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Abstract

The roadmap for high-performance computing it is currently switching to
multi-core architectures. Industry has shifted to the multi-core paradigm as
single-core processors are reaching the power consumption wall. The solution
is to put multiple and simple processors in the same chip fabric becoming
chip multiprocessors (CMPs). An efficient interconnect layer for CMP archi-
tectures is needed to connect all the cores. Networks-on-chip (NoCs) are the
key components of these architectures, and they have to deal with the com-
munication scalability challenge while meeting tight power, area and latency
design constraints.

2D mesh topologies are usually preferred by designers of general purpose
NoCs. However, manufacturing faults may break their regularity. Moreover,
resource management frameworks may require the segmentation of the net-
work into irregular regions under virtualization or power-awareness scenarios.
Under these conditions, efficient routing becomes a challenge. Although on
the off-chip domain the use of routing tables at switches is flexible, in the on-
chip domain it does not scale in terms of latency and area due to its memory
requirements.

LBDR (Logic-Based Distributed Routing) is proposed as a new routing
method that removes the need for routing tables at all. LBDR enables the
implementation of many routing algorithms on most of the practical topolo-
gies we may find in the near future in a multi-core system. From an initial
topology and routing algorithm, a set of three bits per switch/output port is
computed. Evaluation results show that, by using a small logic, LBDR mim-
ics the performance of routing algorithms when implemented with routing
tables, both in regular and irregular topologies.

This work also explores LBDR implementation in a real NoC switch,
proving its smooth integration in the architecture and its negligible hardware
and performance overhead.
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Chapter 1

Introduction

1.1 The New Era of CMPs

As the performance and power scalability of monolithic microprocessor cores
is running into physical barriers, industry is shifting to multi-core archi-
tectures for designing high performance microprocessors. Major processor
manufacturers, like Intel, offer processing devices with a small number of
cores inside the chip, currently from two to eight cores per chip, and this is
becoming mainstream for a variety of markets (desktop/server/embedded).
But in the coming years, this trend is expected to keep giving birth proces-
sor architectures that manage a lot of cores inside the same chip (see Figure
1.1). As an example, the Teraflops research chip from Intel has recently been
announced with 80 integrated cores [4].

Figure 1.1: An example of many cores in the same chip, every tile has a core.
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Figure 1.2: Intel’s 80 core teraflops research chip magnified.

Chip architectures with such a large number of cores require a high-
performance on-chip interconnect for efficient communication between cores
and with cache blocks and/or memory controllers. Current chip implemen-
tations are based on bus or ring structures (e.g. the Cell multiprocessor
[5] jointly developed by Sony Computer Entertainment, Toshiba, and IBM).
However, as the number of cores increases, such interconnect fabrics become
the bottleneck of the system, as they do not scale. For highly integrated sys-
tems, on-chip interconnects (Networks-on-Chip, NoCs) are likely to provide
the needed bandwidth and meet the stringent latency requirements. See an
example in Figure 1.3.

Besides the use of NoCs in chip multiprocessors (CMPs), there are other
application domains that also benefit from a NoC. Clear examples are the
TRIPS [6], RAW [7] and Wavescalar [8] architectures, relying on the concept
of operand network. The on-chip network in this case is used to exchange
operands between functional units. The TRIPS operand network leverages
a 5-ary 2D mesh topology.

1.2 Context and Motivation

A lot of research has been undertaken on off-chip networks and so many
mechanisms, techniques and methods can be applied to NoCs as well. How-
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Figure 1.3: Interconnecting all the cores with a NoC.

ever, new physical constraints appear in NoCs, which are not a primary
concern in the off-chip domain. In particular, NoC designers must not over-
look area, power and latency requirements. To meet the design constraints,
NoC designers, encourage the use of a particular scenario.

Figure 1.4: Current trends when designing a tile from a NoC.

A 2D mesh topology is usually preferred for the chip layout because of its
regularity and matching with the 2D silicon surface. This is the case of the
Teraflops research chip, that in addition to the compute element, each core
contains a 5-port router. These are connected in a 2D mesh network. As
seen in Figure 1.4 every router is connected to other routers with the North,
East, West and South input/output ports (plus the local port that connects
to the core and other devices inside the tile).

Network performance is traditionally measured in terms of packet latency
and network throughput. Within the context of a NoC, ultra-low latencies are
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typically required, so every stage must be carefully performance-optimized.
This is the reason why, when designing the routing layer, logic-based routing
(e.g., the predominant Dimension-Order-Routing, DOR) is usually the pre-
ferred solution in addition to the wormhole switching technique, as wormhole
requires minimum area for buffers.

So, a NoC designed with the features mentioned above is a low latency,
area and power efficient solution. This would be enough on an ideal world
but it is not suitable for the new challenges NoC designers must face.

Figure 1.5: Irregular topology result of a failed block of nodes.

Fault-tolerance is becoming a major concern in NoCs and CMPs due to
the physical mechanisms that make designing on nanoscale technologies a
challenging task. While transient faults (reliability issues) like for example,
crosstalk or power supply noise, may be addressed by means of physical or
circuit level design techniques [1, 3], manufacturing imperfections resulting
in defective IP cores, wires or switches may hamper operation of the whole
system. In fact, although a regular NoC topology was selected at design
time, defective components may make it irregular (see example in Figure
1.5). Since most of the chip area is still fully functional, it has to be ensured
that the network is able to work also with the new irregular topology, which
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has implications at least on routing design. Yield would be affected if failure
is not supported at the network routing level, and with DOR this is not
possible.

Figure 1.6: A mesh divided into irregular regions.

Besides process imperfections, there are other reasons why a regular net-
work topology may have to be handled as highly irregular.

First, in order to exploit the large number of cores in MPSoCs and due
to the fact that applications are not getting enough parallelism, virtualiza-
tion of the chip is becoming a necessity. In a virtualized system, resources
are distributed among different running tasks or applications. Although the
virtualization concept is not new, its application to NoCs and CMPs is chal-
lenging. The network must guarantee traffic isolation within regions, thus
eventually leading to irregular sub-networks within the original 2D mesh.
Figure 1.6 shows an example where different regions are used. Again, routing
design under such conditions is a challenging task and DOR is not suitable.

