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ABSTRACT 

One of the most studied techniques for the non-destructive determination of the 

internal quality of fruits has been visible and near-infrared (VIS-NIR) reflectance 

spectroscopy. In the case of apples, it has been applied mostly for internal quality 

assessment and variety distinction. However, this technique has traditionally been used 

in laboratory setups for individual fruit inspection. This work evaluates a new non-

destructive in-line VIS-NIR spectroscopy prototype to identify five apple varieties, with 

the advantage that it allows the spectra to be captured with the probe at the same distance 

from all the fruits regardless of their size. The prototype was tested using varieties with a 

similar appearance by acquiring the diffuse reflectance spectrum of the samples travelling 

at a speed of 1 fruit/s. Principal component analysis (PCA) was used to determine the 
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variables that explain the most variance in the spectra. Seven principal components were 

then used to perform linear discriminant analysis (LDA) and quadratic discriminant 

analysis (QDA). QDA was found to be the best in-line classification method, achieving 

98% and 85% success rates for red and yellow apple varieties, respectively. The results 

indicated that the in-line application of VIS-NIR spectroscopy that was developed is 

potentially feasible for the detection of apple varieties with an accuracy that is similar to 

or better than a laboratory system. 

 

Keywords: apple, in-line, varietal discrimination, visible-near-infrared spectroscopy, 

non-destructive  

 

1. INTRODUCTION 

More than 7500 apple (malus sp., Rosaceae) varieties are currently cultivated (Wu 

et al. 2017) with significant differences in qualities, which makes this one of the most 

consumed fruits in the world (Ronald & Evans 2016). Consumers have different tastes 

and preferences from one country or region to another. However, there are trends that are 

common to all of them, such as an increasing demand for higher quality, both external 

and internal. The external properties (presentation, appearance, uniformity, maturity, 

freshness, etc.) are the main reason governing the purchase decision of fruits, which is 

normally taken when the consumer sees the products exhibited on the shelves. The 

internal quality (flavour, aroma, texture, firmness, acidity, sugar content, absence of 

contaminants, etc.) (Wojdyło et al. 2008) is linked to aspects that are generally not 

perceptible at first sight, although future purchasing decisions may depend on them. 

Indeed, because of the variety of consumers, it is difficult to establish a specific definition 

of quality, but generally a fruit has better quality when it is superior in one or several 
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attributes that meet consumer expectations (Kader et al. 1985). However, no matter how 

much effort is put into obtaining products with excellent quality, this consumer 

satisfaction will be defrauded when, either by mistake or by fraud, fruits, like apples, of 

similar appearance (external quality) but different internal quality are mixed in the market 

place (López 2003).  

Generally, several varieties of apples can be grown simultaneously in a single apple 

orchard, and they can be sold at the same time. Therefore, different apple varieties can 

easily be mixed during harvesting and marketing when they have a similar appearance. 

Proper identification of fruits has to be done by workers in a subjective and manual way 

because physical or chemical analytical methods for apple evaluation are expensive and 

time-consuming. This sorting results in high costs, tediousness and inconsistency 

associated with human beings (Ronald & Evans 2016). Therefore, apple sellers need new 

electronic non-destructive techniques to distinguish apple varieties (Shang et al. 2015). 

Several non-destructive techniques to discriminate among apple varieties have already 

been attempted. Visible and near-infrared (VIS-NIR) spectroscopy has been used by 

different researchers such as He et al. (2007), Wu et al. (2016), Luo et al. (2011), Wu et 

al. (2017) and Song et al. (2016). All of these studies only extract information from the 

VIS-NIR spectra, or even only from the NIR spectra, of the apples for off-line 

discrimination among varieties; however, none of them develop in-line applications to 

classify apple varieties. Such an application is developed in this study through a 

preliminary in-line prototype. Other non-destructive techniques used to classify apple 

varieties have been dielectric properties, solid-state sensors (ISFET), digital image 

analysis or electronic nose. Shang et al. (2015) used 160 apples of three varieties in an 

attempt to discriminate them according to the dielectric spectra measured at laboratory 

scale. Alonso et al. (2003) analysed the ISFET by ions such as calcium, potassium and 
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nitrates, both in apple juice and in in situ apple fruit. Regarding digital image analysis, 

