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Ricardo Peña Universidad Complutense de Madrid
Alicia Villanueva Universidad Politécnica de Valencia (Secretary)
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Abstract

In this thesis we propose an abstraction based certification technique for Java
programs which is based on rewriting logic, a very general logical and seman-
tic framework efficiently implemented in the functional programming lan-
guage Maude. We focus on safety properties, i. e. properties of a system that
are defined in terms of certain events not happening, which we characterize
as unreachability problems in rewriting logic. The safety policy is expressed
in the style of JML, a standard property specification language for Java mod-
ules. In order to provide a decision procedure, we enforce finite-state models
of programs by using abstract interpretation. Starting from a specification of
the Java semantics written in Maude, we develop an abstraction based, finite-
state operational semantics also written in Maude which is appropriate for
program verification. As a by-product of the verification based on abstrac-
tion, a dependable safety certificate is delivered which consists of a set of
rewriting proofs that can be easily checked by the code consumer by using
a standard rewriting logic engine. The abstraction based proof-carrying code
technique, called JavaPCC, has been implemented and successfully tested on
several examples, which demonstrate the feasibility of our approach.

We analyze local properties of Java methods: i. e. properties of methods
regarding their parameters and results. We also study global confidentiality
properties of complete Java classes, by initially considering non–interference
and, then, erasure with and without non–interference. Non–interference is
a semantic program property that assigns confidentiality levels to data ob-
jects and prevents illicit information flows from occurring from high to low
security levels. In this thesis, we present a novel security model for global
non–interference which approximates non–interference as a safety property.
Erasure is a way of strengthening confidentiality by upgrading data confiden-
tiality levels, up to the extreme of demanding the removal of secret data from
the system. In this thesis, we also propose a certification technique for confi-
dentiality of complete Java classes that includes non–interference and erasure
policies.
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Resumen

En esta tesis se propone una metodologı́a para la certificación de programas
Java que está basada en la lógica de reescritura, un marco formal lógico
y semántico muy general, implementado eficientemente en el lenguaje de
programación funcional Maude. Se consideran propiedades de seguridad
(safety), es decir, propiedades de un sistema que son definidas en términos
de que no ocurran ciertos eventos. Dichas propiedades se caracterizan como
problemas de inalcanzabilidad en la lógica de reescritura. Las propiedades de
seguridad (safety) se expresan en el estilo de JML, un lenguaje estándar de
especificación de módulos Java. Con el fin de obtener un procedimiento de
decisión utilizamos modelos con un número finito de estados que obtenemos
mediante el uso de la interpretación abstracta. Partiendo de una especificación
de la semántica de Java escrita en Maude, se desarrolla una semántica opera-
cional abstracta con un número finito de estados, también escrita en Maude,
que resulta apropiada para la verificación de programas. Como subproducto
de la verificación se entrega un certificado de seguridad, que consiste en un
conjunto de demostraciones basadas en reescritura, que pueden ser compro-
badas fácilmente por el consumidor del código mediante el uso de un mo-
tor de reescritura estándar. La técnica de código portador de demostración
(proof-carrying code) basada en abstracción, denominada JavaPCC, ha sido
implementada y probada con éxito en varios ejemplos, lo cual demuestra la
viabilidad de nuestro enfoque.

En esta tesis se analizan propiedades locales de métodos Java, es decir,
propiedades de sus parámetros y resultados. También se analizan propiedades
globales de clases Java completas, primero estudiando la no interferencia,
y luego, el borrado, con y sin no interferencia. La no interferencia es una
propiedad semántica de los programas, que asigna niveles de confidenciali-
dad a los datos y evita que haya flujos ilı́citos de información desde los nive-
les de seguridad altos hacia los niveles bajos. En esta tesis presentamos un
modelo novedoso de seguridad para la no interferencia global que aproxima
la no interferencia como una propiedad de seguridad (safety). El borrado (de
información confidencial) es una forma de reforzar la confidencialidad me-
diante el aumento de los niveles de confidencialidad de los datos, que puede
llegar incluso a requerir la eliminación de los datos secretos del sistema. En



esta tesis, presentamos también un modelo de seguridad para programas Java
completos que incluye polı́ticas de no interferencia y borrado.



