACIS

GLI3 ENSG00000106571 AISP

GLIS3 ENSG00000107249 AISP

GLRA1 ENSG00000145888 AISP

GLRB ENSG00000109738 AISP

GLRX5 ENSG00000182512 AIS

GLUL ENSG00000135821 AISP

GMNN ENSG00000112312 AISP

GNA11 ENSG00000088256 AISP

GNAQ ENSG00000156052 AISP

GNAS ENSG00000087460 AISP

GNB1 ENSG00000078369 ACIS

GNE ENSG00000159921 AIS
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GNPTAB ENSG00000111670 AISP

GNS ENSG00000135677 AISP;DIA

GORAB ENSG00000120370 AISP

GP1BA ENSG00000185245 AIS

GP1BB ENSG00000203618 AST;AUTO;IDEF

GPC3 ENSG00000147257 AIL

GPC4 ENSG00000076716 AIL

GPD1 ENSG00000167588 AIS

GPHN ENSG00000171723 AISP

GPI ENSG00000105220 ACIS

GPIHBP1 ENSG00000182851 AISP

GPR101 ENSG00000165370 AISP

GPR35 ENSG00000178623 AIL;AUTO;IH

GRHL2 ENSG00000083307 AST

GRHPR ENSG00000137106 AISP

GRIP1 ENSG00000155974 STI

GSS ENSG00000100983 ACIS

GSTP1 ENSG00000084207 [341]

GTF2H5 ENSG00000272047 AST

GTF2I ENSG00000077809 AISP

GTF2IRD1 ENSG00000006704 AISP

GUCY2C ENSG00000070019 DIA

GUSB ENSG00000169919 AISP

H19 ENSG00000130600 AIS

H6PD ENSG00000049239 AISP

HABP2 ENSG00000148702 AIS

HADH ENSG00000138796 DIA

HAMP ENSG00000105697 AIS

HAX1 ENSG00000143575 ACIS;AISP

HBA1 ENSG00000206172 AISP

HBA2 ENSG00000188536 AISP

HBB ENSG00000244734 ACIS;IDEF

HBG1 ENSG00000213934 AIS

HBG2 ENSG00000196565 AIS

HDAC4 ENSG00000068024 AISP

HDAC8 ENSG00000147099 AISP

HEATR2 ENSG00000164818 AISP

HELLS ENSG00000119969 AIL;CEI

HERC2 ENSG00000128731 AISP

HES7 ENSG00000179111 AISP

HEXB ENSG00000049860 AIS;CD

HFE ENSG00000010704 AIS

Gene symbol Ensembl gene ID Source

HFE2 ENSG00000168509 AIS

HGD ENSG00000113924 AISP

HGSNAT ENSG00000165102 AISP;DIA

HIRA ENSG00000100084 AST;AUTO;IDEF

HK1 ENSG00000156515 AIS

HLA-A ENSG00000206503 AISP

HLA-B ENSG00000234745 ACIS;DIA;IH

HLA-DPB1 ENSG00000223865 ACIS;AUTO

HLA-DQB1 ENSG00000179344 AUTO

HLA-DRB1 ENSG00000196126 ACIS;AUTO

HLCS ENSG00000159267 AISP

HMBS ENSG00000256269 DIA

HMGA2 ENSG00000149948 AIS

HMGCS2 ENSG00000134240 DIA

HNF1A ENSG00000135100 DIA

HNF4A ENSG00000101076 DIA

HNRNPA2B1 ENSG00000122566 AISP

HOXA13 ENSG00000106031 AISP

HPGD ENSG00000164120 AISP

HPS1 ENSG00000107521 AISP;DIA

HPSE2 ENSG00000172987 AISP

HSD3B2 ENSG00000203859 AISP

HSD3B7 ENSG00000099377 AISP;DIA

HSPA9 ENSG00000113013 AISP

HSPG2 ENSG00000142798 AISP

HTRA2 ENSG00000115317 ACIS

HYAL1 ENSG00000114378 AISP

HYDIN ENSG00000157423 AISP

HYLS1 ENSG00000198331 AIS

ICOS ENSG00000163600 AIL;AN;AT;DIA

IDH1 ENSG00000138413 AIS

IDH2 ENSG00000182054 AIS

IDS ENSG00000010404 AST;DIA

IDUA ENSG00000127415 AISP;CD

IER3IP1 ENSG00000134049 AISP

IFIH1 ENSG00000115267 AIL

IFNGR1 ENSG00000027697 IDEF

IFNGR2 ENSG00000159128 IDEF

IFT172 ENSG00000138002 AISP

IGF2R ENSG00000197081 AISP

IGHM ENSG00000211899 AIL;DIA;IDEF

IGKC ENSG00000211592 AIL;DIA
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IGLL1 ENSG00000128322 AIL;DIA;IDEF

IGSF3 ENSG00000143061 AISP

IKBKAP ENSG00000070061 AISP;DIA

IKBKB ENSG00000104365 AIL;CD;IDEF

IKBKG ENSG00000073009 AIL;IDEF

IKZF1 ENSG00000185811 AIL;DIA

IL10 ENSG00000136634 IH

IL10RA ENSG00000110324 AISP;DIA

IL10RB ENSG00000243646 AISP

IL12A ENSG00000168811 AIL;AAP;IH

IL12A-AS1 ENSG00000244040 IH

IL12B ENSG00000113302 IDEF

IL12RB1 ENSG00000096996 AIL;AAP;IDEF;IH

IL13 ENSG00000169194 [341]

