
STUDY, ANALYSIS AND NEW

SCHEDULING PROPOSALS IN

PARTITIONED REAL-TIME SYSTEMS.

PhD Thesis by Ana Guasque Ortega

PhD Program in Automation, Robotics and Industrial Computer Science

Directed by Dr. Patricia Balbastre Betoret
and Dr. Alfons Crespo Lorente

December of 2019

Study, analysis and new scheduling proposals in partitioned real-time systems.

Author: Ana Guasque Ortega.
Directors: Dr. Patricia Balbastre Betoret and Dr. Alfons Crespo Lorente.
Tutor: Dr. Patricia Balbastre Betoret.

Text printed in Valencia
First edition, December 2019

Abstract

In our everyday lives, more and more computers are controlling our

environment: mobile phones, industrial processes, driving assistance,

etc. All these systems present strict requirements to ensure proper be-

haviour. In many of these systems, the time at which the action is de-

livered is as important as the logical result of the computation. About

40 years ago, real-time systems began to attract attention in computing

field and nowadays are applied in wide ranging areas as industrial ap-

plications, aerospace, telecommunication applications, consumer elec-

tronics, etc.

Some real-time challenges that must be addressed are determinism and

predictability of the temporal behaviour of the system. In this sense,

to guarantee program execution and system response times are essen-

tial requirements that must be strictly met through appropriate task

scheduling strategies.

Furthermore, multiprocessor architectures are becoming more popu-

lar due to the fact that processing capabilities and computational re-

sources are increasing. A recent study estimates that there is an in-

creasing tendency among multiprocessor architectures to combine dif-

ferent levels of criticality in the same system. In this sense, to provide

isolation between applications is extremely required. Partitioned tech-

nology is able to deal with this purpose.

In addition, energy management is a relevant problem in real-time sys-

tems. Many real-time embedded systems, as wearable devices or mo-

bile robots that require batteries, seek to find techniques that reduce

the energy consumption and, as a consequence, increase the lifetime

of their batteries. Also clear operational, financial, monetary and en-
vironmental gains are reached when minimizing energy consumption.

Faced with all this, this work addresses the problem of schedulability
and contributes to the study of new scheduling techniques in parti-
tioned real-time systems. These techniques provide the minimum time
to feasible schedule tasks sets. Moreover, allocation techniques for
multicore systems whose main objective is to reduce the energy con-
sumption of the overall system are also proposed.

Finally, some of the obtained results are discussed as conclusions and
future works are introduced.

Resumen

En nuestra vida cotidiana, cada vez más ordenadores controlan nuestro
entorno: teléfonos móviles, procesos industriales, asistencia a la con-
ducción, etc. Todos estos sistemas presentan requisitos estrictos para
garantizar un comportamiento adecuado. En muchos de estos sistemas,
cumplir con las restricciones de tiempo es un factor tan importante co-
mo el resultado lógico de los cálculos. Desde hace aproximadamente
40 años, los sistemas en tiempo real son muy atractivos en el cam-
po de la computación y hoy en día se aplican en áreas de gran alcance
como aplicaciones industriales, aplicaciones aeroespaciales, telecomu-
nicaciones, electrónica de consumo, etc.

Algunos retos a abordar en el campo del tiempo real son el determi-
nismo y la predecibilidad del comportamiento temporal del sistema.
En este sentido, garantizar la ejecución del programa y los tiempos
de respuesta del sistema son requisitos esenciales que deben cumplir-
se estrictamente a través de estrategias apropiadas de planificación de
tareas.

Además, las arquitecturas multiprocesador se están volviendo más po-
pulares debido al hecho de que las capacidades de procesamiento y los
recursos computacionales de los sistemas están aumentando. Un estu-
dio reciente estima que existe una tendencia creciente entre las arqui-
tecturas multiprocesador a combinar diferentes niveles de criticidad en
el mismo sistema. En este sentido, proporcionar aislamiento entre las
aplicaciones es extremadamente necesario. La tecnología particionada
es capaz de lidiar con este propósito.

Además, la gestión de la energía es un problema relevante en los siste-
mas en tiempo real. Muchos sistemas empotrados de tiempo real, como

dispositivos portátiles o robots móviles que requieren baterías, buscan
encontrar técnicas que reduzcan el consumo de energía y, como con-
secuencia, aumenten la vida útil de sus baterías. También se obtienen
claros beneficios operativos, financieros, monetarios y ambientales al
minimizar el consumo de energía.

Con todo ello, este trabajo aborda el problema de planificabilidad y
contribuye al estudio de las nuevas técnicas de planificación en siste-
mas particionados de tiempo real. Estas técnicas proporcionan el tiem-
po mínimo para planificar de manera factible conjuntos de tareas. Ade-
más, se proponen técnicas de asignación para sistemas multiprocesador
cuyo objetivo principal es reducir el consumo de energía del sistema
global.

Finalmente, se presentan los resultados obtenidos así como los trabajos
futuros relacionados con este trabajo.

Resum

En la nostra vida quotidiana, cada vegada més ordenadors controlen
el nostre entorn: telèfons mòbils, processos industrials, assistència a
la conducció, etc. Tots aquests sistemes presenten requisits estrictes
per a garantir un comportament adequat. En molts d'aquests sistemes,
complir amb les restriccions de temps és un factor tan important com
el resultat lògic dels càlculs. Des de fa aproximadament 40 anys, els
sistemes en temps real són molt atractius en el camp de la computació i
hui dia s'apliquen en àrees de gran abast com a aplicacions industrials,
aplicacions aeroespacials, telecomunicacions, electrònica de consum,
etc.

Alguns reptes a abordar en el camp del temps real són el determinisme
i la predictibilitat del comportament temporal del sistema. En aquest
sentit, garantir l'execució del programa i els temps de resposta del siste-
ma són requisits essencials que han de complir-se estrictament a través
d'estratègies apropiades de planificació de tasques.

A més, les arquitectures multiprocessador s'estan tornant més populars
a causa del fet que les capacitats de processament i els recursos compu-
tacionals dels sistemes estan augmentant. Un estudi recent estima que
existeix una tendència creixent entre les arquitectures multiprocessa-
dor a combinar diferents nivells de criticitat en el mateix sistema. En
aquest sentit, proporcionar aïllament entre les aplicacions és extrema-
dament necessari. La tecnologia particionada és capaç de bregar amb
aquest propòsit.

A més, la gestió de l'energia és un problema rellevant en els sistemes
en temps real. Molts sistemes embebits de temps real, com a disposi-
tius portàtils o robots mòbils que requereixen bateries, busquen trobar

tècniques que reduïsquen el consum d'energia i, com a conseqüència,
augmenten la vida útil de les seues bateries. També s'obtenen clars
beneficis operatius, financers, monetaris i ambientals en minimitzar el
consum d'energia.

Amb tot això, aquest treball aborda el problema de planificabilitat i
contribueix a l'estudi de les noves tècniques de planificació en siste-
mes particionats de temps real. Aquestes tècniques proporcionen el
temps mínim per a planificar de manera factible conjunts de tasques.
A més, es proposen tècniques d'assignació per a sistemes multipro-
cessador l'objectiu principal del qual és reduir el consum d'energia del
sistema global.

Finalment, es presenten els resultats obtinguts així com els treballs fu-
turs relacionats amb aquest treball.

Acknowledgements

When I look back and remember how this road began, I find myself
suffering in the last year of my degree. There I studied the first sub-
ject on "real time", which at that time I was still not sure about what
that was. There I met Patricia and Alfons, my professors of that sub-
ject and now directors, and I can say that from then on, everything
changed. They gave me the opportunity to do the final project under
their supervision and that was the beginning of the cycle that closes to-
day with this doctoral thesis. So my first thanks are to them, that with
their patience, help and trust placed in me, they have made me grow
as a person and as a researcher. I am immensely grateful for all that I
have achieved thanks to them.

I would also like to thank all the teachers that I have been able to
count on throughout this time, for solving academic questions or for
a pleasant chat time. Thanks, especially, to Pepe and Gabriela. Of
course, thanks to the people who work in the institute, which man-
age all the paperwork and make all administrative formalities easier.
Thanks, Mercedes. Thanks also to Carlos Torras for all his technical
help in the department.

I would not want to forget the people I met during my stay in Kaiser-
slautern: Gerhard, thanks to whom I learned that a long meeting be-
came more bearable with a beer in the kitchen; Markus, for his techni-
cal help and his passion for Andalusia and Cruzcampo beer; to Kristin,
my only girl colleague and thanks to whom I learned so much about
German culture; Gautam, for making me feel integrated into the group
since I arrived; Florian, for being the best office partner I could have;
Rodrigo, for his charisma and understanding; and to Ali and Ankit for

their talks and advices. Thanks to Stephanie for her management and
for making my stay easier all the time. Of course, thanks to all the
friends I made there, especially Astrid and Ana.

During these years, many colleagues have passed through this labora-
tory from which I write these words today. I can say that a large part of
them stopped being colleagues to become friends and I know they will
continue to be in spite of distance and time. Experience has taught me
that, if I do not name them in the acknowledgments section, they will
remind it until my last days so thank you very much for your time of
meals, coffees, talks, beers, farewells and even weddings: from Manu
(You’re already a dad!), Tomás man, Edu chino, Jose Luis chanchullos,
Albert el escritor, Lorena pelazo, Toni Phi Phi Islands, Nico nuevegag,
Iván el trolaso, Andrés paquetitos, Jose Manuel el murciano, Savi and
her contagious joy and enthusiasm to Andreu and our conversations
about life. From all of them I have great memories. Thank you for
being with me in the good times and, above all, in the bad times.

Likewise, I want to express my gratitude to all my friends, whom I
cannot quote one by one because I would leave some. Thank you for
all these years of support and friendship.

Finally, I want to remember my greatest support: my family. Thank
you for all your help and energy, from the first day. To my parents, for
their dedication and encouragement in all the moments we have been
through; to my sister, that although we are like night and day, we will
always be there for an advice and will always have a shoulder to cry
on; and to Paco, for his patience and support during all these years.

Thank you all.

Thanks,

Ana Guasque

December 2019

Agradecimientos

Cuando echo la vista atrás y recuerdo como empezó este camino, me
encuentro a mí misma sufriendo en el último año de carrera. Allí cursé
la primera asignatura sobre "tiempo real", que por aquel entonces to-
davía no tenía muy claro qué era aquello. Ahí conocí a Patricia y
Alfons, mis profesores de la asignatura y ahora directores, y puedo
decir que a partir de entonces, todo cambió. Ellos me dieron la opor-
tunidad de hacer el proyecto final de carrera bajo su supervisión y ese
fue el inicio del ciclo que hoy se cierra con esta tesis doctoral. Así que
mi primer agradecimiento es para ellos, que con su paciencia, ayuda
y confianza depositada en mí, me han hecho crecer como persona y
como investigadora. Les estoy inmensamente agradecida por todo lo
que he conseguido hasta ahora gracias a ellos.

También quisiera dar las gracias a todos los profesores con los que he
podido contar a lo largo de este tiempo, ya sea para una duda a nivel
académico o para un rato de charla agradable. Gracias, en especial,
a Pepe y Gabriela. Por supuesto, gracias a la gente que trabaja en el
instituto, que nos gestiona todos los "papeleos" y nos hace más fáciles
todos los trámites administrativos. Gracias, Mercedes. Gracias tam-
bién a Carlos Torras por toda su ayuda técnica en el departamento.

No quisiera olvidarme de la gente que conocí durante mi estancia en
Kaiserslautern: a Gerhard, gracias al que aprendí que una reunión larga
se hacía más llevadera con una cerveza en la cocina; a Markus, por su
ayuda técnica y su pasión por Andalucía y la cerveza Cruzcampo; a
Kristin, mi única compañera chica y gracias a la que aprendí tanto so-
bre la cultura alemana; a Gautam, por hacer que me sintiera integrada
en el grupo desde que llegué; a Florian, por ser el mejor compañero de

despacho que pude tener; a Rodrigo, por su carisma y comprensión;
y a Ali y Ankit por sus charlas y consejos. Gracias a Stephanie por
su gestión y por facilitarme la estancia durante todo el tiempo. Por
supuesto, gracias a todos los amigos que hice allí, en especial, a Astrid
y Ana.

Durante estos años, han pasado muchos compañeros por este laborato-
rio desde el que hoy escribo estas palabras. Puedo decir que gran parte
de ellos dejaron de ser compañeros para convertirse en amigos y sé que
lo seguirán siendo a pesar de la distancia y del tiempo. La experien-
cia me ha enseñado que, si no los nombro en los agradecimientos, me
lo van a recordar hasta mis últimos días así que muchísimas gracias
por sus ratos de almuerzos, comidas, cafés, charlas, cervezas, despe-
didas e incluso bodas: desde Manu (¡ya eres papá!), Tomás man, Edu
chino, Jose Luis chanchullos, Albert el escritor, Lorena pelazo, Toni
Phi Phi Islands, Nico nuevegag, Iván el trolaso, Andrés paquetitos,
Jose Manuel el murciano, Savi y su alegría y entusiasmo contagiosos
hasta Andreu y nuestras conversaciones sobre la vida. De todos el-
los me llevo buenísimos recuerdos. Gracias por estar conmigo en los
buenos y, sobre todo, en los malos momentos.

Así mismo, quiero expresar mi agradecimiento a todos mis amigos,
a quienes no puedo citar de uno en uno porque me dejaría a alguno.
Gracias por todos estos años de apoyo y amistad.

Para acabar, quiero acordarme de mi mayor apoyo: mi familia. Gracias
por toda vuestra ayuda y energía, desde el primer día. A mis padres,
por su dedicación y ánimo en todos los momentos que hemos pasado;
a mi hermana, que aunque seamos como la noche y el día, siempre
estaremos para un consejo y para ofrecernos un hombro donde apo-
yarnos; y a Paco, por su paciencia y apoyo durante todos estos años.

Gracias a todos.

Muchas gracias,

Ana Guasque

December 2019

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 8

1.3 Organization of this thesis . 10

2 State of the Art 11

2.1 Introduction . 12

2.1.1 Real-time systems . 12

2.2 Scheduling policies in real-time systems 14

2.2.1 Static schedulers . 16

2.2.2 Dynamic schedulers . 17

2.2.2.1 Fixed priority based schedulers 17

2.2.2.2 Dynamic priority based schedulers 19

2.2.3 Multiprocessor scheduling 22

2.3 Partitioned systems . 27

2.4 Hierarchical scheduling . 30

2.5 Mixed criticality systems . 32

2.6 Energy savings policies . 35

2.7 Virtualization . 42

2.8 Certification aspects in critical real-time systems 45

2.9 Conclusions . 49

xiii

CONTENTS

3 Generation of offline plans in real-time partitioned systems. 51
3.1 Introduction and objectives . 53

3.2 Model and notation . 55

3.2.1 Supply bound function 56

3.3 Schedulable CPU supply functions 59

3.3.1 Schedulable sbfτ (t) based on G(t) 59

3.3.1.1 Example of gsbfτ (t) use 65

3.3.2 Schedulable sbfτ (t) based on dbfτ (t) 66

3.3.2.1 Example of msbfτ (t) use 74

3.4 Schedulable areas . 77

3.4.1 ZONE 1: CPU supply R greater than gsbfτ (t) and, conse-

quently, msbfτ (t) . 78

3.4.2 ZONE 2: CPU supply R between msbfτ (t) and gsbfτ (t) . . 79

3.4.3 ZONE 3: CPU supply R less than msbfτ (t) 81

3.5 Schedulability analysis . 84

3.6 Experimental results . 90

3.6.1 Utilities of msbfτ (t) applied to partitioned systems 93

3.6.2 Comparison of the minimum CPU supply function with

other similar methods . 95

3.7 Conclusions . 98

4 Energy saving techniques in partitioned systems 99
4.1 Introduction and objectives . 101

4.2 Assumptions and model . 102

4.2.1 Vestal model and MCS state of the art 102

4.2.2 Task model proposed . 105

4.2.3 Power model . 108

4.3 Energy Efficient Partition Allocator 109

4.3.1 Energy efficient partition allocation in non MCS 109

4.3.1.1 Energy efficient partition allocation algorithm . 109

4.3.1.2 Example . 113

4.3.2 Energy efficient partition allocation in MCS 114

4.3.2.1 Example . 116

xiv

CONTENTS

4.4 Simulation process . 119

4.4.1 Comparison of allocation methods in non MCS 120

4.4.2 Energy saving and performance loss in MCS 125

4.5 Practical application: Xoncrete 129

4.5.1 Introduction . 129

4.5.2 Description of the previous state 129

4.5.3 Modifications in the tool 131

4.5.4 Use case . 132

4.6 Theoretical energy characterization 144

4.6.1 Relation between time and frequency 146

4.6.1.1 Linear approximation 147

4.6.1.2 Non-linear approximation 147

4.6.2 Energy-Time-Frequency relation 148

4.6.3 Optimal energy consumption through mathematical analysis 150

4.6.3.1 Linear relation. 150

4.6.3.2 Non-linear relation. 154

4.6.3.3 Comparison between linear and non-linear ap-

proximation. 156

4.7 Conclusions . 157

5 Conclusions 159
5.1 Developments and Achievements 161

5.2 Future Work . 164

5.3 Publications and Projects . 166

5.3.1 Journals . 166

5.3.2 International Conferences 167

5.3.3 National Conferences . 168

5.3.4 Projects, Scholarships and Research Stay 169

Appendices 171
A Supplementary calculation . 173

List of Figures 177

xv

CONTENTS

List of Tables 181

xvi

CHAPTER

1
Introduction

Lifestyle changes day by day and, consequently, new technological require-
ments emerge to adapt to human exigencies. In recent years, the importance of
real-time embedded systems is increasing sharply in robotic industry, air traffic
control systems, process control systems, avionics, etc.

Main characteristic that distinguish real-time systems from others is time con-
straint. In these systems, not only the system response is important but also meeting
deadlines. Due to the importance of temporal requirements, this work aims to pro-
vide an study and analysis of scheduling policies in this kind of systems.

1

1. INTRODUCTION

1.1 Motivation
Embedded systems appear in our everyday life: personal home affairs, process

automatization in industries, automotive sector, entertainment, avionics, etc. In the

major part of these systems, real-time features are indispensable. The first real-

time operative system appeared more than 30 years ago and, since then, they have

become essential in human affairs.

Real-time systems require a valid response within finit temporal constraints. In

case of these requirements are not fullfilled, undesired consequences will be caused

in the system. Attending to the level of temporal exigency, real-time systems are di-

vided into hard real-time systems or soft real-time systems. On the one hand, hard

real-time systems are those in which missing any temporal constraint may supposse

catastrophic results. On the other hand, missing deadlines in a soft real-time system

may produce damage or poor global operation but no grave damages. As systems

have always had soft and hard components, achieving isolation between them is

a constant over time. Thanks to the isolation between components, the systems

reduce their complexity, avoid error propagations and reduce development and cer-

tification costs. Distributed systems were, and continue to be, an architecture that

allow these requirements to be reached. Since 2007 to the present, an increasingly

trend in the design of real-time systems is to integrate components with differ-

ent levels of criticality (or relevance) in a hardware platform. They are known as

mixed criticality systems. Requirements as cost, space, power consumption, etc.

make most of the complex embedded systems are envolved into mixed criticality

systems. The main fields in which mixed criticality systems are involved are avion-

ics, space and automotive. For example, in avionics, to ensure the aircraft’s control,

flight software control must execute accurately with strong deadlines.

At the same time, as modern systems have increased their computation capac-

ity demands, hardware industry is migrating from single cores to multicore ar-

chitectures. Multi-core processors emerged from the necessity of enhancing the

computation capacity in an increasingly compact hardware. Aditionally, they cope

with the necessity of reducing power consumption and heat dissipation without de-

creasing the system operating frequency and therefore jeopardizing performance.

2

1.1 Motivation

However, these architectures have introduced many challenges in maximizing ap-

plication performance and best using the available processing capacity.

New processors not only improve functionalities and enhance possibilities for

embedded applications, but increase their complexity. Sharing resources between

applications may result in difficulties and interferences that might hinder the logical

design and the performance of the system execution. From this point, the protection

between applications is needed. This gave rise to partitioned systems, developed

to address security and safety problems. Spatial and temporal isolation properties

of the partitioned architectures are very relevant aspects in partitioned systems.

Spacial isolation implies that each application can only access to its independent

memory addresses. In monocore, temporal isolation means only one application at

a point of time has access to the system resources, whereas is not possible to an

application run when another application is running. It requires the use of efficient

schedulability techniques.

Figure 1.1 shows the evolution from embedded systems (a), with lots of tasks

and functionalities, which are hard to debug and maintain, to distributed systems

(b), which reduce the complexity and provide isolation between applications. With

the emergence of mixed criticality systems, partitioned architectures appeared (c),

which also provide isolation between applications in a virtualized hardware.

Schedulability analysis in real-time systems is a extended research area, spe-

cially in single core systems. However, increasing the number of cores per sys-

tem also increases the complexity of the system in terms of schedulability. Since

the first commercial dual core processor chip, the POWER4, developed by IBM

in 2001, the interest in real-time multiprocessor scheduling has increased signifi-

cantly. However, there are many open issues and topics that have to be updated:

scheduling problem, core allocation, energy savings, etc.

These topics have been present in the lines of research in the group of industrial

computer science and real-time systems in Universitat Politècnica de València, in

which I take an active part. A closer look into the group trajectory through inter-

national, national and autonomous projects, from 2002 to the present day, shows

that the first European project with more relevance was OCERA [?], in which this

group worked as a coordinator.

3

1. INTRODUCTION

(a) Embedded system (b) Distributed system

(c) Partitioned system

Figure 1.1: From embedded to partitioned systems

4

1.1 Motivation

The main objective of project OCERA, Open Components for Embedded Real-

time Applications was the design and implementation of a library of free software

components for the design of embedded real-time systems.The components were

designed to cover the widest application range including fully critical systems and

systems with different critically degrees.

Next project emerged in 2006 and was called FRESCOR [?], Framework for

Real-time Embedded Systems based on COntRacts. The main objective of this

project was to develop the technology and infrastructure required to effectively use

the most advanced techniques in real-time applications with flexible scheduling

requirements. This methodology was well suited to address very dynamic systems,

such as those based on reconfigurable architectures.

The virtualization technology around the hypervisor was initially developed in

OCERA and improved in FRESCOR. In these projects, x86 architecture was the

used platform. In Multi-cores Partitioning for Trusted Embedded Systems (Mul-

tiPARTES) [?] the virtualization techniques were extended to multicore systems

for x86 and sparcV8 architectures, composing a heterogeneous system. The main

challenge of this project (2011-2014) was supporting mixed criticality embedded

systems on multicore open source virtualized platforms in such a way that the de-

velopment, validation and certification efforts can be lower than the correspond-

ing effort required on independent hardware platforms when using an appropri-

ate methodology. The starting point for the virtualization support is XtratuM, a

cost-effective open source hypervisor developed specifically for critical embedded

systems by our group.

At the same time, in 2012, the project High-Integrity Partitioned Embedded

Systems (Hi-Partes) [?] emerged. Its objective was to improve the methods and

technology of high-integrity embedded systems based on virtualization.

In the project Distributed REal-Time Architecture for Mixed Criticality Sys-

tems (DREAMS) [?], 2013-2017, the goal was to develop a cross-domain archi-

tecture and design tools for networked complex systems, where application subsys-

tems of different criticality are supported. DREAMS will deliver architectural con-

cepts, meta-models, virtualization technologies, model-driven development meth-

ods, tools, adaptation strategies and validation, verification and certification meth-

ods for the seamless integration of mixed-criticality.

5

1. INTRODUCTION

In 2016, a project that took part in H2020 Programme was SAFEPOWER [?
]. Its main objective was to enable the development of mixed-criticality systems

with low power, energy and temperature in combination with safety, real-time and

security support by a reference architecture orchestrating different local power-

management techniques. SAFEPOWER project is producing a reference architec-

ture and implementing the platforms, complemented by analysis, simulation and

verification tools, to deliver power savings of up to 50% on the computing systems

embedded in such safety-critical systems.

The last project related to this field was Sistemas Ciber-fisicos de Criticidad

Mixta sobre Plataformas Multinucleo, M2C2 [?], 2015-2017, whose objective

was to contribute through methods and techniques to the development of cyber-

physical systems, applied to multicore platforms, allowing mixed-criticality appli-

cations. This approach is also based in virtualization, in order to achieve temporal

and spatial isolation and guarantee fault isolation.

This thesis is framed within the last two projects, in the field related to parti-

tioned multicore real-time systems, specially in those working packages related to

scheduling techniques and methods.

In addition to schedulability, energy management is a problem to be addressed

in many real-time embedded systems as wearable devices, mobile robots, etc. Re-

ducing the energy consumption involves increasing lifetime’s batteries and this has

a significant positive impact in the comfort and quality of human life.

To deal with this problem, two wide techniques are used: Dynamic Voltage

and Frequency Scaling (DVFS) and Dynamic Power Management (DPM). DVFS

techniques consists of decreasing the frequency and the voltage of the processor in

order to reduce the overall energy consumption, without compromising deadlines.

DPM approaches play on changing between active and inactive processor states,

also guaranteeing deadlines of real-time tasks.

Despite there is a large number or proposed approaches regarding to energy

management in real-time systems, most of them are focused on previous techniques

or disregard real-time constraints.

Both schedulability and energy management in real-time systems have still

many open questions and research challenges. This work presents a contribution in

this field by exploring new approaches for partitioned real-time systems.

6

1.1 Motivation

Once the context of this work has been defined, Figure 1.2 summarizes the areas
related to this field that are subject to our research. Moreover, the chapters which
concretely contribute to each of these areas are indicated.

Figure 1.2: Taxonomy of real-time scheduling.

Real time scheduling can be roughly distinguished between partitioned sys-
tems and non-partitioned systems. Generally speaking, a partitioned system is one
in which there is no migration of tasks between cores, in contrast to global sys-
tems in which task jobs can migrate between processors. However, in our case,
the term “partitioned” refers to partitioned software architectures used within In-
tegrated Modular Avionics, for example, in space applications, that are based on
the ARINC-653 standard. Thanks to partitioned architectures, a strong isolation
between processes is achieved.

Following the interests of the group of industrial computer science and real-
time systems, partitioned systems and, specially, those with hard and mixed criti-
cality real-time requirements are considered. As aerospace is one of our main re-
search fields, our research deals with hard or mixed criticality real-time problems.
Systems in which all tasks are soft real-time tasks as, for example, multimedia ap-
plications, are not considered in this thesis due to the fact that the problems we
study present more stringent and complex requirements.

Chapter 3 contains our contributions about scheduling algorithms in single core
real-time hard systems. Chapter 4 includes energy-aware considerations for both,
hard and mixed criticality systems, and for single or multicore platforms.

7

1. INTRODUCTION

1.2 Objectives
The main objective of the present work is to contribute to the development of

scheduling techniques in partitioned and hierarchical real-time systems. After a

comprehensive study of literature regarding to allocation and scheduling techniques

in real-time systems, a number of issues remains to be tackled in partitioned archi-

tectures.

According to this, this work follows the next line of research, starting with

fundamental scheduling concepts in real-time systems and ending with new optimal

and feasible proposals. For this purpose, the following objectives are proposed:

• Review and analysis of the state of the art and key concepts for multi-core

scheduling and allocation policies in real-time systems, specially in parti-

tioned and hierarchical architectures. The extension of the study to energy-

aware scheduling algorithms in these systems is also contemplated.

• Comprehensive analysis of the previous work of this contribution by present-

ing a shedulability analysis in the case of two-level hierarchical systems.

• To achieve the remaining challenge for hierarchical systems with unknown

scheduling policies in the global level.

• Determination of schedulable functions that provide the minimum required

time in a partitioned system in order to ensure the feasibility of the overall

system.

• Development of allocation techniques on the basis of the results obtained

previously in partitioned multi-core systems.

• To approach energy savings techniques in multi-core partitioned systems.

Calculation of the optimum energy consumption through power, time-frequency

and energy-time-frequency mathematical models.

• Evaluation of previous approaches by developing different simulators: heuris-

tic algorithm and constraint programming methodologies. Comparison of the

results.

8

1.2 Objectives

• Validation of the approaches by applying theses algorithms in an experimen-
tal scenario.

9

1. INTRODUCTION

1.3 Organization of this thesis
Proposed developments for achieving these objectives are addressed along this
work. First, in Chapter 2 a detailed review of the main concepts and works related
with scheduling policies in partitioned real-time systems are introduced. It includes
those related to mixed criticality systems, offline techniques, allocation and energy
management. Next, in Chapter 3, new scheduling techniques are proposed. This
chapter also includes the evaluation of these algorithms and their validation. Then,
in Chapter 4 energy savings techniques in multicore partitioned systems are intro-
duced. Furthermore, an evaluation by means of the implementation of two simula-
tors is presented: one based on heuristic algorithms and other based on a constraint
programming framework. Finally, in Chapter 5, the obtained results are discussed
as conclusions leading to the establishment of the future work is introduced.