Second, power management is becoming an active design topic. Several
studies state that around 30% to 40% of the total chip power is due to the
interconnect layer so power-aware techniques become excellent solutions to
meet this constraint. If at some point, cores and other devices are not needed,
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Figure 1.7: Powering down some devices inside the mesh.

they must be powered down. This eventual shutdown leads to irregular
regions inside the network and this must be handled again by the network
routing level (see an example in Figure 1.7).

In order to find a routing layer capable of handling these challenges with
the resuling irregular topologies (or regions) there is a current solution, the
use of routing tables. The routing layer can be implemented as source routing
or distributed routing. In source routing, the source node grabs the path
accessing the routing table matching the destination node and stores it in
the packet header. Since the header itself must be transmitted through the
network, it consumes network bandwidth. The Intel Teraflops research chip
uses source routing.

In distributed routing, in contrast, each switch computes the output port
for each input packet, and therefore the next hop to destination. For this
purpose, the packet header needs only to contain the destination ID. This can
be implemented in different ways. The approach commonly found in regular
topologies is the so-called algorithmic routing, which relies on a combina-
tional logic circuit that computes the output port to be used as a function of
the current and destination nodes and the status of the output ports. The
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implementation is very efficient in terms of both area and speed, but the
algorithm is specific to the topology and to the routing strategy used on that
topology.

To deal with irregular topologies, switches based on forwarding tables
were proposed. In this case, there is a table at each switch that stores, for
each destination end-node, the output port that must be used. This scheme
can be easily extended to support adaptive routing by storing several outputs
in each table entry. The main advantage of table-based routing is that any
topology and any routing algorithm can be used, including fault-tolerant
routing algorithms. However, memories do not scale as much as logic in
terms of latency, power and area, thus proving impractical for large NoCs.
Imagine that every routing table in every chip has a size of N − 1 entries
and this becomes a bottleneck as the number of cores, N , grows. The size
of the routing tables can be possibly reduced in some environments. This
is the case of application-specific systems where the communication pattern
may be known in advance. However, this is not the case for generic purpose
multi-core chips.

Figure 1.8: Example of routing tables at a certain node.

An example is shown in Figure 1.8. Here we can appreciate a parcial
content of the routing tables on node A that store some routing decisions for
the routing management layer, being either source or distributed routing. For
source routing and destination B, the path North, North, West, West will
be stored on the packet header. For the same destination but with distributed
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routing, the switch at A will route the packet to the North output port.
It would be interesting to find a routing implementation for irregular

topologies (or partial 2D meshes) allowing the use of any distributed routing
algorithm without the need for routing tables both at endnodes for source-
based routing and at switches for distributed routing. In this work such
challenge is taken.

The proposal, known as Logic-Based Distributed Routing (LBDR) is a
very simple mechanism that removes the routing tables at every switch, en-
abling the distributed implementation of any routing algorithm on irregu-
lar topologies, with a FSM-based (low-latency, power/area efficient) unicast
routing implementation. This method relies on 2 flags per output port for
routing decisions, a flag per output port to define topology or region defini-
tion and connectivity and a small set of logic gates.

To prove the practical feasibility and the effectiveness of LBDR, the
method has been implemented it in a realistic network-on-chip switch archi-
tecture natively supporting source-based routing. This architecture allows
lightweight switch implementations and is, therefore, an ideal reference ar-
chitecture to assess the implementation overhead of a switch augmented with
LBDR capability. Synthesis results on a 65nm technology node point out a
number of second-order effects that common assumptions on routing archi-
tecture implementations fail to capture. LBDR is enhanced and interfaced to
a 2-phase switch arbiter scheme and also integrated into a high radix switch
design where more than one end-node is connected to each switch.

The rest of this work is organized as follows. Chapter 2 gives a detailed
view of the mechanism and its extensions. Chapter 3 deals out with an imple-
mentation of the mechanism on a real NoC switch architecture. On chapter
4 evaluations on performance and area and delay overhead results are pre-
sented. Chapter 5 provide citations to related work and finally, conclusions
are drawn in chapter 6.
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Chapter 2

Logic-Based Distributed
Routing

In this chapter the proposed routing mechanism is described, at first illustrat-
ing the target system architecture and then delving into the implementation
details. Then, an extension of the mechanism is illustrated and finally, a
formal demostration is shown.

2.1 System Environment

For the sake of simplicity we focus on networks with no virtual channel re-
quirements, and assume wormhole switching (although the proposed method
also works for virtual cut-through switching as well). Messages (or packets in
virtual cut-through) are routed with X and Y offsets assuming the X and Y
coordinates of the final destination are included in the message header (Xdst

and Ydst), and each switch knows its X and Y coordinates (through the Xcurr

and Ycurr registers at each switch).

Figure 2.1: Packet header and switch with the coordinates.
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Logic-Based Distributed Routing (LBDR) can be applied to a combina-
tion of topologies and routing algorithms with some particular characteris-
tics. The following paragraphs describe the conditions topologies and routing
algorithms must meet.

COMMUNICATE

PAIRS
SOME

(f) SRh in p topology (g) SRv in p topology (h) UD in p topology

(b) SRh in 2D mesh(a) XY in 2D mesh

(e) XY in p topology

(d) UD in 2D mesh

CANNOT

(c) SRv in 2D mesh

Figure 2.2: Examples of routing algorithms (by their routing restrictions) in
2D mesh and p-shaped irregular topologies.

As stated in Section 1.2 the typical topology of choice for NoCs is the
2D mesh network. However, with the advances of technology and with the
appearance of new challenges topologies derive from an initial 2D mesh into a
subset of irregular topologies. Topologies shown in Figure 2.2 are examples.
It should be noted that all the described irregular topologies share the same
property: all the end-nodes (assuming at least one end-node attached to
each switch) can communicate with the rest of nodes through any minimal
path defined in the original mesh topology. LBDR can be applied to all the
topologies that fulfill this property (2D mesh and p-shaped topologies shown
on Figure 2.2 would be valid). LBDR is, however, not applicable to topologies
where some pairs of end-nodes cannot communicate through a minimal path
defined in the original 2-D mesh topology, like in Figure 2.3.