IL17F ENSG00000112116 AISP

IL17RA ENSG00000177663 AISP

IL17RC ENSG00000163702 AISP

IL18 ENSG00000150782 [344]

IL1RL1 ENSG00000115602 [346]

IL1RN ENSG00000136689 AISP

IL21 ENSG00000138684 AIL;CD;IDEF

IL21R ENSG00000103522 CD;IDEF

IL23R ENSG00000162594 IH

IL2RA ENSG00000134460 AIL;AAP;AHA;CD

IL2RB ENSG00000100385 AAP

IL2RG ENSG00000147168 AIL;AUTO;CD;SCI

IL36RN ENSG00000136695 AISP

IL4 ENSG00000113520 [341]

IL4R ENSG00000077238 [344]

IL6 ENSG00000136244 AUTO

IL7R ENSG00000168685 ACIS;AUTO;CD;SCI

INPP5E ENSG00000148384 AIS

INPPL1 ENSG00000165458 AISP

INS ENSG00000254647 AIS

INSR ENSG00000171105 AISP

IQSEC2 ENSG00000124313 AISP

IRAK4 ENSG00000198001 ACIS;IDEF

IRF5 ENSG00000128604 AIL;AAP;IH

IRF7 ENSG00000185507 IDEF

IRF8 ENSG00000140968 IDEF

ISG15 ENSG00000187608 IDEF

ISL1 ENSG00000016082 AISP

Gene symbol Ensembl gene ID Source

ITCH ENSG00000078747 AUTO;CD

ITGA3 ENSG00000005884 AISP

ITGA6 ENSG00000091409 AISP;INTD

ITGA7 ENSG00000135424 AISP

ITGB2 ENSG00000160255 ACIS;AISP

ITGB4 ENSG00000132470 AISP;INTD

ITK ENSG00000113263 AIL;AUTO

IVD ENSG00000128928 ACIS

JAGN1 ENSG00000171135 ACIS;AISP

JAK2 ENSG00000096968 ACIS;AISP

JAK3 ENSG00000105639 AIL;DIA;SCI

JMJD1C ENSG00000171988 AST;AUTO;IDEF

KALRN ENSG00000160145 [343]

KANSL1 ENSG00000120071 AISP

KAT6B ENSG00000156650 AISP

KCNAB2 ENSG00000069424 AIS

KCNH1 ENSG00000143473 AIS

KCNJ1 ENSG00000151704 DIA

KCNJ11 ENSG00000187486 AIS;DIA

KCNJ6 ENSG00000157542 AISP

KCNN4 ENSG00000104783 AIS

KCTD1 ENSG00000134504 AISP

KDM6A ENSG00000147050 AT

KDSR ENSG00000119537 AISP

KIAA0196 ENSG00000164961 AISP

KIAA0319L ENSG00000142687 AUTO

KIAA0556 ENSG00000047578 AISP

KIAA1377 ENSG00000110318 AIS

KIF11 ENSG00000138160 ACIS;AISP

KIF1A ENSG00000130294 AISP

KIF23 ENSG00000137807 DIA

KIT ENSG00000157404 ACIS;AISP

KLF1 ENSG00000105610 AIS

KLLN ENSG00000227268 CEI

KLRC4 ENSG00000183542 IH

KMT2A ENSG00000118058 AISP

KMT2D ENSG00000167548 AT

KRAS ENSG00000133703 ACIS;INTD

KRT1 ENSG00000167768 AIL

KRT10 ENSG00000186395 AISP

KRT14 ENSG00000186847 AISP

KRT16 ENSG00000186832 AISP
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KRT17 ENSG00000128422 AISP

KRT5 ENSG00000186081 AISP

KRT9 ENSG00000171403 AIL

LACC1 ENSG00000179630 AUTO

LAGE3 ENSG00000196976 AISP

LAMA2 ENSG00000196569 AISP

LAMA3 ENSG00000053747 AISP

LAMA4 ENSG00000112769 ACIS

LAMB3 ENSG00000196878 AISP

LAMC2 ENSG00000058085 AISP

LAMTOR2 ENSG00000116586 AIL;IDEF

LBR ENSG00000143815 ACIS;AISP

LCAT ENSG00000213398 AIS

LCK ENSG00000182866 AUTO;DIA;IDEF

LCT ENSG00000115850 DIA

LDB3 ENSG00000122367 ACIS

LEMD3 ENSG00000174106 AIS

LEP ENSG00000174697 ACIS;AISP

LEPR ENSG00000116678 ACIS;IDYS

LETM1 ENSG00000168924 IDEF

LFNG ENSG00000106003 AISP

LHCGR ENSG00000138039 AISP

LIFR ENSG00000113594 AST

LIG4 ENSG00000174405 ACIS;AST;AUTO;CD

LIMK1 ENSG00000106683 AISP

LIPA ENSG00000107798 ACIS;DIA

LIPN ENSG00000204020 AISP

LMBRD1 ENSG00000168216 ACIS;AISP

LMF1 ENSG00000103227 AISP

LMNA ENSG00000160789 AHI

LMNB2 ENSG00000176619 ACIS;AHI;AUTO

LMOD1 ENSG00000163431 AISP

LMX1B ENSG00000136944 AISP

LPIN2 ENSG00000101577 ACIS;AISP

LPL ENSG00000175445 AISP

LRBA ENSG00000198589 AIL;AST;AHA;CD

LRIG2 ENSG00000198799 AISP

LRRC32 ENSG00000137507 [341]