Sabanci and Ünlersen (2016) and Ronald and Evans (2016) captured apple images and 

obtained a good classification using the measurement of different properties (colour and 

size). Finally, an electronic nose was developed by Marrazzo et al. (2005), who tested the 

feasibility of detecting the difference among volatile gases emitted from different intact 

apple varieties, but good results in terms of the classification of the three varieties was 

only obtained for day 1. Among these non-destructive methods, the most widely used is 

VIS-NIR spectroscopy, because it is extremely fast, chemical-free and suitable for in-line 

use (Wu et al. 2017). The literature contains different studies on the applicability of in-

line VIS-NIR spectroscopy. For example, Jie et al. (2014) developed an in-line prototype 

based on the VIS-NIR technology in the range of 687-920 nm for the prediction of the 

soluble solid content (SSC) of watermelon and achieved rpre of 0.70 and RMSEP of 0.33 

ºBrix. Brunt et al. (2010) measured the chemical composition of potatoes by an automated 

semi-industrial system with in-line NIR reflectance. The system was only able to process 

12 potato samples per hour, but the starch and the coagulating protein concentrations 

showed a good NIR prediction. Sun et al. (2016) determined the SSC and identified brown 

core pears simultaneously in-line by VIS-NIR transmittance spectroscopy. The spectra 

between 600-904 nm were recorded at a moving speed of five samples per second. The 

classification accuracy of brown core pears was 98.3% and the predictive precision of 

SSC was around 98%. Similarly, Shenderey et al. (2010) evaluated the ability of VIS-

NIR mini-spectrometers (400-1000 nm) to detect mouldy core in 'Red Delicious' apples 

using an in-line development. The accuracy of the classification was higher than 92% but, 

in this case, although the apples were in movement, both the probe and the apples were 

always at fixed positions during the measurements. Salguero-Chaparro et al. (2012) 

evaluated the effect of some parameters, such as focal distance and integration time, on 
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the spectral repeatability for the analysis of intact olive fruits on a conveyor belt in the 

spectral range of 380-1690 nm using a diode array spectrometer. Regarding this last 

research, it should be pointed out that one of the major drawbacks hindering the 

incorporation of technology based on spectroscopy into automated in-line sorters is the 

large differences in size and shape that can be found from one fruit to another. Since the 

probe is located at a fixed point, the distance between the probe and the fruit will vary 

depending on the size of the fruit. However, it is important to ensure that the distance 

between the probe and the fruit is close enough to obtain a good spectrum, but not so near 

that it saturates the signal, and this distance must be constant for all objects. If the fruit is 

very close, the signal saturates even with very low integration times. This is because light 

practically does not penetrate inside the object and is only reflected on its surface towards 

the detector. Conversely, a distance of more than 13 mm (Salguero-Chaparro et al. 2012) 

causes the detector to receive hardly any of the light reflected on the object. In addition, 

the optical configuration, the intensity of the light and the distance between the probe and 

the fruit are parameters that greatly influence the depth of penetration of light (Lammertyn 

et al. 2000). Therefore, to avoid a negative influence on the measurements, it is very 

important to develop mechanisms to ensure that the distance between the fruit and the 

probe remains stable for any fruit in the inspection line, regardless of its size or shape. 

Since there is no previous research about the in-line application of VIS-NIR diffuse 

reflectance spectroscopy to classify apple varieties, the objectives of this work are (1) to 

develop a prototype system, using VIS-NIR reflectance spectroscopy, to be used for the 

in-line non-destructive measurement of apples, (2) to use an automated system that 

ensures that the distance between the probe and the fruit is the same regardless of the size 

of the fruit, and (3) to use the data obtained by the in-line system to differentiate apple 

varieties using chemometric methods. 
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2. MATERIALS AND METHODS 

2.1. Apple samples 

With the aim of carrying out the study using fruits with different internal and 

external properties, a total of 500 apples of five different varieties and origins were 

purchased from a local market (Figure 1). The set of fruits used in the experiments 

consisted of 100 pieces of each of the following varieties: Fuji (FU) from the region of 

Aquitaine (France), Red Delicious (RD) and Royal Gala (GA) from L’Alt Empordà 

(Spain), Golden Delicious (GD) from the Protected Geographical Indication of ‘Alto 

Adige’ (Italy) and Golden Delicious from the Protected Designation of Origin ‘Pomme 

du Limousin’ (France), known as Golden Rosé (GR). The reason for using Golden 

Delicious apples coming from two different origins was to know whether the system 

could also recognise fruits of the same variety but cultivated under different conditions 

and therefore with different properties. 