10

CHAPTER

2
State of the Art

Nowadays, a great number of researches that aims to contribute to the develop-
ment of scheduling techniques in real-time systems are found. This chapter reviews
the key results in this field from its origins in the fifties to the present day.

11

2. STATE OF THE ART

2.1 Introduction

2.1.1 Real-time systems

A real-time system is “any system in which the time at which output is produced is

significant. This is usually because the input corresponds to some movement in the

physical world and the output has to relate to that some movement. The lag from

input time to output time must be sufficiently small for acceptable timeliness.” [?
] This is the definition provided by Oxford dictionary of computing, reviewed by a

team of computer specialists. There are many other definitions of real-time systems

([?],[?] [?],[?]) but they all agree in the importance of temporal fulfilment in

order to avoid an undesirable state of the system.

Predictability is an essential characteristic of a real-time system. Velocity and

efficiency are not sufficient conditions for a system to be considered as a real-time

system. An analysis of the response time of the system is required.

Whereas in real life events happen at the same time, computers work sequen-

tially. Some of these events are unpredictable so the conflicts with sequential exe-

cution on the controller appear. Also in these situations the system has to produce

the results logically and in the correct times.

Many real-time systems are control systems: avionics, process control, robotics,

monitoring services, etc.

Real-time systems are classified into two distinct categories, depending on the

consequences of non-compliance of temporal requirements: hard real-time systems

and soft real-time systems[?].

• Hard or critical real-time systems are those in which temporal constraints

must be met. Otherwise, their consequences could have a dramatic impact

on human life, on the environment, on the system, etc. These systems have,

at least, one hard deadline. Some examples of these kind of systems are

aeronautics, satellites control, critical operations in robots, autopilot systems,

etc.

• Soft real-time systems are those in which occasional deadline misses pro-

duce a degradation of their quality of service, but do not failures. Examples

12

2.1 Introduction

of soft real-time systems: audio and video delivery software for entertain-
ment, where failures are undesirable but not catastrophic. Data acquisition,
production processes, etc. are other example of soft real-time systems.

The main differences between these systems are stated in Table 2.1.

Characteristic Hard real-time Soft real-time
Response Time Hard-required Soft-required

Peak-load performance Predictable Degraded
Control of pace Environment Computer

Safety Often critical Non-critical
Size of data files Often critical Non-critical

Redundancy type Active Checkpoint-recovery
Data integrity Short-term Long-term

Error detection Autonomous User assisted

Table 2.1: Major differences between hard and soft real-time systems

Throughout this chapter, different considerations about real-time systems are
being explained. First, general scheduling techniques in real-time systems are con-
sidered. Then, some particular new trends as mixed criticality real-time systems,
hierarchical systems or partitioned systems are introduced.

13

2. STATE OF THE ART

2.2 Scheduling policies in real-time systems
As stated before, real-time systems are characterised by the importance of meeting

temporal requirements of tasks. Many papers and surveys have been published

about scheduling in real-time systems [?], [?], [?].

A real-time process or application can be divided in a set of tasks. Each task can

be executed on a regular basis (i.e. periodic task) or randomly (i.e. non-periodic

task). Periodic tasks are composed by activations Ai every specified time, known

as period (Ti). Non-periodic tasks are released as a result of an external event. If

there is a minimum inter-arrival time between activations of a non-periodic task, it

is said to be sporadic task. Otherwise, it is considered aperiodic.

Each activation is defined by its temporal requirements. Usual parameters of an

activation i are:

• Release time (ri) is the earliest time when an activation is ready for start the

execution.

• Computation time (Ci) is the time spent executing its actions. Usually, in

hard or soft real-time systems, worst case execution time (WCET) is consid-

ered. This term is necessary to perform the schedulability analysis, to ensure

that deadlines are met and to evaluate the resource needs under all conditions

in real-time systems. The WCET accuracy is a safety-critical problem and

its analysis has been studied in lots of works [?], [?] and international

workshops1.

• Deadline (Di) is the time by which the execution of the activation is required

to complete. If the activation ends before completing the deadline, the acti-

vation will be schedulable. Therefore, the issue of meeting deadlines is one

of the most important aspects in the real-time system scheduling. From now

on, Di is the deadline or relative deadline, in contrast with absolute deadline,

which is k · Ti +Di for the activation Ak in a periodic task i.

1International workshop in Worst-Case Execution Time analysis, last edition:
https://wcet2018.wp.imt.fr/

14

2.2 Scheduling policies in real-time systems

• Response time (rti) is the time between an activation is released and the end

of its execution.

• Offset (φi) is time between the start time and the time when first activation

starts.

Figure 2.1: Temporal parameters of a periodic task.

Figure 2.1 shows temporal parameters of a task.

The use of effective and accurate schedulability analysis techniques is required

in order to accomplish temporal requirements in a real-time system, while guar-

anteeing system performance. In these systems, the order of execution of tasks is

relevant and the statement of an order that ensure the feasibility of the task set is

called schedulability. A schedulability process takes place in two phases:

• Selection of the scheduling algorithm and analysis of the schedulability of

the task set with this algorithm.

• Generation of the scheduling to ensure that temporal requirements are satis-

fied.

Terms like “feasibility" and “schedulability" are now defined in order to clarify

them [?]: A task set (or application) is said to be feasible with respect to a given

system if there exists some scheduling algorithm that can schedule all possible

sequences of jobs that may be generated by the task set on that system without

missing any deadlines. A scheduling algorithm is said to be optimal with respect

15

2. STATE OF THE ART

to a system and a task model if it can schedule all of the task sets that comply with

the task model and are feasible on the system.

A task is schedulable according to a given scheduling algorithm if its worst-case

response time under that scheduling algorithm is less than or equal to its deadline.

Similarly, a task set is referred to as schedulable according to a given scheduling

algorithm if all of its tasks are schedulable. A scheduling algorithm is referred to

as optimal if it can schedule all of the task sets that can be scheduled by any other

algorithm, that is, all of the feasible task sets.

Selecting the scheduling policy for a real-time system depends on factors as

number of processors, precedence between tasks, etc. A classification of schedulers

is depicted in Figure 2.2.

Figure 2.2: Real-time schedulers classification.

Roughly, scheduling real-time algorithms are classified in static or dynamic.

2.2.1 Static schedulers

Static scheduling, on one hand, requires a priori knowledge of the characteristics

of the tasks. The static scheduler generates offline a sequence of tasks executions,

called plan, and it is cyclically repeated. This scheme is known as cyclic execu-

tive [?], [?]. This static plan is saved in a table and indicates the moment of time

16

2.2 Scheduling policies in real-time systems

in which each task must be executed, in such a way that the scheduler should only

follow the indications of the table. The verification of the schedulability using this

strategy must be carried out during the construction of the plan. Static schedul-

ing presents advantages as low cost in run time but also disadvantages as lack of

flexibility and good knowledge of the task set.

2.2.2 Dynamic schedulers

Dynamic scheduling, on the other hand, determines the tasks execution order at

runtime, considering the characteristics of the tasks and the state of the system. Dy-

namic schedulers are more flexible and achieve higher processor utilization values

than static schedulers. However, the overhead attributable to dynamic scheduling is

greater. Among dynamic schedulers, priority based schedulers exist. They ensure

proper timing behaviour and predictability of the system. Priority is the criterion to

select a task between those ready to be executed. Then, CPU is in charge to execute

the runnable task with higher priority in the system.

An important issue in dynamic scheduling is the decision taken by the scheduler

regarding to the state and priority of the tasks. A task will be denoted as preemptive

if it can be interrupted by other tasks and restarted later. A non-preemptive task is

executed until is completed, without interruption. If any of the tasks of the system

is preemptive, the scheduler will also be preemptive.

Priority based schedulers are subdivided into fixed and dynamic priority sched-

ulers.

2.2.2.1 Fixed priority based schedulers

In this scheme, the scheduler assigns an initial priority to the tasks and it remains

constant during all the execution. In this scheme, changes on the task set are im-

mediately taken into account by the scheduler. Other advantages are that sporadic

tasks are easily accommodated and the behaviour is deterministic on overloads,

being the lower priority tasks the most affected. On the contrary, a kernel that

supports fixed priorities is required.

Among fixed priority scheduling (FPS), Rate Monotonic and Deadline Mono-

tonic are the most well-known approaches. Rate Monotonic Scheduling (RMS)

17

2. STATE OF THE ART

assigns highest priority to the task with shortest period. This seminal algorithm,
developed by Liu and Layland [?], assumes preemptive independent tasks with
deadlines equal to periods. In some cases, tasks may have large periods but require
a short response time. In these situations, a deadline shorter than the period is as-
signed and the scheduling criteria is the deadline. Deadline Monotonic Scheduling
(DMS) assigns highest priority to the task with shortest deadline. As the schedule
is built online, it is fundamental to know a priori if a given task set is schedulable.
Two schedulability tests are provided: based on the CPU utilization rate and based
on the response time.

• Based on CPU utilization rate.

Liu and Layland [?] presented the first sufficient test:

Theorem 2.2.1. Any set of n periodic tasks is RM schedulable if the CPU
utilization factor, U, is no greater than n(21/n − 1).

The feasibility analysis of the RMS algorithm can also be performed using a
different approach, called the Hyperbolic Bound, by Bini et al. [?]. It has
the same complexity as the original Liu and Layland upper bound but it is
less pessimistic, so allowing to accept task sets that would be rejected using
the original approach.

Theorem 2.2.2. Any set of n periodic tasks is schedulable with the RMS
algorithm if

∏n
i=1(Ui + 1) ≤ 2, being Ui the processor utilization factor per

task.

The previous theorem also provides a sufficient condition for testing the
schedulability of a task set under the RMS algorithm.

In general, the deadline-monotonic scheme has not been employed because
of the lack of adequate schedulability tests. RMS schedulability tests could
be used by reducing the period of individual processes until equal to the
deadline. Obviously such tests would not be optimal as the workload on the
processor would be over-estimated [?].

Tests based on response time provide precise results about the schedulability
of task sets, both for RMS and for DMS.

18

2.2 Scheduling policies in real-time systems

• Based on response time.

For arbitrary fixed priorities, including RMS, DMS, etc., the response time

analysis allow to obtain an exact test (i.e., necessary and sufficient condition)

in the following conditions: preemption, synchronous release, independent

tasks and deadlines shorter than periods.

This schedulability test is based on calculating the worst case response time

(WCRT) [?],[?], i.e., the maximum time interval between arrival and finish

instants for each task. If a task is activated at the same time as all other high-

priority tasks, the WCRT will happen in the first activation of the task [?].

This is known as critical instant. Then, if, for each task, the WCRT is less

than its deadline, the task set will be schedulable. The result of this test is not

only whether the system is schedulable or not. It also provides the WCRT

of each task and then, which tasks are involved in deadline misses, if in fact

exist.

The technique to calculate the WCRT is presented in equation 2.1:

WCRTi = Ci +
∑
∀j∈hp(i)

⌈
WCRTi
Tj

⌉
Cj (2.1)

The second term of the previous equation represents the interference suffered

in a worst-case activation by all the j tasks with higher priority than the stud-

ied i task. Equation 2.1 is solved by iterative methods and stop conditions are

the violation of a deadline (WCRTi ≥ Di for any task i) or the convergence

(WCRT (k + 1) = WCRT (k)).

In fixed priority based schedulers, as priorities do not change over time, the

worst case response time is always held in the first activation, in contrast with what

happens in dynamic priority based schedulers.

2.2.2.2 Dynamic priority based schedulers

In this scheme, the scheduler does not assign a initial priority to the tasks but at

runtime. EDF (Earliest Deadline First) and LLF (Least Laxity First) are examples

of optimal dynamic scheduling with dynamic priority. Dynamic priority algorithms

19

2. STATE OF THE ART

can be divided into two categories, depending on how priorities change while jobs

are active. On the one hand, in job-level fixed-priority algorithms, jobs cannot

change priorities. On the other hand, in job-level dynamic-priority algorithms, jobs

may change priority during execution. For example, LLF [?] [?] algorithm is

a job-level dynamic-priority algorithm. LLF assigns higher priority to jobs with

smaller laxity, being laxity the time difference between the time until deadline and

the remaining execution time. Since the laxity of a job changes over the time, the

job priorities change dynamically.

However, EDF [?] is a job-level fixed-priority algorithm and is the most used

algorithm. EDF assigns the highest priority to the task with the earliest absolute

deadline. The EDF algorithm has been proven by Dertouzos [?] to be optimal

among all scheduling algorithms on a uniprocessor, in the sense that if a real-time

task set cannot be scheduled by EDF, then this task set cannot be scheduled by

any algorithm. Due to the extensive use of EDF policy as dynamic priority based

scheduler, EDF schedulability tests are now presented.

For tasks with deadlines equal to periods, Liu and Layland [?] presented a

necessary and sufficient schedulability condition for EDF systems that satisfies the

equation 2.2:
n∑
i=1

Ci
Ti
≤ 1 (2.2)

In these schedulers, the sufficient condition for schedulability is that the total pro-

cessor utilization is less than 1. EDF requires more complex run-time system with

higher overhead. Moreover, this test only ensures the schedulability (or non) of the

system without offering any other information about tasks (for example, response

times). EDF is unpredictable: domino effect may occur. It means that if a tasks

misses its deadline, a large number of tasks could follow it.

For tasks with Di ≤ Ti, schedulability analysis is more complicated and some

definitions must be introduced:

Definition 2.2.1. [?] The function Gτ (t) represents the computation time de-
manded from initial time to time t for a set of tasks τ . It is calculated as:

Gτ (t) =
n∑
i=1

Ci

⌈
t

Ti

⌉
(2.3)

20

2.2 Scheduling policies in real-time systems

It is a positive and non-decreasing function that only increases when a task is
released, that is, it grows as many units as time computation is required by the task
that has been activated.

If tasks are simultaneously activated at time t=0 (i.e. φi=0 for all the tasks so

the task set is synchronous), then:

Definition 2.2.2. [?] [?]The maximum cumulative execution time requested by
jobs of a set of tasks τ whose absolute deadlines are less than equal to t is:

dbfτ (t) =
n∑
i=1

Ci

⌊
t+ Ti −Di

Ti

⌋
(2.4)

The demand bound function is a positive and increasing function that only in-
creases in the so-called scheduling points i.e., when a deadline arrives.

Once these functions have been introduced, let us present different schedulabil-

ity tests for EDF scheduling:

In 1980, Leung and Merrill [?] noted that a set of periodic tasks is schedulable

if and only if all absolute deadlines in the interval [0,max {si}+ 2H] are met,

where si is the start time of task τi and H is the least common multiple of the task

periods. In 1990, Baruah et al. [?] [?] extended this condition for sporadic task

systems and they showed that the task set is schedulable if and only if dbfτ (t) ≤
t ∀t > 0.

Studying the demand bound function over all time is a tedious process. For this

reason, next schedulability tests consisted on the reduction of the time interval in

which the previous schedulability condition must be satisfied.

Theorem 2.2.3. [?] [?] [?] A general task set is schedulable if and only if
U ≤ 1 and

dbfτ (t) ≤ t, ∀t ≤ La

, where La is defined as follows:

La = max

{
D1, · · · , Dn, max

1≤i≤n
{Ti −Di}

U

1− U

}
(2.5)

21

2. STATE OF THE ART

In 1996, Ripoll et all [?] assume a different upper bound La2 for the schedu-
lability test:

La2 =

∑n
i=1 (Ti −Di)Ui

1− U
(2.6)

, being La2 ≤ La.
In 1996, Spuri [?] and Ripoll et al. [?] derived another upper bound for

the time interval which guarantees the schedulability of the task set. This interval
is called the synchronous busy period. It is a processor busy period in which all
tasks are released simultaneously at the beginning of the processor busy period and
ends by the first processor idle period. Its length is the maximum of any possible
busy period in any schedule. The length of this interval is calculated by an iterative
process [?] [?] Then, the schedulability condition is defined as:

Theorem 2.2.4. [?] A general task set is schedulable if and only if U ≤ 1 and

dbfτ (t) ≤ t, ∀t ≤ Lb

, where Lb is the length of the synchronous busy period of the task set.

As there is no relation between previous upper bounds, the time interval that has
to be studied in order to ensure the schedulability of the task set is the minimum
between La and Lb.

As presented before, research into uniprocessor real-time scheduling starts in
the late 1960s. From then, different surveys as [?] and books as [?], [?]
reviewing previous and other results have been presented. It might be considered
that the uniprocessor real-time scheduling field has been studied in depth. However,
there is still a big scope for future research in multiprocessor real-time scheduling,
because it is a much more difficult problem than uniprocessor scheduling. The
parallel execution on more than one core at a time has several implications on
the software design and implementation, as scheduling and WCET calculus, core
allocation and task migration, etc.

2.2.3 Multiprocessor scheduling
From 1960s, with the emergence of first multiprocessor scheduling theories [?] [?
], until 2001, with the release of the first dual-core processor, POWER4, a di-
chotomy between task migration and fixed allocation of task to processors existed.

22

2.2 Scheduling policies in real-time systems

From 2001, advantages of increasing the number of processor cores where plausi-

ble and convincing in real-time field.

In a multiprocessor system, schedulability tests are based on the processor load

of the overall system. The processor load in a time interval t depends on the demand

bound function dbfτ (t) (Equation 2.4) as follows [?]:

load(τ) = max
∀t

(
dbfτ (t)

t

)
(2.7)

And then, the necessary condition for a τ task set to be schedulable in a system

with m processors is [?]:

load(τ) ≤ m (2.8)

There are some considerations to be taken into account regarding to multipro-

cessor scheduling algorithms: priority and allocation problems [?].

Priority problem does not involve any completely new proposal with respect to

scheduling techniques in uniprocessor systems, stated previously. Priorities could

be fixed before the execution (fixed priority schedulers) or during execution time

(dynamic priority schedulers).

Allocation is a new problem that appears with multiprocessors systems. It

comes to answer the question: which processor will execute each task? This de-

cision could be taken offline before the execution or online, at execution time.

Allocation problem contemplates migration levels allowed in cores. Migration is

defined as the fact of changing the task allocation between cores and, depending on

the depth of the migration, is classified into:

• No migration. Once tasks are allocated into cores, they are executed always

on that core. In these situations, the system is defined as fully partitioned

system.

• Task-level migration. Each job of a single task could be executed in a differ-

ent processor but, once it is released, it remains in that core until the end of

its activation. This system is said to be semi partitioned system.

• Job-level migration. Task jobs can migrate and be executed in different pro-

cessors. This system is referred to as global.

23

2. STATE OF THE ART

As partitioning is one of the main considerations of this work, let us develop

in-depth this concept.

As stated before, fully partitioned systems are those in which migration is not

allowed between cores. In these systems, once a task allocation to cores has been

achieved, is possible to use uniprocessor scheduling algorithms in most of the mul-

tiprocessor systems.

In comparison to global scheduling, partitioned systems present some advan-

tages that are defined as follows:

• There is no cost associated to tasks migration between cores since it is not

allowed.

• As each processor uses a separate run-queue, its manipulation is simpler than

a single run-queue.

• If a task exceeds its worst-case computation time, it will affect only to other

tasks in the same processor and not to other processors. This fact makes

possible the isolation previously stated.

The main disadvantage of the partitioning approach to multiprocessor schedul-

ing is that the task allocation problem is analogous to the bin packing problem and

is known to be NP-Hard [?].

(Generally speaking, partitioned systems refer to those systems in which mi-

gration is not allowed in an allocation problem. This work uses the concept of par-

titioned system referring to systems that encapsulate applications into partitions.

From now on, partitioned systems concept will be used to refer to the latter.)

The classical bin packing problem is: given as a set of items with different size

or weight, allocate them into as few unit sized bins as possible. In the context of

this work, the items that have to be allocated correspond to partitions or tasks, the

size or weight is the utilization of the task or partition and, finally, the bins are

the cores where the items have to be allocated. Thus, bin packing determines the

number of cores that will be used and on which processor each item is executed.

A number of heuristics are available for solving the bin packing problem. Some

of the most well-known are:

24

2.2 Scheduling policies in real-time systems

• First Fit (FF). Each item is allocated into the first bin that it fits into, without

exceeding the maximum capacity of the bin. If there is no one available, a

new bin will opened.

• Best Fit (BF). This algorithm allocates each item into the most full bin where

it fits, and, as FF, possibly opening a new bin if the item does not fit into any

currently open bin.

The first upper bound on FF and BF shown by Ullman in 1971 [?], which

proved that FF, BF ≤ 1.7·OPT +3, being FF or BF the number of cores used

by First Fit or Best Fit respectively and OPT, the optimum solution. The

absolute approximation of FF and BF was bounded by Simchi-Levy [?] and

improved recently for FF only [?],[?].

• Worst Fit (WF). As opposed to BF, WF allocates each item into the bin that

leaves more remaining capacity, i.e. the emptiest bin. It will also open a new

bin if no one is available to allocate the item. In this case, the absolute bound

is WF ≤ 1.7·OPT [?]

In addition to these heuristics, there are other bin packing algorithms used to

solve the allocation problem. Coffman et al. book [?] present a survey and

classification of these algorithms.

Previous algorithms are very sensitive to the order of the items. For example,

if items with small weight are allocated first, accommodating large items in the

gaps they leave is a difficult work. For this reason, the first step in a bin packing

algorithm consists of selecting which of the available items has to be allocated first

through any of the previous algorithms. There are several methods to order the

items before allocating them into cores. The most used technique consists of order-

ing the items according to their weight, i.e., the utilization. In this sense, random,

decreasing and increasing utilization are the main variants. Decreasing utilization

method (DU) puts the items in decreasing order by utilization. Increasing utiliza-

tion method (IU) puts the items in increasing order by utilization. Random (R)

orders the items arbitrarily.

After describing scheduling techniques in monoprocessor and multiprocessor

systems, new trends used to meet requirements on time, power consumption, etc.,

25

2. STATE OF THE ART

are introduced. In next sections, several systems that moved away from the classical
concept of real-time systems are included. Some of them are partitioned systems,
hierarchical systems or mixed-criticality systems.

26

2.3 Partitioned systems

2.3 Partitioned systems
In the last years, modern computing systems have increased their processing capa-

bilities and computational resources. In this way, they are able to execute several

real-time applications in a mono-processor, sharing memory and other resources.

From this point, the protection between applications in terms of execution time

and memory space is needed. This gave rise to partitioned systems, developed

to address security and safety problems. They have evolved to fulfil security and

avionics requirements where predictability is extremely important[?]. The sepa-

ration kernel proposed in [?] established a combination of hardware and software

to allow multiple functions to be performed on a common set of physical resources

without interference.

A partition consists of an encapsulated group of applications that provide in-

dependent execution on a common platform. The operating system is in charge of

support the execution of the applications. Partitions are executed independently on

the top of the hardware, which could be virtual or not.

Spatial and temporal isolation properties of the partitioned architectures are

very relevant aspects in partitioned systems. Spacial isolation implies that each

application can only access to its independent memory addresses. Temporal isola-

tion means that only one application at a time has access to the system resources,

making it impossible for an application to run when another application is run-

ning. Several projects ([?],[?],[?]) have been successfully developed using this

approach in the avionic sector. Moreover, fault isolation is also considered. It im-

plies that a fault in an application must be handled by itself or the system without

affecting other applications.

From this concept, Integrated Modular Avionics (IMA) [?] is an architectural

proposal that emerged to integrate several applications with different levels of crit-

icality in a hardware platform. The European Space Agency (ESA) has promoted

the adaptation of IMA for the new generation of satellites [?].

An IMA development process involves several roles like:

• System Architect (SA): The SA has responsibility to define the overall sys-

tem requirements and the system design, including the optimal decomposi-

27

2. STATE OF THE ART

tion into hosted partitions jointly with the detailed resource allocation per

partition.

• System Integrator (SI): The SI is responsible for verifying the feasibility of

the system requirements defined by the SA, as well as responsible for the

configuration and integration of all components.

• Application Suppliers (AS): An AS is responsible for the development of an

application according to the overall requirements from the SA and the SI.

AS shall verify that the allocated budget and safety parameters are respected.

Assuming that each application is located in a partition and a partition can

have only one application, an AS can also be called Partition Developer (PD).

There are other roles in the process but due to space restrictions we only detail

those interesting for the purpose of the paper. For a complete description of the

main roles and responsibilities see [?]

IMA made possible the definition of an architecture with new functionalities, as

the parallel execution of applications and fault handle at different levels. Recently,

the ESA presented the Time and Space Partitioning program (TSP) that provides an

execution environment in which software components are executed without inter-

ference. Its benefits are related to the allocation of different criticality partitions that

coexist within the same computer, management of the growth of software function-

ality, achieve higher degree of integration as more performing processors becomes

available and facilitate design for re-use [?], [?].

In Figure 2.3, the general scenario of this work is depicted. It is a multi proces-

sor system based on hypervisor. Applications are encapsulated in partitions with

different levels of importance and are allocated in cores following any scheduling

algorithms.

All the elements shown in Figure 2.3 play a key part and are highly relevant to

This thesis:

• Multicore system: using different cores for enhance performance, reduce

power consumption and obtain more efficient simultaneous processing of

multiple tasks.

28

2.3 Partitioned systems

Figure 2.3: Virtualized OS architecture on a multicore processor

• Virtualization layer, for example, provided by a hypervisor. More detailed
information about virtualization techniques in real-time systems is developed
in Section 2.7.

• Partition: unit allocated to cores in order to be executed. If a system is com-
posed of partitions with different importance levels, i.e. criticality, it will be
a mixed-criticality system (MCS). See Section 2.5 for detailed information.

• Application: each partition consists on one or a group of applications or
processes, that are groups of tasks that contain threads of execution.

Once all the elements of a virtualized multicore partitioned real-time system
are defined, the concept of hierarchical scheduling is introduced.

29

2. STATE OF THE ART

2.4 Hierarchical scheduling
In order to schedule partitioned systems, hierarchical scheduling techniques must

be introduced. Based on the proposed software architecture in an IMA system

(stated in chapter 2.3) where a hypervisor supports the execution of several tem-

poral and spatial isolated partitions, the system can be modelled as a hierarchical

real-time system in which tasks are allocated to partitions.

Partitioned software architectures define two layers: the global layer, with a

scheduler that allocates CPU time to partitions, and a local scheduler per partition,

which schedules the tasks using the available time per partition.

For local and global scheduling, there are several techniques in order to sched-

ule partitioned systems: cyclic scheduling, fixed or dynamic priority schemes, etc.

As previously emphasized, meeting deadlines is a key aspect in real-time systems.

In recent years, some works have dedicated effort to the calculation of the exact

worst-case response time (for example [?]and [?] in fixed-priority scheduling).

The strategies that can be followed to achieve hierarchical scheduling are [?]:

• Server-based scheduling. Schedulers allocate an executing capacity and re-

plenishment period to each partition. In this way, a separate server is allo-

cated to each partition, so that each server will never exceed a predefined

bandwidth. The main disadvantage of this approach is the difficulty to un-

dertake complex task models and systems with high levels of criticality [?
].

• Compositional scheduling. Each partition requests an amount of computa-

tion and the scheduler tries to satisfy all partition requirements. In this way,

all partitions will require their pessimistic amount of computation time to

assure schedulability and, for this reason, this strategy is less efficient than

others. However, predictability is the most possible aspect, specially with

cyclic executives of partitions and also in large complex systems. This ap-

proach makes possible the isolation between partition developers (PD) and

system integrator (SI), roles defined in section 2.3. PD do not provide infor-

mation about the schedulability methodology in the applications level, but

only provide the temporal abstract interface of the partition [?].

30

2.4 Hierarchical scheduling

• Flat scheduling. The interrelation between tasks is analysed previously, con-
sidering all of them as a global system. Then, tasks are allocated into parti-
tions with the purpose of reducing the number of context switches, grouping
or trying to group them. With this, the final schedule will be very efficient
and, sometimes, optimal. In this strategy, the timing knowledge of tasks
should be previously detailed in depth in order to analyse the overall system
and optimize the solution. Moreover, changes in any task suppose a re-study
of the whole schedule. This fact and the no isolation between PD and SI are
the main disadvantages of this approach.

As hierarchical scheduling allows temporal and spatial isolation between parti-
tions, this independence enables each partition to have a different criticality level,
depending on the consequences that failures cause in the system. The concept of
mixed criticality system is introduced in next section.