LRRC6 ENSG00000129295 AISP

LRRC8A ENSG00000136802 AIL;DIA;IDEF

LYST ENSG00000143669 ACIS;IDEF

LYZ ENSG00000090382 AISP

Gene symbol Ensembl gene ID Source

LZTR1 ENSG00000099949 AIS

MAD2L2 ENSG00000116670 ACIS;AISP

MAF ENSG00000178573 AISP

MAGEL2 ENSG00000254585 AISP

MAGT1 ENSG00000102158 ACIS;IDEF

MALT1 ENSG00000172175 IDEF

MAN2B1 ENSG00000104774 AIL

MANBA ENSG00000109323 AISP

MAP2K2 ENSG00000126934 AIS

MAP3K7 ENSG00000135341 AISP

MAPK1 ENSG00000100030 IDEF

MASP2 ENSG00000009724 AHI;AUTO

MBTPS2 ENSG00000012174 IDEF

MC1R ENSG00000258839 AIS

MC2R ENSG00000185231 AISP

MCCC2 ENSG00000131844 AISP

MCIDAS ENSG00000234602 AISP

MCM4 ENSG00000104738 AISP

MCM6 ENSG00000076003 DIA

MECOM ENSG00000085276 ACIS

MECP2 ENSG00000169057 AISP

MED13L ENSG00000123066 AISP

MEFV ENSG00000103313 ACIS;DIA;IH

MEGF8 ENSG00000105429 AIS

MEIS2 ENSG00000134138 IDEF

MEN1 ENSG00000133895 AISP;DIA

MESP2 ENSG00000188095 AISP

MET ENSG00000105976 AISP

MGME1 ENSG00000125871 AISP;DIA

MGMT ENSG00000170430 AIS

MGP ENSG00000111341 AISP

MIF ENSG00000240972 AUTO

MINPP1 ENSG00000107789 AIS

MITF ENSG00000187098 AIS

MKKS ENSG00000125863 AST

MKRN3 ENSG00000179455 AISP

MKS1 ENSG00000011143 AIS

MLH1 ENSG00000076242 ACIS

MLLT11 ENSG00000213190 ACIS

MLX ENSG00000108788 AISP

MLXIPL ENSG00000009950 IH

MLYCD ENSG00000103150 DIA
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MMAA ENSG00000151611 ACIS

MMAB ENSG00000139428 ACIS

MMACHC ENSG00000132763 ACIS

MMEL1 ENSG00000142606 AIL;AAP;IH

MMP1 ENSG00000196611 AISP

MMP2 ENSG00000087245 AAP

MMP21 ENSG00000154485 AIS

MNX1 ENSG00000130675 AISP

MOGS ENSG00000115275 AIL

MPDU1 ENSG00000129255 AISP

MPI ENSG00000178802 DIA

MPL ENSG00000117400 ACIS

MPLKIP ENSG00000168303 AISP

MPO ENSG00000005381 AIS

MPV17 ENSG00000115204 AISP;DIA

MPZ ENSG00000158887 AIS

MS4A1 ENSG00000156738 AIL;AT;IDEF

MS4A2 ENSG00000149534 [344]

MSH2 ENSG00000095002 ACIS

MSH6 ENSG00000116062 ACIS

MSMO1 ENSG00000052802 AISP

MSN ENSG00000147065 AIL

MST1 ENSG00000173531 AIL;AUTO;IH

MT-CO1 ENSG00000198804 AISP

MT-CO2 ENSG00000198712 AISP

MT-CO3 ENSG00000198938 AISP

MT-ND1 ENSG00000198888 AISP

MT-ND4 ENSG00000198886 AISP

MT-ND5 ENSG00000198786 AISP

MT-ND6 ENSG00000198695 AISP

MT-TF ENSG00000210049 AISP

MT-TH ENSG00000210176 AISP

MT-TL1 ENSG00000209082 AISP

MT-TQ ENSG00000210107 AISP

MT-TS1 ENSG00000210151 AISP

MT-TS2 ENSG00000210184 AISP

MT-TW ENSG00000210117 AISP

MTOR ENSG00000198793 AIL

MVK ENSG00000110921 AIL;DIA

MYBPC3 ENSG00000134571 ACIS

MYC ENSG00000136997 ACIS

MYCN ENSG00000134323 AIS

Gene symbol Ensembl gene ID Source

MYD88 ENSG00000172936 DIA;IDEF

MYH11 ENSG00000133392 AISP

MYH6 ENSG00000197616 ACIS

MYH7 ENSG00000092054 ACIS

MYH9 ENSG00000100345 ACIS;AISP

MYL2 ENSG00000111245 AISP

MYLK ENSG00000065534 AISP

MYO5A ENSG00000197535 AISP

MYO5B ENSG00000167306 PD

MYPN ENSG00000138347 ACIS

NAA10 ENSG00000102030 AISP

NAGLU ENSG00000108784 AISP;DIA

NAT2 ENSG00000156006 [344]