Resum

En esta tesi es proposa una metodologia per a la certificació de programes
Java que està basada en la lògica de reescriptura, un marc formal lògic i
semàntic molt general, implementat eficientment en el llenguatge de progra-
mació funcional Maude. Es consideren propietats de seguretat (safety), ès a
dir, propietats d’un sistema que són definides en termes de certs esdeveni-
ments que no han d’ocórrer. Eixes propietats es caracteritzen com a prob-
lemes d’inassolibilitat en la lògica de reescriptura. Les propietats de seguretat
(safety) s’expressen en l’estil de JML, un llenguatge estàndard d’especificació
de mòduls Java. A fi d’obtindre un procediment de decisió utilitzem mod-
els amb un número finit d’estats que obtenim per mitjà de l’ús de la inter-
pretació abstracta. Partint d’una especificació de la semàntica de Java es-
crita en Maude, es desenvolupa una semàntica operacional abstracta amb un
número finit d’estats, també escrita en Maude, que resulta apropiada per a la
verificació de programes. Com a subproducte de la verificació s’entrega un
certificat de seguretat, que consistix d’un conjunt de demostracions basades en
reescriptura, que poden ser comprovades fàcilment pel consumidor del codi
per mitjà de l’ús d’un motor de reescriptura estàndard. La tècnica de codi por-
tador de demostració (proof-carrying code) basada en abstracció, denominada
JavaPCC, ha sigut implementada i provada amb èxit en diversos exemples, la
qual cosa demostra la viabilitat del nostre enfocament.

S’analitzen propietats locals de mètodes Java, és a dir, propietats dels
seus paràmetres i resultats. També s’analitzen propietats globals de classes
Java completes, primer estudiant la no interferència i després, l’esborrament,
amb i sense no interferència. La no interferència és una propietat semàntica
dels programes, que assigna nivells de confidencialitat a les dades i evita que
hi haja fluxos il.lı́cits d’informació des dels nivells de seguretat alts cap als
nivells baixos. En esta tesi presentem un model nou de seguretat per a la
no interferència global que aproxima la no interferència com una propietat
d’innocuı̈tat (safety). L’esborrament (d’informació confidencial) ès una forma
de reforçar la confidencialitat per mitjà de l’augment en els nivells de confi-
dencialitat de les dades, que pot arribar inclús a requerir l’eliminació de les
dades secretes del sistema. En esta tesi, presentem també un model de segure-
tat per a programes Java complets que inclou polı́tiques de no interferència i
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esborrament.
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Chapter 1

Introduction

The purpose of this thesis is to automatically verify and certify Java programs
based on the analysis of the corresponding source code. If the verification
analysis succeeds, the corresponding certificate means that the Java code is
safe at the source level, regarding some given properties that are detailed be-
low.

Since the 1990’s, there has been an increasing interest on formal methods
devised to verify the safety of code retrieved from untrusted sources. Proof-
Carrying Code (PCC) is a mechanism developed by G. Necula [Necula and
Lee, 1996] that aims to guarantee mobile code safety to code consumers. In
PCC, the code is distributed together with a safety certificate whose validity
entails the compliance with a safety policy predefined and supplied by the
code consumer. The safety certificate is automatically generated by the code
producer, and then packaged along with the verified code. The certificate
encodes an easy-to-check formal proof of the code safety. Then, the code
consumer receives and checks the certificate, i.e. the safety proof. If the cer-
tificate is valid, the consumer can run the code safely. PCC was developed
to guarantee mobile code safety but it is useful for general software develop-
ment.