A deterministic (or partially adaptive) routing algorithm without cyclic
dependencies among links or buffers can be represented by the set of routing
restrictions it imposes. As an example, Figure 2.4 shows the routing restric-
tions defined by the UD routing algorithms on a 2-D mesh topology. Each
arrow indicates a routing restriction. Basically, a routing restriction forbids
any packet to use two consecutive channels. So, the final paths for each pair
of communicating end-nodes will not pass through any routing restriction.
In this work we define a routing restriction as the pair of channels that can
not be used in sequence by any packet. For instance, at the last (bottom
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Figure 2.3: Example of topology with non-minimal path between switch A
and B.

right-most) switch in Figure 2.4 there are two restrictions: NW and WN1.
A packet traversing that switch can not use consecutively the N and W
channels or viceversa.

In short, LBDR is applicable to any routing algorithm that complies with
the following condition: defining the following two sets of channels {N,S}
and {E,W}, all the routing restrictions are formed by two channels, each one
from a different set. Thus, for instance, restriction EW is not allowed. In
other words, routing restrictions forbid only some changes in the direction.
Notice that this makes sense since it allows for minimal routing (restrictions
like WE, EW , NS, SN , SS, NN . . . always force the need for non-minimal
paths). Notice that for example, the UD routing algorithm pictured at Figure
2.4 follows this requirement, since all the restrictions are WN or NW .

Other routing algorithms like FX [15] and Turn Model [16] also adhere
to these conditions, thus they can be implemented with LBDR.

In the case of XY (DOR), the routing algorithm is designed only for the
2D mesh topology and it is unsuitable for non-regular topologies as showed

1Channels are labelled N (North), E (East), W (West), and S (South).
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Figure 2.4: Example of a routing algorithm represented by its restrictions.

in Figure 2.2.e because it does not enforce minimal paths in those topologies,
but is still supported by LBDR with the full 2D mesh.

There is a very important note that must be remarked. LBDR is a routing
layer implementation, not a single routing algorithm description. LBDR
works in conjunction and supports the majority of topology-agnostic routing
algorithms, like SRh [12], SRv [12], and UD (up*/down*) [13]. These routing
algorithms must enforce dead-lock freedom and connectivity.

2.2 LBDR Description

Logic-Based Distributed Routing (LBDR) relies on a simple and efficient
implementation. Each switch has two sets of bits/flags: routing bits and
connectivity bits. Routing bits indicate which routing options can be taken,
whereas connectivity bits indicate whether a switch is connected with its
neighbours. The value of these bits depends on the topology and the rout-
ing algorithm being implemented, and are computed and uploaded to the
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switches before normal operation (at system boot) or are changed during
reconfiguration processes.

Figure 2.5: Routing bits in a switch.

Routing bits indicate if a change of direction can be made at the next
switch (one-hop visibility). Each output port has two routing bits and are
referred as Rxy. If a Rxy bit is set indicates that a packet routed through
X port is allowed to go through Y output port at the next switch. For
example, at the E output port these bits are labelled Ren and Res. They
indicate whether packets routed through the E output port may take the N
port or S port at the next switch, respectively. For output port N the bits
are accordingly labelled Rne and Rnw, for output port W Rwn and Rws, and
for output port S Rse and Rsw as seen in Figure 2.5.

In Figure 2.6 we can see an example of routing bits in a switch. In this
case, Rne, Rnw, Res, Rwn, Rws and Rse define valid directions changes for
routing decisions. Instead, Ren and Rsw would be set to zero, as they repre-
sent not valid direction changes at next switches due to routing restrictions.

Regarding the connectivity bits, each output port has a bit, referred to
as Cx indicating whether a switch is connected through the x port. Thus,
connectivity bits are Cn, Ce, Cw, and Cs (see Figure 2.7). With this set of
bits, LBDR offers region definition and traffic isolation.

Figure 2.8 shows an example of all the bits computed for every switch for
an irregular topology when using the SRh [12] routing algorithm.

For the full potential use of the routing and connectivity bits, the switch
implements a routing logic, that is divided in two blocks as shown in Figure
2.9. The first block computes the relative position of the packet’s destination.
For this, two comparators are used and Xcurr and Ycurr are compared with
Xdst and Ydst. At the output of this logic one or two signals may be active
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Figure 2.6: An example of routing bits set according to the routing algorithm
restrictions.

Figure 2.7: Connectivity bits in a switch.

(e.g. if the packet has its destination node in the NW quadrant then N ′ and
W ′ signals are active). Note also that packets forwarded to the local port are
excluded from the routing logic as in this case both current and destination
coordinates would be the same.

Once the N ′, E ′, W ′, and S ′ signals are computed, the second block of
the logic comes into play. It consists of four logic units, one for each output
port. Each one can be implemented with only two inverters, four AND gates
and one OR gate. As all of them are similar we describe here only the logic
associated with the N output port.

The N output port is considered for routing the incoming packet when
either one of the following three conditions is met, then signal N ′′ is computed
as a result of operation of these conditions (in Figure 2.9 X1, X2 and X3):

• The packet’s destination is on the same column (N ′ × E ′ ×W ′).

• The packet’s destination is on the NE quadrant and the packet can
take the E port at the next switch through the N port (N ′×E ′×Rne).
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Figure 2.8: Example of routing and connectivity bits with the SRh routing
algorithm.

• The packet’s destination is on the NW quadrant and the packet can
take the W port at the next switch through the N port (N ′×W ′×Rnw).

Finally, the connectivity bit Cn is inspected in order to filter the N port
with the computed signal N ′′. If none of the conditions is met, then the N
port can not be considered for routing the packet.

Notice that, for example, N and E signals could be active at the same
time. In this case, the switch has to choose among them in the arbiter
unit, according whether adaptiveness is allowed or the routing algorithm is
deterministic.