NBEAL2 ENSG00000160796 AIS

NBN ENSG00000104320 AIL;AHA;CD

NCF1 ENSG00000158517 ACIS;AISP

NCF2 ENSG00000116701 ACIS;AISP

NCF4 ENSG00000100365 ACIS;AISP;DIA

NCSTN ENSG00000162736 AISP

NDN ENSG00000182636 AISP

NDNL2 ENSG00000185115 AISP

NDP ENSG00000124479 AISP

NEBL ENSG00000078114 ACIS

NEK8 ENSG00000160602 AIS

NEK9 ENSG00000119638 AST

NELFA ENSG00000185049 AISP

NEU1 ENSG00000204386 ACIS

NEUROG3 ENSG00000122859 DIA

NEXN ENSG00000162614 ACIS

NF1 ENSG00000196712 ACIS

NFIX ENSG00000008441 AISP

NFKB1 ENSG00000109320 AIL;AT;IDEF

NFKB2 ENSG00000077150 AIL;AST;AT;IDEF

NFKBIA ENSG00000100906 AISP

NGLY1 ENSG00000151092 AISP

NHEJ1 ENSG00000187736 AIL;AUTO;IDEF

NHP2 ENSG00000145912 ACIS;CEI

NIPAL4 ENSG00000172548 AISP

NIPBL ENSG00000164190 AISP

NKX2-1 ENSG00000136352 AST

NLRC4 ENSG00000091106 ACIS;AISP

NLRP1 ENSG00000091592 AIL;AAP;AHA
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NLRP12 ENSG00000142405 AISP

NLRP3 ENSG00000162711 ACIS;AISP

NME1 ENSG00000239672 DIA

NME8 ENSG00000086288 AISP

NOD2 ENSG00000167207 AISP

NOP10 ENSG00000182117 ACIS;CEI

NOTCH1 ENSG00000148400 ACIS

NOTCH2 ENSG00000134250 AISP

NOTCH3 ENSG00000074181 AISP

NPAP1 ENSG00000185823 AISP

NPC1 ENSG00000141458 ACIS

NPC2 ENSG00000119655 ACIS

NPHP3 ENSG00000113971 AIS

NPHS1 ENSG00000161270 AISP

NR3C1 ENSG00000113580 AISP

NR3C2 ENSG00000151623 DIA

NRAS ENSG00000213281 AIL;AT

NRTN ENSG00000171119 AISP;DIA

NSD1 ENSG00000165671 AISP

NSMCE2 ENSG00000156831 AISP

NSUN2 ENSG00000037474 ACIS;AST;CD

NTRK1 ENSG00000198400 AISP

NUMA1 ENSG00000137497 ACIS

NUP107 ENSG00000111581 AISP

NUP214 ENSG00000126883 ACIS

NXN ENSG00000167693 AISP

OCLN ENSG00000197822 AIS

OCRL ENSG00000122126 AISP

OFD1 ENSG00000046651 AISP

OPLAH ENSG00000178814 AISP;DIA

ORAI1 ENSG00000182500 IDEF

ORC6 ENSG00000091651 AISP

ORMDL3 ENSG00000172057 [341]

OSGEP ENSG00000092094 AISP

OSTM1 ENSG00000081087 ACIS

OTC ENSG00000036473 AIS

PAH ENSG00000171759 AISP

PALB2 ENSG00000083093 ACIS;AISP;INTD

PALLD ENSG00000129116 AIS;INTD

PAPSS2 ENSG00000198682 AISP

PARN ENSG00000140694 ACIS;CEI

PARP14 ENSG00000173193 [347]

Gene symbol Ensembl gene ID Source

PAX6 ENSG00000007372 AISP

PCCA ENSG00000175198 ACIS;AISP

PCCB ENSG00000114054 ACIS;AISP

PCNT ENSG00000160299 AISP

PCSK1 ENSG00000175426 DIA

PCYT1A ENSG00000161217 AISP

PDE4D ENSG00000113448 AISP

PDE4DIP ENSG00000178104 [343]

PDGFRA ENSG00000134853 ACIS;AISP

PDGFRB ENSG00000113721 ACIS

PDGFRL ENSG00000104213 AISP

PDX1 ENSG00000139515 AIS

PEPD ENSG00000124299 AST;AUTO

PEX2 ENSG00000164751 AIS

PEX5 ENSG00000139197 AST

PEX7 ENSG00000112357 AIS

PGM3 ENSG00000013375 ACIS;AR;AST;IDEF

PHKB ENSG00000102893 DIA

PHKG2 ENSG00000156873 AIS

PHYH ENSG00000107537 AIS

PIEZO1 ENSG00000103335 AISP

PIGA ENSG00000165195 ACIS;AISP

PIGL ENSG00000108474 ACIS

PIGM ENSG00000143315 AIS

PIGT ENSG00000124155 DIA

PIH1D3 ENSG00000080572 AISP

PIK3CA ENSG00000121879 ACIS;CEI

PIK3CD ENSG00000171608 AIL;IDEF

PIK3R1 ENSG00000145675 AIL;DIA;IDEF

PKD2 ENSG00000118762 AISP

PKHD1 ENSG00000170927 AIS

PKLR ENSG00000143627 AIS

PKP1 ENSG00000081277 CD;IDEF

PLCD1 ENSG00000187091 AISP

PLCG2 ENSG00000197943 AIL;AR;AST;AUTO

PLEC ENSG00000178209 AISP;INTD

PLG ENSG00000122194 AISP

PLN ENSG00000198523 ACIS

PLOD1 ENSG00000083444 AISP

PLP1 ENSG00000123560 AISP

PLXND1 ENSG00000004399 AISP

PMM2 ENSG00000140650 AIL;DIA
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PMP22 ENSG00000109099 AIS

