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Abstract 

Two structured manganese oxides (Birnessite and Todorokite) containing Co have been studied in the steam 

reforming of ethanol. It has been found that both materials are active in the hydrogen production, exhibiting 

high values of conversion of ethanol and selectivities to hydrogen (100% and 70%, respectively).  The best 

results have been obtained with the catalyst based on Todorokite material.  Characterization by DRX, BET 

area, TPR and TEM has allowed to find that the excellent performance exhibited by this material could be 

attributed to the lower size of the Co metallic particles present in this sample (6 nm vs 12 nm in Birnessite). 

This lower size could be related to the especial microporous structure of Todorokite precursor, which would 

provide high-quality positions for the stabilization of the Co metal particles during calcination and reduction 

steps. Catalytic deactivation has also been considered.  Deactivation was found higher for Todorokite-based 

catalyst, which presented the largest amount of deposited carbon (26.2 wt.% for Co-TOD vs 10.6 wt.% for 

Co-BIR). On the other hand, the degree of metal sintering was found similar in both catalysts. Therefore, 

the deactivation of the catalysts has been attributed primarily to the deposition of coke. The results presented 

here show that it is possible to prepare new catalysts based on manganese oxides with Birnessite and 

Todorokite structure and promoted with Co with high catalytic performance in the steam reforming of 

ethanol. 
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1.Introduction: 

Hydrogen is identified as a very promising energy carrier to satisfy energy needs while protecting the 

environment [1-3]. Unfortunately, it is not freely available in nature and it must be produced by some 

means, due to this reason, hydrogen cannot be considered an energy source. Currently, the majority of 

world H2 production is derived from fossil fuel-based conventional technologies [4-6]. These technologies 

generate greenhouse gas (GHG) emissions, concretely they have an emission factor of CO2 of 232,600 

Kg/TJ [7]. These high CO2 emissions favor the greenhouse effect, promoting climate change. Therefore, to 

realize the full benefits of a hydrogen economy-sustainability, increased energy security, diverse energy 

supply and reduced air pollution hydrogen must be produced cleanly, efficiently, and affordably from 

available renewable resources. In addition, using the H2 obtained from renewable energy as fuel the 

production of CO2 emissions will be decreased considerably. Hydrogen can be produced from biomass, a 

renewable and CO2-neutral energy source with respect to the greenhouse effect [8-10]. Specifically, 

reforming of renewable biomass feedstocks [11], such as ethanol, has become an increasingly important 

and active research area in view of hydrogen production [12-15]. Ethanol produced by biomass 

fermentation has a high ratio of water/ethanol (≈13), suitable for steam reforming. Using ethanol directly 

gets an important economic and energy savings, since it will not be necessary to carry out the distillation 

of fermented to obtain pure ethanol. In comparison with other fuels, ethanol presents a series of advantages, 
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since it is easier to store, handle and transport in a safe way due to is lower toxicity and volatility. In 

addition, from the environmental point of view, ethanol presents important advantages since it is metal-free 

and does not release pollutant gases (SOx, NOx and others) [16, 17]. Numerous reviews about the 

development of catalysts applied to ethanol steam reforming have been published lately [18-21]. Catalytic 

materials such as transition metals supported on oxides and precious metals supported on oxides are 

reported in these reviews. Among them, Co-based catalysts are widely accepted due to their appropriate 

low-cost compared to precious metals. For the steam reforming of ethanol, Co has emerged as an active 

metal catalyst for C−C bond scission, which is an important characteristic [14]. Moreover, high ethanol 

conversions over Co catalysts supported on different supports have also been reported [21-27]. In general, 

the support is essential in the synthesis of efficient ethanol steam reforming catalysts since it helps in the 

distribution of metal in the catalyst and enhances its activity via metal-support interactions. In addition, 

synthesized methods and pretreatment conditions over supported cobalt catalysts are also important issues 

to prepared highly active and stable steam reforming catalysts. This way, the activity of the steam reforming 

catalyst can be improved achieving a good dispersion of metallic sites on the support, while coke formation 

could decrease using non-acidic supports that would avoid the ethanol dehydration reaction [27-31]. 