The average diameter of each apple was measured by using a digital calliper in the 

equatorial and polar sections. The weight of each apple was measured using an electronic 

scale (Entris2202-1S, Sartorius Lab Instruments GmbH & Co. KG, Goettingen, 

Germany). The characteristic features of the fruits used in this study are summarised in 

Table 1. 

 

2.2. VIS-NIR instrumentation 

Diffuse reflectance of the apples was measured using a multichannel spectrometer 

platform (AvaSpecAS-5216 USB2-DT, Avantes BV, The Netherlands) equipped with 

two detectors. The first detector (AvaSpec-ULS2048 StarLine, Avantes BV, The 

Netherlands) included a 2048-pixel charge-coupled device (CCD) sensor (SONY 
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ILX554, SONY Corp., Japan), 50 μm entrance slit and a 600-line mm-1 diffraction 

grating covering the visible and near-infrared range from 600 nm to 1100 nm (VNIR) 

with a spectral FWHM (full width at half maximum) resolution of 1.15 nm and a spectral 

sampling interval of 0.255 nm. The second detector (AvaSpec-NIR256-1.7 NIRLine, 

Avantes BV, The Netherlands) was equipped with a 256-pixel non-cooled InGaAs 

(Indium Gallium Arsenide) sensor (Hamamatsu 92xx, Hamamatsu Photonics K.K., 

Japan), 100 μm entrance slit and a 200-line mm-1 diffraction grating covering the near-

infrared range from 900 nm to 1700 nm (NIR) with a spectral FWHM resolution of 12 

nm and a spectral sampling interval of 3.535 nm.  

The measurements were performed using a bi-directional fibre-optic reflectance 

probe (FCR-7IR200-2-45-ME, Avantes BV, The Netherlands). The probe is fitted with 

an illumination leg, composed of six 200 µm diameter fibres, which connects to a 

stabilised 10 W tungsten halogen light source (AvaLight-HAL-S, Avantes B0V, The 

Netherlands) and the other leg of the fibre-optic probe, with a 200 µm diameter fibre, was 

connected to both detectors for simultaneous measurement using another Y-shaped fibre-

optic probe (FCB-IR200-2-ME, Avantes BV, The Netherlands). The probe tip was 

designed to provide reflectance measurements at an angle of 45° so as to minimise 

specular reflectance from the surface of the fruit. To control the detectors and to acquire 

the spectra, a personal computer equipped with a commercial software package (AvaSoft 

version 7.2, Avantes, Inc.) was used.  

A 99% reflective white tile (WS-2, Avantes BV, The Netherlands) was used to 

calibrate the system so that the maximum reflectance value over each range of 

wavelengths was around 90% of saturation (Lorente et al. 2015). 

 

2.3. VIS-NIR in-line system and spectra acquisitions 
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All the samples were equilibrated to room temperature (25 °C) before obtaining the 

spectral measurements. During the in-line test, the fruits were transported continuously 

using a conveyor belt composed of bi-conical rollers while they were being measured. 

Fruits were placed manually on the conveyor belt with the stem at the top to capture 

measurements of the equatorial part. To achieve a uniform distance between the probe 

and the fruits, a programmable electronic device (Raspberry Pi3, Raspberry Pi 

Foundation, United Kingdom) together with a small high-resolution IR camera 

(Raspberry Pi NIR Camera v2, Raspberry Pi Foundation, United Kingdom) were placed 

at a height of 25 cm above the conveyor belt and exactly perpendicular to the centre of 

the rollers. Illumination of the scene was achieved using two IR LED-based light sources 

synchronised with the camera module. A computer vision application captured an image 

of each fruit, detecting its exact location and estimating the diameter across the width of 

the rollers. The distance between the centre of the rollers and the end of the fruit on the 

measuring side are used to enable the probe to approach the fruit. Figure 2 shows all the 

parameters and components of the system. 