31

2. STATE OF THE ART

2.5 Mixed criticality systems
In a real-time and embedded system, the execution of processes with different im-

portance (hereafter, criticality) in the same platform is called mixed criticality sys-

tem (MCS). This is a current and important trend in systems like avionics, space,

etc. In these systems, high criticality applications are the most costly to design and

verify. These kind of systems present advantages in terms of cost, space, weight,

heat generation and power consumption. An example of these applications is an

aircraft: in-flight information system has much lower criticality than flight control

systems and both coexist in one “mixed criticality" machine.

A MCS has two or more distinct levels (for example safety critical, mission

critical and low-critical). The level of criticality of each application, Li, is set at

design time by the system engineers responsible for the entire system. Vestal [?]

presented in 2007 the first seminal paper on the verification of a MCS. In this paper,

different WCET per task are considered, depending on its criticality. It means that,

the higher the criticality level of the tasks, the bigger WCET will be needed to

ensure safety of the system. For example, if a task is defined as safety critical, its

WCET will be higher than if it is considered mission critical or non-critical. These

changes in temporal parameters of the system make necessary a reconsideration of

the schedulability of the overall system, in order to guarantee its feasibility. Then,

in MCS a task is defined by
(−→
T ,D,

−→
C ,L

)
, being

−→
T and

−→
C vectors of values

according to the criticality level of the task. As stated before, if L1 and L2 are two

criticality levels and L1 > L2, then C(L1) ≥ C(L2) and T (L1) ≤ T (L2). Another

point to consider is the criticality execution mode of the system. At the beginning,

the system runs in the lowest criticality level. If any task or activation requires

more time and deadlines are jeopardized, the system mode changes to a high level

of criticality. Then, no tasks with low criticality level will be executed from this

time and the system remains in the highest criticality level.

In general, almost all papers consider two criticality levels, HI and LO, be-

ing HI > LO. Then, a task i is defined as (Ti, Di, Ci (HI) , Ci (LO) , Li), with

Ci(HI) ≥ Ci(LO). Most of later works made use of this consideration and

adopted the “Vestal model" o short variations. There are other works that propose

other models as [?].

32

2.5 Mixed criticality systems

Vestal seminal paper showed that neither RMS nor DMS priority assignment

was optimal for mixed-criticality systems. Baruah and Vestal [?] generalised

Vestal’s model by using a sporadic task model and by assessing fixed job-priority

scheduling and dynamic priority scheduling. It contains the important result that

EDF does not dominate FPS when criticality levels are introduced, and that there

are feasible systems that cannot be scheduled by EDF.

The first paper that considers multi-processor or multi-core platforms in MCS

was [?]. These authors implemented an scheme called MC2, used for different

authors to evaluate different considerations as OS overheads [?], isolation tech-

niques [?], parallel tasks [?], etc. [?] also introduced multi-processor issues and

virtualization in MCS.

Contrary to Vestal model with different levels of assurance for WCET (HI and

LO), other recent approaches use a model based on probabilistic WCET (pWCET)

distributions. The pWCET is a probabilistic distribution which upper bounds all

the possible execution times of a task [?] and each of these values is associ-

ated with the worst case probability of being exceeded. Although probabilistic

models present less pessimism than deterministic models, the complexity cost of

probabilistic distribution increases. Some works extend the Vestal model to the

probabilistic case, such as [?] [?]. The results of probabilistic schedulability tests

consist of probabilistic worst case response times (pWCRT). These probabilistic

models calculate the increasing resource demands at run-time and take decisions

about pWCRT in the system scheduling [?]. As mentioned in previous sections,

to ensure TSP, this work does not consider online decisions neither unpredictable

or undesired situations, so indeterministic approaches as probabilistic distributions

are not desired.

Next sections show how Vestal model does not completely meet the require-

ments of the project in which this thesis is based on. Moreover, other theories on

how impractical this model is are also discussed. Although the most relevant meth-

ods for multiprocessor partitioned real-time systems have been presented, there are

some challenges that remain unsolved, specially with the appearance of battery-

operated embedded devices. In this kind of systems, energy saving is a vital issue

for developers and, more particularly for users. Reducing heat dissipation involves

33

2. STATE OF THE ART

in increasing the long-term availability and reducing cooling equipment costs. En-
ergy savings aspects are considered bellow.

34

2.6 Energy savings policies

2.6 Energy savings policies
Energy management is a very active research are in the recent years. In fact, ef-

fective energy management is essential for those systems which are portable em-

bedded and require energy autonomy. Autonomous mobile robots, industrial con-

trollers, wearable devices, mobile phones, etc. are examples of battery-powered

embedded systems. The battery lifetime is one of the most important characteris-

tics of a portable device. As sometimes replacing batteries is not possible, min-

imizing the energy consumption is a key procedure to provide a longer lifetime.

Energy minimization is one of the main requirements during the design phase of

embedded systems for several reasons: cost reduction, thermal issues, etc. Power

density of modern electronic circuits is increasing and this may cause failures [?].

In real-time embedded systems, two widely used techniques for reducing the

energy consumption are Dynamic Voltage and Frequency Scaling (DVFS) and Dy-

namic Power Management (DPM). On the one hand, DVFS is based on adjusting

the CPU voltage and frequency on-the-fly in order to reduce the overall energy

consumption [?]. Since reducing the system frequency increases the task execu-

tion times, to guarantee the timing constraints when DVFS is applied, is extremely

important for real-time systems. On the other hand, DPM is based on switching

the processor to a low-power inactive state as long as possible, under the require-

ment of accomplishing with the real-time constraints . From this point of view, the

problem to be solved is: minimize the system energy consumption applying DVFS

or/and DPM while satisfying temporal constraints of the tasks. Lot of works about

this problem have been published and [?] and [?] are excellent surveys of design

techniques for energy-aware purposes in real-time safety-critical systems.

Recently, [?] presented a survey of energy management techniques for em-

bedded systems.

Another survey of energy-aware scheduling algorithms for real-time systems

is [?]. It presents a classification of the existing approaches for uniprocessor and

multiprocessor systems based on DVFS, DPM or both.

Before presenting a overview of the energy-aware algorithms, the most relevant

power models used in literature for energy-aware purposes are introduced.

35

2. STATE OF THE ART

The power consumption function, P (f), as a function of the processor fre-
quency f is generally formulated as follows [?]:

P (f) = K3f
3 +K2f

2 +K1f +K0 (2.9)

, whereK3 refers to the power of components that vary with frequency and voltage,
K2 refers to the non-linearity of DC-DC regulators in the range of the output volt-
age, K1 represents the subsystems that operate at a fixed voltage but frequency can
vary and K0 represents subsystems than operate at a fixed voltage and frequency,
i.e., are not affected by the processor speed.

One of the most common ways of expressing the power function (for exam-
ple [?], [?] and [?]) is

P (f) = Psta + Pdyn (2.10)

In previous equation, Psta stands for the static power consumption due to the leak-
age current and is independent of the system speed. Pdyn represents the dynamic
power consumption due to switching activities and is assumed to be a polynomial
function of the frequency f. This polynomial function is assumed to be defined as
Pdyn = β · fα, where α is a fixed parameter determined by the hardware and is
assumed to be 2 ≤ α ≤ 3 [?] [?]. β is a constant that depends on the effective
switching capacity and is assumed to be β > 0.

During an interval ∆t, a processor runs at a frequency f and executes ∆c cycles
so that ∆t = ∆c

f
. As power is how quickly energy is used or transferred, the energy

function can be expressed as:

E(f) = (Psta + βfα)
∆c

f
(2.11)

The lowest available frequency that minimizes the energy consumption of the
system is equivalent to the first order derivative of Equation 2.11 equal to zero.
Then, the minimum value for E(f) happens when:

fmin = α

√
Psta

β (α− 1)
(2.12)

fmin is denoted as critical frequency and represents a frequency below which it is
not beneficial to reduce frequency energy-wise. This is shown in some works as [?
] and [?] and an example can be found in [?].

36

2.6 Energy savings policies

Reducing the voltage and the frequency of the processor supposes an increase

in the execution time of the tasks allocated in it. In these situations, a control

over accomplishing temporal requirements should be taken into account, specially

in real-time systems. In the major part of works, the worst-case execution time

(WCET) Ci(f) of a task τi is considered to be fully scalable with the inverse of the

frequency [?], [?], i.e., Ci(f) = Ci
f

. However, some works claim that this is only

an upper bound [?], [?] because there is a fixed portion of the WCET not affected

by speed changes. This happens often with some operations on devices that do

not share the clock frequency with CPU, such as input/output operations. Thus,

another way to represent the computation time of a task is as a sum of a variable

and fixed part: Ci(f) = Cfixed
i +

Cvari

f
.

Once the models have been analysed, following is a summary of the taxon-

omy used to organize the energy-aware algorithms previously defined, DVFS and

DPM, in platforms with single-core and multicore CPU. Figure 2.4 represents the

taxonomy in the single-core scheme.

Figure 2.4: Taxonomy of energy-aware algorithms for single-core systems.

DVFS algorithms adjust the system frequency or speed according to the unused

CPU time (slack) in three ways: statically, dynamically or both. On the one hand,

static DVFS benefits from the residual processor utilization taking into account

the worst-case execution time of the tasks. On the other hand, dynamic DVFS

considers the difference between the worst-case execution time of the tasks and

their actual execution time.

37

2. STATE OF THE ART

DPM algorithms are classified depending on when the decisions about the ad-
just of frequency system are taken: offline or online.

Integrated algorithms use DVFS and DPM techniques in order to minimize the
energy consumption of the system.

Among hundreds of works related to these techniques, different considerations
have been taken: to account or not the time overhead due to changes in the speed,
to consider continuous or discrete frequencies, to fully scale the computation time
with the frequency or only partially, etc. Considerations that concern to this work
will be detailed in next sections.

The taxonomy used to classify the multicore algorithms is depicted in Fig-
ure 2.5. The main branching separates those platforms which share the clock be-
tween a subset of cores (voltage island) from those which allow different frequency
for each core (independent frequency). In the latter case, the distinction between
the adjust of frequencies per core or per task is made.

Figure 2.5: Taxonomy of energy-aware algorithms for multicore systems.

In our particular case, this work falls under the scope of multicore algorithms.
This is the reason that the attention is turned on this field. Since 2003, resource
management for multiprocessors has been an active research area in real-time sys-
tems. Then, designers realised that increasing the system frequency in order to
increase the overall performance was not suitable in terms of energy consumption
and the existing studies about energy-aware techniques had to be extended to mul-
tiprocessors.

When classifying energy-aware algorithms, the main distinction is based on the
DVFS support provided by the system. If a different frequency for each core is

38

2.6 Energy savings policies

allowed, algorithms do form part of Independent Frequencies group. However, if
frequency is shared among all cores, they are classified as Voltage islands.

In those systems in which frequency and voltage of each processor is adjusted
independently, algorithms are classified into two categories:

• per-task DVFS: the frequency is fixed per task, as in sigle-core algorithms.
First work [?] addressed only dynamic power and was applied to sys-
tems with typical specifications by the time that paper was written. However,
authors noticed that any processor could be switched to a low-power inac-
tive state, so an integration between DVFS and DPM was proposed. Same
authors proposed later an extension of the previous approach but consider-
ing precedence constraints between tasks. Then other algorithms were pro-
posed: [?] considered the division between tasks, which is very useful for
tasks with high utilization factors; [?] proposed an energy-aware algorithm
that applies to parallel tasks and [?] presented an approach based on mixed
integer linear programming to optimize DVFS and DPM at the same time.

• per-CPU DVFS: the frequency is fixed per core, independently of the tasks
allocated to that core. Different works have been published in this area but
all of them consider periodic task sets with implicit deadlines. For exam-
ple, [?] considers only dynamic power consumption without taking into
account switching overheads. One of the main contributions of this work
(and it will be considered also in this work) is that the most balanced core
is the most energy-efficient system. Other approaches with different con-
siderations have been published since 2003 [?] , [?], [?] but it took
until 2012 with [?] to find an optimal solution. This proposal considers
uniform processors with different discrete frequencies per core and periodic
tasks sets. Since this is an offline algorithm, overhead due to the change of
frequency is avoided and static power is not considered.This approach con-
sists of setting frequencies at the minimum value and proceed to increase the
frequencies per task until finding a feasible allocation of frequencies to tasks
for energy-aware purposes.

Those systems in which frequency and voltage are shared among cores are de-
fined as voltage islands. This approach provides a solution to both problems: the

39

2. STATE OF THE ART

hardware complexity when providing different DVFS per core and also the impos-

sibility of energy savings when all cores share frequencies. Since 2010, different

energy-aware algorithms have been presented. [?] proposed a complete approach

based on multiple sleep states and frequencies shared among cores. This algorithm

computes offline the optimal numbers of cores and allocates tasks in the cores.

At runtime, the working frequency and the number of idle cores could be charac-

terised. Other works as [?], [?] and [?] considering continuous or discrete speed

values, different power model and complexity of the algorithms are proposed.

In spite of the extensive literature previously detailed, applying previous tech-

niques for mixed criticality systems is no easy task. Until now, only some works

have been published with the view to resolving this problem. The first paper that

considers the importance of energy in mixed criticality systems is [?], which de-

fined energy as important as timing in terms of compliance of mixed-criticality

guarantees. [?] presents a DVFS method to minimize energy for unicore mixed-

criticality systems. [?] proposes another method with the same purpose but

only considers dynamic power consumption and forgets static energy consump-

tion. Other works reduce or even sacrifice the performance of low criticality tasks

in order to reduce the energy consumption of the system. Some examples are [?
], which is based on DPM technique, and [?], which tries to improve the energy

utilization on critical tasks. Works that consider allocation techniques and schedu-

lability in mixed criticality systems are [?] and [?]. Both assume the Vestal

model [?] for MCS and aim at enhancing system schedulability instead of saving

energy. However, [?] proposes a DVFS technique for energy-aware purposes for

MCS on identical multi-core processor and also considers the schedulability of the

overall system.

One work that focuses on energy efficient allocation in MCS is presented by

Awan et al. in [?]. They present an approach to generate a set of feasible alloca-

tions and select the one with the lowest energy consumption. They also assume the

Vestal model for MCS. They also do not take into account the different frequencies

of the cores in the allocation algorithm.

In [?], authors also propose an energy saving method for MCS on multicore

based on the isolation of tasks depending on their criticality levels on different

40

2.6 Energy savings policies

cores. In our study, we have consider the mix of workloads from different criticality
levels in different cores.

As seen in dates of the previous publications, energy consumption minimization
in mixed-criticality systems is an open topic that attracts interest at present.

41

2. STATE OF THE ART

2.7 Virtualization
In order to reach TSP, different techniques as separation kernel or virtualization are

proposed. While a separation kernel requires the use of the same operating system,

virtualization allows a different operating system for each partition (real-time op-

erating system, general purpose operating system or bare-metal applications).The

concept of virtualized open source platforms for mixed criticality embedded sys-

tems is dealt in this section.

Virtual machine technology can be considered the most secure and efficient

way to build partitioned systems. They use virtualization techniques in order to

achieve the desired temporal, spatial and fault isolation previously mentioned. A

hypervisor or virtual machine monitor (VMM) is a layer of software (or a mixture

of hardware and software layer) that runs several partitions in a single computer.

The main difference between hypervisors and other kind of virtualizations is the

performance.

The main characteristics of hypervisors are low overhead and a performance

similar that it would have if it may be executed in the native system.

When a hypervisor is designed for real-time embedded systems, the main issues

that have to be considered are: temporal and spatial isolation, basic resource vir-

tualization (clock and timers, interrupts, memory, CPU time, serial I/O), real-time

scheduling policy, deterministic hypervisor system calls, efficient inter-partition

communication, efficient context switch, low overhead and low footprint [?].

Nowadays, hypervisors integrate ARINC-653 or AUTOSAR standards in their

designs in order to be adapted to different domains. Several hypervisors for real-

time in safety-critical systems have been developed. [?] is a survey that details

some of them. For example, VxWorks 653 and VxWorks MILS are provided by

WindRiver, LynxSecure provides an hypervisor for MILS and ARINC-653, RT-

Xen is an extension of Xen that supports virtual machines with real-time perfor-

mance requirements, Xtratum is a hypervisor that can be used to build a MILS

architecture, etc.

Hypervisors are classified in two main categories [?]: native hypervisors and

hosted hypervisors. Bare metal or native hypervisors (type 1) run directly on the

42

2.7 Virtualization

platform hardware, providing all the features needed by the guests. Hosted hy-

pervisors (type 2) run on top of an existing OS and leverage the features of the

underlying OS. Bare metal hypervisors include the early mainframe hypervisors as

well as VMWare ESX server, and kvm, a hypervisor for Linux. Hosted hypervisors

include VMWare GSX server.

Among these kinds of hypervisors [?], bare-metal or type 1 hypervisors are rec-

ommended for critical real-time systems because they provide better performance

and control than hosted hypervisors. In the context of spatial and avionics systems,

XtratuM is an hypervisor designed initially to replace RT-Linux with the purpose of

meeting safety critical real-time requirements [?],[?],[?]. It is a type 1 hypervi-

sor that uses para-virtualization, a virtualization technique in which the conflicting

instructions are explicitly replaced by functions provided by the hypervisor and

whose operations are as close to the hardware as possible.

XtratuM is adapted to deal with heterogeneous multicore architectures, in the

framework of the MultiPARTES project [?].

From its version 1.0, Xtratum has been adapted to multiple platforms and,

nowadays, is designed for as SPARCv8 (LEON 2/LEON 3/LEON 4), ARMv7

(Cortex R4/Cortex R5/Cortex A9), X86 and PowerPC architectures, especially in

the framework of the MultiPARTES project [?]. Figure 2.6 depicts and overview

of Xtratum architecture.

XtratuM main features are:

• Implementation of a cyclic scheduling policy, through a static scheduling

plan that allocates time to partitions. Each partition internally schedules its

own tasks following an algorithm. This cyclic scheduler follows ARINC-653

standard and ensures strong temporal isolation.

• Spatial isolation, all partitions are executed in processor user mode, and do

not share memory.

• All the information of hardware resources, virtualized devices configuration

and scheduling plan is defined by means of a configuration file.

43

2. STATE OF THE ART

• Provides robust communication mechanisms, based on ARINC-653 queuing
and sampling ports. This information is also included in Xtratum configura-
tion file.

• Provides an advanced health monitoring and error reporting, in order to de-
tect and manage unexpected events. By the time an error is detected, some
preconfigured actions to minimize its impact on the system are executed.

• Powerful configuration and validation tool (Xoncrete).

Figure 2.6: Xtratum architecture.

Xtratum is involved in near future space missions focused on different areas:
measurements of CH4, detection of gamma-ray bursts of the massive stars explo-
sions, neutron stars mergers or black holes, measurements of surface water height
of lakes, rivers and flood zones, and of deep and coastal oceans or three years Eu-
ropean Space Agency mission, launched in 2022, and reaching Jupiter in 2030.

Due to the importance of all this missions and the impact they may have into
the environment, a certification process in order to validate the product and ensure
its reliability. Certification aspects are addressed in the next section.

44

2.8 Certification aspects in critical real-time systems

2.8 Certification aspects in critical real-time systems
Certification process is a crucial aspect in fields as computing and software devel-

opment in many safety-critical embedded systems. Specially, in these systems with

strict timing and response requirements, product and process certification are the

most challenging in developing software in this field. As stated before, failures

in safety critical real-time systems may involve catastrophic damages and this fact

makes necessary to stablish standards and guidelines for the developers to regulate

critical processes. Thus, certification process guarantees the proper operation of

the certified system or product, assuring that technical requirements are satisfied

and injuries should not be caused.

As already mentioned, the development of safety-critical real-time systems re-

quires the use of standards. The certification of these applications is based on

very conservative assumptions and they usually exceed what is required by the de-

signer’s assurance levels [?]. A large number of standards and reports related to

certification, validation, etc. have been issued, depending on the regulated industry:

aerospace, avionics, railways, etc. The entity that issues digital certificates is called

Certificate Authority (CA). Before the systems starts, the pessimistic assumptions

of the CAs as well as design requirements have to be certified.

Figure 2.7 shows the process of integrating two applications with two differ-

ent criticality applications in the same computing platform. While safety critical

applications require complex calculus of BCET and WCET, mission critical appli-

cations have soft deadlines based on Quality of Service metrics [?]. However, the

overall system has to meet the most strict requirements in order to be certificated.

Partitioned systems suppose a way of integrating applications with different

criticality levels in multi-core and virtualized architectures. Applying this technol-

ogy makes necessary the reconsideration of the classical certification criteria, based

on the re-study of the overall system for coping with changes. This means that the

certification cost and complexity can be reduced using partitioned approach, due

to the modularity it offers. In this sense, thanks to partitioning, each partition is

certified to the corresponding level of criticality [?]. However, providing sufficient

assurance of the veracity of this method is a technical challenge [?].

45

2. STATE OF THE ART

Figure 2.7: Integration of mixed critical applications on single chip.

IEC 61508 [?] is a generic international safety standard that provides a baseline

for other specific standards applied to different domains: machinery, automotive,

etc. Generally speaking, it defines the requirements needed by devices, systems,

etc. in order to assure their safety functions while reducing risks.

Safety standards as IEC 61508 state that “whenever a system integrates safety

functions of different criticality, sufficient independence of implementation must be

shown among these functions." [?] This sufficient independence happens when

the probability of a dependent failure between high and low critical parts is suffi-

ciently low in comparison with the highest safety integrity level. For this reason,

spatial and temporal isolation is crucial to ensure the independence of execution.

Different safety standards for different domains and needs exist, as DO-178/ED-12

with temporal and spatial requirements for avionics domain.

In the practice of our context, in a partitioned system, to achieve an indepen-

dent certification of partitions offers interesting characteristics. For example, a

partitioned system with 3 partitions and its possible scheduling plan is shown in

Figure 2.8(a). Let us imagine that temporal requirements of partition 2 (in blue)

change (in green). Then, it is unnecessary to repeat the certification process of the

overall system but only in the partition 2.

The same happens in a system in which a new partition is added in order to use

46

2.8 Certification aspects in critical real-time systems

(a) Initial situation

(b) One of the partitions changes its temporal requirements

Figure 2.8: Changing temporal parameters in one partition.

the idle time of the system (2.9).

As seen before, it is not necessary to re-certificate the overall system when

changes occur in any of the partitions. Thus, the following aspects may be consid-

ered in order to achieve an independent certification per partition:

• Temporal and spatial isolation between partitions must be achieved.

• Each partition requires a secure independent method of analysis.

• The scheduling of other partitions should not interfere in the studied partition.

• WCET analysis techniques should model the possible interference of multi-

core execution.

In order to achieve previous constraints, some considerations have to be ad-

dressed with respect to the scheduling policy of the virtualization layer. One solu-

tion that prevents the variability of the partition execution is the use of the cyclic

scheduler, which also preserves the bandwidth of the processor. This method is

proposed by the standard ARINC-653 [?] and previously defined in Section 2.2.

47

2. STATE OF THE ART

(a) Initial situation

(b) Addition of a new partition

Figure 2.9: Adding partitions to the partitioned system.

In this section, general aspects about certification process have been presented.
Although there are many other important points, only the relevant items for this
work have been provided.

48

2.9 Conclusions

2.9 Conclusions
According to the works reviewed in this chapter, there are several research chal-
lenges regarding to scheduling in mixed-criticality partitioned and hierarchical real-
time systems, specially in multicore systems. Although single-core scheduling
could be considered as deeply studied field, multicore scheduling, and specially,
applied to those systems in which applications with different levels of criticality
exist, still have a long way to go.

Furthermore, with the growth of battery-operated devices, it is important to
have a complete control about energy consumption issues in these systems. This
topic has been of enormous significance in recent years, in which portable devices
are part of daily life. For this reason, energy-aware researches have considerably
increased and the most relevant works have been covered in this chapter.

Although the literature presented in this chapter covers multicore scheduling
and energy-aware aspects, there are some remaining challenges that this thesis
solves. With regard to scheduling, this work aims at achieving a scheduling ap-
proach for hierarchical systems with unknown scheduling policies in the global
level, as outlined in Section 1. To our knowledge, all existing works consider
known scheduling policies in both, local and global level. Therefore, next chapter
introduces a proposal of generation of offline scheduling plans in real-time parti-
tioned field, using from the current literature as a starting point. With regard to
energy saving aspects, only few works integrate MCS and energy savings concepts
and most of them rely in classic models that do not completely fit our requirements.

Therefore, following chapters address scheduling approaches to overcome all
challenges outlined in previous sections. Each section presents both non covered
aspects in current literature and those that do not conform completely our require-
ments and also the new proposals to cope with them.

49

CHAPTER

3
Generation of offline plans in

real-time partitioned
systems.

Meeting deadlines of all tasks is clearly a crucial aspect during the execution of
real-time systems. For this reason, a schedulability analysis is always necessary in
this kind of systems. Particularly in certain situations, a partitioned and hierarchical
system needs an offline schedulability analysis. In spite that lots of schedulability
algorithms exist, to the best of our knowledge, they do not consider arbitrary policy
in the global level. This chapter copes with schedulability of a hierarchical system,
when the global level policy is not defined by any known policy.

The outline of this chapter is established as depicted in Figure 3.1.

51

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.1: Chapter 3 layout

52

3.1 Introduction and objectives

3.1 Introduction and objectives
As previously stated, in an IMA system, the SI is responsible for allocating ex-
ecution time to applications. Furthermore, the PD manages this time internally
for each application. In this sense, in a partitioned and hierarchical system, the
SI allocates CPU in the global level, with a global scheduling policy, and the PD
schedules tasks in the available CPU time through a local scheduling policy. In this
sense, the SI ensures the feasibility in the global level and PD, in the local level.

In an IMA system where a hypervisor supports the execution of several tem-
poral and spatial partitions, the configuration file of the system defines a temporal
offline plan to schedule partitions in the global level. Throughout a hyper-period,
partitions have different slots of time assigned to the execution of their tasks. For
example, as seen in Figure 3.2, the SI assigns CPU periodically to the PD (de-
picted as time slots in black) and, locally, the PD schedules the tasks following any
scheduling policy. As it is obvious, the execution of the tasks in the local level
can not exceed the available time supplied by the SI. The PD requires the SI its
temporal specifications, usually in the form of CPU bandwidth. Separately, the
SI calculates and assigns the bandwidth given to the partitions using static cyclic
executive scheduler.

Figure 3.2: Execution chronogram and CPU supply of a partition.

If the assignment is made using a periodic resource or a bandwidth algorithm,
the corresponding schedulability tests are available in the literature. All schedula-
bility tests for the most well-known techniques were presented in Section 2. How-
ever, if this assignment does not follow any existing schedulability algorithm, no
existing works that solve this problem are found in literature. Section 1.1 shows
some examples that motivate the arbitrary assignment of time slots to a partition.
Some of these examples were the addition of a new partition using the idle time
of the current system or changing the temporal requirements of any partition al-
ready scheduled. Both situations require using the idle time in order to introduce

53

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

the new temporal load and this idle time does not follow any known allocation. As
the schedulability tests for hierarchical systems are based on the calculation of the
worst case response time in both levels, the overhead due to the global level can not
be calculated since the global scheduling policy is not known. As a consequence of
this problem, this work provides a proposal in order to analyse the schedulability
of a task set in the local level of a hierarchical system, in whose global level the
scheduling policy is arbitrary.

In this chapter, the problem that is being studied falls within the scope of the
schedulability of a hierarchical system composed of two levels: local and global
level. The global level policy does not follow any known policy but it is arbitrary. In
other words, the SI assigns to the PD a sequence of time slots not derived from any
known scheduling algorithm. Of course, this proposal is also valid if the scheduling
policy is known in the global level.

In this section, two schedulable arbitrary slots assignments are presented. Both
assignments or, from now on, supply bound functions, ensure the schedulability
and feasibility of the task sets. Moreover, a schedulability analysis of a task set
is presented, relating any arbitrary CPU supply with the functions previously pre-
sented.

In order to develop the calculation of these supply bound functions, a simulator
that generates and studies these functions is implemented. Finally, a comparison
between our method and other similar works is proposed, since our method can
also be applied with known schedulability policies.

54

3.2 Model and notation

3.2 Model and notation
Our model is concerned with the pre-emptive scheduling of real-time applications

on a uniprocessor. Each application consists of a number of partitions P1, .., Pm.

Each partition comprises a number of tasks. Thus, our hierarchical system has

two levels, the partition (or global) level and the task (or local) level, each of them

with its own scheduling policy. In this work, we will assume that the local level is

scheduled under EDF scheduling policy and the global level is scheduled under any

scheduler. The information regarding the global scheduling is provided as temporal

windows or slots in which a partition is allowed to execute.