The chemical composition, textural properties of the support and synthesis method play important roles in 

the preparation of highly active steam reforming catalyst since they can improve the dispersion of metal 

catalysts [16], while decreasing their sinterization [32]. Recently, structured manganese oxides (SMO) are 

the subject of intense research as low cost, efficient, and environmentally friendly catalysts [33-35]. Among 

them SMO with layer and tunnel structure have received significant attention due to their excellent catalytic 

activity [36-40]. A literature review shows that SMO have been widely used as catalysts in oxidation 

reactions such as oxidation of CO, toluene, VOCs, ethanol and the synthesis of benzoxazoles via the domino 

oxidation process [41-45]. SMO in ethanol steam reforming have not been much studied. However, it is 

possible that the special structure of SMO can favor a good distribution of the Co metal particles improving 

its catalytic activity in the ethanol steam reforming. In our previous work, it was found that SMO with Ni 

presented a high activity in the steam reforming of ethanol  [46]. Thus, we presented now the results 

obtained in the ethanol steam reforming using Co metallic particles incorporated on SMO (Birnessite and 

Todorokite structures). The characterization of these Co-based catalysts has been completed and their more 

relevant physicochemical properties have been connected to their catalytic performance. 

 

2. Experimental: 

2.1. Preparation of catalysts: 

The synthesis of Co-Birnessite and Co-Todorokite was carried out according to Onda et al. [47]. For Co-

Birnessite preparation a solution A containing 1.87 g of Co(NO3)2·6H2O (≥98%, Sigma-Aldrich) and 6.37 

g of MnCl2·4H2O (≥99%, Sigma-Aldrich) in 100 mL of Milli-Q water was prepared and added dropwise 

over a period of 10 min at room temperature (298 K) into a solution B formed by 2.02 g of KMnO4 (≥99%, 

Sigma-Aldrich) and 36 g of NaOH (≥98%, Scharlab) in 100 mL of Milli-Q water. After the solutions were 

mixed, they were stirred for a total of 30 min. The suspension was aged at room temperature for 24 h, and 

it was filtered and washed with Milli-Q water until the pH was about 7. The resultant material was a layered 

Co-Birnessite material. This material was calcined in oven at 873 K and it referred to as Co-BIR. 

Co-Todorokite was prepared using the obtained Co-Birnessite. It was ion-exchanged with 200 mL of a 0.1 

mol/L Co(NO3)2·6H2O (≥98%, Sigma-Aldrich) aqueous solution at room temperature for 24 h. The 

resultant layered sample was washed and filtered ten times with 200 mL of Milli-Q water. Finally, it was 

treated under hydrothermal conditions (433 K for 48 h in an autoclave lined with Teflon) and the resultant 

solid was washed and filtered with Milli-Q water, and dried at 333 K to yield Co-Todorkite. This material 

was calcined in oven at 873 K and labeled as Co-TOD. 

 

2.2. Characterization techniques: 

The cobalt content in the samples was determined by atomic absorption spectrophotometry (AAS) in a 

Varian Spectra A-l0 Plus apparatus.  
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Textural properties of the Co-BIR and Co-TOD materials were obtained from the nitrogen adsorption 

isotherms, which were measured using an ASAP 2420 apparatus (Micromeritics) at 77 K. Before the 

analysis, 200 mg of each pellitized sample (0.25-0.40 mm) were degassed at 673 K with high vacuum 

(∼5×10−6 bar) overnight. The BET surface area was calculated by using the Brunauer−Emmett−Teller 

equation, micropore volume was calculated by the t-plot method. 

X-ray diffraction was used to identify the nature of the crystalline manganese and cobalt oxides and metallic 

cobalt phases. XRD patterns were obtained at room temperature in a Philips X'pert diffractometer using 

monochromatized CuKα radiation. 

The reduction behavior of the catalysts was studied by temperature-programmed reduction (TPR) in a 

Micromeritics Autochem 2910 equipment. Between 30 and 100 mg of sample, in the granulometry 0.25-

0.40 mm were loaded in a quartz U-tube, a fixed bed between quartz wool. Samples were treated in Ar flow 

at room temperature for 30 minutes and then the circulating gas was replaced with 10% H2 (vol)/Ar (50 

mL/min) and the temperature was increased from room temperature to 973 K at a rate of 10 K/min. 