To synchronise the acquisition of images and the movement of the probe with the 

advance of the apples, an optical encoder (WDG 40S-500-ABN-G05-K1, Wachendorff 

Elektronik, Germany) was coupled to the traction roller of the machine.  

Using the distance between the fruit and the probe estimated by the image analysis 

system, and the position of the fruit on the conveyor belt estimated from the pulses given 

by the encoder, the electronic device activated a linear actuator composed of a stepper 

motor and an endless screw to bring the probe accurately towards the fruit. To calculate 

the displacement of the probe (d0), the distance between the centre of the rollers and the 

resting position of the probe (d1), the known distance between the centre of the rollers 

and the perimeter of the fruit on the measuring side given by the image analysis system 
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(d2), and the distance between the probe and the fruit (d3) were used according to the 

distances shown in Figure 2 and Equation 1. All values were calculated in millimetres. 

 

d0 = d1 - d2 - d3        (1) 

 

The process of bringing the probe closer to the fruit is shown in Figure 3. Different 

integration times were tested in preliminary tests at different distances between the fruits 

and the probe, with the aim of setting the minimum integration time that gives a good 

signal for the in-line application. Subsequently, the integration time was set to 150 ms for 

the VNIR detector and to 500 ms for the NIR detector. Each fruit was passed twice in the 

line to obtain two measurements of the diffuse reflectance spectrum. Due to the limitation 

of the integration time of the NIR detector, the speed of the conveyor belt had to be limited 

to 0.81 m/s.   

 

2.4. Data analysis 

2.4.1. Chemometric analyses 

The chemometric analyses of the collected spectra were performed using the 

Unscrambler V10.4 software package (CAMO ASA, Oslo, Norway). A matrix, where the 

rows represent the number of samples (N = 500 samples) and the columns represent the 

variables (X-variables and Y-variable), was produced with the spectral data. The spectral 

signals from the two detectors were the predictors, or X-variables. The categorical 

‘dummy’ variable created by assigning different letters to the different apple varieties was 

the response, or the Y-variable.  

The raw spectra were transformed to apparent absorbance (log (1/R)) values to 

linearise the correlation with the concentration of the constituents (Hernández et al. 2006; 
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Shao et al. 2007; Liu et al. 2009). To prevent a low signal-noise ratio occurring at the 

limits of the spectral sensitivity of the equipment used, only wavelengths ranging from 

600 to 1700 nm were included in this study. 

Because the high resolution captured in the VNIR range introduced increased noise 

in the signal (Cortés et al. 2016), the VNIR spectra were pre-processed using a reduction 

factor of 10. Savitzky-Golay smoothing (the segment size is 3) was applied to reduce the 

effects caused by the physiological variability of samples (Carr et al. 2005; Beghi et al. 

2017). Due to scattering effects, the light does not always travel the same distance inside 

the sample before it is collected by the probe (Santos et al. 2013). A longer path travelled 

by the light results in a lower relative reflectance value, since more light is absorbed. This 

effect causes a parallel translation of the spectra that needs to be corrected to avoid a 

negative influence in the calibration models. A typical method to perform this correction, 

and the one used in this work, is the EMSC technique (He et al. 2007; Martens et al. 2003; 

Bruun et al. 2007). Those two pre-treatments were considered the best results for the 

VNIR spectra, and those two pre-processing methods and the second derivate with Gap-

Segment (2.3) were the best results for the NIR spectra (Cortés et al. 2016). 

After the pre-processing, principal component analysis (PCA) (Næs et al. 2002) 

was applied to explore a possible clustering of the sample spectra that could be associated 

to the different apple varieties. This technique is a linear and unsupervised procedure that 

allows useful information to be extracted from the data and to explore the data structure 

and the relationship between objects as well as the global correlation of the variables 

(Beebe et al. 1998). 

In addition, the linear discriminant analysis (LDA) and quadratic discriminant 

analysis (QDA) classification methods were applied on the spectra of the apples in order 

to classify the samples as belonging to one of the five varieties. The objective of these 
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methods is to find models that allow the maximum separation among different classes in 

a set of objects. The difference between LDA and QDA is that LDA uses pooled 

covariance to assign an unknown sample to one of the pre-defined groups, while QDA 

uses the covariance of each of the groups instead of pooling them (Næs et al. 2002). In 

both cases, the number of samples in the training set must be larger than the number of 

variables included in the model (Kozak & Scaman 2008; Sádecká et al. 2016), thus a 

reduction of the dimensionality is necessary. This was achieved by using the PCA scores 

as input data in the model instead of the raw variables, since the linear combinations of 

the original variables given by the PCA, called principal components (PCs), are 

uncorrelated (Rodríguez-Campos et al. 2011).  