From now on, the sub index used to refer to a partition will be omitted to sim-

plify the notation. Therefore, formally, a partition P can be defined1 as a tuple

P = {τ, R} where:

• τ = {τ0, τ1, .., τn− 1} is a set of n tasks. A task τi is characterized by a tuple

τi = {φi, Ci, Di, Ti} where φi is the offset, Ci is the worst case computation

time, Di is the relative deadline and Ti is the period. When all parameters

in the system are integers, we may assume without loss of generality that all

preemptions occur at integer time values. We then assume, for the remainder

of this work, that all parameters are indeed integers. Moreover, constrained

deadlines are assumed so Di ≤ Ti.

• An arbitrary CPU supply R is represented by a sequence of p intervals I1, I2, ..., Ip.

Every Ii / 1 ≤ i ≤ p is a closed interval Ii = [si, ei] repeated every lcmτ
2, so

that 0 ≤ si < ei < si+1 and ep ≤ lcmτ .

Therefore, ∀t exists a unique interval Ii so that si ≤ t ≤ ei. The CPU supply

R for a partition determines the p temporal slots in which tasks allocated to

the partition are allowed to execute.

The problem to solve is concerns the schedulability of the partition, that is, if

task set τ can be scheduled without deadline misses in the slots defined by R.

1In the definition of the partition we omit all non-temporal resources
2Least Common Multiple of T1, .., Tn

55

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

3.2.1 Supply bound function

Although we have characterized R as a set of intervals, it can also be represented

graphically.

Figure 3.3 shows two possible CPU supplies for the example of Figure 3.2 with

a periodic supply R=(θ, π), where the global level provides θ units of time each π

units. In the figure θ = 3 and π = 10 so both supplies are non-decreasing functions

that grow with a slope of 45 degrees at least 3 units every 10 units. wcsbfR(t)

represents the worst case behaviour because provides the 3 units of CPU as late as

possible while sbfR(t) represents other specific allocation of the periodic supply.

Therefore, we call the function that represents any specific allocation, the supply

bound function of R (sbfR(t)). In this case, note that sbfR(t) totally coincide with

the slots allocation of Figure 3.2 in the sense that the partition is allowed to execute

only when sbfR(t) function increases.

Figure 3.3: Periodic supply bound functions (θ = 3, π = 10)

Given a CPU supply R and an interval of length t, the supply bound function

gives the amount of resource that model R is guaranteed to supply in any time

interval of length t [?]. We can define the supply bound function ofR, accordingly

with the above definition.

56

3.2 Model and notation

Definition 3.2.1. The supply bound function (sbfR(t)) of an arbitrary supply R
expressed as a set of intervals is:

sbfR(t) =

j∑
i=0

(ei − si) + t− sj if ∃j/t ∈ [sj , ej],

j∑
i=0

(ei − si) if ∃j/ej < t < sj+1.

, where si is the starting point of an interval and ei is its ending point. From
si to ei, the tasks of the partition can be executed. In Figure 3.3, these intervals
correspond with the intervals where sbfR(t) increases. Then, a CPU supply R can
be characterized either by a set of intervals Ii or by its sbfR(t).

Moreover, the following definitions will be used in the next sections. All these
properties have been extensively defined in Section 2 and here a quick review is
being stated.

The function Gτ (t) stated in Definition 2.2.1 represents the computation time
demanded from initial time to time t for a tasks set τ . It can be calculated as:

Gτ (t) =
n∑
i=1

Ci ·
⌈
t

Ti

⌉
If tasks are simultaneously activated at time t = 0 (i.e. φi = 0 for all the tasks

so the task set is synchronous), then:
In Definition 2.2.2 [?] [?], the maximum cumulative execution time requested

by jobs of τ whose absolute deadlines are less than or equal to t is called demand

bound function and is stated as:

dbfτ (t) =
n∑
i=1

Ci

⌊
t+ Ti −Di

Ti

⌋
This function only increases in the so-called scheduling points that is, when a

deadline arrives.
To generalize, when the task set is asynchronous (i.e. ∃φi 6= 0), the processor

demand function in interval [t1, t2) is defined as:

Definition 3.2.2. [?] [?]

dbf(t1, t2) =
n∑
i=1

ηi(t1, t2)Ci

57

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

where:

ηi(t1, t2) = max{0, (
⌊
t2 − φi −Di

Ti

⌋
−
⌈
t1 − φi
Ti

⌉
+ 1)}

From now on, let us assume the task set is synchronous. Therefore, defini-
tion 2.2.2 will be used to deduct the minimum supply bound function, in spite of
the possibility of using definition 3.2.2 to obtain any other demand function.

58

3.3 Schedulable CPU supply functions

3.3 Schedulable CPU supply functions
In this section, specific supply bound functions sbfR(t) that ensure the schedula-
bility of task sets, τ , are being defined. Specifically, two functions are obtained:
gsbfτ (t) and msbfτ (t).

3.3.1 Schedulable sbfτ (t) based on G(t)
This section presents the demanded computation supply function, gsbfτ (t). This
function gives a schedulable supply for τ . We will base our method on the Gτ (t)

function (Definition 2.2.1).

Definition 3.3.1. A characteristic point, tj , of Gτ (t) is the one complying with:

Gτ (tj − ε) < Gτ (tj + ε) 0 ≤ tj ≤ lcmτ ∀ε→ 0

, so that tj coincides with the activation of τi ∈ τ .

Property 3.3.1. [?] Let τ be a schedulable task set. Let tx be an instant tx such
that:

Gτ (tx) ≤ tx

Then, the processor must have been idle for at least tx−Gτ (tx) time units from
initial time.

From Definition 2.2.1 and Property 3.3.1, the demanded computation supply
function, gsbfτ (t), is presented.

Definition 3.3.2. The gsbfτ (t) is defined as:

gsbfτ (t) =

t−

j−1∑
i=0

(si+1 − ei) if ∃j/t ∈ [sj, ej],

Gτ (t) if ∃j/ej < t < sj+1.

, where:

sj = tj + θj

ej = tj −Gτ (tj − ε) +Gτ (tj + ε) + θj

θj = max{0, (ej−1 − tj)}

and each tj is an characteristic point of Gτ (tj).

59

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.4 shows how the function is obtained graphically in the first intervals.

In this Figure, the characteristic points are depicted (t1, t2, ...) and, applying Defini-

tion 3.3.2, the start and end points of the intervals of gsbfτ (t) are calculated. They

correspond to the intervals where gsbfτ (t) increases.

Figure 3.4: Calculation of gsbfτ (t) in [0, t4)

To obtain a more compact definition, let us replace the values of sj and ej:

j−1∑
i=0

(si+1 − ei) = (s1 − e0) + (s2 − e1) + ...+ (sj − ej−1)

= t1 + θ1 − (t0 −Gτ (t0 − ε) +Gτ (t0 + ε) + θ0+

+ t2 + θ2 − (t1 −Gτ (t1 − ε) +Gτ (t1 + ε) + θ1+

+ ...+

+ tj−1 + θj−1 − (tj−1 −Gτ (tj−2 − ε)+

+Gτ (tj−2 + ε) + θj−2)+

+ tj + θj − (tj −Gτ (tj−1 − ε) +Gτ (tj−1 + ε) + θj−1)+

= −t0 +Gτ (t0 − ε)− θ0 + tj + θj −Gτ (tj−1 + ε)

As t0 = Gτ (t0 − ε) = θ0 = 0 and Gτ (tj−1 + ε) = Gτ (tj − ε), then, one more

60

3.3 Schedulable CPU supply functions

compact definition of gsbfτ (t) is:

gsbfτ (t) =

t− tj − θj +Gτ (tj − ε) if ∃j/t ∈ [sj, ej],

Gτ (t) if ∃j/ej < t < sj+1.

Once gsbfτ (t) has been defined, the schedulability of τ under this CPU sup-
ply can be demonstrated. For this reason, the concept of initial critical interval
(ICI) must be remembered. ICI [?] (also called synchronous busy period in The-
orem 2.2.3) is defined as the temporal interval between initial time and the first
instant R, when all requests have already been served and no additional requests
have arrived yet, assuming that the processor is not idle while tasks are pending.
Therefore, this range is [0, R).

Lemma 3.3.1. [?] [?] Let τ be a synchronous periodic task set and [0,R) its
initial critical interval (ICI). τ is schedulable if and only if it can be scheduled in
ICI.

Next theorems are used to construct the gsbfτ (t) interval by interval and, in
each interval, the condition gsbfτ (t) ≤ t will be checked.

Theorem 3.3.1. Let t1 ∈ N so that:

min
t

t1 : Gτ (t1) ≤ t1 ∀t ∈ (0, lcmτ]

Then,
gsbf(t) = t if t ∈ [0, t1)

Proof. Because of the definition of ICI, in the range [0,R) there is no CPU idle time.
For this reason, from 0 to t1, the processor must be always busy. So, t1 = R.

Theorem 3.3.2. Let t2 ∈ N so that:

min
t

t2 : Gτ (t2 − ε) ≤ Gτ (t2 + ε) t1 < t2 ≤ lcmτ ∀ε→ 0

, that is, t2 is a characteristic point of Gτ (t).
Then,

gsbfτ (t) =

t if t ∈ [0, t1),

Gτ (t) if t ∈ [t1, t2).

61

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Proof. The proof is based on the addition of a new task τn+1, which will be ex-
ecuted only when CPU is idle, that is, when τ is not executing. This time corre-
sponds to the interval [t1, t2). Let

τ ′ = τ
⋃

τn+1

where

φn+1 = t1

Cn+1 = t2 − t1
Dn+1 = t2

Tn+1 = max{φ1, ..., φN , φn+1}+ 2 · lcmτ [?]

= φn+1 + 2 · lcmτ

Once this task has been added, let’s check that the first interval, R, when all
requests have already been served and no additional requests have arrived yet, is
[0, t2).

Gτ ′(t) = Gτ (t) +Gτn+1(t)

=
n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1)

⌈
t

φn+1 + 2 · lcmτ

⌉
=

n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1)

When t = t2 − ε, Gτ (t) = t1 the result of the previous equation is:

Gτ ′(t2 − ε) = Gτ (t2 − ε) +Gτn+1(t2 − ε)

=
n∑
i=1

Ci

⌈
t2 − ε
Ti

⌉
+ (t2 − t1)

= t1 + (t2 − t1)

= t2

It is clear that, adding this new task set,Gτ ′(t) = t and the new ICI is [0, t2). So,
as a result of Lemma 3.3.1, to prove schedulability of τ ′, the condition dbfτ ′(t) ≤ t

must be held in all the scheduling points in [0, t2).

62

3.3 Schedulable CPU supply functions

Let us assume that tx is a scheduling point in [0, t2). As tx < Dn+1 clearly
dbfτ ′(tx) = dbfτ (tx) ≤ tx. Therefore, the schedulability of τ has been demon-
strated because of its schedulability in ICI.

As a result of the previous theorem, we derive the next interval.

Lemma 3.3.2. Let t3, t4 ∈ N so that:

t3 : Gτ (t2 + ε)−Gτ (t2 − ε) + t2

t4 : Gτ (t4 − ε) ≤ Gτ (t4 + ε)

, where t2 ≤ t3 ≤ t4 ≤ lcmτ , ∀ε→ 0

Then,

gsbfτ (t) =

t if t ∈ [0, t1),

Gτ (t) if t ∈ [t1, t2),

t− (t2 − t1) if t ∈ [t2, t3),

Gτ (t) if t ∈ [t3, t4).

Proof. Following the same reasoning as Theorem 3.3.2, we add a new task whose
computation time coincides:

τ ′′ = τ
⋃

τn+1

⋃
τn+2

where

φn+1 = t1

Cn+1 = t2 − t1
Dn+1 = t2

Tn+1 = max{φ1, ..., φN , φn+1, φn+2}+ 2 · lcmτ

= φn+2 + 2 · lcmτ

φn+2 = t3

Cn+2 = t4 − t3
Dn+2 = t4

Tn+2 = max{φ1, ..., φN , φn+1, φn+2}+ 2 · lcmτ

= φn+2 + 2 · lcmτ

63

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Once this task has been added, let us calculate the ICI in this new scenario:

Gτ ′′(t) = Gτ (t) +Gτn+1(t) +Gτn+2(t)

=
n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1)

⌈
t

φn+2 + 2 · lcmτ

⌉
+

+ (t4 − t3)

⌈
t

φn+2 + 2 · lcmτ

⌉
=

n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1) + (t4 − t3)

When t = t4 − ε, Gτ (t) = t1 + (t3 − t2). Therefore:

Gτ ′′(t4 − ε) = Gτ (t4 − ε) +Gτn+1(t4 − ε) +Gτn+2(t4 − ε)

=
n∑
i=1

Ci

⌈
t4 − ε
Ti

⌉
+ (t2 − t1) + (t4 − t3)

= t1 + (t3 − t2) + (t2 − t1) + (t4 − t3)

= t4

It can be concluded that, adding a new task set,τn+2, Gτ ′′(t) = t in t = t4 so
the new ICI is [0, t4). So, as a result of Lemma 3.3.1, to prove schedulability of τ ′′,
the condition dbfτ ′′(t) ≤ t must be held in all the scheduling points in [0, t4).

Let us assume that tx is a scheduling point in [0, t4). As tx < Dn+2, in The-
orem 3.3.2 it has been demonstrated that dbfτ ′′(tx) = dbfτ ′(tx) ≤ tx. So, τ ′′ is
schedulable in the hyperperiod because of its schedulability in ICI.

From these first intervals, the complete definition of the demanded computation
supply function can be built recursively. Values of sj and ej are deduced according
to the different shapes of the function, depending on how Gτ (t) is built.

The algorithm that implements the slot construction is presented in Listing 3.1.
The gsbfτ (t) represents a set of temporal windows that can successfully sched-

ule τ . Many sets of slots fulfil this purpose but gsbfτ (t)supplies the time only when
a task is activated, that is, as soon as possible. And for this reason, the resulting
schedule exactly coincides with the schedule resulting from assigning all CPU time
to the partition.

64

3.3 Schedulable CPU supply functions

Listing 3.1: gsbfτ (t) algorithm

1 function gsbf(τ) is
2 j,ej ,sj ,t0,t1=0;
3 ε→ 0;
4 while(t1<lcmτ) loop
5 if G(t0 − ε) < G(t0 + ε) then
6 θ0 = max {0, ej − t0};
7 sj = t0 + θ0;
8 ej = t0 −G(t0 − ε) +G(t0 + ε) + θ0;
9 end if ;

10 t0++; j++;
11 end while;
12 end gsbf;

3.3.1.1 Example of gsbfτ (t) use

Let’s consider a partition with three tasks (τ = {τ0, τ1, τ2}). Task parameters are
listed in Table 3.1.

Table 3.1: Task parameters τ

Ci Di Ti

τ0 1 4 5
τ1 6 10 15
τ2 5 21 30

The definition of gsbfτ (t) in definition 3.3.2 is used to calculate the func-
tion. The first step consists in calculating Gτ (t) and all its characteristic points
in [0, lcmτ]. Table 3.2 shows all these values.

Table 3.2: Characteristic points of gsbfτ (t)

t 0 5 10 15 20 25
Gτ (t) 12 13 14 21 22 23

Now, applying Definition 3.3.2, si and ei are calculated within [0, lcmτ] and
represented in Table 3.3. The last step is to calculate gsbfτ (t) inside each inter-

65

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

val. Once it has been calculated, the representation of the function is shown in
Figure 3.5.

Table 3.3: Definition of [si, ei]

i 0 1 2 3 4 5
si 0 12 13 15 22 25
ei 12 13 14 22 23 26

Figure 3.5: Representation of gsbfτ (t)

As seen, CPU will be busy in the intervals where gsbfτ (t) grows. These inter-
vals are defined in Table 3.4.

The execution chronogram of the task set considering that the CPU supply R
coincides with the demanded computation supply function is depicted in Figure 3.6.
As seen, the task set is schedulable in this slot assignment.

Thus, the schedulability of the gsbfτ (t) function for a task set and the method-
ology for calculating it have been demonstrated.

3.3.2 Schedulable sbfτ (t) based on dbfτ (t)
In Section 3.3.1, a valid supply that gives CPU when tasks are activated has been
presented. Now, another valid supply is being presented but, in this new situation,

66

3.3 Schedulable CPU supply functions

Table 3.4: Definition of [si, ei]

si ei

I1 0 14
I2 15 23
I3 25 26

Figure 3.6: Execution chronogram of τ with gsbfτ (t) in Table 3.4

CPU is supplied just before the deadlines arrive. If gsbfτ (t) consists on supplying
CPU as soon as possible (for task activation), msbfτ (t) will consist in supplying
CPU as late as possible.

To obtain msbfτ (t), our method is based on the demand bound function for a
task set. msbfτ (t) is built by intervals and is proved that in each interval there are
no deadline misses. Thus, msbfτ (t) will be generalized.

Theorem 3.3.3. Let t1 ∈ N so that:

t1 − dbfτ (t1) = min
t

(t− dbfτ (t)) ∀t ∈ (0, lcmτ]

And,

msbfτ (t) =

t− t1 + dbfτ (t1) if t ∈ [t1 − dbfτ (t1), t1],

0 if t ∈ [0, t1 − dbfτ (t1)).

If sbfR(t) = msbfτ (t) then τ is schedulable.

Proof. The proof is based on adding a new task τn+1. This task can only be exe-
cuted when τ is not allowed to execute, that is, in [0, t1 − dbfτ (t1)) and is demon-
strated that the new set is schedulable. Then, computation time of τn+1 is increased
in order to check that the new set is not schedulable.

67

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Let
τ ′ = τ

⋃
τn+1

where

Cn+1 = t1 − dbfτ (t1)

Dn+1 = t1 − dbfτ (t1)

Tn+1 = max{φ1, ..., φN}+ 2 · lcmτ

φn+1 = 0

To prove schedulability of τ ′, the condition dbfτ ′(t) ≤ t must be met in all the
scheduling points in [0, t1]. Let us assume that a is a scheduling point in [0, t1]. If
a < Dn+1, obviously dbfτ ′(a) = dbfτ (a) ≤ a. If a ≥ Dn+1 the demand bound
function of the new task set τ ′ is:

dbfτ ′(a) = dbfτ (a) + Cn+1

= dbfτ (a) + t1 − dbfτ (t1)

As t1 − dbfτ (t1) = min
t

(t− dbfτ (t)) then

t1 − dbfτ (t1) ≤ (a− dbfτ (a))

So,

dbfτ ′(a) ≤ dbfτ (a) + a− dbfτ (a)

≤ a

Now, let us assume
τ ′′ = τ

⋃
τn+1

and

Cn+1 = t1 − dbfτ (t1) + ε

Dn+1 = t1 − dbfτ (t1) + ε

Tn+1 = max{φ1, ..., φN}+ 2 · lcmτ

φn+1 = 0

being ε a small positive number such that 0 < ε ≤ 1.

68

3.3 Schedulable CPU supply functions

Following the same reasoning:

dbfτ ′(t1) = dbfτ (t1) + t1 − dbfτ (t1) + ε

= t1 + ε

so τ ′′ is not schedulable.

As a result of the previous theorem, msbfτ (t) until t1, expressed as a set of
intervals, is msbfτ (t) = I0 = [t1− dbfτ (t1), t1]. Using a similar approach the next
interval will be derived.

Lemma 3.3.3. Let t2 ∈ N, t1 < t2 so that:

t2 − dbfτ (t2) = min
t

(t− dbfτ (t)) ∀t ∈ (t1, lcmτ]

And

msbfτ (t) =

t− t1 + dbfτ (t1) if t ∈ [t1 − dbfτ (t1), t1],

dbfτ (t1) if t ∈ (t1,

t2 − dbfτ (t2) + dbfτ (t1))

t− t2 + dbfτ (t2) if t ∈ [t2 − dbfτ (t2)

+dbfτ (t1), t2],

0 if t ∈ [0, t1).

If sbfR(t) = msbfτ (t) then τ is schedulable.

Proof. Schedulability in [0, t1] is assured due to Theorem 3.3.3. Following the
same reasoning as Theorem 3.3.3, a task whose computation time coincides with
the idle time between I0 and SI1 is added and its deadline is equal to the start time
of I1 (s1).

Let
τ ′ = τ

⋃
τn+1

⋃
τn+2

where

Cn+1 = t1 − dbfτ (t1)

Dn+1 = t1 − dbfτ (t1)

Tn+1 = max{φ1, ..., φN}+ 2 · lcmτ

φn+1 = 0

69

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Cn+2 = t2 − dbfτ (t2) + dbfτ (t1)− t1
Dn+2 = t2 − dbfτ (t2) + dbfτ (t1)

Tn+2 = max{φ1, ..., φN}+ 2 · lcmτ

φn+2 = t1

Let us assume that a is a scheduling point in (t1, t2]. If a < Dn+2, then
dbfτ (a) = dbfτ ′(a), so the new task set is schedulable. If a ≥ Dn+2, follow-
ing the same reasoning as in Theorem 3.3.3, the computation time of τn+1 and τn+2

is added to sbfτ ′(t):

dbfτ ′(a) = dbfτ (a) + t1 − dbfτ (t1)+

+ t2 − dbfτ (t2) + dbfτ (t1)− t1
= dbfτ (a) + t2 − dbfτ (t2)

Given

t2 − dbfτ (t2) ≤ (a− dbfτ (a))

that

dbfτ ′(a) ≤ dbfτ (a) + a− dbfτ (a)

≤ a

Theorem 3.3.3 and Lemma 3.3.3 provide a method for obtaining the first two
intervals of msbfτ (t) function and it has been proved that this function is schedu-
lable. Figure 3.7 shows graphically how the function is obtained.

It is straightforward to recursively construct all the minimum supply slots needed
by τ to maintain feasibility: finding tj points in where it holds that tj − dbfτ (tj) is
the minimum value in (tj−1, lcmτ]. These points are called the minimum schedul-
ing points tj . Therefore, the msbfτ (t) is defined as in Definition 3.2.1 but now
specific values are given to sj and ej:

70

3.3 Schedulable CPU supply functions

Figure 3.7: Calculation of msbfτ (t) in [0, t2]

msbfτ (t) =

j∑
i=0

(ei − si) + t− ej if ∃j/t ∈ [sj, ej],

j∑
i=0

(ei − si) if ∃j/ej < t < sj+1.

where sj = tj − dbfτ (tj) + dbf(tj−1) and ej = tj .
Replacing the values of sj and ej in the previous definition:

j∑
i=0

(ei − si) = t1 − t1 + dbfτ (t1)− dbf(t0)+

+t2 − t2 + dbfτ (t2)− dbf(t1) + ...

Assuming that t0 = 0 and dbfτ (0) = 0:

j∑
i=0

(ei − si) = dbfτ (tj)

Therefore, a more compact definition for msbfτ (t) is provided.

71

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Definition 3.3.3. The definition of the minimum supply bound function msbfτ (t)
is:

msbfτ (t) =

t− tj + dbfτ (tj) if ∃j/t ∈ [sj, ej],

dbfτ (tj) if ∃j/ej < t < sj+1.

The algorithm that implements the slot construction is presented in Listing 3.2.

Listing 3.2: msbfτ (t) algorithm

1 function msbf(τ) is
2 i , ei,si,t1,t2=0;
3 while(t2<lcmτ) loop
4 t2= min

ei<t≤lcmτ
(dbfτ (t));

5 si = t2 − dbfτ (t2) + dbfτ (t1);
6 ei = t2;
7 t1 = t2;
8 i ++;
9 end while;

10 end msbf;

The previous function is obtained from dbfτ (t) in Definition 2.2.2, particular-
ized for synchronized tasks. If we assume the possibility of asynchronism between
tasks (i.e., φi 6= 0), this algorithm is also valid due to the inclusion of the offset
in Definition 3.2.2. If a task set is synchronous, Definition 2.2.2 will be applied to
obtain dbfτ (t) and, consequently, msbfτ (t). However, if any task does not start at
the same time as others, then another dbfτ (t) will be obtained because of this offset
and, consequently, other msbfτ (t), which will also meet the criteria of schedula-
bility of all tasks.

The previous algorithm works over the entire hyperperiod (lcmτ), which de-
pending on the values of task periods can be a large value. To overcome this disad-
vantage, the results presented in [?] could be used, where an algorithm to compute
the minimum hyperperiod for a set of periodic activities when period is specified
as a range is presented . If, in spite of considering periods as specific values, they
are treated as ranges of valid values, [?] will select the value inside each inter-

72

3.3 Schedulable CPU supply functions

val which causes the minimum hyperperiod. This method drastically reduces the
hyperperiod.

As noted in the conclusions section, we are working on an upper bound of
msbf(τ) to reduce the complexity of the algorithm.

Once msbfτ (t) is obtained, the following theorem provides the schedulability
condition of {τ, R}.

Theorem 3.3.4. A task set τ is schedulable under a CPU supply R if and only if:

∀t sbfR(t) = msbfτ (t)

Proof. It is proved for any time point a :

msbfτ (a) ≥ dbfτ (a) ∀a ∈ [0, lcmτ]

Two cases are assumed:

• Case 1: a /∈ [sj, ej].

• Case 2: a ∈ [sj, ej].

Case 1: If a /∈ [sj, ej], then ∃j so ej < a < sj+1. Applying the second case in
the msbfτ (t) definition:

msbfτ (a) = dbfτ (a)

Case 2: If a ∈ [sj, ej], applying the first case of the msbf definition:

msbfτ (a) = a− tj + dbfτ (tj)

As dbfτ (t) is a positive and monotonic increasing function it holds that [?]:
If a ≤ tj then dbfτ (a) ≤ dbfτ (tj)

And, as τ is schedulable then dbfτ (tj)− tj ≤ 0.
Therefore:

msbfτ (a) ≥ dbfτ (a)− dbfτ (tj)− tj
≥ dbfτ (a)

73

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

In any case: msbfτ (a) ≥ dbfτ (a).

3.3.2.1 Example of msbfτ (t) use

Let us consider a partition with three tasks (τ = {τ1, τ2, τ3}). Task parameters are
listed in Table 3.1. Figure 3.8 shows the execution chronogram for the task set
scheduled under EDF policy if the partition is the only one in the system, that is,
the CPU supply is a unique slot I0 = [0, 30]. As the figure shows, the task set is
schedulable since there are no missed deadlines throughout the hyperperiod (lcmτ).

Figure 3.8: Execution chronogram of τ with R = I0 = [0, 30]

Let us consider now that there are more partitions in the system so the SI assigns
to the considered partition a CPU supply R which matches the msbfτ (t).

To find out whether the CPU supply R is able to successfully schedule the task
set, msbfτ (t) is obtained. The methodology, as explained in previous sections,
consists of calculating the minimum t − dbfτ (t) in [0, lcmτ]. Table 3.5 shows
t− dbfτ (t) for all the scheduling points in [0,30].

Table 3.5: Scheduling points

t 4 9 10 14 19 21 24 25 29
dbfτ (t) 1 2 8 9 10 15 16 22 23
t− dbfτ (t 3 7 2 5 9 6 8 3 6

The scheduling point with the minimum slack (t− dbfτ (t)) is t1 = 10. There-
fore, according to Theorem 3.3.3, the first slot ofmsbfτ (t) is I0 = [t1−dbfτ (t1), t1] =

[2, 10].

74

3.3 Schedulable CPU supply functions

In the second iteration, the next scheduling point with the minimum slack must
be searched in (10,30]. This point is t2 = 25. Therefore, the next slot of msbfτ (t)
is I1 = [t2 − dbfτ (t2) + dbfτ (t1), t2] = [11, 25].

In the third and last iteration, it is clear that t3 = 29 as it is the only remaining
scheduling point in (25, 30]. Therefore I2 = [t3−dbfτ (t3)+dbfτ (t2), t3] = [28, 29].
Table 3.6 summarizes the slots of msbfτ (t) and the representation of the function
is depicted in Figure 3.9.

Table 3.6: Minimum supply bound

si ei

I1 2 10
I2 11 25
I3 28 29

Figure 3.9: Representation of msbfτ (t)

The execution chronogram of the task set considering that the CPU supply R
coincides with the minimum supply calculated is depicted in Figure 3.10. It is seen
in the figure that the task set is schedulable and this slots assignment are the more
restrictive ones, since if any slot is reduced, task τ2 will miss its deadline.

75

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.10: Execution chronogram of τ with R = msbfτ (t)

As sbfR(t) = msbfτ (t), the task set is schedulable. It is depicted in Fig-
ure 3.10. Finally, it has become clear the schedulability analysis exposed in sec-
tion 3.5.

76

3.4 Schedulable areas

3.4 Schedulable areas
In this section, information about the schedulability of sbfR(t) depending on its
relationship with gsbfτ (t) and msbfτ (t) is obtained.

Both gsbfτ (t) and msbfτ (t) are minimum supply functions in the sense that
both supply the minimum instants of CPU to assure schedulability of τ .