With the implemented logic and connectivity/routing bits LBDR mimics
the behaviour of routing algorithms when using routing tables. As an exam-
ple, Figure 2.10 shows the path taken from source A to destination B over
the NoC. As seen, B is on the NE quadrant from A. At switch A, the first
part of the logic will give N and E output ports as possible routing decisions.
As we have connectivity to both directions and the routing bits will show
there are no routing restrictions on the next direction changes, both N and
E are marked as valid. Imagine the switch arbiter chooses N . At the next
switch, current and destination coordinates are again compared. As B is still
in the NE quadrant, N and E output ports will be marked again as possible
routing decisions. But this time, N will not be valid as we have a routing
restriction at the switch located to the north, so Rne at this switch will be
set to zero, invalidating N . So, E output port, is chosen to route the packet.
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Figure 2.9: A full detail on LBDR logic.

Figure 2.10: An example of routing path taken by a packet with LBDR.

At the next switch we will encounter the same scenario, so again the packet
is routed through E output port. Finally, at the next switch, N would be
given as is the only valid routing option to reach switch B.

It is important to note that only the bits referring to a routing restriction
are set to zero and the remaining ones are set to one, even those that refer
to switches not existing in the topology in order the mechanism to work
properly. This can be better seen through an example. Imagine the path at
Figure 2.8 from switch 13 to switch 7. At switch 13 the signals N’ and E’
are active because switch 7 is on the NE quadrant (from the point of view
of switch 13). In particular, N ′′ is activated as Rne at switch 13 is set to one,
although it does not make sense for routing purposes. However, this allows
the packet to being forwarded north, until it reaches switch 5, where it can
take the east direction. Notice that output port E will never be taken at
switches 13 and 9 due to the connectivity bit Ce set to zero.
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2.3 LBDRe: Extended Visibility on Routing

Decisions

While performing evaluations there were situations where LBDR showed a
performance degradation with the SRh routing algorithm. An explanation
of the behaviour can be seen as an example in Figure 2.8. Now, a packet
must be forwarded from switch 1 to switch 8. In this case switch 1 decides
to discard output port S because its Rsw bit is set to zero due an existing
NW restriction at switch 5 through the S output port of switch 1 so the
resulting path is 1-0-4-8. However, in this case, a valid path would also be
1-5-9-8. Therefore, LBDR reduces adaptiveness while being conservative.
Although LBDR is still working (it always provides a valid set of paths) the
performance degradation could be unacceptable (see Section 4.1).

Figure 2.11: LBDRe full logic detailed.

In order to fix this, LBDRe comes as an extension to LBDR mechanism to
overcome this problem. Figure 2.11 describes this extended LBDR method.
As can be seen, the routing and connectivity bits (3 bits per output port) are
still maintained, and they are computed in the same way. Four new bits per
switch output port are, however, added. Figure 2.12 shows an example of
the computed LBDRe bits explained in the next paragraphs for an irregular
topology.

The bits labelled R2xy indicate whether the y direction can be taken two
hops away from the current switch through the x direction. For example,
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Figure 2.12: Example of computed bits for LBDRe with the SRh routing
algorithm.

R2ne indicates whether a packet is allowed to change direction to E at the
switch located two hops in the N direction. Notice that this set of bits
have similar meaning with the ones used in LBDR. In some sense, these bits
provide visibility to the switch of the routing possibilities two hops away.
However, it must be stated that these bits must be not active if they refer to
a non-existing switch. For instance, in Figure 2.12 the R2nw bit at switch 4
is not active.

The bits labelled RRxy indicate whether there is a routing restriction
between x and y channels at the current switch. These bits are needed in
order to avoid the formation of cycles, which is described in the example
below.

To sum up, LBDRe requires 24 routing bits grouped by 6 bits per output
port. Additionally, the switch needs five internal signals ipN , ipE, ipW , ipS
and ipL to indicate the incoming port of the packet being routed.

The first part of the routing logic is slightly augmented compared to
LBDR. In particular, based on the X and Y coordinates of the current switch
and the packet’s destination, the logic computes the relative directions N ′,
E ′, W ′, and S ′. Additionally, four extra signals N2, E2, W2 and S2 are
computed. These signals are active if the packet’s destination is at least two
hops away in the corresponding direction (if N2 is active, then at least two
hops must be done in the N direction to get closer to packet’s destination).
Notice that these signals can be easily computed with additional comparators
with the Xcurr and Ycurr coordinates shifted in one position.

The first part of the logic is also in charge of inhibiting the possible output
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ports that would lead crossing a routing restriction. For this, the RR (routing
restriction) filter logic is used. This logic requires two inverters, three AND
gates and one OR gate per output port. The resulting signals are labelled as
N ′′, E ′′, W ′′, S ′′. They feed the final part of the logic.

The second part evaluates the routing options at the one-hop and two-
hops neighbours. For this, the previous logic functions for LBDR have been
extended. For instance, for the output port N , the port will be selected if
any one of the following conditions are met:

• The packet’s destination is on the same column (N ′ × E ′ ×W ′).

• The packet’s destination is on the NE quadrant and the packet can
take the E port at the next switch through the N port (N ′×E ′×Rne).

• The packet’s destination is on the NW quadrant and the packet can
take the W port at the next switch through the N port (N ′×W ′×Rnw).

• The packet’s destination is on the NE quadrant, the packet’s destina-
tion is at least two hops away through the N port, and the packet can
take the E port at the two-hops neighbour switch through the N port
(N2× E ′ ×R2ne).

• The packet’s destination is on the NW quadrant, the packet’s destina-
tion is at least two hops away through the N port, and the packet can
take the W port at the two-hops neighbour switch through the N port
(N2×W ′ ×R2nw).

Finally, the connectivity bit Cn and the routing-restriction filter (N ′′) are
used to filter the output port. For the remaining ports, similar deductions
are considered.

With LBDRe extension to LBDR mechanism, now, the SRh routing al-
gorithm can be applied with no performance degradation. Figure 2.12 shows
two possible paths from source 1 to destination 8. At switch 1, the S output
port can now be taken because the R2sw bit is active and the internal S2
signal will be activated. Note also that switch 5 has its RRnw bit active, thus
avoiding taking the W output port at the current switch, which would lead
to an invalid path.

2.4 Deadlock-freedom and Connectivity

In this Section we demonstrate that LBDR is deadlock-free and provides
connectivity among all the end-nodes. It must be noted that this can also

20



be applied to LBDRe. As it has been shown before, LBDRe embeds LBDR
and therefore it inherits all of its properties.