To develop the discriminant model, a training set composed of 80% of the samples 

selected at random was used. The model was internally validated using full cross-

validation (CV; leave-one-out method) (Casale et al. 2008; Huang et al. 2008). 

Predictions were carried out using the evaluation set composed of the remaining 20% of 

the samples (Soares et al. 2013). The performance of the model was evaluated by 

accuracy, which is defined using the ratio of samples in the test set correctly assigned to 

their respective classes presented using confusion matrices. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Features of VIS-NIR Spectra 

Preliminary tests were carried out on both red and yellow apples to determine the 

correct measuring distance between the probe and the fruit for each type of fruit. To do 

so, distances of 1, 5 and 10 mm were tested with the fruits travelling on the conveyor belt 
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at the same speed (one fruit per second). The average spectra of yellow and red apples 

captured using different distances between the light source/detection probe and the fruit 

are shown in Figure 4. When the probe was very close to the fruit (1 mm), it was observed 

that the signal saturated in some samples even with very low integration times. This is 

because practically no light penetrates inside the object and is only reflected on its surface 

towards the detector. Conversely, using a distance of 10 mm, the detector receives very 

little reflection, which is in accordance with Salguero-Chaparro et al. (2012). Therefore, 

for this study, the diffuse reflectance spectrum of all fruits was acquired at 5 mm from 

the fruit, regardless of their size. In Equation 1, parameter d3 has a value of 5 mm.  

Once the measurement distance had been determined, VIS-NIR spectra were 

measured for all apples. Figure 5 shows the raw spectra of all samples. The differences 

in colour among the apple varieties were detected in the VIS wavelength range (i.e. 600-

700 nm). However, the acquired spectra exhibit similar profiles across the spectral range 

that was studied, and even overlapped heavily, especially the spectra between 730-

1700 nm. According to Fernández-Ahumada et al. (2006), the use of the VIS and NIR 

wavelength range offers great expectations for NIR characterisation in some products 

such as potatoes. Because it was difficult to discriminate the five kinds of apples just from 

the overlapping spectra, it was necessary to use feature extraction methods, such as PCA, 

LDA and QDA, to distinguish the apple varieties. 

 

3.2. Clustering analyses based on PCA 

The PCA model, as previously mentioned, was first constructed in order to explore 

a possible clustering of the spectra of the samples that could be associated to the different 

apple varieties. Figure 6 shows the training spectra set plotted according to the values of 

the PCA scores. Each variety is shown with a different colour and shape for a better 
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visualisation. As shown in this figure, red and yellow varieties can be separated easily 

due to the different spectral reflectance represented in the visible spectrum. However, 

colour and appearance are not always useful for discriminating apple varieties. There are 

some varieties that are very difficult to differentiate visually on the production line but 

show important compositional differences that are represented in the NIR spectrum, 

thereby affecting the taste and consequently their acceptance by the final consumers. 

Additionally, the PCA model was used to reduce the original variables for 

constructing the LDA and QDA models. The cumulated reliability of the seven PCs 

reaches 95.57% (Table 2). Hence the first seven PCs were adopted as the inputs in the 

LDA and QDA models.  

 

3.3. Classification by LDA and QDA models 

PCA can analyse the varieties of apples qualitatively, but it cannot discriminate 

these varieties quantitatively. In this study, LDA and QDA were used to build a 

quantitative analysis model to discriminate apple varieties, shown below. Table 3 

provides the confusion matrices that summarise the classification results using LDA and 

QDA techniques. From these matrices, it can be concluded that no red apple was 

classified as a yellow variety and vice versa. This expected correct classification is mainly 

due to the contribution of the visible spectrum mentioned previously. In general, QDA 

achieved better results than LDA for both types of samples, probably because LDA can 

only learn linear boundaries, while QDA can learn quadratic boundaries, LDA being a 

much less flexible classifier than QDA (James et al. 2014). The results show that 

classification accuracy for LDA model was 82.5% and for the QDA model it was 85% 

for the same test set of yellow varieties that was used. Similarly, the red varieties obtained 

a classification accuracy for the LDA model of 75% and of 98.3% for the QDA model. 
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The differences were observed mainly in the high classification accuracy achieved by the 

QDA model in red apples. However, it is important to note that the red apples were of 

different varieties, while the yellow ones both belonged to the same variety but different 

origins, thus demonstrating that this method can not only discriminate between varieties 

but also by the origin of the apple. 