In Figure 3.11, three zones according to the relation between msbfτ (t) and
gsbfτ (t) are depicted:

• Zone 1: This area depicts CPU supply R functions that are greater than
gsbfτ (t) and, consequently, greater than msbfτ (t).

• Zone 2: This area depicts CPU supply R functions that are betweenmsbfτ (t)
and gsbfτ (t).

• Zone 3: This area depicts CPU supply R functions that are lesser thanmsbfτ (t).

Figure 3.11: Zones according to the position of msbfτ (t) and gsbfτ (t)

For the periodic resource model with D=T (periodic sbfR(t)) any sbfR(t) lo-
cated in Zone 1 and 2 is schedulable whereas any sbfR(t) located in Zone 3 is not
([?]). However, as the following counterexamples show, this is no longer true if
the slot assignation is arbitrary.

77

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

3.4.1 ZONE 1: CPU supply R greater than gsbfτ (t) and, conse-
quently, msbfτ (t)

Some might think that any sequence of slots whose characteristic function sbfR(t)

is greater than gsbfτ (t) and, consequently, msbfτ (t), would assure the schedula-
bility of task set τ . The next example is used to refute this theory.

Let us consider the partition whose tasks are defined in Table 3.1. Let us con-
sider now that there are more partitions in the system so the SI assigns to the con-
sidered partition a CPU supply R shown in Table 3.7.

Table 3.7: CPU supply R

si ei

I1 0 5
I2 7 25
I3 29 30

The msbfτ (t) of the task set is calculated following the description in Section
3.3.2 and, representing in the same graph msbfτ (t) and sbfR(t), it is observed that
sbfR(t) is always above or equal to msbfτ (t) (see Figure 3.12).

Figure 3.12: Graphical representation of dbfτ (t),msbfτ (t) and sbfR(t)

78

3.4 Schedulable areas

However, as can be seen in Figure 3.13, this task set is not schedulable in par-
tition R defined by sbfR(t). τ0 misses its deadline in its fifth activation. τ0 is
activated in time = 25u.t. and the next deadline is in time = 29u.t.. Inside the
interval [25,29], there is no CPU supply R. So, the task set is not schedulable.

Although sbfR(t) is above msbfτ (t), the partition must be defined in such a
way as to guarantee the that every task meets the deadlines. If, from the request of
a task until the arrival of the corresponding deadline, the task does not have enough
time to being executed entirely, the system will not be schedulable, as occurs in the
previous situation.

Figure 3.13: Execution chronogram of τ with R in Table 3.7

The same happens with gsbfτ (t). Therefore, the idea of ensuring the schedula-
bility of a task set whenever sbfR(t) is greater than gsbfτ (t) is rejected.

Let us consider the task set in Table 3.1 and the CPU supply in Table 3.8. As
Figure 3.14 shows, sbfR′(t) is always greater than or equal to gsbfτ (t) but, as
Figure 3.15 shows, the task set is not schedulable.

Table 3.8: CPU supply R’

si ei

I1 0 25
I2 29 30

3.4.2 ZONE 2: CPU supply R between msbfτ (t) and gsbfτ (t)
Now, let us suppose another scenario: msbfτ (t) ≤ sbfR(t) ≤ gsbfτ (t) used to
check that one sbfR(t), which is defined between gsbfτ (t) and msbfτ (t), does not
necessarily assure the schedulability of the task set. It depends on how the function
is defined and if the deadlines are met or not.

79

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.14: Graphical representation of Gτ (t), gsbfτ (t) and sbfR′(t)

Figure 3.15: Execution chronogram of τ with R′ in Table 3.8

80

3.4 Schedulable areas

Let us define a partition defined by the tasks τ ′ in Table 3.9 and the CPU supply
R” in Table 3.10.

Table 3.9: Task parameters τ ′

Ci Di Ti

τ ′0 2 8 10
τ ′1 5 10 25
τ ′2 7 40 50

Table 3.10: CPU supply R”

si ei

I1 2 16
I2 21 25
I3 32 39
I4 43 44
I5 45 46

Calculating all the functions as described in previous sections, Figure 3.16
shows msbfτ ′(t) ≤ sbfR′′(t) ≤ gsbfτ ′(t) ∀t. However, Figure 3.17 shows that
τ ′ is not schedulable, because τ ′1 misses its deadline in its second activation.

3.4.3 ZONE 3: CPU supply R less than msbfτ (t)
According to the definition of msbfτ (t), it is the most restrictive function for
scheduling a task set. If any supply CPU R is lesser than msbfτ (t), the task set
will not be schedulable.

Let us define now a CPU supply, R”’, shown in Table 3.11 and task set τ ′.
As Figure 3.18 shows, if sbfR′′′(t) ≤ msbfτ ′(t), in the minimum scheduling

points, the CPU supply will not be enough to schedule the tasks. This is because at
these points, sbfR′′′(t) ≤ dbfτ ′(t).

All these counterexamples show that, in contrast to what we might think, the
schedulability of a task set is not constrained by being in Zone 2. However, a task
set will not be schedulable if its sbfR(t) is less than msbfτ (t), that is, Zone 3.

81

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.16: Graphical representation of msbfτ ′(t), gsbfτ ′(t) and sbfR′′(t)

Figure 3.17: Execution chronogram of τ ′ with R′′ in Table 3.10

Table 3.11: CPU supply R”’

si ei

I1 4 10
I2 12 13
I3 17 18
I4 26 30

82

3.4 Schedulable areas

Figure 3.18: Graphical representation of msbfτ ′(t) and sbfR′′′(t)

As it has been demonstrated, the condition sbfR(t) ≥ msbfτ (t) it is not enough
because sbfR(t) can increase at the beginning and have a long idle interval and still
be above msbfτ (t) and miss deadlines during the long idle interval. However, a
periodic resource R = (θ, π) ensures θ units of resource every π units of time.
This, jointly with the condition sbfR(t) ≥ msbfτ (t) ensures that the processor is
assigned to τ whenever it is needed to not miss deadlines.

In an arbitrary CPU supply, it must be ensured that sbfR(t) provides enough
CPU time from time to time but not necessarily periodically. With this idea, the
objective of the next section is to provide a schedulability test using gsbfτ (t) and
msbfτ (t).

83

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

3.5 Schedulability analysis
Theorems 3.5.1 and 3.5.2 provide two alternative schedulability tests.

Let us use the definition of the sbfR(t) in definition 3.2.1 andmsbfτ (t) function
in definition 3.3.3.

Theorem 3.5.1. Let sbfR(t) be a function so that:

msbfτ (t) ≤ sbfR(t) ≤ t

and, moreover, sbfR(t) increases, at least, at the same time intervals as msbfτ (t).

Then, τ is schedulable in R.

Proof. It has been demonstrated that any sequence of slots sbfR(t) that coincides
with msbfτ (t) ensures the schedulability of {τ, R} (Section 3.3.2). So, if a se-
quence of slots supplies CPU time at the same time as msbfτ (t) and also supplies
it at another extra time, obviously, the task set will also be schedulable.

In other words, any function sbfR(t) that is above msbfτ (t) and, moreover,
increases, at least, at the same time intervals as msbfτ (t), will be schedulable.
Then, the gradient of sbfR(t) has to be equal to the gradient of msbfτ (t) at least in
[sj, ej] to be schedulable, that is, both functions have to be parallel lines at least in
that interval. See Figure 3.19.

The extra time mentioned previously represents CPU idle time.

Lemma 3.5.1. If msbfτ (t) ≤ sbfR(t) and sbfR(t) increases, at least, at the same
time intervals as msbfτ (t), then the number of units of time that the CPU is idle
are calculated as follows:

CPU_idle_time =
∑
∀n

[en − sn]−
∑
∀j

[ej − sj]

This situation can be illustrated by the following example. For the task set
defined in Table 3.1, the msbfτ (t) is obtained in Section 3.3.2.1 and the execution
chronogram when sbfR(t) = msbfτ (t) is depicted in Figure 3.10.

84

3.5 Schedulability analysis

Figure 3.19: Conditions of schedulability in {τ,R}

Let us suppose another situation: an sbfR(t) that is greater than the previously
calculated msbfτ (t). Moreover, it also increases in the same intervals as msbfτ (t)
and also in other extra intervals, as shown in Figure 3.20.

In this figure, msbfτ (t) is depicted in red and sbfR(t) is depicted in blue. It
is further observed that sbfR(t) increases at the same time as msbfτ (t), that is,
time intervals in grey. In addition, there are other time intervals in which sbfR(t)

increases but msbfτ (t) does not. They are highlighted in green.
Figure 3.21 shows the task set is schedulable in {τ, R} but there is CPU idle

time. In fact, there is as much idle time as time instants when sbfR(t) increases but
msbfτ (t) does not.

So, the methodology for determining whether a function sbfR(t) ensures the
schedulability of τ is:

1. Calculate the msbfτ (t) for the task set, τ , and express it as set of intervals
Ij = [sj, ej] where the function increases.

2. Express sbfR(t) as a set of intervals IR = [sR, eR] in which the function
increases.

3. Check if Ij ⊆ IR, that is, sR ≤ sj ≤ ej ≤ eR, ∀j, R.

The same happens with gsbfτ (t). Let us use the definition of gsbfτ (t) in defi-
nition 3.3.2.

85

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.20: Example of schedulability in {τ,R}

Figure 3.21: Chronogram execution of schedulability in {τ,R}

86

3.5 Schedulability analysis

Theorem 3.5.2. Let sbfR(t) be a function so that:

gsbfτ (t) ≤ sbfR(t) ≤ t

and, moreover, sbfR(t) increases, at least, at the same time intervals in as
gsbfτ (t).

Then, τ is schedulable in R.

Proof. In Section 3.3.1 it has been demonstrated that any sequence of intervals,
R, defined by sbfR(t) that coincides with gsbfτ (t) will ensure the schedulability
of {τ, R}. If, in addition to these intervals, other time instants are added to R,
obviously τ will be also schedulable.

In other words: any sbfR(t) greater than gsbfτ (t) and, whose gradient coin-
cides with the gradient of gsbfτ (t) in [sj, ej] coincides. See Figure 3.22.

Figure 3.22: Conditions of schedulability in {τ,R}

The additional time instants in which sbfR(t) increases but gsbfτ (t) does not,
represent the idle time of CPU.

87

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Lemma 3.5.2. If gsbfτ (t) ≤ sbfR(t) and sbfR(t) increases, at least, at the same
time intervals as gsbfτ (t), then the number of units of time that the CPU is idle are
calculated as follows:

CPU_idle_time =
∑
∀n

[en − sn]−
∑
∀j

[ej − sj]

This situation can be illustrated by the following example. For the task set
defined in Table 3.1, the gsbfτ (t) is obtained in Section 3.3.1.1 and the execution
chronogram when sbfR(t) = gsbfτ (t) is depicted in Figure 3.6.

Let us suppose another situation: an sbfR(t) that is greater than the previously
calculated gsbfτ (t). Moreover, it also increases in the same intervals as gsbfτ (t)
and in other extra intervals, as shown in Figure 3.23.

Figure 3.23: Example of schedulability in {τ,R}

In this figure, gsbfτ (t) is depicted in red and sbfR(t) is depicted in blue. It is
further observed that the sbfR(t) increases at the same time as gsbfτ (t), that is,
time intervals in grey. In addition, there are other time intervals in which sbfR(t)

increases but gsbfτ (t) does not. They are highlighted in green.
As Figure 3.24 shows, the task set is schedulable in {τ, R} but there is CPU idle

time. In fact, there is as much idle time as time instants when sbfR(t) increases but
gsbfτ (t) does not.

88

3.5 Schedulability analysis

Figure 3.24: Chronogram execution of schedulability in {τ,R}

So, the methodology to be followed to determine if a function sbfR(t) ensures
the schedulability of τ is the same as the case of msbfτ (t):

1. Calculate the gsbfτ (t) for task set, τ , and express it as set of intervals Ij =

[sj, ej] where the function increases.

2. Express sbfR(t) as a set of intervals IR = [sR, eR] in which the function
increases.

3. Check if Ij ⊆ IR, that is, sR ≤ sj ≤ ej ≤ eR,∀j, R.

In this section, a condition of schedulability has been proposed. In previous
sections, two different schedulability algorithms have been presented (msbfτ (t)
and gsbfτ (t)) and, now, a way of checking the schedulability of any sequence of
slots by comparing to these functions has been suggested.

It can be concluded that not all the sbfR(t) greater than msbfτ (t) or gsbfτ (t)
will ensure the schedulability of {τ, R} but, in the specific above-mentioned con-
ditions, it will.

89

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

3.6 Experimental results
The main purpose of this section is to establish a relation between any sbfR(t)

and the msbfτ (t) or gsbfτ (t), to ensure the schedulability of τ in R. What was
demonstrated in previous sections is that, if sbfR(t) is equal to or grows at the same
time as msbfτ (t) or gsbfτ (t), τ will be schedulable in R, as proven in previous
sections.

Our first hypothesis consisted in the fact that any sbfR(t) function greater than
msbfτ (t) or gsbfτ (t) would guarantee the feasibility of τ in R. In Section 3.4,
this theory has been rejected. Moreover, in that section, we differentiated the
three zones in accordance with the position of sbfR(t) in relation to msbfτ (t) and
gsbfτ (t) (Figure 3.11).

In this section, the percentage of schedulable task sets according to the zone
where sbfR(t) is located is calculated. To this end, a simulator that generates and
evaluates different hierarchical systems is developed. It consists of the following
operations:

a) Generation of the temporal model. The first step consists of generating the
temporal model τ from the utilization system, U (0 ≤ U ≤ 1), and the
number of tasks nT that belong to that system. Algorithm UUnifast [?]
requires as input the number of tasks nT and the total system utilization U
and provides the utilization of each task. The UUnifast algorithm is used for
generating random task utilizations. This efficient algorithm allows variable
independence and generates unbiased utilization values. For these reasons, it
has been widely used for researchers since 2005.

b) Generation of gsbfτ (t) and msbfτ (t) functions from previous definitions.

c) Generation of different sequences of slots sbfR(t) and execute the system in
the time given by these slots. Generation of the temporal plan.

Other useful parameters calculated are the ICI, maximum idle interval in gsbfτ (t)
and msbfτ (t), relation between the growth of sbfR(t) and the growth of gsbfτ (t)
and msbfτ (t), the position of sbfR(t) with regard to gsbfτ (t) and msbfτ (t), etc.

Moreover, previous steps can also be applied to a specific tasks set, as the one
previously defined in Table 3.7. In order to make reading easier, the task set is
rewritten below:

90

3.6 Experimental results

si ei

I1 0 5
I2 7 25
I3 29 30

Then, two situations are simulated:

• For the task set in Table 3.7, we generate different random sequences of
slots, that is, sbfR(t), and we check the schedulability of the task set in R.
The sbfR(t) generated is totally random so that the function generated can
be contained in any of the zones mentioned before.

After 300000 random sets generated, the results are as follows:

– In cases where sbfR(t) < msbfτ (t), τ is never schedulable in R, as
stated in Theorem 3.5.1.

– In cases where msbfτ (t) ≤ sbfR(t) < gsbfτ (t), the percentage of task
set τ schedulable in R is 76.30%.

– In cases where sbfR(t) > gsbfτ (t), the percentage of task set τ schedu-
lable in R is 72.45%.

On the basis of the results, it is deduced that although percentages are quite
similar, the greater the sbfR(t), the more probability that τ will be non-
schedulable. In other words, supplying more computation time than the time
defined by msbfτ (t) or gsbfτ (t) does not imply that the task set is schedula-
ble.

• We generate n task sets for each utilization factor Ut in [0.4, 0.9], with4Ut =

0.1. With n = 300000 iterations, the results are as follows:

– In cases where msbfτ (t) ≤ sbfR(t) < gsbfτ (t), the percentage of task
set τ schedulable for each utilization factor is depicted in Figure 3.25.

– In cases where sbfR(t) > gsbfτ (t), the percentage of schedulable task
set τ for each utilization factor is depicted in Figure 3.26.

91

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.25: % schedulable τ in msbfτ (t) ≤ sbfR(t) < gsbfτ (t)

Figure 3.26: % schedulable τ in sbfR(t) > gsbfτ (t)

92

3.6 Experimental results

According to the results, we can deduce that the utilisation factor is indepen-
dent of the feasibility of the proposed method; that is, the fraction of time that
the processor is busy does not contribute to a better or worse schedulability.
And, moreover, as shown in the previous situation, the longer the sbfR(t),
the more probability that τ will be non-schedulable (5% approximately).

3.6.1 Utilities of msbfτ (t) applied to partitioned systems

As already mentioned at the beginning of this chapter, there are some situations
that make necessary the arbitrary assignment of time to a partition in the global
level. An example is the addition of a new partition in a partitioned system. This
new partition must match the global idle time and be schedulable, with the purpose
of not recertificating the overall system, but only this new partition.

For example, 3.27 shows a partitioned system composed of two partitions and
the time (in black) that the SI has to serve to the system to be schedulable. If a
new partition P2 has to be added (Figure 3.28), there is no need to re-certificate the
overall system, but only the new partition P2. Thus, the P2 has to be scheduled in
the idle time (in red) of the existing system.

(a) Par-
titioned
system

(b) Global scheduling plan

Figure 3.27: Original allocation (a). Busy time in black and idle time in red (b)

From Figure 3.27(b) it is easy to identify the idle time available for the new
partition. It is calculated in the form of ranges in Table 3.12.

Assuming that the intervals defined in Table 3.12 define a supply bound func-
tion, sbfR(t), it is possible to generate a task set whose msbfτ (t) coincides with
sbfR(t).

93

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Figure 3.28: Addition of a new partition (in red)

Table 3.12: Idle intervals from Figure 3.27(b)

si ei

I1 0 3
I2 15 19
I3 21 25
I4 37 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

time

dbf
τ
(t)

msbf
τ
(t)

sbfR(t)
Slots

Figure 3.29: Generation of msbfτ (t) from sbfR(t)

94

3.6 Experimental results

If msbfτ (t) = sbfR(t), a simple dbfτ (t) can be calculated and, consequently,
a task set that accomplish these temporal parameters. A simple task set that sat-
isfies the deduced dbfτ (t) could be the one defined in Table 3.13. As is seen in
Figure 3.29, the time slots that this task set requires to being executed coincides
with the idle time slots in Figure 3.27.

Table 3.13: Task parameters τ ′′

Ci Di Ti

τ ′′0 3 3 40
τ ′′1 4 19 40
τ ′′2 4 25 40
τ ′′3 3 40 40

In this way, from msbfτ (t) it is possible to calculate a task set that, allocated in
a new partition, satisfies temporal requirements of an existing system.

3.6.2 Comparison of the minimum CPU supply function with
other similar methods

As stated in the introduction, there are no works related to the analysis of arbitrary
global CPU. Nevertheless, our methods can be compared with other works that
assume a periodic supply at this level, because our model could be applied in the
case of any known existing server in the global level. Specifically, [?] presents
a schedulability analysis for a periodic supply (R=(θ, π)) at global level (Di =

Pi ∀i) and EDF at local level with the following condition:

∀0 < t < lcmτ dbfτ (t) ≤ sbfR(t)

The reader is reminded that a periodic supply (R=(θ, π)) provides θ units of
time each π units. For more information, review Section 3.2.1.

In this paper, to find out whether a specific periodic supply R successfully
schedules a set of tasks, the above equation must be simulated to obtain a solu-
tion space for θ and π. Shin and Lee [?] solved this equation for the following set
of tasks 3.14:

95

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

Table 3.14: Task parameters τ ′′′

Ci Di Ti

τ ′′′1 7 50 50
τ ′′′2 9 75 75

In their work, Shin and Lee proposed a method to find the smallest when θ for
any given resourceπ. For example, when π = 10, the minimum θ that guarantees
the schedulability of the task set was 2.8.

In this section, the minimum θ using our msbfτ (t) is obtained. Using the same
task set defined in Table 3.14, the characteristic points are t1 = 50, t2 = 75, t3 =

100 and t4 = 150. At these points the values of msbfτ ′′′ (t) are: msbfτ ′′′ (t1) = 7,
msbfτ ′′′ (t2) = 16, msbfτ ′′′ (t3) = 23 and msbfτ ′′′ (t4) = 39.

it has to be assured that any periodic sbfR(t) with a period of 10 must be on
top of msbfτ (t) at the characteristic points. Therefore, at t1, 7 units of time have at
least been served. It is easy to see that to fulfil this condition, at t1 then:

θ =
msbfτ ′′′ (t1)

t1
π

=
7
50
10

= 1.4.

Repeating this procedure for other scheduling points and choosing the maxi-
mum θ of all, then θ = 2.6. This value is lower that the one calculated by Shin
and Lee, which means that their proposal is an approximation and not an exact cal-
culation. In fact, for θ = 2.5 the task set is not schedulable. Figure 3.30 shows
the comparison between msbfτ ′′′ (t) and the periodic supplies with the minimum θ

calculated by Shin and Lee and by us.

96

3.6 Experimental results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

time

msbf
τ
(t)

sbfR(t) (2.8,10)
sbfR(t) (2.6,10)

Figure 3.30: Comparison between two periodic supplies R=(2.6,10) and R=(2.8,10)
and msbfτ ′′′ (t) for τ ′′′ = (τ ′′′1 (7, 50), τ ′′′2 (9, 75))

97

3. GENERATION OF OFFLINE PLANS IN REAL-TIME PARTITIONED
SYSTEMS.

3.7 Conclusions
This section considers the case of a two level hierarchical real-time system, where
local level tasks tasks are scheduled under EDF policy whereas the global level
does not follow a known scheduling policy and the only information is provided as
a set of CPU slots. This situation occurs in a partitioned system when CPU slots
are provided by the system architect to the partition developer.

The first contribution is the calculation of CPU supply functions that ensure the
schedulability of task sets; specifically, two different functions are defined: firstly,
a CPU supply which offers CPU when tasks are released (gsbf) and, secondly, a
CPU supply which offers CPU as late as possible (msbf), meeting the deadlines in
both situations and providing the minimum CPU.

This chapter also provides a schedulability analysis of a task set, relating any
CPU supply with the functions mentioned before. In other words, the proposed
method can be used to check if a set of time intervals provided by the SI can be
accepted by the PD or not.

Another contribution of previous functions is the possibility of using the mini-
mum time a partitioned system needs to be completely executed in order to use its
idle time to execute another partition. Thanks to this proposal, it is possible to use
all CPU, exploiting the time that previously was idle in order to execute another
partition. In next chapter, it will be observed that the calculus of the minimum
time that a partition needs to be executed (msbf) offers advantages also in terms of
energy savings.

Moreover, as slots are arbitrary, our model can also be used with any existing
server in the global level. Thus, our model is a generalization of any scheduling in
the global level.

98

CHAPTER

4
Energy saving techniques in

partitioned systems

Energy saving has become an important issue in modern computing systems.
In battery operated devices, like autonomous mobile robots, industrial controllers,
wearable devices, mobile phones, etc. a lower energy consumption can lead to a
longer lifetime or higher performance. Moreover, to control on-chip temperature
and heat dissipation has become an important aspect in microprocessors. These fac-
tors make necessary some techniques to ensure an efficient management of power
consumption. This chapter deals with energy management techniques in parti-
tioned systems. The outline of this chapter is established as depicted in Figure 4.1.

99

4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Figure 4.1: Chapter 4 layout

100

4.1 Introduction and objectives

4.1 Introduction and objectives
Energy management is a very active research area in the recent years. In fact, en-
ergy minimization is a main requirement in the design phase of embedded systems.
It will increase the reliability and decrease the heat dissipation of the system, pro-
viding a longer lifetime of battery-powered embedded systems.

In MCS context, energy management has been introduced in very few papers
as stated in Section 2.6. All these works make some assumptions that do not satisfy
the requirements of this work. For this reason, the objective of this chapter is to
propose new energy saving strategies in the context of partitioned multicore MCS.

This chapter consists of two clearly differentiated parts: first part proposes an
heuristic algorithm that saves energy in a partitioned system in which different
criticality levels exist. This heuristic algorithm rests on a practical simulator, that
consists of a synthetic task and partition generator and implements the energy ef-
ficient allocator algorithm and the different strategies that will be introduced later.
This algorithm is also valid in a system with only one criticality level. After the
simulations, these strategies have been implemented in an commercial integrated
editor and analysis tool, Xoncrete, that performs the schedulability analysis of a
partitioned system.

The second part solves the problem of finding the optimal energy consumption
in a partitioned system from a theoretical point of view. First, a model that best
fits the relation between time and frequency is defined, after evaluating the clas-
sical model existing in literature. Then, the system utilization-frequency-energy
model is defined and studied in order to find the optimal energy consumption of the
system.

First and foremost, as this chapter does not follow classical models as Vestal’s,
the proposed task and power models have to be defined. Also the typical consider-
ations in MCS are stated in the following.

101

4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

4.2 Assumptions and model
This section presents the model typically used in the design of MCS and the lim-
itations that this model has for our requirements. Next, we discuss some methods
that provide schedulability analysis in MCS with energy saving purposes and why
they also fail to meet our requirements. Finally, the model that will be followed in
this work is presented.

4.2.1 Vestal model and MCS state of the art
This section first presents the current model, which is typically used in mixed-
criticality systems. Vestal [?] defined a task τi as an implementation of different
functions and was defined as τi = {ci, Ti, πi, Ci, Di}. ci refers to the criticality
level of the task, Ti refers to the period, πi is the task priority, Ci is the worst case
execution time (WCET) of the task and Di, its deadline. The WCET is denoted as
a vector of values of WCET, in which each value corresponds to a criticality level.
As usually two levels of criticality are considered (HI and LO), Ci = (CLO

i , CHI
i),

beingCHI
i more conservative thanCLO

i . At runtime, the system starts the execution
with LO operation mode and has to ensure deadlines for HI and LO tasks. If any HI
task overruns its CLO

i , the system will switch to HI operation mode and LO tasks
will be dropped to guarantee deadlines of HI tasks.

This model is based on multiple execution times and this assumption is a sub-
ject of discussion because it affects the practical usability of research results [?].
Considering two values of Ci requires two processes to measure them: a simpler
estimation process for CLO and a stringent process for CHI , with more pessimistic
assumptions. As the certification is a crucial aspect, the acceptance of two different
Ci through two different processes is a difficult issue. For example, if Certification
Authorities (CAs) accepts CLO for a HI critical task, there will not be need to add
pessimism and vice versa. If CAs accept CHI for a HI critical task, they will not
accept a lower value CLO that compromises the process.

Now, three state of the art mixed-criticality techniques focused on the schedula-
bility and energy efficiency on multicore systems are discussed. These three works
consider the Vestal model.

• Baruah’s method [?]. This work first solves the partition-to-cores allocation

102

4.2 Assumptions and model

following the next criteria: first, the algorithm allocates HI tasks in cores
using First-Fit (FF) algorithm. Then, it repeats the operation with LO tasks.
It has to be checked that system utilizations per mode do not exceed 3/4.
After mapping, EDF-VD [?] scheduling is applied to each core.

• Gu’s method [?]. This work first uses Worst-Fit (WF) packing strategy to
allocate HI tasks and tune the virtual deadlines to HI tasks in each processor.
Then it uses FF to allocate LO tasks.

These two methods are focused on improving system schedulability and not on
saving energy. They allow high utilization per core (i.e., using FF to maximize the
system utilization in each core) and this fact leaves little idle time in order to apply,
for example, DVFS techniques. On the contrary, next work is focused on exploring
energy savings.

• Narayana’s method [?]. This work studies a general energy minimization
problem for MCS on multi-cores, considering also different system operation
modes (HI and LO). It also introduces weight factors w, that represent the
percentage of time a task is in HI or LO mode (wHI +wLO = 1). This works
springs from previous methods, applying WF first to HI tasks and then to LO
tasks, with core utilizations upper-bounded by 3/4. Then, DVFS is applied
per core and EDF-VD is selected for scheduling. All this process is based
on a linear search in order to find the combination of task-to-cores with the
minimum energy consumption and minimum number of cores. They also
provide another method based on the isolation of tasks: HI tasks are allocated
to HI cores and LO tasks, to LO cores.

It is deduced from all this that these works consider that the system may change
from non critical state to high criticality if any HI task trespasses its CLO value.
As we are not considering WCETs as multiple values per task and neither do we
consider dynamic changes in the criticality of the tasks, we are not following this
model and these assumptions are non-applicable in our case. Thus, there is also
no point in having weight factors because each task is executed in only one mode
(with one WCET), so the probability of being executed in that mode is always 1.

As a reminder, this work considers a partition as a set of tasks being the partition
the unit that is allocated into a core. The overall system is a mixed-criticality par-
titioned system on multi-core, based on the Xtratum hypervisor (See Figure 4.2).