PMS2 ENSG00000122512 ACIS

PNLIP ENSG00000175535 CD

PNP ENSG00000198805 AHA;AN;AT

PNPLA1 ENSG00000180316 AISP

POLA1 ENSG00000101868 ACIS;AISP;DIA

POLE ENSG00000177084 IDEF

POLG ENSG00000140521 INTD

POLH ENSG00000170734 AISP

POLR1C ENSG00000171453 AIS

POLR1D ENSG00000186184 AIS

POR ENSG00000127948 AISP

POT1 ENSG00000128513 AIS

POU2AF1 ENSG00000110777 AIL;AAP;IH

POU6F2 ENSG00000106536 AIS

PPARG ENSG00000132170 IDEF

PPP2R5D ENSG00000112640 CD

PRDM16 ENSG00000142611 ACIS

PRF1 ENSG00000180644 ACIS;AISP

PRG4 ENSG00000116690 AISP

PRKACA ENSG00000072062 AISP

PRKAR1A ENSG00000108946 AISP

PRKCD ENSG00000163932 AIL;AT;IDEF

PRKDC ENSG00000253729 SCI

PRPS1 ENSG00000147224 IDEF

PRSS1 ENSG00000204983 ACIS;AISP

PRSS2 ENSG00000262739 ACIS;AISP

PRTN3 ENSG00000196415 ACIS;AUTO

PSAP ENSG00000197746 AISP

PSEN1 ENSG00000080815 ACIS;AISP

PSEN2 ENSG00000143801 ACIS

PSENEN ENSG00000205155 AISP

PSMB8 ENSG00000204264 AIL

PSTPIP1 ENSG00000140368 AIL

PTEN ENSG00000171862 AUTO;CEI;DIA

PTH1R ENSG00000160801 AIS

PTPLA ENSG00000165996 AISP

PTPN11 ENSG00000179295 ACIS

PTPN2 ENSG00000175354 AAP

PTPN22 ENSG00000134242 ACIS;AAP

PTPRC ENSG00000081237 ACIS;DIA;SCI

PTRF ENSG00000177469 AIL

Gene symbol Ensembl gene ID Source

PVRL1 ENSG00000110400 AISP

PWRN1 ENSG00000259905 AISP

RAB23 ENSG00000112210 AIS

RAB27A ENSG00000069974 ACIS;IDEF

RAB3GAP2 ENSG00000118873 AISP

RAB7A ENSG00000075785 AISP

RAC2 ENSG00000128340 ACIS;IDEF

RAD21 ENSG00000164754 AISP

RAD50 ENSG00000113522 [341]

RAD51 ENSG00000051180 ACIS;AISP

RAD51C ENSG00000108384 ACIS;AISP

RAF1 ENSG00000132155 ACIS

RAG1 ENSG00000166349 AIL;AHA;AN;CD;SCI

RAG2 ENSG00000175097 AIL;AUTO;CD;SCI

RAI1 ENSG00000108557 AISP

RAP1A ENSG00000116473 AISP

RAP1B ENSG00000127314 AISP

RARA ENSG00000131759 ACIS

RARB ENSG00000077092 AIS

RASA2 ENSG00000155903 AIS

RB1 ENSG00000139687 ACIS

RBCK1 ENSG00000125826 IDEF

RBFOX1 ENSG00000078328 [345]

RBM20 ENSG00000203867 ACIS

RBM8A ENSG00000131795 AIL;CMA

RBP4 ENSG00000138207 AISP

RBPJ ENSG00000168214 ACIS

RECQL4 ENSG00000160957 ACIS;DIA

RERE ENSG00000142599 AIS

REST ENSG00000084093 AIS

RET ENSG00000165731 AISP;DIA

REV3L ENSG00000009413 AISP

RFC2 ENSG00000049541 AISP

RFWD3 ENSG00000168411 ACIS;AISP

RFX5 ENSG00000143390 AIL;PD

RFX6 ENSG00000185002 DIA

RFXANK ENSG00000064490 AIL;PD

RFXAP ENSG00000133111 AIL;PD

RHAG ENSG00000112077 AIS

RIPPLY2 ENSG00000203877 AISP

RIT1 ENSG00000143622 AIS

RMRP ENSG00000269900 AIL;AUTO;CEI;CD
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RNASEH2A ENSG00000104889 AIS