2.4.1 Deadlock-freedom

LBDR is not restricted to any particular routing algorithm. Instead, it can
support any routing algorithm that provides minimal paths for every pair
of end-nodes (as we see in Figure 2.2.e XY is a bad choice as it does not
provide connectivity in an irregular topology). However, the applied routing
algorithm must ensure deadlock-freedom and LBDR has to maintain such
property. LBDR computes the routing bits from the routing restrictions
defined by the routing algorithm. The algorithm is deadlock free if no packet
crosses a forbidden routing restriction. Therefore, LBDR must ensure that
no packet crosses any routing restriction defined by the routing algorithm.

Imagine there is a deadlock in the network induced by a set of packets
that are requesting buffers in a cyclic manner. In that situation a packet
in a switch sw along the cycle is mapped at a buffer in an input port i
and is requesting an output port o for which a routing restriction is defined
between i and o. Without lose of generality, consider the input port is S and
the output port being requested is W . Hence, a SW routing restriction is
defined at switch sw.

As routing restrictions are assigned only to links between switches (links
connecting end-nodes are excluded), the given packet has previously been
forwarded from a previous switch (swp). The output port used to forward
the packet at swp is N . At this switch the routing bit Rnw is set to zero (since
there is a SW routing restriction at switch sw). Additionally when routing
the packet at switch swp the signals N’ and W’ were active as the packet is
now requesting output port W at switch sw. Looking at the LBDR logic for
output port N , at switch swp the N port can not be selected since none of
the outputs of the AND gates will be active (x1=x2=x3=0, see Figure 2.9).
Indeed, the packet is in the NW direction and the Rnw bit is not active.
Therefore, this situation can not be induced and thus LBDR is deadlock-free.

Similar conclusions can be obtained when assuming different sets of for-
bidden routing restrictions.

2.4.2 Connectivity

To demonstrate that the mechanism provides connectivity we must first high-
light that the routing algorithm implemented by LBDR provides minimal
paths and connectivity among all the pairs of end-nodes.
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Notice that on each hop a packet performs in the network it gets closer to
its destination. From the LBDR logic we can also deduce that non-minimal
paths are avoided. Each output port is candidate for being selected only if
the destination’s distance is reduced along that port. For instance, the N
port is eligible only if the packet is in the north direction or in the NW or
NE quadrants (the signal N’ is active).

Consider the case that a pair of end-nodes can not communicate when
using LBDR. In this case, although the routing algorithm provides at least
one minimal path to reach the destination end-node the LBDR mechanism
fails to provide such path. In that situation, there is a point in the network
where either LBDR logic provides a non-minimal path or any of the minimal
paths are not eligible.

Figure 2.13: Path taken on boundaries at (p) topology .

As an example, consider Figure 2.13 and the routing unit at switch 8. The
packet’s destination is switch 3, thus is in the NE quadrant. In that situation
the W and S ports are not considered by LBDR since the W ′ and S ′ signals
are not active. In other words, the packet’s destination is neither in the W ′

nor S ′ directions. Thus, LBDR avoids non-minimal paths. Therefore, only
the N and E directions may be considered. In this case N ′ and E ′ signals
are activated. In that situation, notice that the N port is eligible only if
the Rne bit is active and the E port is eligible only if the Ren bit is active.
Notice that both bits can not be zero at the same time. In that case there
would be no connectivity between switches 8 and 5 and thus, the routing
algorithm implemented would not guarantee connectivity. As this situation
is not assumed by the routing algorithm, it can not happen, and therefore
LBDR guarantees connectivity. Therefore, at least one output port (N or
E) will be eligible for routing the packet, getting closer to its destination.

However, a subtle case arises in the boundaries of the topology. Figure
2.13 shows a p topology and the packet at switch 13 has its destination at the
NE quadrant. Switch 13, however, is at the boundaries of the topology. In
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this case, switch 13 has its Ren and Rne bits active. However, its connectivity
bit Ce is not active. In this situation the N port is eligible. Notice that the
packet will go north until it reaches switch 5 where it will take either N or
E.
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Chapter 3

Implementation on a Real NoC
Switch architecture

As a result of collaborative work in an internship (at University of Ferrara,
Italy), the opportunity to see the impact of LBDR mechanism in a real NoC
switch architecture was given.

3.1 XpipesLite Switch Architecture

LBDR has been implemented in the xpipesLite [23] switch architecture, illus-
trated in Figure 3.1. The switching fabric implements a 2-cycle-latency (one
for switch operation and one for traversing the output link), output-queued
wormhole-switched router supporting round-robin arbitration on the output
ports. The input ports are latched to break the timing path. Allocation of
inputs towards specific output ports is handled by an allocator module for
each output port (in practice, this is a two phase arbiter). Arbitration is
subsequently performed upon receipt of a header flit and output ports are
granted until a tail flit arrives. Since the switching fabric natively supports
source-based routing, the routing information is attached to the header flit
by the network interface, which checks the address against a lookup routing
table on the source node.

The length of the routing path field in the header depends on maximum
switch radix and maximum hop count in the specific network instance at
hand. The switch in Figure 3.1 is an interesting reference architecture to
assess LBDR complexity, since most of the complexity of the routing archi-
tecture is on burden of the network interface in source-based routing and
therefore the switch exhibits minimum complexity. The switch just has to
read the target output port from the packet head and to route the entire
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Figure 3.1: XpipesLite switch architecture.

packet accordingly. As an optimization, the xpipesLite switch architecture
rotates away the routing information pertaining the current switch in the
head flit. This allows positioning of the per-hop routing bits at a fixed offset
within the head flits of the packets, thus simplifying switch implementation.