103

4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

XtratuM hypervisor (See Section 2.7) requires a static configuration file that in-
cludes, among others, the temporal requirements of the system. These are given as
a set of time slots per core, each of them characterized by its start time, duration
and the identifier of the partition that will be executed in this slot. For this reason,
all works that consider dynamic changes during execution time do not completely
meet our requirements. Neither the works that focus on energy management based
on dynamic techniques are suitable in our context.

Figure 4.2: General overview.

All previous requirements are imposed by the applications used in the avionics
and railway sector in order to meet ARINC 653 standard [?], since the results of
this research will be applied in H2020 project SAFEPOWER [?]. This project’s
goal is to enable the development of low power mixed-criticality systems through
the provision of a reference architecture, platforms and tools to facilitate the devel-
opment, testing, and validation of these kinds of systems according to the market
needs. In these experiments, intensive simulations have been performed to obtain a
large number of computation time measurements. Details about these experiments
can be found in [?].

Now, we are going to define the model that best fits our requirements.

104

4.2 Assumptions and model

4.2.2 Task model proposed
We consider a set of m heterogeneous cores M1..Mm. Each core can execute with
any g frequencies independently, within the range [f1, fg], being fg the highest
frequency of each core. As cores are heterogeneous, each of them works in a
different range of frequencies. However, for simplicity and to be able to adapt our
model to SAFEPOWER project requirements, we suppose that all cores work in
the same range of frequencies.

A set of p partitions P1..Pp are statically allocated to the cores. Each partition
Pi is defined by the pair Pi = (τ , L), where τ is the set of tasks and L is the criticality
level of the partition.

We define two criticality levels per partition [?]: HI (high) and LO (low). All
tasks that belong to the same partition have the same criticality level. HI partitions
have to be executed to completion in any condition and temporal constraints of
their tasks have to be fulfilled. LO partitions can be executed in some conditions,
depending on the impact caused in the system for not being executed. No temporal
constraints are identified but it is expected a bandwidth for them. If, in some cases,
they can be dropped, we call them disposable LO partitions (DLO). If they have to
be executed in any case they are called required LO partitions (RLO). But, even if
these partitions cannot be dropped, their bandwidth can be reduced if needed (for
energy saving purposes). Dropping and other operations will be introduced later.

Each partition Pi is composed of ni tasks τi = (τi1..τini). Each task τij is
characterized depending on its criticality:

• HI tasks are defined as τij = (Cij, Dij, Tij) where Tij is the period, Dij

is the deadline and it is supposed to be equal to Tij and Cij is the active
WCET. Active WCET of a task depends on the running processor frequency.
Thus, computation time of each task is denoted as an array [Cf1

ij , .., C
fg
ij] in

which Cfi
ij is the WCET estimated at frequency fi. A common assumption

is that both computation time and utilization change linearly with respect to
the inverse of the frequency ([?],[?]). This is only a simplification of the
problem.

There is no need that all tasks spend their WCETs in all executions. Thus, we
consider the WCET to do the analysis and it will ensure that any other value
will be supported by our study. In order to simplify the problem of shared

105

4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

resources among cores, we assume that the interference between cores is
treated, in terms of time, as a part of the WCET of each task. In recent works,
WCET is considered not to be fully scalable with the processor speed [?] [?
], because there are several operations that do not share the clock frequency
with the CPU. In these situations, WCET can be split in a fixed and another
variable portion.

The utilization of a task τij running at frequency fi is U fi
ij =

C
fi
ij

Tij
.

• LO tasks τij are characterized by their bandwidth ηij =
B
fi
ij

Tij
, where Bfi

ij is
the budget or WCET at frequency fi and Tij is the period of a task τij . The
utilization U fi

ij of a task τij running at frequency fi is ηij . In this sense,
we call equally bandwidth or utilization to the relation between computation
time and period. When a task is characterized by a bandwidth, what is known
is the relation between the WCET and period, but not their explicit values.
There are a lot of WCET-T combinations that provide the same bandwidth.

The computation time CPi of a partition Pi is the sum of the computation times
of the tasks that belong to that partition. Equally, the utilization of a partition is the
sum of the utilizations of all tasks that belong to that partition.

We may assume without loss of generality that all preemptions occur at integer
time values. We then assume, for the remainder of the work, that all parameters
are indeed integers. Denote that the internal partition context switch in taken into
account in the task computation. Moreover, core migration of a partition or a task
is not allowed.

Note that, as stated before, from the criticality point of view, our model is sim-
pler than Vestal’s model [?] in the sense that we assume the longest execution time
observed in testing as a unique WCET estimate for each frequency. The reason is
to avoid having a computation times matrix (two dimensions: for frequency and
criticality level). Vestal’s model also use the same term “criticality" to refer both to
the criticality of a task and the mode of operation [?]. We consider that the system
has different operational modes each one associated a static schedule. In Vestal’s
model, two different operational modes will differ only in the computation times.
In our model (based on ARINC-653 Part 2 [?]), each operational mode can have
associated a different set of tasks.

106

4.2 Assumptions and model

Regarding to the distribution of tasks and partitions to cores, methods presented
in this paper are able to solve two situations:

• On one hand, if all tasks belonging to the same partition are assigned to the
same core, the unit which is allocated to cores will be the partition.

• On the other hand, if all tasks of the same partition are assigned to different
cores, the allocation unit is the task.

Figure 4.3 shows in A the first situation, in which the different tasks of the same
partition are allocated to different cores. In B, all the tasks that belong to the same
partition are allocated to the same core. This is the same as saying that the partition
is allocated to the core.

Figure 4.3: Tasks or partitions allocated to cores. A: Tasks. B: Partitions.

Henceforth we will consider that all tasks in a partition are assigned to the same
core in order to avoid overheads. Thus, from now on, partitions will be allocated
to cores and the total core utilization UMi

is defined as the sum of all utilizations of
the partitions assigned to that core Mi.

107

4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

4.2.3 Power model
Power consumption is divided in dynamic consumption and static consumption.
The former depends on the activity of the processor while the latter is mainly due
to leakage current and can only be reduced by activating a low-power state. We
will assume the power model from [?]:

P (f) = Ps + βfα (4.1)

where P (f) is the total power consumption at operating frequency f , Ps is
the static power consumption and βfα is the dynamic power consumption. Ps is
introduced in the system due to the leakage current and βfα is introduced due to
capacitor charging and discharging during processor activity. α is a fixed parameter
determined by the hardware. A common assumption is that 2 ≤ α ≤ 3. β is a
constant that depends on the effective switching capacity, β > 0. It is clear that
the power consumption function is a convex-increasing function of the processor
frequency. A common way of reducing dynamic consumption is to reduce the
processor frequency through DVFS, as stated in Section 2.6.

There are some works that miss out the static power into the analysis of energy
consumption. It is due to the fact that Ps is always consumed because several
components in real-time embedded systems are put in low-power states for energy
savings purposes but never turned off completely [?]. In our problem, both static
and dynamic power consumption are considered. Decreasing system frequency
supposes increasing the time that the processor is turned on and, thus, energy dues
to the static power also increases.

108

4.3 Energy Efficient Partition Allocator

4.3 Energy Efficient Partition Allocator
In next sections, we are going to present our solution to the mixed-criticality energy
minimization problem (from the allocation point of view). This solution is based
on the utilization of an allocation heuristic.

Allocation to cores can be solved using a bin-packing algorithm. The approach
requires to define objects (partition utilizations Ui), which can then be packed on
to the bins (cores).

Among all these heuristics, Worst Fit Decreasing Utilization (WFDU) is known
to obtain a well-balanced load among cores. In [?] it is demonstrated that this
balance-load also minimizes energy consumption. But this statement is done for
systems with applications running at the same frequency.

In this section, an energy efficient partition allocation is presented in which
each partition can run at a different frequency. The concept of mixed criticality
systems (MCS) will be applied and a comparison between using non MCS (hard
systems) and MCS will be studied.

4.3.1 Energy efficient partition allocation in non MCS
The starting point of this section is a motivational example in order to justify the
impact of partition mapping on energy minimization.

This example is taken from [?] adapted for our partition model. Consider four
partitions with U1 = 0.5, U2 = 0.4, U3 = 0.4 and U4 = 0.3 running on m = 2

heterogeneous processors. By [?] we know that the allocation that minimizes
energy is UM1 = U1 + U4 = 0.8 and UM2 = U2 + U3 = 0.8 since it is the most
balanced one. But this is considering that all partitions run at the same frequency.
Following the model defined before, with g = 2 frequencies (f1, f2) then each
partitions will have 2 possible utilizations. The values are shown in Table 4.1. Now,
allocators can choose one of the two utilizations for each partition. But which one
of all possible combinations results in the most energy efficient?

4.3.1.1 Energy efficient partition allocation algorithm

In this section an energy efficient partition allocation is presented in which each par-
tition can run at a different frequency. This frequency will not change throughout

109

4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Table 4.1: Utilizations

U f1
i U f2

i

P1 0.7 0.5
P2 0.56 0.4
P3 0.56 0.4
P4 0.42 0.3

the system execution. Making an analogy with priorities, DVFS will treat frequen-
cies as dynamic priorities while our method considers frequencies as static priori-
ties. However, our method does not prevent any further dynamic slack reclaiming.
Our proposal is not optimal, since computing the allocation that minimizes overall
energy consumption is intractable.

Algorithm 1 shows the EEA (Energy Efficient Allocator) algorithm to allocate
partitions to cores.

In this algorithm we can choose the type of allocator and the criterion with
which the partitions are selected to decrease its frequency. As allocators we have
considered Worst Fit Decreasing Utilization (WFDU), First Fit Decreasing Uti-
lization (FFDU) and Best Fit Decreasing Utilization (BFDU) (the same ones that
have been compared in [?]). As sorting criteria, partitions can be chosen by de-
creasing utilization (DU), increasing utilization (IU) or randomly (R). This way we
can make a comparison between these allocations algorithms and know which of
them is better for energy management purposes. The resulting algorithms and their
names are shown in Table 4.2.

The algorithm starts assigning the highest frequency to all partitions (line 4).
The allocation of this partition set (k = 0) is called the original mapping that is also
the mapping with the most energy consumption (lines 2 and 3). Then, a partition
is selected (following the criteria DU, IU or R) to decrease its frequency to fg−1

(line 9 that calls the Algorithm 2) and an allocation is again performed (k = 1). The
algorithm runs sequentially decreasing partition frequencies (line 13) until we reach
a non-feasible mapping or all the partitions have reached the minimum frequency.
If any solution is not feasible at any point, the system will return to the immediately
previous frequency (line 15). We consider a feasible mapping if the utilization of
each core is below 1.

110

4.3 Energy Efficient Partition Allocator

Algoritmo 1: Allocation for energy management
Data: Allocator, sorting
Result: mapping

1 Function EEA (Allocator, sorting)
2 k→ 0;
3 mapping← core workload;
4 Set all partition frequencies to the maximum frequency;
5 Loop
6 mapping(k) = Allocate (Allocator);
7 if feasible then
8 k→ k+1;
9 Pi=selectPartition(sorting);

10 if Pi = −1 then
11 exit;
12 end
13 decreaseFrequency(Pi);

14 else
15 increaseFrequency(Pi);
16 exit;

17 end

111

4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Algoritmo 2: Partition selection
Data: sorting
Result: Allocated partition or not

1 Function selectPartition (sorting)
2 sort partitions according to sorting criteria to create an array of

heaps Ulist;
3 for i = g; i > 2; i = i+ 1 do
4 p=Head(UList(i));
5 if p! = null then
6 return p;
7 end
8 end
9 return -1;