The crucial issues for a practical realization of PCC are: (i) the expres-
siveness of the language used to specify the considered policies, (ii) the size
of the transmitted certificate, and (iii) the performance of the validation pro-
cess at the consumer side. The main technologies most commonly applied
in PCC are type analysis [Necula, 1997; Appel and Felty, 2000; Wildmoser
et al., 2004; Felty, 2005; Hamid, 2005], theorem proving [Necula and Sch-
neck, 2002; Necula and Schneck, 2003a; Yu and Mok, 2004; Beringer et al.,
2003; Hamid, 2005; Chander et al., 2005a; Barthe et al., 2007b; Wildmoser
et al., 2004; Besson et al., 2006], and abstract interpretation [Xia and Hook,
2004; Albert et al., 2005b; Besson et al., 2006].

Rewriting logic [Meseguer, 1992] is a flexible and expressive logical
framework in which a wide range of logics and models of computation can
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be faithfully represented. It also provides an easy and inexpensive way to
develop formal definitions of programming languages which are directly ex-
ecutable [Meseguer and Roşu, 2007] as interpreters in a rewriting logic lan-
guage such as Maude [Clavel et al., 2007]. The verification of embedded and
reactive systems in rewriting logic offers a good number of advantages, an
important one being the maturity, generality and sophistication of the formal
analysis tools available for it (see, e.g., [Clavel et al., 2007]).

In this work, an abstraction-based PCC technique was developed for the
certification of Java source code which exploits the automation, expressive-
ness and genericity of rewriting logic. Given a safety property (i.e., a system
property that is defined in terms of certain events that do not happen [Manna
and Pnueli, 1995]), the unreachability of the system states denoting the events
that should never occur allow one to infer the desired safety property. Un-
reachability analysis is performed using the standard Maude (breadth–first)
search command, which explores the entire state space of the program from
an initial system state. In the case where the unreachability test succeeds,
the corresponding rewriting proof that demonstrate that those states cannot be
reached are delivered as the expected outcome certificate. Figure 1.1 depicts
the proposed PCC framework for Java source code.

Abstract
CertificateSource Java

certifier

JML-like
annotations

Java program
code

Yes

No

ok?Certificate
checker

Security
policy

Do not 
run code

Run code
Code producer Code consumer

Figure 1.1: Overview of our JavaPCC framework.

Very often, the unreachability test does not succeed because there is an
infinite search space; thus, abstraction is used in order to achieve a finite
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search space [Cousot and Cousot, 1979]. Abstract interpretation is a pro-
gram analysis framework where programs describe computations on abstract
values instead of concrete ones [Cousot and Cousot, 1977]. Abstract values
represent sets of concrete values that satisfy a given condition. In our abstract
PCC methodology, certificates are encoded as (abstract) rewriting sequences
that (together with an encoding of the abstraction in Maude) can be checked
by standard reduction. The safety policy is expressed in JML-style [Leav-
ens et al., 2006], a standard property specification language for Java modules.
Program variables in the Java code are annotated following the safety policy
supplied by the code consumer. Variable annotations correspond to variable
properties, which mean abstract properties on the values of the annotated vari-
ables. In other words, annotations associate abstract domains corresponding
to sets of concrete values to variables.

The policies considered in this thesis include safety policies based on in-
teger arithmetic properties (e.g., parity, etc.), and two confidentiality policies
(security policies) based on information flow analysis: i) Non–interference
between high and low confidentiality information, and ii) erasure of confi-
dential information. Non–interference is a semantic program property that
assigns confidentiality levels to data objects and prevents illicit information
flows to occur from high to low security levels [Denning and Denning, 1977;
Sabelfeld and Myers, 2003]. Erasure is a way of strengthening confidentiality
by upgrading data confidentiality levels, up to the extreme of demanding the
removal of secret data from the system [Chong and Myers, 2005; Chong and
Myers, 2008].

Non–interference and erasure are security properties that are usually de-
fined as hyper-properties [Clarkson and Schneider, 2008]. A hyper-property
is defined on a set of sets of traces, and cannot be established by simply
checking a (safety) property on a set of runs (essentially, no single run of
a system can violate non–interference with and without erasure). However,
we are able to analyze non–interference (and erasure) by observing stronger
corresponding properties which can be checked as safety1 properties using an
instrumented flow sensitive semantics.