The implementation of LBDR inside the xpipesLite switch architecture
is illustrated in Figure 3.2. In the original switch, the allocator checks the
target output port from the head flit of the packet and compares it with its
own output port ID, thus generating a match signal in case of correspondence.
In the modified switch variant, this task is offloaded to the allocator since it
is on burden of LBDR logic. This time the head flit contains the destination
switch coordinates and not routing bits any more. However, the packet
length is not increased since in any case the reference architecture already
placed this kind of information in the header flit of the packet. LBDR logic
is a two stage logic, as explained in Section 2.2, which is illustrated as a
single box for each input port in Figure 3.2. It is interesting to observe
that LBDR keeps the modular design style of the switch architecture. The
output signals from the LBDR modules represent exactly the match signals
that the allocator used before and which indicate that the packet from a
given input port requires a specific output port. The allocator now has to
discriminate between competing requests. LBDR logic therefore fits nicely
into the XpipesLite switch architecture. In addition, the used two-phase
allocator requires input LBDR modules to activate only one routing option
each. As an example, for a given input packet the LBDR mechanism can
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Figure 3.2: XpipesLite switch architecture modified with LBDR implemen-
tation.

not provide two valid output ports (for instance N and E). In that case,
LBDR should provide only one (either N or E). To solve this problem, a
fixed priority scheme described in the next Section is implemented.

3.2 Fixed Priorities and Allocators

LBDR provides in some cases more than one routing option depending on
the routing bits. For a packet being routed north-east the logic may provide
both output ports N and E as eligible for packet forwarding. It is the
responsibility of the switch allocator to select one of the output ports. This
leads to an increase in the routing flexibility and a potential increase in
network performance.

However, in some NoC designs the switch allocator may be simple and
does not allow multiple routing options from the same input port. This is
the case of switches designed with a two-phase arbiter where allocators are
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implemented only at the output boundaries of the switch. In this Section,
we extend the LBDR mechanism in order to allow its use on such switch
designs. We provide a basic modification to the logic in order to provide
only one routing option per input port. This extension, referred to as fixed
priorities, relies on each input port and will filter some routing options in
order to provide only one. This will be done locally at every input port,
thus no need for communication between different LBDR implementations
at each input port of the switch.

LBDR logic provides the following sets of two routing options: NE, ES,
SW , and WN . This is because all the provided paths are minimal within
the topology and the packets are forwarded to one of the possible quadrants
(NE, ES, SW , and WN quadrants). The idea behind fixed priorities is to
filter such routing options but providing equal probabilities to every output
port. This is achieved by providing higher priority to each output port in a
different quadrant. So priorities are provided higher to the N port for the
NE quadrant, E port for the ES quadrant, S port for the SW quadrant,
and W port for the WN quadrant. Figure 3.3 shows the extended LBDR
logic providing fixed priorities to the N port.

Figure 3.3: Fixed priorities on north output port.

In particular, for the N port, the new logic filters the port if the packet
can be forwarded also through the W port (in that case the N port is not
eligible for routing purposes). Notice that the N port is not filtered if the
packet is going only through N direction or through the NE quadrant (the
N port has priority in this quadrant). Similar deductions can be obtained
for the remaining set of logic equations.

The main benefit of fixed priorities is the fact that LBDR logic is compact
and still isolated at every input port. At the end LBDR provides only one
routing option per input port.
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3.3 Extension To More Cores Per Switch

LBDR natively supports a large range of routing algorithms for k-ary 2-
mesh topologies. Although widely used, it is well known that this topology
scales poorly with the number of nodes and that it incurs a large area and
power overhead. Under certain operating conditions, concentrated topologies
become attractive [22]. Basically, the idea consists of reducing the number
of topology dimensions or (as in our case) of switches in each dimension of
a k-ary n-mesh and to increase the number of cores attached to each switch.
This way, bisection bandwidth is traded for low latency, area and power.

LBDR was extended to support multiple cores per switch in concentrated
mesh topologies. For this purpose, a different labelling scheme for network
nodes had to be devised, since LBDR originally required the switch coordi-
nates within the 2D mesh. Now, multiple cores might be associated with the
same switch coordinates. The basic idea is that (see Figure 3.4) one local
core inherits the same coordinates of the switch, while the other ones have
an incremental x coordinate. From a network viewpoint, x coordinates of
the switches appear to increase at a coarse granularity, where the granularity
is determined by the number of cores attached to each switch. The figure
illustrates the case with 4 cores per switch.

Figure 3.4: LBDR oriented node labelling in concentrated k-ary n-mesh
topologies.

This implementation has two advantages: (i) the packet header does not
need to be changed since it still carries the destination switch coordinates;
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(ii) only the first logic stage of LBDR needs to be slightly extended, while
the second one is unaltered.

Modification of the first logic stage of LBDR includes the return of a
match signal whenever the target y switch coordinate matches that of the
local switch AND the target x coordinate falls within the range of the x
coordinates of the local connected cores. In this case, the packet is forwarded
to the right local output port. Viceversa, if the packet is headed to another
switch, the native LBDR logic can handle this without any modification.
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Chapter 4

Evaluations and Results

In this chapter a comprehensive evaluation of LBDR is provided. First, a
high-level analysis shows performance achieved by LBDR when compared
with competing routing algorithms/mechanisms. Second, synthesis results
are provided for the switch architecture described in Section 3 with and
without LBDR, pointing out area and critical path delay overheads and ac-
companied with results in switch architectures for concentrated topologies
connecting more cores per switch (Section 3.3). Finally, LBDR is compared
with routing tables from an implementation cost and efficiency viewpoint,
with a glance at scalability properties.

4.1 Performance

In this section performance achieved by LBDR is evaluated when applied
to different topologies/routing algorithms compared with the performance
achieved by those routing algorithms when implemented with routing tables.
The objective is to check if LBDR and LBDRe get equal performance results
compared with routing tables and by how much (and in which circumstances)
they lose performance.

NoC simulator Noxim [17] has been used to evaluate LBDR, LBDRe, and
table-based routing. In all simulations wormhole switching is assumed, input
port buffers are 4-flit deep, and packets are 32-flit long. Flit size is set to
one byte. For the transient state, 40K messages are assumed and results are
collected after 40K messages are received. XY , UD, and SRh routing algo-
rithms have been evaluated in an 8×8 mesh and p-shaped topologies (an 8×8
mesh without the bottom-right 4 × 4 sub-mesh) with uniform traffic. The
same overall conclusions have been obtained for all the routing/topology com-
binations and with uniform, bit-reversal and hot-spot traffic distributions. It
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has to be noted also that the aim of this evaluation is to check if LBDR (and
LBDRe) replaces routing tables with no impact on performance. Achieving
a better network throughput depends on the routing algorithm used and not
on the way the routing algorithm is implemented.
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Figure 4.1: Performance achieved for different routing algorithms for the 2D
mesh. Uniform traffic distribution.