RNASEH2C ENSG00000172922 AIS

RNF113A ENSG00000125352 AIL;CD

RNF125 ENSG00000101695 AISP

RNF168 ENSG00000163961 AIL;IDEF

RNF6 ENSG00000127870 AIS

RNU4ATAC ENSG00000264229 ACIS;AISP

ROR2 ENSG00000169071 AISP

RORC ENSG00000143365 AIS

RPGR ENSG00000156313 AISP

RPGRIP1 ENSG00000092200 AIS

RPGRIP1L ENSG00000103494 AIS

RPL10 ENSG00000147403 AISP

RPL11 ENSG00000142676 ACIS;AISP

RPL15 ENSG00000174748 ACIS

RPL18 ENSG00000063177 ACIS

RPL26 ENSG00000161970 ACIS

RPL27 ENSG00000131469 ACIS

RPL35 ENSG00000136942 ACIS

RPL35A ENSG00000182899 ACIS

RPL5 ENSG00000122406 ACIS

RPS10 ENSG00000124614 ACIS

RPS17 ENSG00000184779 ACIS

RPS19 ENSG00000105372 ACIS

RPS24 ENSG00000138326 ACIS

RPS26 ENSG00000197728 ACIS

RPS27 ENSG00000177954 ACIS

RPS28 ENSG00000233927 ACIS

RPS29 ENSG00000213741 ACIS

RPS7 ENSG00000171863 ACIS

RPSA ENSG00000168028 AIS

RRAS ENSG00000126458 AIS

RREB1 ENSG00000124782 AST;AUTO;IDEF

RRM2B ENSG00000048392 DIA

RSPH1 ENSG00000160188 AISP

RSPH3 ENSG00000130363 AISP

RSPH4A ENSG00000111834 AISP

RSPH9 ENSG00000172426 AISP

RTEL1 ENSG00000258366 AIL;CEI

RUNX1 ENSG00000159216 ACIS

RUNX2 ENSG00000124813 AISP

RYR1 ENSG00000196218 AISP

Gene symbol Ensembl gene ID Source

SAA1 ENSG00000173432 CD

SALL4 ENSG00000101115 ACIS

SAMD9 ENSG00000205413 ACIS;AISP;CD

SAMD9L ENSG00000177409 AIL

SAR1B ENSG00000152700 DIA

SARS2 ENSG00000104835 ACIS

SAT1 ENSG00000130066 AISP

SBDS ENSG00000126524 ACIS;AISP

SC5D ENSG00000109929 AIS

SCARB2 ENSG00000138760 AIL

SCN11A ENSG00000168356 DIA

SCN4A ENSG00000007314 AST

SCN5A ENSG00000183873 ACIS

SCN9A ENSG00000169432 ACIS;AISP;DIA

SCNN1A ENSG00000111319 AISP;DIA

SCNN1B ENSG00000168447 AISP;DIA

SCNN1G ENSG00000166828 AISP;DIA

SCYL1 ENSG00000142186 AIS

SDCCAG8 ENSG00000054282 AST

SDHA ENSG00000073578 ACIS;AISP

SDHB ENSG00000117118 CEI

SDHC ENSG00000143252 CEI

SDHD ENSG00000204370 AST;CEI;PD

SEC23B ENSG00000101310 AUTO;CEI

SEC24C ENSG00000176986 AST;AUTO;IDEF

SEC61A1 ENSG00000058262 ACIS

SEMA3C ENSG00000075223 AISP;DIA

SEMA3D ENSG00000153993 AISP;DIA

SEMA3E ENSG00000170381 ACIS;AISP

SEPN1 ENSG00000162430 AISP

SERAC1 ENSG00000122335 AISP

SERPINA1 ENSG00000197249 AISP

SERPING1 ENSG00000149131 AUTO;DIA

SETD2 ENSG00000181555 AISP

SETD5 ENSG00000168137 AISP

SETX ENSG00000107290 AIL

SF3B1 ENSG00000115524 AISP

SFTPA2 ENSG00000185303 AIL

SFTPC ENSG00000168484 AIL

SGCD ENSG00000170624 ACIS

SGCG ENSG00000102683 AISP

SGSH ENSG00000181523 AISP;DIA
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SH2B3 ENSG00000111252 ACIS