Our methodology is an instance of the Proof-Carrying code (PCC) paradigm
based on rewriting logic, and it is the first sound and implemented PCC frame-

1There are other approaches for proving non–interference as a safety property, which use
self-composition [Darvas et al., 2005; Barthe et al., 2004], or flow sensitive security types
[Hunt and Sands, 2006]; see Sections 6.3.1 and 7.3.1.
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work for confidentiality certification of Java source programs. However, we
have to emphasize that the delivered proof certificates the source code pro-
gram, nor the corresponding executable code, while most PCC frameworks
certificate only executable code (see Section 1.1 below).

Let us summarize the general contributions of this Ph.D. thesis as follows:

• We formalize a correct and automatic reachability verification method-
ology for Java source code that works for safety properties. This method-
ology is based on a specification of the semantics of Java source written
in Maude and can be extended to handle other programming languages,
whose semantics is specified in rewriting logic.

• An abstract version of the Java semantics written in Maude is developed
for finite-state verification.

• Abstraction of the Java semantics is produced by increasing the non-
determinism of the semantics using rules, i.e. equations in the semantics
representing deterministic computations are transformed into rules rep-
resenting non–deterministic computations in order to reflect the more
abstract computations.

• As a by–product of the verification, a certificate of the safety policy ful-
fillment is delivered which consists of a set of rewriting proofs that can
be easily checked by the code consumer by using a standard rewriting
logic engine.

• Starting from the specification of the semantics of Java written in Maude
[Farzan et al., 2007], we also have developed an information–flow ex-
tension of such an operational Java semantics which allows one to ob-
serve non–interference and erasure of Java programs, and is also written
in rewriting logic.

• We have provided a novel characterization of non–interference and era-
sure, which are security properties, as safety properties on extended
Java computations.

• A finite-state version of the information-flow Java operational seman-
tics is also provided by using abstract interpretation. Thanks to the
different handling of rules and equations in Maude it does not suffer
from the state–space explosion of more traditional approaches.
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• Finally, we provide an implementation of the abstract certification method-
ology and the experimental evaluation of the proposed technology in
order to demonstrate the feasibility of our approach.

The manuscript is organized as follows. Chapter 2 summarizes some pre-
liminary notions about rewriting logic, Maude, and abstract interpretation.
Chapter 3 briefly describes the Java rewriting logic semantics that is the ba-
sis for our work. Chapter 4 presents the basic certification methodology, i.e.
the verification that a given safety policy (specified in a notation that follows
the Java Modeling Language JML style) is satisfied by a Java source pro-
gram, and the generation of the corresponding certificate. The certification
of some integer arithmetic properties by Java function methods that return
integer values is introduced in Chapter 5. Chapter 6 presents the case of non–
interference policies regarding sequential complete Java classes. In Chapter
7 the methodology of Chapter 6 for the certification of non–interference is
extended in order to certify erasure policies as well. Chapter 8 introduces the
implementation, i.e. the JavaPCC certification environment. Finally, Chapter
9 concludes.

Let us finish the introduction with some bibliographic remarks about the
related work on semantic-based program certification and the publications
associated to this thesis.

1.1 Semantic-based program certification
There are different approaches for software verification and certification of se-
curity and safety properties where the delivered safety certificates are check-
able by code consumers. In this section we recall the most important propos-
als from the related literature. First, the Proof-Carrying Code (PCC) approach
[Necula and Lee, 1996; Necula and Lee, 1997b; Necula and Lee, 1997a; Nec-
ula, 1997; Necula and Lee, 1998b] to code safety certification is briefly de-
scribed, together with some variants that aim to address the main technical
drawbacks of PCC. Then, the model-carrying code (MCC) approach [Sekar
et al., 2001; Sekar et al., 2003] is introduced, where the code producer de-
livers a high level model of the code behavior as the safety certificate. Next,
we summarize several approaches that introduce certified components within
the trusted code base (TCB). Then, we give an overview of an hybrid ap-
proach that combines PCC with certifier authorities. This approach is able
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to cope with some safety properties outside the PCC scope. Finally, we dis-
cuss a novel approach to code synthesis that combines code verification and
certification and is known as Code-Carrying Theory (CCT) [Vargun, 2006].