Figure 4.1 shows the performance (delivered throughput) for uniform traf-
fic and the 2D mesh topology, whereas Figure 4.2 shows the performance for
p topology. In all the situations the same basic conclusions can be obtained.
First, it can be seen that for XY (in 2D mesh) and UD (in 2D mesh and all
the irregular topologies) LBDR mimics the performance achieved with tra-
ditional implementation (routing tables). This is achieved because in both
cases all the routing restrictions are aligned through the same columns and
rows and this permits LBDR to achieve maximum performance.

Second, it can be seen that for SRh, LBDR achieves different performance
numbers depending on the traffic and topology used. In some cases the
differences between LBDR and LBDRe may be large (in terms of network
throughput) thus aiming to select LBDRe. However, in all the topologies
analysed the use of LBDR with a different routing algorithm (UD or SRh)
achieved very close performance numbers to LBDRe. Thus, it is not worth
using LBDRe for such marginal performance benefits. It is much more wise
to use LBDR as it is a much more compact mechanism.
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Figure 4.2: Performance achieved for different routing algorithms for a p-
shaped topology. Uniform traffic distribution.

4.2 Area and Critical Path Delay Analysis

Two 5 × 5 switch architectures were synthetized (source-based routing vs
LBDR) with Synopsys Physical Compiler. Since wireload models in tradi-
tional synthesis tools are not trustworthy anymore in the context of nanoscale
technologies, Physical Compiler performs placement-aware logic synthesis. In
practice, after a quick initial logic synthesis based on wireload models, the
tool internally attempts a coarse placement of the current netlist. Next, it
iteratively optimizes the netlist and the placement, based on the actual wire
loads it implies by the current candidate placement. The outcome is a placed
netlist that is optimized also accounting for wire delays. We target a 65nm
low-power low-Vth technology library available from STMicroelectronics un-
der the CMP project [24].

Critical path results are illustrated in Figure 4.3. Clearly, in the LBDR
switch the allocator becomes less complex and some basic functionality has
been moved to the LBDR logic. Overall, the synthesis tool has performed
a good optimization of the allocator and of the LBDR modules (their total
delay is almost the same as that of the old allocator), but has ended up
slightly penalizing the control logic of the output buffer on the critical path.
Let us recall that input and output buffers also act as flow control stages
[25]. Overall, the delay penalty of LBDR is limited to only 5% with respect

32



to source based routing, which is an excellent result.
Area results are even more promising, since the minor degradation of

the critical path has been achieved while saving a small percentage of area.
Timing and area results clearly allow to see the behaviour of the optimization
process of the synthesis tool.

Figure 4.3: Timing physical synthesis results of a 5× 5 switch.

Figure 4.4: Area physical synthesis results of a 5× 5 switch.

By implementing the extension of more cores per switch, 6× 6 and 8× 8
switches were implemented for synthesis for the support of 2 and 4 cores
per switch respectively. Comparative timing and area scalability results are
illustrated in Figure 4.5(a) and Figure 4.5(b) respectively. While critical path
delay in the LBDR switch has been scaled almost linearly by the synthesis
tool, some unpredictable optimization has been performed on the xpipesLite
6 × 6 switch. However, the 8 × 8 switch implementation confirms that the
timing gap between the two variants is kept limited within 6%. Again, area
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results are promising for the LBDR switch, which shows a good scalability
of this metric even to 8× 8 switches.

(a) Timing (b) Area

Figure 4.5: Timing and area scalability results.

In all cases, the delay and area differences between the two switch variants
do not follow a clear scalability trend but have to be assessed case by case,
since they are tightly dependent on the optimizations the synthesis heuristic
is able to perform on the specific design at hand. This further confirms that
the overhead of LBDR is so small that it falls within the unpredictability
margin of the synthesis tool behaviour.

4.3 LBDR vs Routing Tables

As the main remarked objective in this work is to state that LBDR removes
the need for routing tables at switches, so the next step of analysis was
clear. In most designs of practical interest, forwarding tables are usually
implemented by means of memory macros. This motivates a comparison be-
tween LBDR logic implementation and memory macro-based routing tables
in terms of area and routing delay.

For the experiments Memaker was used, a memory compiler from Faraday
Technology Corporation [2], generating memory macros for a 90 nm UMC
process technology. LBDR logic was synthesized again for the new technology
library (for the sake of technology-homogeneous comparisons) and its delay
contrasted with the access delay of a corresponding memory macro meeting
the same routing requirements.

For the evaluation, the following scenario was assumed: switches are
placed in a 2D mesh topology, with one computation tile attached to each
switch. Each tile consists of a processor core and a memory core, each one
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(a) Area (b) Routing delay

Figure 4.6: Area and routing delay analysis for 16 destinations.

requiring a master and a slave XpipesLite network interface for accessing
the network. Thus, switches in the worst case need 8 I/O ports. The total
number of destinations is 16 end-nodes in the system at hand (a 4x4 2D
mesh).

When routing tables are used for distributed routing, each switch input
port has a memory module with a number of words equal to the amount of
destinations. Every word is composed of 3 bits, matching the switch radix.
Given a destination ID, the switch thus selects the target output port (from
0 to 7) based on table look-up.

The minimum size in words that Memaker, at the 90nm technology node,
can generate is 256 words. For fewer words, Memaker can however infer a
single-port register file. We also included this option in the comparison of
Figure 4.6, targeting our system under test with 16 destinations. The figure
shows that LBDR logic consumes significantly less area while matching the
delay of the register-based routing table solution. The oversized memory
macro is clearly non-competitive at this system scale.

Figure 4.7 illustrates area and delay scalability of LBDR and memory
macro-based routing tables with an increasing number of network destina-
tions. Clearly, while the memory macro suffers from increasing area and
delay penalties, LBDR logic complexity does not depend on the number of
destinations, hence keeps constant. The area occupied by LBDR modules
just grows with switch radix.