SH2D1A ENSG00000183918 AIL;CEI

SH3PXD2B ENSG00000174705 AISP

SHANK3 ENSG00000251322 IDEF

SHH ENSG00000164690 AST

SHOC2 ENSG00000108061 AISP

SHPK ENSG00000197417 AISP

SI ENSG00000090402 DIA

SIK1 ENSG00000142178 AISP

SIN3A ENSG00000169375 IDEF

SKI ENSG00000157933 AIS

SKIV2L ENSG00000204351 DIA;IDEF

SLC10A2 ENSG00000125255 CD

SLC12A1 ENSG00000074803 DIA

SLC17A5 ENSG00000119899 ACIS

SLC19A2 ENSG00000117479 DIA

SLC25A13 ENSG00000004864 AISP

SLC25A15 ENSG00000102743 AISP

SLC25A22 ENSG00000177542 AISP

SLC26A2 ENSG00000155850 AISP

SLC26A3 ENSG00000091138 DIA

SLC27A4 ENSG00000167114 ACIS

SLC29A3 ENSG00000198246 ACIS;AISP

SLC2A1 ENSG00000117394 AIS

SLC2A10 ENSG00000197496 AISP

SLC30A2 ENSG00000158014 AISP

SLC35A1 ENSG00000164414 ACIS;AISP

SLC35A2 ENSG00000102100 AISP

SLC35C1 ENSG00000181830 ACIS;AISP

SLC37A4 ENSG00000137700 ACIS;AISP

SLC39A4 ENSG00000147804 AISP;CD

SLC39A8 ENSG00000138821 AISP

SLC3A1 ENSG00000138079 AISP

SLC46A1 ENSG00000076351 AIL;DIA;IDEF

SLC4A1 ENSG00000004939 AIS

SLC4A11 ENSG00000088836 AIS

SLC52A3 ENSG00000101276 AISP

SLC5A1 ENSG00000100170 CD

SLC6A19 ENSG00000174358 AISP

SLC6A5 ENSG00000165970 AISP

SLC7A7 ENSG00000155465 ACIS;AISP;DIA

SLC7A9 ENSG00000021488 AISP

Gene symbol Ensembl gene ID Source

SLC9A3 ENSG00000066230 AISP;SECD

SLCO2A1 ENSG00000174640 AISP

SLX4 ENSG00000188827 ACIS;AISP

SMAD4 ENSG00000141646 AIS;INTD

SMARCA2 ENSG00000080503 AISP

SMARCA4 ENSG00000127616 AISP

SMARCAD1 ENSG00000163104 AISP

SMARCAL1 ENSG00000138375 AIL;CEI

SMARCB1 ENSG00000099956 AISP

SMARCE1 ENSG00000073584 AISP

SMC1A ENSG00000072501 AISP

SMC3 ENSG00000108055 AISP

SMN1 ENSG00000172062 AISP

SMPD1 ENSG00000166311 ACIS;AISP

SNORD115-1 ENSG00000201831 AISP

SNORD116-1 ENSG00000207063 AISP

SNRPN ENSG00000128739 AISP

SNX10 ENSG00000086300 AISP

SOS1 ENSG00000115904 AIS

SOS2 ENSG00000100485 AIS

SOX10 ENSG00000100146 AIS

SOX11 ENSG00000176887 AISP

SOX18 ENSG00000203883 AISP

SP110 ENSG00000135899 AIL;IDEF

SPAG1 ENSG00000104450 AISP

SPATA5 ENSG00000145375 IDEF

SPIB ENSG00000269404 AIL;AAP;IH

SPINK1 ENSG00000164266 ACIS;AISP

SPINK5 ENSG00000133710 AIL;AR;AST

SPINT2 ENSG00000167642 SECD

SPTB ENSG00000070182 AIS

SPTLC1 ENSG00000090054 AISP

SPTLC2 ENSG00000100596 AISP

SRCAP ENSG00000080603 IH

SRD5A3 ENSG00000128039 AISP

SRP54 ENSG00000100883 ACIS;AISP

SRY ENSG00000184895 AISP

STAT1 ENSG00000115415 AISPP;AAP;AHA;AN

STAT3 ENSG00000168610 AIL;AHA;AT;IH

STAT4 ENSG00000138378 AAP;IH

STAT6 ENSG00000166888 [341]

STEAP3 ENSG00000115107 AIS
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STIM1 ENSG00000167323 AHA;IDEF

STK36 ENSG00000163482 AISP

STK4 ENSG00000101109 ACIS;IDEF

STOM ENSG00000148175 AIS

STRA6 ENSG00000137868 AIS

STS ENSG00000101846 ACIS

STX11 ENSG00000135604 ACIS

STX16 ENSG00000124222 AISP

STX1A ENSG00000106089 AIL;IDEF

STX3 ENSG00000166900 DIA

STXBP2 ENSG00000076944 ACIS;AISP

SUGCT ENSG00000175600 DIA

SULT2B1 ENSG00000088002 AISP

SUMF1 ENSG00000144455 AIS

SUOX ENSG00000139531 AISP

TACR1 ENSG00000115353 [348]

TADA2A ENSG00000108264 AIL;AAP;IDEF

TAF1 ENSG00000147133 AISP

TAL1 ENSG00000162367 ACIS

TAL2 ENSG00000186051 ACIS

TALDO1 ENSG00000177156 AST

TAP1 ENSG00000168394 AISP

TAP2 ENSG00000204267 AISP

TAPBP ENSG00000231925 AISP

TAZ ENSG00000102125 ACIS;AISP

TBCE ENSG00000116957 CEI

TBL2 ENSG00000106638 AISP

TBX1 ENSG00000184058 AST;AUTO;IDEF

TBX19 ENSG00000143178 AISP

TBX21 ENSG00000073861 AIA

TBX4 ENSG00000121075 AISP

TBX6 ENSG00000149922 AISP

TBXAS1 ENSG00000059377 ACIS;AISP

TCAP ENSG00000173991 ACIS

TCF3 ENSG00000071564 AIL;DIA;IDEF

TCF4 ENSG00000196628 AIL;AUTO;IH

TCIRG1 ENSG00000110719 AISP

TCN2 ENSG00000185339 AIL;DIA

TCOF1 ENSG00000070814 AIS

TCTN2 ENSG00000168778 AIS

TCTN3 ENSG00000119977 AISP

TEK ENSG00000120156 AISP

Gene symbol Ensembl gene ID Source

TERC ENSG00000270141 ACIS;CEI

TERF2IP ENSG00000166848 AIS

TERT ENSG00000164362 AIL;CEI

TET2 ENSG00000168769 ACIS

TF ENSG00000091513 AISP

TFAP2A ENSG00000137203 AIS

TFR2 ENSG00000106327 ACIS

TFRC ENSG00000072274 AIL;CD

TGDS ENSG00000088451 AISP

TGFB1 ENSG00000105329 AIL;IDEF

TGFBR2 ENSG00000163513 AIS

TGM1 ENSG00000092295 AISP

TGM5 ENSG00000104055 ALL

THOC6 ENSG00000131652 AISP

THPO ENSG00000090534 ACIS

TINF2 ENSG00000092330 ACIS;CEI

TKT ENSG00000163931 AISP

TLR4 ENSG00000136869 IH

TMC6 ENSG00000141524 AISP

TMC8 ENSG00000167895 AISP

TMEM107 ENSG00000179029 AIS

TMEM173 ENSG00000184584 AIL

TMEM216 ENSG00000187049 AIS

TMEM231 ENSG00000205084 AIS

TMEM67 ENSG00000164953 AIS

TMPO ENSG00000120802 ACIS

TMPRSS15 ENSG00000154646 DIA

TNF ENSG00000232810 [341]