He et al. (2007) already used PCA and an artificial neural network (ANN) coupled 

with VIS-NIR (400-960 nm) to classify three red apple varieties (‘Fuji’ from China, ‘Red 

Delicious’ from USA and ‘Copefrut Royal Gala’ from USA). They used only 30 apples 

of each variety, obtaining an accuracy of 100% but using a static arrangement. Wu et al. 

(2016) applied four kinds of feature extraction methods, namely PCA, PCA+LDA, 

discriminant partial least squares (DPLS) and sorting discriminant analysis (SDA), on the 

NIR spectra (1000-2500 nm) of two varieties of apples with a red external colour 

(‘Huaniu’ and ‘Fuji’ from China). In their research, the SDA model was the best one with 

a classification accuracy of 96.67% for discriminating apple varieties. In these previous 

studies, He et al. (2007) and Wu et al. (2016) only classified red apple varieties on a 

laboratory scale using static measurements. In contrast, the new in-line detection 

prototype has been developed for spectral analysis while the fruit is transported by a 

conveyor belt in the processing line. The in-line system developed here allowed us to 

obtain as good or better results than previous studies involving laboratory systems. The 

speed of advance of the fruits when the spectra were measured was one fruit per second. 

This was the same speed as that used by Shenderey et al. (2010) in their experiments 

when they measured the spectra of apples in movement to detect those affected by mouldy 

core. In their work, the measuring device was placed on a rotating table that served as a 

laboratory device to test the spectrometry in moving fruits, thus demonstrating that it is 

possible to perform spectrometry on apples in-line. However, in this work, the practical 
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implementation was performed in an industrial prototype with what was similar to a 

commercial conveyor belt and presents certain novel advantages such as ensuring the 

same measuring distance for all fruits.  

 

4. CONCLUSIONS 

A novel prototype for the in-line identification of apple varieties based on VIS-NIR 

spectroscopy has been developed and tested. One of the main disadvantages of the in-line 

system when fruits are travelling on a conveyor belt is that the diversity of fruit sizes 

causes the spectra to be taken at different distances, since the position of the probe is 

fixed. This has a negative effect on the robustness of the results obtained. This work 

proposes a new device that allows the measurements to be captured at always the same 

distance from the fruit, thus ensuring that they are all taken in the same conditions. Two 

classification methods were used to determine the variety of the apples and, in the case 

of Golden Delicious, to detect fruits of different origins. QDA yielded better results than 

LDA reaching a 98% and 85% rate of success for red and yellow varieties, respectively. 

The proposed prototype may contribute to improve the control of production as a tool for 

detecting fraud in a non-destructive and highly accurate manner. However, in order to 

effectively transfer this system to industry, the speed of one fruit per second needs to be 

improved.  
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Figure captions 

 

Fig. 1 Visual appearance of the apple varieties used in this work. 

 

Fig. 2 VIS-NIR in-line design composed of camera, illumination and linear actuator with 

reflection probe. 

 

Fig. 3 Linear actuator with reflection probe in (a) resting position, and (b) measuring the 

fruit, a segmented image of the fruit (Fig. 3a right) and the VIS-NIR spectra obtained 

(Fig. 3b right). 

 

Fig. 4 Average Log (1/R) of the 50 yellow and red apples at different testing distances. 

 

Fig. 5 Raw VNIR and NIR spectra of five different varieties of apple. 

 

Fig. 6 PCA analysis of apple varieties of the training samples.  
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Table captions 

 

Table 1 Characteristics of the five apple varieties studied. 

 

Table 2 The contribution and accumulative contribution rates of the first seven PCs. 

 

Table 3 LDA and QDA confusion matrices, both presented as a percentage of correctly 

classified samples in the test data set. 

 