When the number of destinations is between 16 and 256, Figures 4.6 and
4.7 suggest that LBDR will be by far the most area effective solution, while at
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(a) Area (b) Routing delay

Figure 4.7: Scalability of LBDR and memory macro-based routing tables
when increasing the amount of the destinations.

least small routing delay improvements with respect to register-based routing
tables can be conservatively expected.
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Chapter 5

Related Work

Some work on the reduction of memory requirements for routing in NoCs
already exists. One solution is Interval Routing [9]. With interval routing,
sets of destinations requesting the same output ports are grouped. This
method is specific for regular topologies. The FIR method [10] is an extension
of interval routing to allow different routing algorithms in meshes and tori
networks. However, FIR is not applicable to irregular networks. Another
solution is named street-sign routing [18]. In this method, only the router
name of the next turn and the direction of the turn are included in the packet
header.

Two solutions for irregular topologies have been proposed [11], [12]. In
both cases, the destinations are grouped into regions and regions are coded
into switches. A region is coded by the top left-most switch and the bottom
right-most switch. Although the number of regions grows logarithmically
with the number of failures, the number is unbounded and each region implies
a logic. Another solution for routing table minimization is presented in [14].
In this case logic is used for the regular case and a deviation routing table is
used for routing deviations.

Although different solutions exist, none of them allows the implementa-
tion of distributed routing algorithms in irregular topologies with no routing
tables and minimum logic.
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Chapter 6

Conclusions and Future Work

In this work the LBDR mechanism is presented as a compact mechanism.
LBDR allows efficient implementation of most of the existing distributed
routing algorithms in regular as well as many irregular NoC topologies. For
LBDR only two routing bits and one connectivity bit are required along with
a small logic per output port. For LBDRe four more bits are required along
with the bits existing in LBDR. LBDR mimics the performance achieved by
XY and UD routing algorithms when implemented using routing tables. For
more sophisticated routing algorithms, like SRh, the LBDRe method may be
used.

Although not evaluated, we have analysed the extension of LBDR with
additional visibility routing bits and obtained no performance gains with any
routing algorithm. Therefore, LBDRe, provides enough visibility to extract
the full potential of any minimal routing algorithm on an irregular topology.
Also, we would like to point that although LBDR loses some performance
with some routing algorithms it is much more attractive than LBDRe, due
to its simplicity. Also, with a proper routing algorithm (XY and/or UD) the
performance penalty is eliminated.

The implementation of LBDR in a real-life network-on-chip switch archi-
tecture and a comparative analysis with a lightweight switch for source-based
routing shows a delay penalty of only 5% and even a small area saving at
the 65nm technology node. In general, its overhead is so small that it falls
within the unpredictability margin of the synthesis tool heuristics. More-
over, LBDR was extended to support the connection of multiple cores to the
same switch, and the comparative properties with respect to a switch for
source-based routing have been proven to scale to higher values of the switch
radix.

Finally, by comparing area and routing delay of LBDR logic with those
of routing tables, the unmistakable superiority of LBDR has been shown.
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Even considering register and memory macro implementation options for
routing tables (when applicable by the memory compiler), LBDR always
proved the most area-saving solution and already performance-efficient in
the worst case scenario. Above all, the constant area and delay of LBDR
with an increasing number of destinations in the network makes the point
for its better scalability.

The following research will be performed as future work (to get the PhD):

• Support for overlapped regions definition will be incorporated to LBDR.

• Broadcast/multicast support will be analyzed and incorporated to LBDR.

• Fault-tolerance techniques will be analyzed.

• The support for non-minimal paths (enabling the coverage to more
topologies) will be evaluated and incorporated to LBDR.

6.1 Contributions

In this Section there are listed previous papers that are the background of
this work:

• J. Flich, S. Rodrigo, and J. Duato, ’LBDR: Efficient Routing Imple-
mentation in NoCs’, Second Workshop in Interconnection Network Ar-
chitectures: On-Chip, Multi-Chip (INA-OCMC), held in conjunction
with the 3rd International Conference on High-Performance Embedded
Architectures and Compilers (HiPEAC), January, 2008.

• J. Flich, S. Rodrigo, J. Duato, T. Sdring, . G. Solheim, T. Skeie, O.
Lysne,, ’On The Potential of NoC Virtualization for Multicore Chips’,
International Workshop on Multicore Computing Systems (MuCoCoS),
held in conjunction with International Conference on Complex, Intel-
ligent and Software Intensive Systems (CISIS), March, 2008.

• J. Flich, S. Rodrigo, and J. Duato, ’An Efficient Implementation of
Distributed Routing Algorithms for NoCs’, The 2nd IEEE International
Symposium on Networks-on-Chip (NoCs), April, 2008.

• S. Rodrigo, J. Flich, J. Duato and D. Bertozzi, ’Assessing the imple-
mentation trade-offs of logic-based distributed routing for Networks-
on-Chip’, Fourth International Summer School on Advanced Com-
puter Architecture and Compilation for Embedded Systems (ACACES,
HiPEAC), July, 2008.
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• S. Rodrigo, J. Flich and J. Duato, ’Una Implementacion Eficiente de Al-
goritmos de Encaminamiento Distribuido para Redes dentro del Chip’,
XIX Jornadas de Paralelismo, September, 2008.

• J. Flich, S. Rodrigo, J. Duato, T. Sdring, . G. Solheim, T. Skeie, O.
Lysne, ’On The Potential of NoC Virtualization for Multicore Chips’,
published on journal Scalable Computing: Practice and Experience,
Special Issue: Recent Developments in Multi-Core Computing Systems,
Volume 9, Number 3, pages 16517, September, 2008.

• S. Rodrigo, J. Flich and J. Duato, ’Towards an Efficient Implementation
of Distributed Routing in NoCs’, submitted (queued for review) to
IEEE Transactions on HiPEAC.

• S. Rodrigo, S. Medardoni, J. Flich, J. Duato and D. Bertozzi, ’An
Efficient Implementation of Distributed Routing Algorithms for NoCs’,
published as best paper in the special issue on Networks-on-Chip of IET
Computers I& Digital Techniques.
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