TNFAIP3 ENSG00000118503 ACIS;AAP

TNFRSF11A ENSG00000141655 AIL

TNFRSF13B ENSG00000240505 AIL;AT;DIA;IDEF

TNFRSF13C ENSG00000159958 AIL;AT;DIA;IDEF

TNFRSF1A ENSG00000067182 ACIS;AISP;DIA

TNFRSF1B ENSG00000028137 AIL;IDEF

TNFRSF4 ENSG00000186827 IDEF

TNFSF11 ENSG00000120659 AISP

TNFSF12 ENSG00000239697 AIL;AT;IDEF

TNFSF15 ENSG00000181634 AIL;AAP;IH

TNNC1 ENSG00000114854 ACIS

TNNI3 ENSG00000129991 ACIS

TNNT2 ENSG00000118194 ACIS

TNPO3 ENSG00000064419 AIL;AAP;IH
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TNXB ENSG00000168477 AISP

TP53 ENSG00000141510 ACIS;AISP;INTD

TP53RK ENSG00000172315 AISP

TP63 ENSG00000073282 AISP

TPI1 ENSG00000111669 AISP

TPM1 ENSG00000140416 ACIS

TPM2 ENSG00000198467 AISP

TPM3 ENSG00000143549 AISP

TPP2 ENSG00000134900 ACIS;AHA;AT

TPRKB ENSG00000144034 AISP

TRAC ENSG00000229164 AUTO

TRAF3IP2 ENSG00000056972 AISP

TRAF6 ENSG00000175104 AISP

TRAIP ENSG00000183763 AST

TREH ENSG00000118094 DIA

TREM2 ENSG00000095970 ACIS

TREX1 ENSG00000213689 AAP

TRIO ENSG00000038382 AISP

TRIP13 ENSG00000071539 ACIS;AISP

TRNT1 ENSG00000072756 AIL

TRPM1 ENSG00000134160 AISP

TRPS1 ENSG00000104447 AISP

TSC1 ENSG00000165699 AISP

TSC2 ENSG00000103197 AISP

TSHR ENSG00000165409 DIA

TSR2 ENSG00000158526 ACIS

TTC25 ENSG00000204815 AISP

TTC37 ENSG00000198677 AIS;INTD

TTC7A ENSG00000068724 AHA;DIA;SCI

TTN ENSG00000155657 ACIS

TTR ENSG00000118271 DIA

TXNRD2 ENSG00000184470 ACIS

TYK2 ENSG00000105397 AIL;AAP;IDEF

TYMP ENSG00000025708 INTD

TYROBP ENSG00000011600 ACIS

UBAC2 ENSG00000134882 IH

UBE2T ENSG00000077152 ACIS;AISP

UCP2 ENSG00000175567 DIA

UFD1L ENSG00000070010 AST;AUTO;IDEF

UMPS ENSG00000114491 AISP

UNC119 ENSG00000109103 ACIS;IDEF

UNC13D ENSG00000092929 ACIS;AISP

Gene symbol Ensembl gene ID Source

UNG ENSG00000076248 AIL;IDEF

UROC1 ENSG00000159650 AISP

UROS ENSG00000188690 IDEF

USB1 ENSG00000103005 ACIS;CEI

USP8 ENSG00000138592 IDEF

USP9X ENSG00000124486 AISP

VANGL1 ENSG00000173218 AISP

VCL ENSG00000035403 ACIS

VHL ENSG00000134086 AIS

VIPAS39 ENSG00000151445 AISP

VPS13A ENSG00000197969 AISP

VPS13B ENSG00000132549 ACIS

VPS33A ENSG00000139719 AISP

VPS33B ENSG00000184056 AISP

VPS45 ENSG00000136631 AIL

WAS ENSG00000015285 AIL;AUTO;CD

WDPCP ENSG00000143951 AIS

WDR19 ENSG00000157796 AISP

WDR34 ENSG00000119333 AISP

WDR73 ENSG00000177082 AISP

WFS1 ENSG00000109501 AISP

WHSC1 ENSG00000109685 IDEF

WIPF1 ENSG00000115935 ACIS;AUTO;CD

WISP2 ENSG00000064205 AUTO

WNT3 ENSG00000108379 AIS

WNT4 ENSG00000162552 AISP

WRAP53 ENSG00000141499 ACIS;CEI

WT1 ENSG00000184937 AIS

WWOX ENSG00000186153 AIS

XDH ENSG00000158125 AISP

XIAP ENSG00000101966 AIL;CEI

XK ENSG00000047597 AIS

XPA ENSG00000136936 AISP

XPC ENSG00000154767 AISP

XPNPEP3 ENSG00000196236 AISP

XRCC2 ENSG00000196584 ACIS;AISP

XRCC4 ENSG00000152422 ACIS;SCI

ZAP70 ENSG00000115085 AIL;DIA

ZBTB24 ENSG00000112365 AIL;CEI

ZIC3 ENSG00000156925 AIS

ZMPSTE24 ENSG00000084073 AISP

ZMYND10 ENSG00000004838 AISP
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ZNF750 ENSG00000141579 AISP

ZNHIT3 ENSG00000108278 AISP
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