1.1.1 Proof-Carrying Code (PCC)
As already mentioned, the mobile code is distributed in PCC together with
a safety certificate whose validity entails the compliance with a safety pol-
icy predefined and supplied by the code consumer. This safety certificate is
generated by the code producer, and encodes an easy-to-check formal proof
of the code safety. The code consumer receives and checks the certificate,
i.e. the safety proof, and whenever it is valid, the code consumer can run the
code safely. The code consumer uses a code infrastructure that allows him to
check the certificate automatically. This certificate validation infrastructure is
known as the trusted code base (TCB), because the code consumer assumes
that it is trustworthy.

The main technical issues regarding the practical realization of PCC are:

1. The expressiveness of the safety policy specification language regarding
more general and complex safety and security properties [Appel and
Felty, 2000; Appel, 2001; Necula, 2001a; Necula and Schneck, 2002].

2. The size of the certificates, that could grow exponentially as a function
of the code size [Necula and Lee, 1997a; Necula and Rahul, 2001; Wu
et al., 2003]. This also mean exponential generation, transmission and
validation times.

3. The reliability of the trusted base code (TCB), that is inversely propor-
tional to its size 2 [Appel and Felty, 2000; Appel, 2001; Necula and
Schneck, 2002].

4. The scalability of the technique regarding program size and the gener-
ality and flexibility of the approach to consider different low and high
level programming languages [Appel and Felty, 2000; Necula and Sch-
neck, 2002].

2A typical Verification Condition Generator (VCGen) implementation has more than
26,000 lines of code. A bug in this code may cause the proving and checking of a wrong
property, or the failure to prove a property that is true.
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In pioneering work, Necula and Lee [Necula and Lee, 1996; Necula and
Lee, 1997b] consider memory safety properties of operating system exten-
sions written in assembly language. The work of Necula [Necula, 1997] deals
with memory and type safety of assembly language extensions for an ML
compiler. Finally, in [Necula and Lee, 1998b] the authors consider memory
safety, authorized access to files, and resource usage constraints (e.g. memory,
locks, bandwidth, and CPU cycles) of assembly code. The traditional PCC in-
frastructure typically consists of three components (see Figure 1.2, borrowed
from [Necula and Lee, 1998b]): a verification condition generator (VCGen),
the prover which generates the certificate, and the certificate checker.

Code
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Figure 1.2: Overview of the typical PCC framework.

The VCGen component uses code annotations to generate a security predi-
cate that encodes the supplied policy together with some needed lemmas. The
code producer uses the supplied policy, the VCGen, and the prover, whereas
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the code consumer uses the VCGen and the proof checker. Another impor-
tant assumption of the PCC infrastructure is that the code consumer trusts
the VCGen and the proof checker, i.e. he assumes that they are both trust-
worthy. This means that the TCB of traditional PCC includes the verification
condition generator and the certificate checker.

All the above pioneering works are based on type checking and use the
logical framework LF3 in order to encode the proofs (i.e. the type derivations
are LF expressions) and type checking to validate the proofs.

Necula and Lee rely on the redundancies of the LF expression that en-
codes the certificate to reduce both the certificate size (fifteen times) and the
validation time (seven times). The new representation was called LFi [Necula
and Lee, 1997a].

Certifying Compilers

The first certifying compiler in the literature was proposed in [Tarditi et al.,
1996] that, together with the generated code, produces a proof or formal cer-
tificate that can be mechanically checked [Tarditi et al., 2004]. The TIL
compiler uses a type system to verify and generate the proof that the ML
code satisfies, namely a critical invariant that is verified and enforced by a
type system. This compiler considers type safety and array safety regarding
index bounds. The FLINT/ML certifying compiler [Shao and Appel, 1995;
Shao, 1997] considers safety of types and arrays of complete ML programs
with modules. Array safety involves execution time analysis regarding array
bounds.