Downstream of the reactor, a 2-propanol/N2 (l) trap was placed to retain the water formed in the reductions, 

and H2 consumption was recorded on a thermal conductivity detector (TCD), previously calibrated using 

the reduction of CuO as a reference.  

The amount of carbon deposited in the catalysts after steam reforming reaction was determined by elemental 

analysis using a Carlo Erba 1106 analyzer. 

The morphology and the metallic Co particles sizes were studied by transmission electron microscopy 

(TEM) using a JEM-1010 microscope. 

2.3. Catalytic study: 

Steam reforming experiments were carried out in a continuous fixed bed reactor at atmospheric pressure, 

H2O/EtOH molar ratio of 13, GHSV 4700 h-1 (EtOH+H2O) and a range of temperatures between 673 K and 

873 K. Before reaction the catalysts were reduced ''in situ'' in flow of H2 (1.67 mL·s-1) at 873 K for 2 h. 

In a typical catalytic test, the reactor was loaded with 0.3 mL of catalyst, ~0.25 g, (grain-size: 0.25-0.42 

mm), diluted with 3 g of carborundum (SiC) (grain-size: 0.60-0.80 mm). The water/ethanol mixture was 

fed from a pressurized container using a liquid flow controller (Bronkhorst), and vaporized at 473 K into a 

stream of nitrogen. The total gas flow was 2 mL·s-1. The catalytic studies were carried out at 673 K, 773 K 

and 873 K, lasting for 5 hours in each temperature.  

The analysis of the compounds of reaction was carried out online using a gas chromatograph (Varian 3800) 

equipped with two columns (TRB-5, L = 30 m, DI = 0.25 mm; CarboSieve SII, L = 3 m, DI = 2.1 mm) and 

two detectors, a thermal conductivity (TCD) and flame ionization (FID). 

The ethanol conversion and selectivity to the different reaction products were determined according to the 

Eqs. (1) and (2), where (FEtOH)0 is the flow of ethanol fed to the reactor (mol·s-1), (FEtOH)f the flow of ethanol 

that comes from the reactor and Fj the flow of product j that comes from the reactor. Selectivity values were 

calculated as the molar percentage of the products obtained. 

 

𝐶𝑜𝑛𝑣. (%, 𝑚𝑜𝑙) =  
(𝐹𝐸𝑡𝑂𝐻)0−(𝐹𝐸𝑡𝑂𝐻)𝑓

(𝐹𝐸𝑡𝑂𝐻)0
× 100 (1) 

𝑆𝑒𝑙𝑒𝑐. (%, 𝑚𝑜𝑙) =  
𝐹𝑗

(∑ 𝐹𝑗)𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
× 100 (2) 

 

3. Results and discussion: 

3.1. Characterization: 

Specific surface area and cobalt content of Co-BIR and Co-TOD are presented in Table 1. As it can be seen 

both materials present similar area and cobalt content.    
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Tabla 1. Metal content and BET surface area of the catalysts studied in this work. 

Sample BET surface area 

(m2/g) 

Co, Nominal 

composition, wt.% 

Co, Determined 

composition, wt.% 

Co-BIR 14 15.0 13.1 

Co-TOD 11 15.0 12.7 

 

X-ray diffraction patterns of synthesized Co-Birnessite and Co-Todorokite materials are showed in Figure 

1. As it can be seen all the diffraction peaks can be attributed to the Birnessite and Todorokite phases [47], 

suggesting that Co-Birnessite and Co-Todorokite has been correctly synthesized.  

 

Fig. 1. XRD of Co-Birnessite and Co-Todorokite as they were synthesized. 

Co-BIR and Co-TOD were calcined at 873K and after reduced at 873 K before reaction. Figure 2 shows 

the XRD of the Co-BIR and Co-TOD materials after the calcination and reduction steps. As it can be seen 

the calcined materials showed similar XRD pattern with diffraction peaks corresponding to Mn3O4 [Ref. 

code 00-008-0017], and cobalt oxide (Co3O4 phase [Ref. code 00-042-1467]). 