Table 4.2: Types of algorithms

`````````````````̀Allocation alg.
Part. selection

DU IU R

FFDU FFDU2 FFDUIU FFDUR
BFDU BFDU2 BFDUIU BFDUR
WFDU WFDU2 WFDUIU WFDUR

As explained in Section 4.2.1, our model does not consider two WCETs per
task as Vestal, but only one value measured in the worst case scenario. For this
reason, the schedulability test is summarized in ensuring that the utilization per
core does not exceed 1 rather than applying sophisticated mixed-criticality schedu-
lability tests [? ]. Basically, after mapping, each core can be tested as a single-core
system with implicit deadlines (deadlines equal to periods) so it will be schedulable
if the utilization is less than 1 [? ].

The frequency decrease works as follows (Algorithm 2): for each frequency
f there is a heap of partitions that have assigned this frequency sorted according
to the sorting criteria. The partition to decrease its frequency is chosen from the
head of the list of the highest frequency (line 4). If the only non-empty heap is
the one with frequency equal to f1 the function selectPartition returns -1 and the

112



4.3 Energy Efficient Partition Allocator

algorithm stops since all partitions have reached their lowest frequency.

The result of this algorithm is a mapping with the minimum consumption be-
fore the system becomes unfeasible. In addition, each iteration of the loop gets a
mapping with less consumption than the previous one. So, we can compare bin-
packing algorithms by energy consumption of the last mapping and parameter k
that is the number of mappings obtained by the algorithm.

4.3.1.2 Example

Back to the motivational example of this section, Fig 4.4 shows the iterations of
the EEA algorithm. We have run WFDU2, that is, partitions have been allocated
following WFDU and the partition selection criteria is by decreasing utilization.
Fig 4.4A corresponds to the original mapping, in which all partitions run at the
maximum frequency f2. In the first iteration, P1 is selected to decrease its fre-
quency, so we change its utilization from U f2

1 = 0.5 to U f1
1 = 0.7. The result is

shown in Fig 4.4B. In the next iteration (k=2), P2 is selected to decrease its fre-
quency resulting in Fig 4.4C. The algorithm stops because the next mapping will
cause UM2 > 1.

Figure 4.4: EEA mappings

For the calculation of the energy consumption, we assume α = 3, β = 1 and
Ps = 0.8W [? ], [? ]. The processor frequencies are [f1, f2] = [0.8, 1.1]GHz.
The energy consumption for an hyperperiod H is calculated as E = P (f)H . The
results are shown in Table 4.3. As we see, increasing the total utilization of the
cores by decreasing the frequencies at which partitions run results in an energy
saving with respect to the original mapping up to a 8% in this simple example.

113



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Table 4.3: Energy consumptions (Ws) of the mappings of the example

M1 (Ws) M2 (Ws) Total (Ws)
Mapping a) 3.4096 3.4096 6.8192
Mapping b) 3.1154 3.4096 6.525
Mapping c) 3.1154 3.1742 6.2896

4.3.2 Energy efficient partition allocation in MCS
Once the energy efficient allocation method has been presented, in this section we
are going to complete the proposal with the inclusion of mixed-criticality systems
requirements.

In the previous section all partitions have the same criticality level, but when
partitions have different levels of criticality, we can follow the next strategies to
save energy:

• Trim the bandwidth of RLO partitions. RLO partitions cannot be dropped but
their bandwidth can be reduced. We propose the reduction in the following
way:

For a RLO partition Pi with U f1
i ,..,U fg

i , it is trimmed when it executes at the
lowest frequency f1 but with the utilization of the highest frequency fg. In
practice, this is possible thanks to the utilization of a static cyclic scheduler
in which we can force the duration of the slots. This way we can assign Cfg

ij

units of time but running at frequency f1.

Let’s assume that for a time window of length the hyperperiod H , the units
of time that a partition Pi executes under frequency f1 is:

H
Cf1
i

Ti
= HU f1

i (4.2)

When a partition is trimmed, it executes

H
C
fg
i

Ti
= HU

fg
i (4.3)

Therefore, there is a performance loss of:

114



4.3 Energy Efficient Partition Allocator

1− U
fg
i

U f1
i

= 1−
j=ni∑
j=1

C
fg
ij

Cf1
ij

(4.4)

• Trim the bandwidth of DLO partitions. This is done in the same way as for
RLO partitions. The performance loss will follow the same equation.

• Drop DLO partitions. As stated in previous sections, these partitions can be
dropped if needed. In this case, the performance loss of this partition is 1.

To summarize, dropping a partition means not running it, while trimming is
an intermediate solution between executing completely the partition and not exe-
cuting it at all. A trimmed partition executes at its lower frequency but with the
highest WCET. It is indicated for partitions whose activities are “best effort”, that
is, partitions with soft timing constrains, as they are a LO-criticality partitions.

Depending on how we combine these strategies, we will obtain different map-
pings with different grades of energy consumption and performance. The idea is to
trim and/or to drop RLO/DLO partitions and execute EEA algorithm, that will use
the free utilization of DLO and/or RLO partitions to decrease frequencies as much
as possible. Then, we are going to define the profiles, taking into account that each
profile is a consequence of the previous profile, i.e., adds changes to the previous
actions. We propose the following profiles:

• Profile 1: Maximum energy saving without performance loss. In this case,
we do not allow to drop any DLO partition neither trimming RLO partitions.
Therefore, this is equivalent to treat all RLO and HI partitions as HI partitions
and the EEA algorithm is executed as explained before.

• Profile 2: This profile will only allow trimming DLO partitions.

• Profile 3: This profile will also allow trimming RLO partitions.

• Profile 4: In this profile we drop all DLO partitions.

• Profile 5: In this profile we execute the EEA algorithm in HI partitions as
much as possible.

115



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

It is clear that as long as the number of the profile increases, the energy saving and
the performance loss also increases.

These profiles are different mappings in which each partition will run at a spe-
cific frequency. After packing, a schedulability test must be applied. As we men-
tioned in initial sections, our model does not consider different criticality modes
per task and, thus, tasks only have one level of WCET fixed before the execution
(see Section 4.2.1). For this reason, the schedulability test is summarized in ensur-
ing that the utilization per core does not exceed 1 rather than applying sophisticated
mixed-criticality schedulability tests [? ]. Basically, after mapping, each core can
be tested as a single-core system with implicit deadlines (deadlines equal to peri-
ods) so it will be schedulable if the utilization is less than 1 [? ].

Then, each profile will derive into a static scheduling plan stored in the configu-
ration file of the hypervisor. This way, 5 profiles will be used to define every single
scheduling plan. At runtime, a supervisor partition will be in charge of change the
profile depending on the energy state of the system. This change always occurs
when the MAF is completed, so every task completes its execution. An example
of the advantage of changing plans is to link them to the battery level. For exam-
ple, Profile 1 will operate when battery level is between 100-81%, Profile 2 with
80%-61%, Profile 3 with 60%-41%, Profile 4 with 40%-21% and Profile 5 with
20%-1%.

We would like to specify that, although this section is generalized to multicore
systems, the previous strategies may be applied to single core systems. In this sce-
nario, EEA algorithm will offer always the same solution, due to the impossibility
of allocating different partitions in different cores (there is only one core). How-
ever, trimming and dropping partitions is possible and, thanks to this operations,
the total energy consumption will be reduce.

4.3.2.1 Example

Using the same example as before, now we will assume that P1 and P2 are HI
partitions, while P3 is RLO and P4 is a DLO partition. Profile 1 is equivalent to the
mapping obtained in Fig 4.4C.

From this starting point, we can derive the rest of the profiles:

• Profile 2: In this profile, the utilization of P4 for f1 is trimmed from 0.42 to

116



4.3 Energy Efficient Partition Allocator

0.3.

• Profile 3: In this profile, the utilization of P4 for f1 is trimmed from 0.42 to
0.3 and the utilization of P3 for f1 is trimmed from 0.56 to 0.4.

• Profile 4: This profile does not contain P4.

• Profile 5: In this profile, P4 does not exist and the utilization of P3 for f1 is
trimmed from 0.56 to 0.4.

Fig 4.5 shows the resulting mappings of the previous profiles. In Profiles 4
and 5 (subfigures (c) and (d)), dropping partition P4 does not achieve any benefit
because the extra “space” cannot be used to allocate any more partition in M1. The
different energy consumptions are presented in Table 4.4.

(a) Mapping for Profile 2 (b) Mapping for Profile 3 (c) Mapping for Profile 4

(d) Mapping for Profile 5

Figure 4.5: Mappings depending on the profile.

This performance loss is 0.25 for P4 trimming, 1 for P4 dropping. Regarding
P3, performance loss is 0.28. We can see how this time, the total energy saving
(24.87%) is more important at the expense of losing performance.

117



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Table 4.4: Energy consumptions (Ws) of the different profiles

M1 (Ws) M2 (Ws) Total (Ws)
Profile 2 2.624 3.1742 5.7982
Profile 3 2.624 2.5190 5.143
Profile 4 1.8368 3.1742 5.011
Profile 5 1.8368 2.5190 4.3558

118



4.4 Simulation process

4.4 Simulation process
We developed a simulator to implement the proposed algorithms and a synthetic
task and partition generator.

A number of tests have been run, specifically 105 synthetic partition sets have
been generated for m = 4 and total utilizations varying from 2.5 to 4 in steps of
0.1, resulting in 1500000 total simulations.

The synthetic task and partition generator is developed as follows:

– The maximum total load is defined by the user or calculated by the simulator
in relation to the number of cores m.

– Once the maximum load is determined, it is distributed among cores, in the
knowledge that 100% is the maximum utilization per core. Once the uti-
lization per core is established, the sum of all utilizations of the partitions
allocated in that core should not exceed this value.

– Now, the number of partitions for each criticality level is calculated as fol-
lows:

– HI level: a random value within the interval [4,8].

– LO level (RLO): a random value within the interval [3,6].

– LO level (DLO): a random value within the interval [3,8].

– Then, a maximum total load per criticality level L is calculated.

– Partitions utilizations are generated using the UUniFast-discard algorithm [?
] that gets an unbiased distribution of the maximum load per criticality
UL
total among the partitions of that criticality level. This will accomplish that

UL
total =

∑
∀PiεL UPi . This algorithm is an improvement of the UUnifast al-

gorithm [? ], that discards a task set if the utilization of any of its tasks is
greater than 1.

– Regarding to tasks, the number of tasks per partition is calculated as follows:

– HI partitions: a random value within [2,8] tasks per partition.

– LO level partitions (RLO): one task per partition.

119



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

– LO level partitions (DLO): one task per partition.

– Tasks utilizations were also generated using the UUniFast algorithm. Tasks
parameters are calculated for the greatest frequency, fg. Once task utilization
has been deduced, period is selected randomly in such a way that the hyper-
period of tasks is not a very big value. Then, the computation time of τij at a
frequency fg is calculated as Cfg

ij = U
fg
ij · Tij .

Computation time Cfi
ij of a task τij increases by reducing its frequency fi, i.e.

the higher the frequency, the shorter the computing time. To simplify the prob-
lem, we suppose that this relation is linear, as in [? ] and [? ], in spite that the fact
that [? ] shows that this relation best fits a rational function. In particular, in the first
step, computation times of tasks are generated with the greatest frequency. Conse-
quently, to complete the array of values of WCET, we use the values of available
system frequencies as follows:

Definition 4.4.1. Let us denote as fp the value from which frequencies are greater
or equal to 1 within the range [f1, ..., fp, ..., fg]. Then:

C
fm−1

ij =


Cfmij
fm

if 0 ≤ m ≤ p

Cfm
ij · fm if p+ 1 ≤ m ≤ g

(4.5)

All these parameters are saved in an array and used for frequency changes in
tasks. It is clear that linear relation is a simplification of the problem [? ]. If this
relation is not known, the user will provide the array of computation times to make
the work succeeds.

When everything is ready, we start the simulator to calculate different mappings
with different grades of energy and performance, as was explained before.

We have conducted the same experiments for 8 cores. In this case, the number
of partitions have been multiplied by 2. Other experiments consist on using 2 cores.
In both cases, similar results have been obtained as for 4 cores.

4.4.1 Comparison of allocation methods in non MCS
In this section a comparison between the different allocators and partition selection
is done. We measure two parameters:

120



4.4 Simulation process

• Energy saving: This is the saving of the final mapping with respect to the
original mapping, that is, the mapping at which all partitions run at the high-
est frequency (iteration k = 0).

• Number of feasible mappings. This corresponds to the iterator k of Algo-
rithm 1.

Figs 4.6A, 4.7A and 4.8A show the results for 4 cores in terms of energy sav-
ings. In this pictures, the relation between energy saving and utilization factor
(from 240% to 400% in the case of 4 cores) is depicted. As utilization factor in-
creases, it is observed that energy saving is reduced. When cores are almost full
(utilization 380-400%), reducing frequency (i.e. increasing computation times)
will make the system infeasible. For this reason, the scope of energy saving is
short.

As it is seen in the figures, the three base bin packing algorithms present very
similar results. This is not a surprise, since we are measuring the energy of the
final mapping, which corresponds to a situation in which all the cores will be at full
capacity. Moreover, there is also no difference in the partition selection criteria as
far as energy saving is concerned.

However, the number of mappings is depicted in Fig 4.6B, 4.7B and 4.8B. It
seems that BFDU is the algorithm that needs more iterations to reach the optimal
solution and R is clearly the worst partition selection criteria, due to the random-
ness of its results. It is clear that the more utilization factor, the less iterations are
possible to perform.

Figure 4.6: DU. A: Energy saving. B: Number of mappings.

121



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Figure 4.7: IU. A: Energy saving. B: Number of mappings.

Figure 4.8: R. A: Energy saving. B: Number of mappings.

To avoid adding all the results in this paper, we show in Fig 4.9 the energy
savings when FFDU is selected as allocator. Although we know that different al-
locators provide very similar results, FFDUIU allocator provides slightly worst
outcomes.

Fig 4.10 depicts, as in previous figures, the relation between energy saving and
utilization factor but, in this case, experiments have been developed in 2 (4.10A)
and 8 cores (4.10B). It is demonstrated again that energy saving decreases with
utilization factor, being almost zero when cores are getting full.

As different allocators provide similar results, let us complement the results
section with a comparison between an exact method (constraint programming so-
lutions, CP) and our heuristic. In almost all situations CP provides the same so-
lution as our heuristic. But, in some scenarios, CP provides better energy savings

122



4.4 Simulation process

 0

 1

 2

 3

 4

 5

 6

 250  260  270  280  290  300  310  320  330  340  350  360  370  380  390  400

E
n
e
rg

y
 s

a
v
in

g
 %

Utilization

FFDU2
FFDUR
FFDUIU

Figure 4.9: Energy saving no MCS when allocator is FFDU

Figure 4.10: Energy saving with 2 and 8 cores. A: 2 cores. B: 8 cores.

than our algorithm. However, in terms of time consumptions, our algorithm offers
much better results.

Figure 4.11 depicts the average time used by the CPU in executing 50 iterations
of the EEA algorithm. Each iteration consists of allocating a number between 10
and 20 partitions in 4 different cores, in order to minimize the energy consumption.
The time measured in CP simulator is directly provided by the solver. The time
in heuristic algorithm is calculated measuring the number of instructions and the
frequency of the CPU. We can obverse that the more the system utilization is, the
less time the algorithm needs to reduce the system frequency (increasing system
utilization is less possible).

We observe that only one experiment expends between 15 and 30 minutes and
even more, depending on the system parameters, number of cores and partitions,
number of available frequencies, etc. In a simple situation with 4 partitions allo-

123



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Figure 4.11: Time consumption in executing EEA algorithm.

cated in 2 cores as in Table 4.5 with 2 system frequencies, the times used to solve
the problem in each situation and energy savings are summarised in Table 4.6.

Table 4.5: Utilizations - Example

U f1
i U f2

i

P1 0.62 0.5
P2 0.41 0.35
P3 0.69 0.58
P4 0.45 0.37

Table 4.6: Comparison between EEA and CP solvers.

EM1 (Ws) EM2 (Ws) TOTAL ENERGY (Ws) Simulation Time
EEA 10.4275 14.725 25.1525 0m0.202s
CP 12.6225 12.1125 24.735 14m 5s

In Table 4.6, it is observed that the energy consumption is bigger with EEA
than CP, but the time the CP solver needs to find the solution is significantly higher.

In next subsection we use the heuristic simulator in order to evaluate the situa-
tion in a mixed criticality system.

124



4.4 Simulation process

4.4.2 Energy saving and performance loss in MCS
We conducted the same set of experiments to measure the energy saving achieved,
the performance loss and number of mappings of the 5 profiles explained previ-
ously.

Figure 4.12 depicts energy savings with different allocators and profiles. It
shows the more system utilization increases the more energy saving decreases. If
cores are almost full, decreasing system frequency is becoming increasingly diffi-
cult and saving energy is also difficult.

Figure 4.12: Energy saving with different allocators. A: Profile 1. B: Profile 5.

WF bin-packing balances the total load between cores but FF is considered
as the strategy that performs better than others in the performance of partitioned
scheduling [? ]. As seen in Figure 4.12, FFDU presents slightly better results than
others (as in non MCS) and Figure 4.13 shows the different variations of FFDU
algorithm in the profile with the maximum energy savings.

With FFDU2, we measure the parameters mentioned before: energy saving,
performance loss and number of mappings.

• Energy saving is measured as in non MCS. As each profile uses lower system
frequency than the previous profile, energy saving will be greater as profile
increases. It is depicted in Fig 4.14. When DLO tasks are dropped and the
system frequency is reduced as much is possible (profile 5), energy saving is
about 35%.

• Performance loss in profile i is calculated as the relation between the system
execution times in profile i and profile 0, being profile 0 the original system

125



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

 30

 31

 32

 33

 34

 35

 240  250  260  270  280  290  300  310  320  330  340  350  360  370  380  390  400

E
n
e
rg

y
 s

a
v
in

g
%

Utilization

FFDU2
FFDUIU
FFDUR

Figure 4.13: Energy saving MCS when allocator is FFDU

 0

 5

 10

 15

 20

 25

 30

 35

 250  260  270  280  290  300  310  320  330  340  350  360  370  380  390  400

E
n
e
rg

y
 s

a
v
in

g
%

Utilization

Profile 1
Profile 2
Profile 3
Profile 4
Profile 5

Figure 4.14: Energy saving for MCS profiles

126



4.4 Simulation process

at the maximum frequency. If we consider that profile 0 supposes 0% of
performance loss (Fig 4.15):

– Profile 1 increases the performance in relation to profile 0 (the system
is 15% closer to be completely filled).

– Profile 2 decreases the performance when DLO tasks are trimmed (per-
formance loss of 10% with respect to profile 0)

– Profile 3 also decreases the performance when RLO tasks are trimmed
(performance loss of 30% with respect to profile 0)

– Profile 4 also decreases the performance when DLO tasks are dropped
(performance loss of 55% with respect to profile 0)

– Profile 5 increases the performance in relation to profile 4 (increasing
computation time of HI tasks by reducing the system frequency) but,
with respect to the original profile, there is a performance loss of 40-
55%.

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

P
e
rf

o
rm

a
n
c
e
 %

Utilization

Profile 1

Profile 2

Profile 3

Profile 4

Profile 5

Figure 4.15: Performance loss for MCS profiles

• Number of mappings. Parameter k is calculated as in non MCS. As it is
seen in Fig 4.16, obviously the number of mappings increases with profile.
It is obvious that the more operations (k) to partitions are needed, the more
attempts to fill the cores are done.

127



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

 0

 5

 10

 15

 20

 25

 30

 35

 250  260  270  280  290  300  310  320  330  340  350  360  370  380  390  400

k

Utilization

Profile 1

Profile 2

Profile 3

Profile 4

Profile 5

Figure 4.16: k for MCS profiles

Using a CP solver in order to conduct these experiments provides worst solu-
tions than in non MCS. This occurs because the number of constraints increases
due to the addition of the criticality of the partition. In most cases, we have spent
several days without reaching the solution.

128



4.5 Practical application: Xoncrete

4.5 Practical application: Xoncrete

4.5.1 Introduction
Throughout this chapter, energy saving techniques have been developed for parti-
tioned systems. After experiencing great results, the implementation of previous
energy-aware algorithms in a commercial tool has been considered interesting for
the development of this thesis.

The motivation on developing a schedulability analysis tool is based on that
the system models considered by researchers and those used in real problems not
always coincide. There is a wide range of scheduling models (periodic, sporadic,
etc.) and analysis (schedulability, sensitivity, resource sharing, etc.). With the pur-
pose of performing the schedulability analysis, different tools exist and are classi-
fied depending on their purpose: general or specific.

Xoncrete [? ] is a tool assigned to meet the ARINC 653 requirements of the
aeronautical and aerospatial systems. Thus, it is a specific purpose tool developed
to assist the system integrator to build and analyse the schedulability of a parti-
tioned system and to create the cyclic scheduling table, in particular the XtratuM
framework.

The purpose of this section is to describe Xoncrete before the implementation
of energy saving algorithms and to specify the updates in this commercial tool.

4.5.2 Description of the previous state
Besides the scheduling analysis capabilities, the Xoncrete tool also provides a user
friendly interface for capturing and editing all the elements that are part of a parti-
tioned system. It has been specially designed to generate configuration files com-
patible with XtratuM. The user defines all the elements of the partitioned system
using Xoncrete’s web interface. Xoncrete maintains its own format to save all the
data into a project file. This format is known as eprj format file.

The main features of Xoncrete are listed below:

• Powerful configuration and validation tool.

• User friendly interface.

• Partitioned system edition.

129



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

• Scheduling analysis capabilities.

• Multi-plan support.

• Advanced health monitoring and error reporting.

• Based on web standards (HTML, CSS, Javascript, AJAX)

The scheduling analysis process covers the following phases (Figure 4.17):

Figure 4.17: Xoncrete work flow.

1. Introduce system parameters and timing requirements.

2. Enter the data to be used in the analysis.

3. Check the consistence of the entered parameters and requirements.

Now, the system can be analysed and the scheduling plan can be generated. The
following steps are:

1. Temporal behaviour. Tune the End-to-End flow (ETEF) parameters. An
ETEF describes sequence of tasks with temporal attributes. It is the element
that defines the periodic behaviour and temporal restrictions of the tasks.
This concept will be explained later.

130



4.5 Practical application: Xoncrete

2. Schedule generation. In this phase, the scheduling analysis algorithm is exe-
cuted and the plan is generated.

Once the plan is generated, all the configuration information is exported as
a xml file. Xoncrete works as an assistant to generate the configuration file of
Xtratum, ready to be used without modifications. The exported configuration file
includes all the necessary scheduling information generated by the schedulability
analysis module. This file also contains information about the memory layout,
communication channels, devices, etc.

The following is the description of modifications done to Xoncrete in order to
provide energy aware scheduling to a partitioned system.

4.5.3 Modifications in the tool
One of the results of Section 4.3.2 is the generation of different scheduling plans
with different energy consumption and performance loss for a MCS. In this situa-
tion, each partition can be executed with a processor frequency and some of them
may be removed, depending on their nature. Concepts as criticality of a task, sys-
tem frequency, energy savings and performance loss are implemented in Xoncrete
in order to provide enhanced services to the user.

In order to adequate Xoncrete to energy-aware purposes, some novelties are
added to the tool:

• The range of operating frequencies of the cores. This option is found in
Edit→System Resources→Hardware Resources (Figure 4.18).

Different cores can, or can not, run at the same frequency, depending on the
system needs. In the SAFEPOWER project scenario, all cores run at the
same frequency.

Figure 4.18: System frequencies.

131



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

• The range of WCETs per task, depending on the corresponding frequency.
This option is found in Edit→Partitions→Name of the partition→Internal
tasks and scheduling (Figure 4.19).

• The criticality level of each partition. This option is found in Edit→Partitions→Name
of the partition→Internal tasks and scheduling (Figure 4.19).

Figure 4.19: Internal tasks and scheduling section

• Selection of the profile for each plan (See Section 4.3.2). They can be se-
lected in Analysis→Temporal analysis(Figure 4.20).

Figure 4.20: Temporal behaviour

Now, an use case is presented in order to show the usage of the tool.

4.5.4 Use case
The main window of Xoncrete tool is shown in Figure 4.21. First, this window is
empty until the system designer configures all the system information. The reader
should bear in mind that only the aspects related to this thesis are going to be
explained in this section.

From now on, the generation of different profiles for a MCS through Xoncrete
tool are being explained.

132



4.5 Practical application: Xoncrete

Figure 4.21: Main window of Xoncrete application.

In the first step, the system designer configures the resources: hypervisor, hard-
ware resources as number of processors, range of frequencies per processor, etc.
(Figure 4.22) and mutual-exclusion resources.

As this work is framed within SAFEPOWER project [? ], processor frequencies
values correspond to the processor used in the project, i.e., an ARM Cortex-A9 dual
core.

Regarding to mutual-exclusion resources, the Stack Resource Protocol [? ] is
used to avoid unbounded priority inversion between tasks.

After describing system resources, partitions are defined (Figure 4.23). Among
others, communication ports, internal tasks, interrupts, etc. are set in the parti-
tion definition. Tasks are defined by their criticality level, computation times per
frequency and effective virtual CPU.

Instead of defining a period per task, Xoncrete introduces the concept of End-
to-End flows (ETEFs). An ETEF is defined as a sequence of tasks with temporal
attributes and includes the periodic behaviour of the system. It is characterized by
a set of tasks, deadline, period and offset. Tasks in an ETEF can belong to different
partitions and each task can appear in more than one ETEF. For this reason, the
period is adjusted in the ETEF and not in each task. A diagram of an ETEF is

133



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Figure 4.22: Hardware resources edition.

Figure 4.23: Partition edition.

134



4.5 Practical application: Xoncrete

shown in Figure 4.24. If an ETEF is defined by only one task, the ETEF will be
equivalent to the definition of a classical single task.

Figure 4.24: End-to-end flow definition.

Instead of defining the period of an ETEF by a single value, Xoncrete allows the
user to define it as a range of periods (Figure 4.25) and the tool will be the respon-
sible of the period selection. This selection is made through a novel algorithm [? ]
with the purpose of reducing the major active frame (MAF) of the system, i.e., the
least common multiple between the periods of all ETEFs.

Figure 4.25: End-to-end flow edition.

Once the system parameters are introduced, they are validated to check the data
consistency. Then, Xoncrete selects the period for each ETEF among the range of
possible values, in such a way as the MAF is reduced in order to be practical. In
Figure 4.26, “Compute MAF & adj. periods” will execute this option.

135



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Figure 4.26: Temporal behaviour.

After this calculation, the scheduling plan for each profile can be generated. Let
us use as a example a system with 2 cores that allocate 4 partitions in them. Each
partition is composed by a task and each task belongs to a different ETEF. The
tasks computation time and periods of the ETEFs are described in the Table 4.7:

Table 4.7: Utilizations - Example

L WCET f1
i (µs) WCET f2

i (µs)

T1(P1) HI 700 500
T2(P2) HI 560 400
T3(P3) RLO 560 400
T4(P4) DLO 420 300

The periods of the ETEFs are set to 1000 µs, instead of giving a range of val-
ues per ETEF. The reason is to ensure specific values and to make a comparison
between the results obtained in simulation and the results proposed by this tool.

The last step is to generate the plan. The tool provides a graphical representa-
tion of it and also statistic information about the schedulability, utilization, partition
allocation to cores, effective CPU usage, energy saving and performance loss.

The plan is generated using well known scheduling techniques:

• EDF as the base scheduling policy.

• Minor modifications to the EDF criteria in order to reduce the number of
partition context switches.

• SRP to access mutual exclusion resources.

For each profile described in Section 4.3.2, a different scheduling plan, with its
corresponding energy savings and performance loss, is generated.

136



4.5 Practical application: Xoncrete

The profile 0 corresponds to the plan without energy management. This means
that the system runs at its maximum frequency. As seen in Figure 4.27, partitions
1 and 4 are allocated to CPU 0 and 2 and 3, to CPU 1.

Figure 4.27: Results profile 0.

Profile 1 (Figure 4.28) corresponds to the plan with energy management, in
which HI criticality partitions reduce their frequency in order to reduce the total
energy consumption. Partitions are selected in decreasing order of utilization, being
the ones with higher utilization the ones whose frequency is reduced. This process
is repeated until cores are full or there is no other HI partition whose frequency can
be reduced. In this example, partitions 1 and 2 reduce their frequency using the
EEA algorithm.

Profile 2 (Figure 4.29) executes Trimming operation to DLO partitions, i. e.,
partition 4 is executed at its minimum frequency but with the computation time of
its maximum frequency. It also applies EEA to HI partitions (i.e. Profile 1 + DLO
trimming).

Profile 3 (Figure 4.30) executes Trimming operation to RLO , i. e., partition 3
is executed at its minimum frequency but with the computation time of its maxi-
mum frequency. It also applies EEA to HI partitions and trims DLO partitions (i.e.
Profile 2 + DLO trimming).

137



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Figure 4.28: Results profile 1.

Figure 4.29: Results profile 2.

138



4.5 Practical application: Xoncrete

Figure 4.30: Results profile 3.

Profile 4 (Figure 4.31) is obtained dropping DLO partitions and applying EEA
to HI partitions (i.e. Profile 1 + DLO dropping).

Finally, profile 5 (Figure 4.32) is obtained dropping DLO partitions, applying
EEA to HI partitions and trimming RLO partitions (i.e. Profile 3 + DLO dropping).

The more strategies are applied, the more energy savings are obtained. How-
ever, trimming and dropping strategies introduce performance losses in the system.
It is clear that, as long as the number of profile increases, the saving and the perfor-
mance loss also increases. By means of the button “Plan summary”, characteristics
of different profiles are shown. It contains information about temporal behaviour,
CPU usage, deadline misses, energy saving and performance loss. As seen in Fig-
ure 4.33, the percentage of energy savings increases with the profile, except in
profile 4, in which only EEA algorithm and dropping strategies have been applied.

As shown in Figure 4.33, Profile 0 is the original plan, without applying energy
saving techniques (0.00%) and Profile 5 is the profile with the most energy savings
(58.69%). There is not too much difference between profiles 3 and 5 in terms of
energy consumption but the difference of performance loss is considerable.

When everything is generated, the main window of Xoncrete changes and now
includes the most relevant information about the system model.

139



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Figure 4.31: Results profile 4.

Figure 4.32: Results profile 5.

140



4.5 Practical application: Xoncrete

Figure 4.33: Plan summary.

Figure 4.34: Main window of Xoncrete application. Updated model.

141



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

As stated at the beginning, Xoncrete’s last step consists of exporting all the
necessary scheduling information to Xtratum configuration file.

The xml file that corresponds to the example mentioned in this chapter is shown
in Figure 4.35.

Figure 4.35: Reduced information in xml file.

As seen in Figure 4.35, this file contains hardware description, xm hypervisor
information, partition table and communication channels information. The most
relevant part for this work is detailed in “HwDescription”.

As seen in Figure 4.36, the temporal description in the form of a cyclic schedul-
ing plan is included for each core. Each plan is composed by a set of slots (pieces of
time) characterised by an identifier, start time, duration, partition executed during
this time and the system frequency in this slot.

This file is provided as an input to the hypervisor and is ready to be used without
modifications. The goal is to generate a short cyclic plan which can be used as an
ARINC 653 partition plan.

142



4.5 Practical application: Xoncrete

Figure 4.36: Temporal description in xml file.

143



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

4.6 Theoretical energy characterization
As energy management is a very active research area in the recent years, many ap-
proaches to minimize energy consumption under the constraint that all tasks meet
their deadlines have been proposed. For this reason, this whole chapter has focused
on presenting energy saving techniques in partitioned multicore systems. First,
heuristic algorithms were proposed and a simulator that consolidates previous re-
sults was implemented.

After evaluating the good results proposed by this heuristic, a theoretical basis
is considered essential for their validation. The following aims to cope with new
challenges when applying two widely used techniques for reducing energy con-
sumption: Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power
Management.

Thanks to techniques as DVFS, the control of the frequency in a partitioned
system is a very important issue in order to reduce the energy consumption of the
global system. Reducing the system frequency supposes a decrease in the energy
due to dynamic power but the time the processor is busy increases. Then, which is
the best relation between frequency and the time the processor works in terms of
energy consumption? All existing works assume that frequency and temporal load
are linearly related. Is this the model that best fits these two variables?

Thus, the following section attempts to answer the previous questions, being
the main contributions of this section:

1. Almost all works in literature assume that the relation between temporal cost
and the inverse of the frequency is linear. Our objective is to propose a non-
linear relation between these parameters and deduce which of both theories
is more suitable in terms of energy consumption.

2. To obtain a model that relates computation time (utilization), frequency and
energy consumption in a partitioned system.

3. Demonstrate that there are different points with different utilization and fre-
quency that provide the same energy consumption. This is very useful for
system designers, to be able to choose which frequency reduces the energy
consumption of the system.

144



4.6 Theoretical energy characterization

First, an analysis of the current frequency-time model is made. For this purpose,
some experiments, in order to evaluate how realistic the model in almost all works
is, are conducted. After evaluating this model, a different approach that best fit the
experiments in our platform are made.

Next, the function that relates the three parameters time, frequency and energy
of the system is calculated.

Finally, optimization techniques to this obtained function are applied in order
to calculate the optimal points.

145



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

4.6.1 Relation between time and frequency

There are a lot of works ([? ],[? ]) that assume a linear relation between computa-
tion time of a partition (i.e. partition utilization) and the inverse of the frequency.
However, it is known that this simplification is not very realistic. We want to anal-
yse how far the linear model is from reality. In order to obtain a more realistic rela-
tionship, we have made some real measurements in an ARM Cortex-A9 dual core.
The experimental measurements have been made in the context of SAFEPOWER
project, whose goal is to enable the development of low power mixed-criticality
systems through the provision of a reference architecture, platforms and tools to
facilitate the development, testing, and validation of these kinds of systems accord-
ing to the market needs. In these experiments, intensive simulations have been
performed to obtain a large number of computation time measurements. Details
about these experiments can be found in [? ]. The results are as follows:

Table 4.8: Computation time measurements at different frequencies

Frequency(MHz) Cost(us)

400 7
200 10
100 17
50 35
40 44
32 56

We suppose that these measurements are periodic in order to translate the com-
putation times to utilization. If we make this conversion and then we represent the
values, the results are represented in Figure 4.37. We depict frequency versus the
inverse of the time, in order to adapt our study to [? ],[? ] and elsewhere, where
time intervals are inversely proportional to frequency.

In this section we are going to calculate both, linear and non-linear approxima-
tion, and then we will make a comparison between energy costs in both scenarios.

146



4.6 Theoretical energy characterization

2 4 6 8 10 12 14

1/U

0.1

0.2

0.3

0.4

f (GHz)

Figure 4.37: Experimental relation between utilization and frequency.

4.6.1.1 Linear approximation

There are a lot of methods to obtain an approximation of a set of points. As time
intervals are inversely proportional to the system frequency, this relation is t = k/f .
Adjusting k value, the function that best fits the points in table 4.37 is:

f(U) =
0.025

U
(4.6)

4.6.1.2 Non-linear approximation

Due to the shape of the function in Figure 4.37, it is obvious that vertical and hor-
izontal asymptotes exist. It is not really accurate to follow this behaviour through
a line, but rather with a rational function. In this section, we are going to calculate
the best rational function that fits the points in Figure 4.37.

In mathematics, Thiele’s interpolation formula [? ] is the way to define a
rational function f(x) from a finite set of inputs xi and their function values f(xi).
(The step-by-step solution is found in Appendix A.1. Thus, the obtained function
is:

f(U) =
0.016U + 0.02688

U
(4.7)

and, from now, a = 0.016, b = 0.02688, c = 1 and d = 0 (a, b, c and d are
parameters of a general rational function). If we represent these two functions in