Necula and Lee [Necula and Lee, 1998a; Necula and Lee, 2004] intro-
duced the first certifying compiler that automatically generates the full proof
(encoded in LF) that a program written in a type-safe subset of C satisfies a
given safety policy for memory and types. Necula et al. introduced the cer-
tifying compiler for a subset of Java (SpecialJ) [Colby et al., 2000; Necula,
2001b] obeying memory and type safety properties, that also uses LF in order
to encode the generated proofs. The VCGen component of the SpecialJ PCC
framework has approximately 23K lines of code, the SpecialJ compiler (the
Touchstone Java compiler) has 33K lines of code, while the proof checker has
about 1.4K lines of code, and the proof rules and axioms amount for 700 lines

3It is an extension of lambda calculus with simple and dependent types implemented in
ELF.
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of code [Colby et al., 2000]. The TCB size of this PCC framework has about
25.1K lines of code. All known certifying compilers use type systems and
static analysis in order to verify that source programs fulfill the considered
safety policy. Many certifying compilers are based on the typed assembly
language TAL [Morrisett et al., 1999b]. These compilers apply to low level
languages, such as TAL and TALx86 [Morrisett et al., 1999a; Grossman and
Morrisett, 2001], and some high level languages, namely two dialects of C
(Popcorn and Cyclone [Jim et al., 2002]), and Scheme. The high level com-
pilers generate TAL code, together with a certificate that consists of suitable
type annotations for the code. The certificates are validated by type checking
based on the generated annotations. The project TILT was launched in order
to develop certifying compilers for the ML family of languages (SML ’97,
Caml, KML) regarding safe type handling [TILT, 2006].

Yiyun et al. [Yiyun et al., 2007; Chen et al., 2007] proposed a certi-
fying compiler for the PointerC language, a C-like language with restricted
pointer and type operations that allow one to check types and pointers stati-
cally. There is no type casting operation, and the reference (&) and pointer-
arithmetic operations of C are not considered. PointerC has no union types.
PointerC has safe explicit memory allocation and deallocation operations.
The Touchstone compiler does not have dynamic memory deallocation. The
typing rules introduce side effects in order to specify constraints on values.
PointerC functions are annotated with pre and post-conditions, and loops with
invariants. The compiler front-end includes the verification condition gener-
ator and a built-in automatic theorem prover that discharges the proof obli-
gations regarding pointer-related verification conditions. The integer-related
verification conditions are proved interactively by using the Coq theorem
prover. The compiler back-end generates assembly code and transforms the
VCs and the corresponding proofs produced by the front-end into code anno-
tations (assertions), by applying Hoare logic to the operational semantics of
the x86 assembly language. PointerC has more types and pointer operations
than the Touchstone C certifying compiler.

Li et al. [Li et al., 2010] introduced a certifying compiler for a subset
of the ANSI C language, that has a built-in automatic theorem prover. The
certifying compiler, named Clike, deals with programs that handle single and
double-linked lists and binary trees with explicit memory allocation and deal-
location. The safety properties include memory safety, and C type safety, in-
cluding heap safety. The compiler was implemented in SML/NJ. Their proof
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libraries were implemented by using the meta-logic provided by the Coq the-
orem prover, i.e. the calculus of inductive constructions CiC. At the source
level, a constrained first-order logic and a fragment of separation logic are
considered. The front-end includes a verification condition generator and the
built-in theorem prover. The verification conditions are generated from the
input Clike source code that is annotated with pre, post-conditions and invari-
ants. These verification conditions are discharged by the theorem prover. The
front-end produces the abstract syntax tree of the program, the verification
conditions and their corresponding machine-checkable proof (a Coq term).
The back-end generates x86 assembly code, low-level specifications and the
corresponding low-level proof. The assembly code, the low-level specifica-
tions and the proofs use a variant of the stack-based certifying assembly pro-
gramming language. The proofs produced by Clike can be checked by Coq.
The size of the Clike compiler is 25.500 lines of code. It is smaller than
the Touchstone C compiler [Necula and Lee, 2004], and it can certify more
complex safety properties.