 

 Fig. 2. XRD of the catalysts after calcination (Co-BIR and Co-TOD) and reduction (Co-BIR red and Co-TOD red) at 873 K. 
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After reduction with hydrogen at 873 K, the peaks corresponding to cobalt oxide species disappear and 

appear those due to the reduced metallic cobalt phases [Ref. code 00-015-0806], Figure 2. The manganese 

oxide phase also change to more reduces forms (MnO [Ref. code 01-089-2804). Nevertheless, metallic 

manganese phases were not detected.  

The size of the Co metallic particles present on reduced Co-BIR and Co-TOD was determined using the 

Scherrer equation [48]. They were found 14 and 7 nm, respectively. Particle size was also determined by 

TEM [Figure 3 a) and b)]. In this case they were found 12 nm for Co-BIR and 6 nm for Co-TOD, quite 

similar to the sizes determined by XRD. The lower size of the Co metallic particle detected for the Co-TOD 

sample could be related to its particular morphology formed by small channels where the cobalt could be 

located. Thus, the microporous structure of this material can help to provide high-quality positions for the 

accommodation and stabilization of Co metallic particles during the reduction step avoiding their 

sinterization. On the contrary, the low porosity of the Birnessite structure could lead to a higher sinterization 

of Co during the reduction step, leading to higher metallic particle size, as it is observed.  

 
Fig. 3. TEM micrographs of the a) Co-BIR and b) Co-TOD after reduction at 873 K. 

The reduction behaviors of the Co-BIR and Co-TOD have been also studied by temperature programmed 

reduction (TPR). The corresponding reduction curves are show in Figure 4. As observed, Co-BIR and Co-

TOD present similar reduction profiles in all range of temperatures. The presence of Co in the catalysts 

does not have a significant influence in the reduction profile, which is attributed mainly to the reduction of 

the support in a much higher proportion [45, 49]. Nevertheless, it is possible to identify some peaks 

corresponding to the reduction of the oxidized species of cobalt (peaks Ia and IIa) and manganese (peak 

Ib). In the case of the cobalt oxidized species, the first one at around 475 K, can be attributed mainly to the 

reduction of Co3O4 to CoO, Ia [50]. The second, one at around 750 K, could be assigned mostly to the 

reduction CoO to Co, IIa [50]. On the other hand, for the oxidized specie of manganese, the peak at around 

660 K, can be attributed to the reduction Mn3O4 to obtained MnO, Ib [49, 51, 52]. The small differences 

found in the temperature reduction for the Co-BIR and Co-TOD could be related to the different interaction 

and size of the Co metallic particles detected for each support. Smaller particle size would favor the 

appearance of stronger metal-support interactions, increasing the reduction temperature. Indeed, the highest 

reduction temperatures were detected for the Co-TOD sample, which exactly showed the smallest Co 

metallic particle sizes.  

a) Co-BIR b) Co-TOD 

200 nm 200 nm 

12 nm 6 nm 
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Fig. 4. TPR profiles of Co-BIR and Co-TOD. 

3.2. Catalytic activity: 

Catalytic data for each reaction temperature correspond to the steady state, which is achieved after 2 hours 

of reaction time. No deactivation was detected after the temperature study. It was corroborated by the 

determination of the catalytic activity at the reaction condition used initially, when the catalytic studied was 

started.     

Figure 5 A) shows the conversion of ethanol with the reaction temperature. As it can be seen Co-TOD 

material presents a higher catalytic activity in comparison with the Co-BIR material, especially at low 

reaction temperatures (673 K). Hydrogen selectivity was found high for both catalysts. However, small 

differences were found at higher temperatures (773-873 K), being the Co-TOD sample the most selective, 

Figure 5 B). In general, it can be said that Co-TOD exhibits the best catalytic performance at the reaction 

conditions here studied. This greater activity could be related to the smaller size of its metallic Co particles 

(6 nm) compared to the size of the Co metallic particles supported on Co-BIR (12 nm). As it was explained 

before, in the characterization part, the differences in size of the Co metallic particles can be due to the 

special microchannel structure of Todorokite, which may favor a better distribution of metallic particle, 

avoiding their agglomeration in the reduction step. Therefore, these results seem to support the positive 

effect that microporous structure of Todorokite could have to prepare reforming catalysts with high activity 

in the steam reforming of ethanol. 
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Fig. 5. A) Conversion of bioethanol versus reaction temperature. B) Hydrogen selectivity versus reaction temperature. Reaction 

conditions: H2O/EtOH=13, GHSV= 4700 h-1 and atmospheric pressure. 