the same graph1 (Figure 4.38), it is easy to see that this non-linear function (in red)

1In order to represent frequency versus the inverse of the utilization (as other works), we convert

147



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

is the one that best fits to the experimental results.

2 4 6 8 10 12 14

1/U

0.1

0.2

0.3

0.4

0.5

f (GHz)
Data

Non-linear function

Linear function

Figure 4.38: interpolation functions between utilization and frequency.

In spite that the non-linear function provides better results, to calculate and
implement the linear function is usually more efficient, as regards the time taken
in calculating the parameters. However, the non-linear model is adjusted to best
correspond to the practical results.

Now, the energy of the system is introduced and the model that relates these
three parameters is deduced.

4.6.2 Energy-Time-Frequency relation
In order to calculate the optimal energy consumption in a theoretical way, first
a model that relates the three involved variables, computation time, system fre-
quency and energy consumption, is deduced. We assume the power model defined
in Section 4.2.3 as a starting point.

Definition 4.6.1. As power is how quickly energy is used or transferred, the energy
function can be expressed as:

E(t) = P (t) · t (4.8)

Then, using the equation 4.1, let us define the energy function:

E(f, t) = (Ps + βfα) t (4.9)

equations 4.6 and 4.7 into their inverses.

148



4.6 Theoretical energy characterization

The time t the processor is busy can be calculated as MAF ·U . Then, applying
this definition to equation 4.9, the energy-time-frequency function is defined as:

E(U, f) = (Ps + βfα)MAF · U (4.10)

Section 4.6.3 presents an analysis of the Equation 4.10, in order to calculate
the optimal energy consumption. That equation relates how the utilization and the
frequency affect to the energy consumption of the system. Different combinations
of points (U,f) may provide same values of energy, as will be demonstrated later.

However, there is a critical frequency below which it is not beneficial to reduce
frequency energy-wise [? ]:

fcrit = α

√
Ps

β (α− 1)
(4.11)

The critical frequency represents the frequency that minimizes the energy con-
sumption for execution when the overhead for sleeping is considered negligible,
shown in [? ].

With the functions presented in these sections, let us find the optimal solution
of the energy consumption through mathematical analysis and compare the results
between linear and non-linear interpolation.

149



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

4.6.3 Optimal energy consumption through mathematical anal-
ysis
In general, this problem consists of finding the relative extrema (maximum and
minimum) of a multivariable function f(x, y) subject to a constraint g(x, y) = 0

and defined in a specific area S. In this kind of situations, the solution is found
following two steps:

• Search relative points of f(x, y) and select only that ones that belong to S.

• Use the constraint g(x, y) = 0 applying the method of Lagrange multipliers.

In an optimization problem, there are several methods to find relative extrema.
We are going to use the method of Lagrange multipliers. It involves much greater
difficulty than others, but we avoid the problem of symmetry losses offered by the
method of variable substitution. This method is used in multivariable functions
subject to equality constraints. Defining the problem as a two choice variables
function f(x, y) subject to g(x, y) = 0, the Lagrange function is defined as:

L(x, y, λ) = f(x, y)− λ · g(x, y) (4.12)

, being λ a Lagrange multiplier. This method says that those points where the original
function has relative extrema conditioned to some constraints, are placed between
the stationary points of the consequent Lagrange function.

Once this has been presented, we are going to define our problem. Let us use
the equation 4.12, being f(x, y) = E(U, f) the energy function and g(x, y) = 0

the constraint, i.e. the relation between f and U (see Section 4.6.1).
Let us look at the problem from the geometric point of view. Graphically,

E(U, f) function, without any constraints is shown in Figure 4.39.
To limit the problem, we are going to study the two possible relations between

f and U mentioned before. At this point we deal with each relation separately and
in a specific region.

4.6.3.1 Linear relation.

In this section, the constraint g(x, y) = 0 mentioned before is the explicit equation
f − k/U = 0.

150



4.6 Theoretical energy characterization

Figure 4.39: Graphical representation of the general function E(U,f) without con-
straints.

Definition 4.6.1. The problem we have to solve is:{
E(U, f) = (Ps + β · fα) ·MAF · U subject to
f − k

U
= 0

(4.13)

in the region

S =
{

(U, f) ∈ R2 | 0 ≤ U ≤ 1, fcrit ≤ f ≤ fmax
}

(4.14)

The region S in defined as follows:

• The utilization is a value between 0 and 100% of the maximum capacity.

• The system frequency is a value between the critical frequency defined in
equation 4.11 and the maximum frequency in a processor. For the processor
used, we assume a maximum frequency of fmax = 2GHz.

The steps to find the relative extrema in a constrained problem are applied also
in the situation of non-linear approximation. For this reason, we are going to de-
velop it in this section and it will be replicated in the next section.

Firstly, we are going to find the relative points of E(U, f) solving the system
∇E = (0, 0). This is done setting each partial derivative equal to 0. Then, we will
select those points that belong to the region S.

∂E

∂U
= 0 → (Ps + β · fα)MAF = 0

∂E

∂f
= 0 → MAF · β · α · U · fα−1 = 0

151



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

These two equations compose a linear system of equations but the solution /∈ S.
So, we discard this point.

Secondly, we are going to use the constraint to find other relative extrema. In
this work, the Lagrange function defined in Equation 4.12 is:

L(U, f, λ) = E(U, f)− λ · (f − k

U
) (4.15)

The next step consists on setting the gradient∇L equal to the 0 vector.

∂L

∂U
= 0 → (Ps + β · fα) ·MAF − λ · k

U2
= 0

∂L

∂f
= 0 → β · α ·MAF · U · fα−1 − λ = 0

f − k

U
= 0 → f − k

U
= 0

(4.16)

This three equations compose a linear system of equations that has to be solved.
Setting the values MAF = 2000ms, Ps = 0.8W, α = 3 and β = 1 W

GHzα
[? ], the

relative extremum (U0, f0) is:

U0 =
1

8 3
√
50

f0 =
3

√
2

5

(4.17)

The relative extremum (U0, f0) is a minimum of E function. Please note that be-
cause of space limitations, missing content is located in Appendix A.2.

Graphically, it is not possible to draw the linear constraint f − k
U

= 0 with the
general values of k. For this reason, we are going to apply the previous values in
Equation 4.6 with k = 0.025.

With this k value, the graph of the constraint is depicted in Figure 4.40.

Figure 4.40: Linear constraint in region S.

152



4.6 Theoretical energy characterization

Drawing the function and the constraint in the same graph (Figure 4.41a), it is
seen the intersection. Depicting both in section S, the relative extrema are placed
(Figure 4.41b).

(a) Graphical representation of the func-
tion E(U,f) and the constraints

(b) Both in region S

Figure 4.41: Relative extrema of the function E(U,f) with different m and n.

From Figure 4.41b and remembering that E ∝ U · fα, it is easy to see that
energy increases in two ways:

• Increasing utilization. It means that frequency is hardly reduced to accom-
plish equation 4.7.

• Increasing frequency. It means that utilization is reduced.

In both situations, increasing one of the parameters means decreasing the other one,
i.e., there is no point in graph where both frequency and utilization are big values.
Obviously, if utilization or frequency is zero, energy consumption is also zero.

Moreover, there are different pairs of points that correspond to the same energy
level. These points will be in the same plane of energy.

In the experimental scenario, substituting k in Equation 4.17, the solution is
shown in Table 4.9.

This solution ensures that the minimum energy consumption occurs when the
system runs at its critical frequency (as all theories ensure, for example [? ]).
Maximum energy consumption occurs at maximum frequency and these values
coincide with those calculated theoretically in Equation 4.17.

153



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Table 4.9: Maximum and minimum energy consumption in linear approximation (k =

0.025).

Frequency (GHz) Utilization Energy (Ws) Point
0.7375 3.39% 0.0814 MIN

2 1.25% 0.22 MAX

In this situation, the relative extremum (U0, f0) provided in Equation 4.17 solves
the problem directly. And these points coincide with the ones depicted in Fig-
ure 4.41b.

4.6.3.2 Non-linear relation.

In this section, the constraint g(x, y) = 0 mentioned before is the explicit equation
of a rational function f − aU+b

cU+d
= 0.

Definition 4.6.2. The problem we have to solve is:{
E(U, f) = (Ps + β · fα) ·MAF · U subject to
f − aU+b

cU+d
= 0

(4.18)

in the region S = {(U, f) ∈ R2 | 0 ≤ U ≤ 1, fcrit ≤ f ≤ fmax}.

Following the method of Lagrange multipliers as in previous sections, we fi-
nally obtain a fourth degree equation as follows:

1.6 (cU + d)4 + 2 (aU + b)3 (cU + d)+

6U [a (cU + d)− c (aU + b)] (aU + b)2 = 0 (4.19)

With four parameters and with this degree, solving the equation is a really compli-
cated process. Moreover, graphically, it is not possible to draw the constraint with
the general values of a, b,c, and d. Let use the example presented in Section 4.6.1
and Equation 4.7 in order to fix the parameters: a = 0.016, b = 0.02688, c = 1 and
d = 0.

With these values, the graph of the constraint is depicted in Figure 4.42. Equa-
tion 4.19 with the previous parameters presents four solutions: two of them are
imaginary and the others are:

154



4.6 Theoretical energy characterization

• U0 = 0. It represents the minimum energy consumption (i.e. 0Ws) but this
solution is not interesting in the problem.

• U0 = 0.036878, that belongs to the region S. Then, the critical point is
(U0, f0) = (0.036878, 0.745), where the energy consumption is 0.0895 Ws.

Figure 4.42: Non-linear constraint in region S.

The intersection between the energy function and the constraint in region S is
another curve as depicted in 4.43.

Figure 4.43: Energy function with non-linear constraint in region S.

It is easy to see that there are two relative extrema, both depicted in Figure 4.43.
In Table 4.10 results are shown. It is important to observe that the minimum energy
consumption point coincides with the calculated mathematically.

Predictably, the maximum energy consumption occurs when processor is run-
ning at its maximum frequency and minimum consumption, when it runs at its
critical frequency, as was also demonstrated in [? ].

155



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

Table 4.10: Maximum and minimum energy consumption in non-linear approxima-
tion.

Frequency (GHz) Utilization Energy (Ws) Point
0.744 3.6% 0.0895 MIN

2 1.35% 0.238 MAX

4.6.3.3 Comparison between linear and non-linear approximation.

All works assume that the relation between cost in time of a partition and system
frequency is linear. Previous results show that linear interpolation offers good re-
sults in terms of energy consumption. But this approximation is really sensitive
to the range of frequencies in which we develop the study. The selection of the
parameter k also can variate the solution.

However, with rational approximation this problem does not exist. Even though
this approximation requires more calculus knowledges, the obtained function pro-
vides a solution that fits better with the problem of energy consumption.

Works consider that maximum energy consumptions takes place at maximum
frequency system and, minimum energy consumption at critical frequency of the
system. Thanks to rational approximation, these conclusions have been verified.

156



4.7 Conclusions

4.7 Conclusions
In this chapter, the problem of partition allocation in mixed-criticality systems
when the goal is to reduce energy consumption has been addressed from two dif-
ferent points of view.

In the first part of the chapter, instead of focusing on new scheduling algorithms
to adjust frequency in order to save energy, a partition to CPU allocation that takes
into account not only the different frequencies at which the CPU can operate, but
the level of criticality of the partitions, is proposed. A different mixed-criticality
model is also proposed, instead of the well-known Vestal model. The motivation is
to cope with the requirements imposed by the applications used in the avionics and
railway sector, since the results of this research will be applied in H2020 project
SAFEPOWER with demonstrators in these two sectors.

An allocation method for real-time systems of the same criticality is presented
and extended for mixed-criticality systems. First, an Energy Efficient Allocator
is defined and then, the extension based on combining two strategies is defined:
dropping partitions that are not mandatory in extreme low power situations and
reducing the bandwidth of mandatory LO partitions. In the general method, an
energy saving up to a 5% is achieved. In the extension to MCS, a 35% saving is
achieved at the expense of losing performance of LO partitions. A set of profiles
are proposed, so at run time the system has to decide to switch to a more energy
conserving profile depending on the power sensor values. In spite of the fact that
this is not an exact method, it provides a faster feasible solution, with similar results
to the optimal solution.

In the second part of the chapter, a theoretical basis of previous assumptions in
order to consolidate them is proposed. In this sense, the relation between computa-
tion time and CPU frequency is studied in order to find the best effective approach.
To do that, measurements of different functions at different frequencies have been
taken on a real platform. This assumption is used to build a mathematical model
of energy consumption, frequency and computation time (utilization). The goal is
to find the points (frequency, utilization) that minimize energy consumption. The
same model is built assuming a linear relationship between frequency and compu-
tation time. The comparison between both models confirms that both the linear
and non-linear assumptions are realistic. Both provide the same solution: when

157



4. ENERGY SAVING TECHNIQUES IN PARTITIONED SYSTEMS

the system runs at its maximum frequency, it consumes the maximum energy and
when the system runs at its critical frequency, it consumes the minimum energy.

To conclude, energy-aware aspects have been considered in this work, present-
ing new proposals addressed to mixed criticality systems. Battery-operated de-
vices, supplying computing in space or thermal issues make necessary to address
the challenge to minimize energy consumption. This chapter has made a new con-
tribution to this field.

158



CHAPTER

5
Conclusions

According to the presented work and the detailed experiments and results, the
final conclusions can be established. First, the introduced developments are sum-
marized, while a comparison between the initial goals and the obtained achieve-
ments characterizes the degree of success of this proposal.

Next, the future work derived from this contribution is presented in order to im-
prove the actual performance and bring new functionalities to the system. Finally,
a list of published articles is related to the chapters and sections introduced along
this work. Furthermore, the research projects, which frame the development of this
thesis, are presented. The layout of the conclusion chapter is depicted in Figure 5.1.

159



5. CONCLUSIONS

Figure 5.1: Chapter 5 layout

160



5.1 Developments and Achievements

5.1 Developments and Achievements
The main objective of this thesis has been to contribute to the analysis of a parti-
tioned and hierarchical real-time system. In particular, the scheduling of systems
in which different criticalities coexist has been addressed.

The main contributions of this thesis are divided into two main groups: on the
one hand, the generation of offline scheduling plans for partitioned and hierarchical
real-time systems and, on the other hand, energy-aware techniques for multicore
real-time systems. Thus, the contributions of this thesis are explained in detail
below.

The contributions related to the generation of offline scheduling plans are:

• Study of the schedulability of a two level hierarchical real time system, where
local level tasks are scheduled under EDF policy whereas the global level
does not follow any known scheduling policy.

• Calculation of CPU supply functions that ensure the schedulability of task
sets in this scenario. Specifically, two different functions are defined: firstly,
a CPU supply which offers CPU when tasks are released (gsbf ) and, sec-
ondly, a CPU supply which offers CPU as late as possible (msbf ), meeting
the deadlines in both situations and providing the minimum CPU.

• As a consequence of that, the proposed method can be used to check if any
set of time intervals provided by the SI can be accepted by the PD or not.

• In spite authors believe that there is no other similar work in literature, this
proposal is compared with other existing methods. This is because the pro-
posed work can be applied in the case of any known existing server in the
global level.

The contributions related to energy-aware techniques are:

• Study and analysis of classical Vestal model for mixed criticality systems.
After exposing Vestal’s characteristics that make this model non suitable in
our scenario, the model that best fits our project requirements is presented.

• Definition and implementation of an energy efficient algorithm for multicore
partitioned systems. It can be applied to real-time systems with different

161



5. CONCLUSIONS

criticality levels or those in which only one criticality level exists. This algo-
rithm consists of an allocation technique based on well-known bin packing
algorithms that take into account the different frequencies at which a core
can operate.

• In addition to the previous algorithm, different strategies for MCS are com-
bined: dropping partitions that are not mandatory in extreme low power sit-
uations and reducing the bandwidth of mandatory LO partitions. As a con-
sequence of previous techniques, different energetic plans are obtained, each
of them with an energy consumption and performance loss characterization,
so at run time the system has to decide to switch to a more energy conserving
profile depending on the power sensor values.

• Development of a simulation tool that includes partition to cores allocation
as well as the implementation of previous techniques. Thanks to this tool, it
is observed that, in the general method (non MCS), an energy saving up to
a 5% is achieved. In the extension to MCS, a 35% saving is achieved at the
expense of losing performance of LO partitions.

• Implementation on energy-aware issues to a commercial analytic tool, Xon-
crete. This tool helps the system integrator to build and analyse the schedula-
bility of a partitioned system and, then, to generate a static cyclic plan for the
Xtratum hypervisor. All novelties related to energy, as frequency of cores,
computation times of tasks depending on frequencies, criticality of tasks,
etc. have been implemented to the tool. As output of the tool, a temporal
plan with different profiles is obtained.

After this results achieved, it is considered that a theoretical basis is essential
for the validation of previous heuristic. Then, as regards the latter, the contributions
related to theoretical aspects are:

• Study and analysis of the relation between temporal cost and frequency. Al-
most all works assume that the relation between time and the inverse of fre-
quency is linear. After measurements of the execution of different functions
at different frequencies on a real platform, a model that best relates frequency
and time is proposed.

162



5.1 Developments and Achievements

• Definition of a mathematical model of energy consumption, frequency and
computation time (utilization). The goal is to find the points (frequency, uti-
lization) that minimizes energy consumption. This is very useful for system
designers in order to select between different frequencies that provide the
same energy consumption.

• To provide optimal results of energy consumption, i.e., maximum and min-
imum. It is mathematically demonstrated that when the system runs at its
maximum frequency, it consumes the maximum energy and when the sys-
tem runs at its critical frequency, it consumes the minimum energy.

These later contributions were developed in the Real-Time Systems group at
University of Kaiserslautern, Germany, during a predoctoral research stay.

163



5. CONCLUSIONS

5.2 Future Work
Even though the main objectives have been achieved along this thesis, there are
still many possible enhancements and extensions. In this section, future work lines
in order to expand the results of this thesis are commented.

Regarding to the generation of offline scheduling plans, two schedulable func-
tions are obtained, msbfτ (t) and gsbfτ (t). All the calculus is made before the
execution, i.e., focused on offline scheduling, due to Xtratum needs. Instead, fur-
ther work will focus on providing online algorithms to calculate these functions in
a specific window. This could be especially useful in flexible environments, where
even if the scheduling algorithm is known a priori, jitter or latencies make final
slots execution difficult to predict.

Moreover, improvements in the msbfτ (t) and gsbfτ (t) calculation are also
foreseen. The proposed algorithm needs all the hyperperiod space to be exact.
This value could be a large number so an upper bound for msbfτ (t) and gsbfτ (t)
might be obtained to avoid studying the complete hyperperiod.

Finally, as all this work considers dynamic priorities in the local level, it may
be of interest to develop this study to consider fixed priorities in the local level.

With regard to energy-aware considerations, certain simplifications have also
been made. Future work will treat aspects as core overheads due to changes in
the system frequency, shared resources and communication channels between par-
titions, etc.

Moreover, techniques to find optimal solutions of energy consumptions are also
desired. In spite that this work proposes CP techniques to solve the problem, it
has been observed that the resulting solutions do not always satisfy the temporal
requirements. In this sense, future work will be focused on mixed integer linear
programming (MILP) models to provide the optimal scenario for energy-aware
purposes.

To conclude, we are also considering to extend the study to address the schedul-
ing problem of the system under thermal-aware design. As technology advances,
techniques to manage heat dissipation in microprocessors are drawing attention.
Thanks to the schedulable supply functions defined in Section 3, the minimum time
that the system needs to complete its execution is obtained. Then, the usage of idle
time of the processor in order to keep the system temperature between specified

164



5.2 Future Work

parameters could be a interesting consideration.
These research lines would complement the results and contributions of the

present work and help enabling the development of new scheduling techniques for
partitioned and hierarchical systems.

165



5. CONCLUSIONS

5.3 Publications and Projects
In this section, publications and projects in which this thesis has been framed are
presented. Figure 5.2 relates the published articles with the contribution chapters
of this document.

Figure 5.2: Publications related with this thesis

5.3.1 Journals
1. Title: Real-time hierarchical systems with arbitrary scheduling at global

level

Authors: Ana Guasque, Patricia Balbastre, Alfons Crespo

Journal: Journal of Systems and Software

Editorial: Elsevier (ISSN 0164-1212)

166



5.3 Publications and Projects

Rank: Q1

Impact Factor: 2,278

Issue: 119 Pages: 70-86

Date Reception: February 2016 Date Publication: May 2016

2. Title: Energy efficient partition allocation in mixed-criticality systems

Authors: Ana Guasque, Patricia Balbastre, Alfons Crespo

Journal: PLOS

Editorial: PLOS ONE

Rank: Q1

Impact Factor: 2,766

Issue: 119 Pages: 70-86

Date Reception: July 2017 Date Publication: April 2019

5.3.2 International Conferences
1. Title: Schedulability Analysis of Hierarchical Systems with Arbitrary Schedul-

ing in the Global Level

Authors: Ana Guasque, Patricia Balbastre, Vicent Brocal, Alfons Crespo

Conference: 2nd IFAC Conference on Embedded Systems, Computational
Intelligence and Telematics in Control (CESCIT 2015)

Editorial: IFAC. Papers Online 48-10

Place: Maribor, Slovenia Date: 24/06/2015

2. Title: Energy efficient partition allocation in partitioned systems

Authors: Ana Guasque, Patricia Balbastre, Alfons Crespo, Javier Coronel

Conference: 3rd IFAC Conference on Embedded Systems, Computational
Intelligence and Telematics in Control (CESCIT 2018)

Editorial: IFAC. Papers Online

Place: Faro, Portugal Date: 08/06/2018

167



5. CONCLUSIONS

3. Title: Energy characterization of real-time partitioned systems.

Authors: Ana Guasque, Patricia Balbastre, Alfons Crespo, Gerhard Fohler

Conference: 24th IEEE International Conference on Real-Time and Embed-
ded Computing Systems and Applications (RTCSA 2018)

Editorial: IEEE Xplore

Place: Hakodate, Japan Date: 31/08/2018

4. Title: Design of Criticality-Aware Scheduling for Advanced Driver Assis-
tance Systems

Authors: Savithry J, Ana Guasque, Anju Pillai, Patricia Balbastre, Alfons
Crespo

Conference: 24th International Conference on emerging technologies and
factory automation (ETFA 2019)

Editorial: IEEE Xplore

Place: Zaragoza, Spain Date: 12/09/2019

5.3.3 National Conferences
1. Title: Schedulability Analysis of Hierarchical Systems with Arbitrary Schedul-

ing in the Global Level

Authors: Ana Guasque, Patricia Balbastre, Vicent Brocal, Alfons Crespo

Conference: XVIII Jornadas de Tiempo Real (JTR 2015)

Place: Murcia, Spain Date: 29/01/2015

2. Title: Análisis de planificabilidad de sistemas jerárquicos con planificación
arbitraria en el nivel global

Authors: Ana Guasque, Patricia Balbastre, Vicent Brocal, Alfons Crespo

Conference: XXXVI Jornadas de Automática (JA 2015)

Editorial: Comité Español de Automática de la IFAC (CEA-IFAC)

Place: Bilbao, Spain Date: 02/09/2015

168



5.3 Publications and Projects

3. Title: Definición de funciones de asignación de CPU planificables para sis-
temas jerárquicos con planificación arbitraria en el nivel global.

Authors: Ana Guasque, Patricia Balbastre, Alfons Crespo

Conference: XIX Jornadas de Tiempo Real (JTR 2016)

Place: Málaga, Spain Date: 04/02/2016

4. Title: Algoritmo de asignación de particiones para la eficiencia energética
de sistemas particionados

Authors: Ana Guasque, Patricia Balbastre, Alfons Crespo, javier Coronel

Conference: XX Jornadas de Tiempo Real (JTR 2018)

Place: Bilbao, Spain Date: 24/01/2018

5.3.4 Projects, Scholarships and Research Stay
Fig. 5.3 relates same publications with the research projects, scholarship and re-
search stays, which have been framed by the development of this thesis.

Figure 5.3: Publications over time and related projects

1. Project: Open and cost-effective virtualization techniques and supporting
separation kernel for the embedded systems industry (VOS4ES)

169



5. CONCLUSIONS

Reference: 286706

Duration: 2011-2013

2. Project: Distributed REal-Time Architecture for Mixed Criticality Systems
(DREAMS)

Reference: 610640

Duration: 2013-2015

3. Project: Sistemas ciber-fisicos de criticidad mixta sobre plataformas multi-
núcleo (M2C2)

Reference: TIN2014-56158-C4-1-P

Duration: 2015-2018

4. Schoolarship: Formacion de Personal Investigador (FPI)

Center: Universitat Politècnica de València

Reference: BES-2015-072273

Duration: 2016-2019

5. Research Stay: Real-Time Systems Group

Center: Technische Universität Kaiserslautern, Germany.

Supervisor: Prof. Gerhard Fohler

Duration: 09/2017-12/2017

170



Appendices

171





APPENDIX

A
Supplementary calculation

A.1 Interpolating experimental values through a ra-
tional function
In mathematics, Thiele’s interpolation formula is the way to define a rational func-
tion f(x) from a finite set of inputs xi and their function values f(xi). It is ex-
pressed as a continued fraction, where ρ represents the reciprocal difference:

f(x) = f(x1) +
x− x1

ρ(x1, x2) + x−x2
ρ(x1,x2,x3)−f(x1)+

x−x3
ρ(x1,x2,x3,x4)−...

(A.1)

In order to calculate the rational function through Thiele’s method, we have to
use the Equation A.1 and experimental values in Table 4.37. Firstly, we have to
define ϕ[x0, x1] as the reverse difference obtained from known points.

ϕ [x0] = f(x0) = y0 = 0.4

ϕ [x0, x1] =
x0 − x1

y0 − y1

= −0.15

ϕ [x0, x2] =
x0 − x2

y0 − y2

= −0.333

ϕ [x0, x1, x2] =
x1 − x2

ϕ [x0, x1]− ϕ [x0, x2]
= −0.382

173



A. SUPPLEMENTARY CALCULATION

ϕ [x0, x3] =
x0 − x3

y0 − y3

= −0.8

ϕ [x0, x1, x3] =
x1 − x3

ϕ [x0, x1]− ϕ [x0, x3]
= −0.3841

ϕ [x0, x4] =
x0 − x4

y0 − y4

= −1.0277

ϕ [x0, x1, x4] =
x1 − x4

ϕ [x0, x1]− ϕ [x0, x4]
= −0.387

Secondly, we calculate the table of reverse differences (see Table A.1).

Table A.1: Reverse differences table

xk yk ϕ[x0, xk] ϕ[x0, x1, xk]

0.07 0.4
0.1 0.2 -0.15
0.17 0.1 -0.333 -0.382
0.35 0.05 -0.8 -0.3841
0.44 0.04 -1.0277 -0.387

As ϕ[x0, x1, xk] converts in -0.38, the calculus stops and this value is used to
calculate the desired function (for all points in Table 4.37):

f(x) = 0.4− 0.385
x− 0.07

x
=

=
0.4x− 0.385x+ 0.02688

x
=

=
0.016x+ 0.02688

x

A.2 Evaluation of the character of a relative extrema
To know if the relative extremum (U0, f0) is a maximum or a minimum, we will
apply the second partial derivate test. The second partial derivative test tells us how
to verify whether this stable point is a local maximum, local minimum, or a saddle
point1. Then, we can build a symmetric square matrix called Hessian matrix of L,
composed of second-order partial derivatives of this function.

1By definition, saddle points are stable points where the function has a local maximum in one
direction, but a local minimum in another direction.

174



A.2 Evaluation of the character of a relative extrema

H =

[
∂2L
∂U2

∂2L
∂U∂f

∂2L
∂U∂f

∂2L
∂f2

]
(A.2)

Then:

• If H(U0, f0) is a positive-definite matrix, then E(U, f) will have a condi-
tioned local minimum in (U0, f0).

• If H(U0, f0) is a negative-definite matrix, then E(U, f) will have a condi-
tioned local maximum in (U0, f0).

• If H(U0, f0) is neither positive nor negative, we will need another method to
characterize the conditioned point.

Consequently, the Hessian matrix of L is:

H(U, f) =

[
2λk
U3 MAF · β · α · (α− 1) · U · fα−2

MAF · β · α · (α− 1) · U · fα−2 MAF · β · α · fα−1

]
(A.3)

Applying this general definition to the critical point (U0, f0) and with the pre-
viously defined values α, β, Ps and MAF, the Hessian matrix of L is:

H(U0, f0) =

 3k

250·83 3√20

3
2

3

√
2

250

3
2

3

√
2

250
6 3

√
4
25

 (A.4)

So then, as the matrix H is positive definite, the critical point H(U0, f0) is a
minimum of E.

175





List of Figures

1.1 From embedded to partitioned systems . . . . . . . . . . . . . . . 4
1.2 Taxonomy of real-time scheduling. . . . . . . . . . . . . . . . . . 7

2.1 Temporal parameters of a periodic task. . . . . . . . . . . . . . . 15
2.2 Real-time schedulers classification. . . . . . . . . . . . . . . . . . 16
2.3 Virtualized OS architecture on a multicore processor . . . . . . . 29
2.4 Taxonomy of energy-aware algorithms for single-core systems. . . 37
2.5 Taxonomy of energy-aware algorithms for multicore systems. . . . 38
2.6 Xtratum architecture. . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 Integration of mixed critical applications on single chip. . . . . . . 46
2.8 Changing temporal parameters in one partition. . . . . . . . . . . 47
2.9 Adding partitions to the partitioned system. . . . . . . . . . . . . 48

3.1 Chapter 3 layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Execution chronogram and CPU supply of a partition. . . . . . . . 53
3.3 Periodic supply bound functions (θ = 3, π = 10) . . . . . . . . . 56
3.4 Calculation of gsbfτ (t) in [0, t4) . . . . . . . . . . . . . . . . . . 60
3.5 Representation of gsbfτ (t) . . . . . . . . . . . . . . . . . . . . . 66
3.6 Execution chronogram of τ with gsbfτ (t) in Table 3.4 . . . . . . . 67
3.7 Calculation of msbfτ (t) in [0, t2] . . . . . . . . . . . . . . . . . . 71
3.8 Execution chronogram of τ with R = I0 = [0, 30] . . . . . . . . . 74
3.9 Representation of msbfτ (t) . . . . . . . . . . . . . . . . . . . . . 75
3.10 Execution chronogram of τ with R = msbfτ (t) . . . . . . . . . . 76
3.11 Zones according to the position of msbfτ (t) and gsbfτ (t) . . . . . 77
3.12 Graphical representation of dbfτ (t),msbfτ (t) and sbfR(t) . . . . 78

177



LIST OF FIGURES

3.13 Execution chronogram of τ with R in Table 3.7 . . . . . . . . . . 79
3.14 Graphical representation of Gτ (t), gsbfτ (t) and sbfR′(t) . . . . . 80
3.15 Execution chronogram of τ with R′ in Table 3.8 . . . . . . . . . . 80
3.16 Graphical representation of msbfτ ′(t), gsbfτ ′(t) and sbfR′′(t) . . . 82
3.17 Execution chronogram of τ ′ with R′′ in Table 3.10 . . . . . . . . . 82
3.18 Graphical representation of msbfτ ′(t) and sbfR′′′(t) . . . . . . . . 83
3.19 Conditions of schedulability in {τ, R} . . . . . . . . . . . . . . . 85
3.20 Example of schedulability in {τ, R} . . . . . . . . . . . . . . . . 86
3.21 Chronogram execution of schedulability in {τ, R} . . . . . . . . . 86
3.22 Conditions of schedulability in {τ, R} . . . . . . . . . . . . . . . 87
3.23 Example of schedulability in {τ, R} . . . . . . . . . . . . . . . . 88
3.24 Chronogram execution of schedulability in {τ, R} . . . . . . . . . 89
3.25 % schedulable τ in msbfτ (t) ≤ sbfR(t) < gsbfτ (t) . . . . . . . . 92
3.26 % schedulable τ in sbfR(t) > gsbfτ (t) . . . . . . . . . . . . . . . 92
3.27 Original allocation (a). Busy time in black and idle time in red (b) 93
3.28 Addition of a new partition (in red) . . . . . . . . . . . . . . . . . 94
3.29 Generation of msbfτ (t) from sbfR(t) . . . . . . . . . . . . . . . 94
3.30 Comparison between two periodic supplies R=(2.6,10) and R=(2.8,10)

and msbfτ ′′′ (t) for τ ′′′ = (τ ′′′1 (7, 50), τ ′′′2 (9, 75)) . . . . . . . . . . 97

4.1 Chapter 4 layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 General overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Tasks or partitions allocated to cores. A: Tasks. B: Partitions. . . . 107
4.4 EEA mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5 Mappings depending on the profile. . . . . . . . . . . . . . . . . 117
4.6 DU. A: Energy saving. B: Number of mappings. . . . . . . . . . . 121
4.7 IU. A: Energy saving. B: Number of mappings. . . . . . . . . . . 122
4.8 R. A: Energy saving. B: Number of mappings. . . . . . . . . . . . 122
4.9 Energy saving no MCS when allocator is FFDU . . . . . . . . . . 123
4.10 Energy saving with 2 and 8 cores. A: 2 cores. B: 8 cores. . . . . . 123
4.11 Time consumption in executing EEA algorithm. . . . . . . . . . . 124
4.12 Energy saving with different allocators. A: Profile 1. B: Profile 5. . 125
4.13 Energy saving MCS when allocator is FFDU . . . . . . . . . . . 126
4.14 Energy saving for MCS profiles . . . . . . . . . . . . . . . . . . 126

178



LIST OF FIGURES

4.15 Performance loss for MCS profiles . . . . . . . . . . . . . . . . . 127
4.16 k for MCS profiles . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.17 Xoncrete work flow. . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.18 System frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.19 Internal tasks and scheduling section . . . . . . . . . . . . . . . . 132
4.20 Temporal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.21 Main window of Xoncrete application. . . . . . . . . . . . . . . . 133
4.22 Hardware resources edition. . . . . . . . . . . . . . . . . . . . . 134
4.23 Partition edition. . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.24 End-to-end flow definition. . . . . . . . . . . . . . . . . . . . . . 135
4.25 End-to-end flow edition. . . . . . . . . . . . . . . . . . . . . . . 135
4.26 Temporal behaviour. . . . . . . . . . . . . . . . . . . . . . . . . 136
4.27 Results profile 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.28 Results profile 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.29 Results profile 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.30 Results profile 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.31 Results profile 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.32 Results profile 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.33 Plan summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.34 Main window of Xoncrete application. Updated model. . . . . . . 141
4.35 Reduced information in xml file. . . . . . . . . . . . . . . . . . . 142
4.36 Temporal description in xml file. . . . . . . . . . . . . . . . . . . 143
4.37 Experimental relation between utilization and frequency. . . . . . 147
4.38 interpolation functions between utilization and frequency. . . . . . 148
4.39 Graphical representation of the general function E(U,f) without

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.40 Linear constraint in region S. . . . . . . . . . . . . . . . . . . . . 152
4.41 Relative extrema of the function E(U,f) with different m and n. . . 153
4.42 Non-linear constraint in region S. . . . . . . . . . . . . . . . . . . 155
4.43 Energy function with non-linear constraint in region S. . . . . . . 155

5.1 Chapter 5 layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2 Publications related with this thesis . . . . . . . . . . . . . . . . . 166
5.3 Publications over time and related projects . . . . . . . . . . . . . 169

179





List of Tables

2.1 Major differences between hard and soft real-time systems . . . . 13

3.1 Task parameters τ . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Characteristic points of gsbfτ (t) . . . . . . . . . . . . . . . . . . 65
3.3 Definition of [si, ei] . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Definition of [si, ei] . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Scheduling points . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Minimum supply bound . . . . . . . . . . . . . . . . . . . . . . . 75
3.7 CPU supply R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.8 CPU supply R’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.9 Task parameters τ ′ . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.10 CPU supply R” . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.11 CPU supply R”’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.12 Idle intervals from Figure 3.27(b) . . . . . . . . . . . . . . . . . . 94
3.13 Task parameters τ ′′ . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.14 Task parameters τ ′′′ . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Utilizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2 Types of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 Energy consumptions (Ws) of the mappings of the example . . . . 114
4.4 Energy consumptions (Ws) of the different profiles . . . . . . . . 118
4.5 Utilizations - Example . . . . . . . . . . . . . . . . . . . . . . . 124
4.6 Comparison between EEA and CP solvers. . . . . . . . . . . . . . 124
4.7 Utilizations - Example . . . . . . . . . . . . . . . . . . . . . . . 136
4.8 Computation time measurements at different frequencies . . . . . 146

181



LIST OF TABLES

4.9 Maximum and minimum energy consumption in linear approxima-
tion (k = 0.025). . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.10 Maximum and minimum energy consumption in non-linear ap-
proximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.1 Reverse differences table . . . . . . . . . . . . . . . . . . . . . . 174

182



Statement of Originality

I, Ana Guasque Ortega, do herewith declare that the material contained
in my thesis entitled “Study, analysis and new scheduling proposals in
partitioned real-time systems” is original work performed by me un-
der the guidance and advice of my faculty advisors Patricia Balbastre
Betoret and Alfons Crespo Lorente. I have read and do understand
the “Documento de compromiso de elaboración de tesis doctoral en
la Universitat Politècnica de València”. By signing this statement I
unequivocally assert that this thesis conforms the policies.



This thesis was presented in Valencia at December 2019



White page


	1 Introduction 
	1.1 Motivation
	1.2 Objectives
	1.3 Organization of this thesis

	2 State of the Art
	2.1 Introduction
	2.2 Scheduling policies in real-time systems
	2.3 Partitioned systems
	2.4 Hierarchical scheduling
	2.5 Mixed criticality systems
	2.6 Energy savings policies
	2.7 Virtualization
	2.8 Certification aspects in critical real-time systems
	2.9 Conclusions

	3 Generation of offline plans in real-time partitioned systems.
	3.1 Introduction and objectives
	3.2 Model and notation
	3.3 Schedulable CPU supply functions
	3.4 Schedulable areas
	3.5 Schedulability analysis
	3.6 Experimental results
	3.7 Conclusions

	4 Energy saving techniques in partitioned systems
	4.1 Introduction and objectives
	4.2 Assumptions and model
	4.3 Energy Efficient Partition Allocator
	4.4 Simulation process
	4.5 Practical application: Xoncrete
	4.6 Theoretical energy characterization
	4.7 Conclusions

	5 Conclusions
	5.1 Developments and Achievements
	5.2 Future Work
	5.3 Publications and Projects

	Appendices
	A Supplementary calculation
	A.1 Interpolating experimental values through a rational function
	A.2 Evaluation of the character of a relative extrema

	List of Figures
	List of Tables