Products distribution have been also studied and they are showed in Table 2. As it can be seen SMO-based 

materials produce very low quantities of undesirable products (Table 2). Specifically, Co-TOD presents the 

lowest amount of CH4, CO and other byproducts (C2H4O and C3H6O). Again, the lower production of 

byproducts could be related to the smaller size of the metallic Co particles present in this sample. 

 

Table 2. Catalytic results for the bioethanol steam reforming on Co-BIR and Co-TOD. Reaction conditions: H2O/EtOH = 13, 

GHSV = 4700 h-1 and atmospheric pressure. 

Catalyst T., K CH4 CO CO2 C2H4 C2H4O C3H6O 

 

Co-BIR 

673 1.0 0.9 20.3 0.0 1.6 0.0 

773 1.0 2.3 19.5 0.0 0.9 0.4 

873 3.0 8.4 16.4 0.1 0.2 0.1 

 

Co-TOD 

673 2.2 0.9 21.2 0.0 0.0 0.0 

773 0.8 1.5 19.0 0.0 0.0 0.0 

873 2.1 3.4 19.5 0.1 0.0 0.1 

 

Together to the activity and selectivity, stability is another important catalytic parameter to be considered. 

It is well known that the stability of a reforming catalyst is strongly influenced by the coke deposition and 

metal sintering [36]. The elemental analysis of the catalysts after 24 h of the reaction time shows that the 

amount of deposited coke is greater in the case of Co-TOD (Table 3), which presents a larger activity loss. 

This result suggests that the loss of activity may be directly related to the coke deposition. On the other 

hand, sinterization of the Co metallic particle has also been studied by TEM. Figure 6 a), b) shows the TEM 

of the samples after reaction. As it can be seen Co metallic particles present similar degree of sinterization 

in both samples (from 12 nm to 40 nm for Co-BIR and from 6 nm to 20 nm for Co-TOD).  Nevertheless, 

the final size of the Co metallic particles remains still larger for Co-BIR sample. Thus, this sample should 

be presented a lower catalytic activity than the Co-TOD. However, the catalytic activity of this sample after 

24 h is higher than the Co-TOD.  These results suggest that the loss of activity in Co-TOD seem to be more 

influenced by the carbon deposition than by the sinterization of the metallic Co particles.  
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Table 3. Catalytic results for the ethanol steam reforming on Co-BIR and Co-TOD. Ethanol conversion values obtained at two reaction 

times, 5h and 24h. Deposited carbon after 24 h of reaction time. Reaction conditions: H2O/EtOH = 13, GHSV = 4700 h-1, atmospheric 

pressure and 773 K. 

Catalyst 
Conv. EtOH, mol % H2 Selectivity, mol% C, wt.% of catalyst % C, deposited/feed 

5 h 24 h 5 h 24 h 24 h 24 h 

Co-BIR 98.9 94.6 69.9 69.8 10.6 1.3 

Co-TOD 99.9 87.9 75.0 74.9 26.2 3.9 

 

 

 

Fig. 6. a), b) TEM micrographs of the Co-BIR and Co-TOD after 24 h of reaction time. 

 

All the results presented here show that it is possible to prepared new ethanol steam reforming catalysts 

based on structured manganese oxides (type Birnessite and Todorokite) as support of cobalt catalyst with 

high catalytic activity and hydrogen selectivity, able to reduce the formation of CO and CH4. 

 

4. Conclusions: 

Structured manganese oxides type Birnessite and Todorokite with Co have been used by the first time as 

catalysts in the steam reforming of ethanol. Resulting catalysts (Co-BIR and Co-TOD) have exhibited a 

higher catalytic activity and hydrogen selectivity with low production of not desired byproducts such as 

CO and CH4. Specifically, the Todorokite-based material (Co-TOD) exhibited the better catalytic 

performance at low reaction times (5h), without undesirable byproducts, what seems to be related to the 

smaller Co metallic particles present in this material, 6 nm versus 12 nm for Co-BIR. The degree of sintering 

in both materials after reaction was found similar. However, at larger reaction times (24 h) the Co-TOD 

sample generated large amounts of carbon, leading to a higher deactivation by coke deposition.    
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