In the following, we recall some variants of PCC that aim to overcome the
main technical issues of PCC.

Foundational Proof-Carrying Code (FPCC)

Appel et al. [Appel and Felty, 2000; Appel, 2001; Appel and Mcallester,
2001; Felty, 2005] proposed a foundational approach to PCC (FPCC), that
uses a minimal logic and a small set of axioms. Also FPCC uses a general
type system in order to cope with different low level languages and safety
properties.

This approach assumes that the typing rules are not trusted, and integrates
the programming language semantics component with the policy component,
in order to reduce the size of the TCB and to increase its reliability. FPCC
reduces effectively the size of the TCB, from 26,000 to 2,668 lines of C and
LF code, but not the size of the certificates, neither the validation time [Appel,
2001; Hamid et al., 2003; Hamid et al., 2002; Necula and Schneck, 2003b].

Some initial FPCC proposals [Appel and Felty, 2000; Appel, 2001; Ap-
pel and Mcallester, 2001] use TWELF (another LF implementation), while
more recent FPCC approaches [Felty, 2005] use the theorem prover Coq4

4Coq is based on the calculus of inductive constructions, an extension of the lambda
calculus with types.
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in order to generate and check the certificate by using type inference and
type checking, respectively. In [Appel, 2001], Appel certified memory safety
properties, whereas in [Appel and Felten, 2001] more general properties can
be expressed (although not verified neither certified), including fairness re-
garding process scheduling, memory allocation and deallocation, safe API
invocation sequences, lock number bounds, output logging, and package re-
transmission without modification. Another FPCC proposal that introduced
semantic analysis in order to simplify and reduce proof size and to consider
recursive types is [Appel and Mcallester, 2001].

Necula and Schneck [Necula and Schneck, 2002; Necula and Schneck,
2003a] considered also non-trusted type inference rules, for which a sound-
ness proof is provided. This work uses the theorem prover Coq to demonstrate
the soundness of the proof rules for a type safety policy for assembly code that
is generated by a Java compiler. The validation of the Coq proof requires only
type-checking. In this approach, the TCB simply consists of the type-checker
of Coq, a small part of the prover.

FPCC with witnesses Appel et al. [Appel et al., 2003; Wu et al., 2003]
used proof witnesses instead of full proofs in order to reduce the certificate
sizes, and non-trusted inference rules in order to reduce the TCB size. This
proposal considers type safety, and represents the typing rules as Prolog-like
clauses, which are run without backtracking. The proof witness is a logic
program trace that contains the successful goals and sub-goals. The proof
witnesses are smaller in size than full proof certificates. But the witnesses
size can be one thousand times the program size, which is impractical. The
framework uses a deterministic logic interpreter (FLIT) in order to check the
proof witnesses. The system FLIT restricts clause and goal syntax in order
to achieve a small and efficient proof checker. FLIT was implemented in 282
lines of C code [Wu et al., 2003]. This framework was applied to certify
type safety regarding arithmetic integer properties (such as the parity of an
integer expression) of machine language code. The machine code is generated
by a Core ML compiler (based on SML/PJ) that also generates LTAL (Low-
level Typed Assembly Language) expressions that encode the proof witness
expressed in LF. In this case, the total TCB size amounts to 3,034 lines of
code [Wu et al., 2003].

In [Wu, 2005], Wu developed the first end-to-end FPCC system, that in-
tegrates the Core ML type-preserving compiler, the LTAL language, and the
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FLIT proof checker altogether. The compiler generates SPARC machine code
together with the LTAL code. This proposal includes a machine checkable
soundness proof that was checked using TWELF and FLIT. Wu’s experiments
include some small “but not trivial” LTAL benchmarks. In this case, the full
proof size is 143,4 Kb, including the safety specification, logic, arithmetic,
algebra, sets, relations, functions, lists, vector, trees, machine specifications,
and LTAL specifications. Regarding the experiments with the even/odd prop-
erty, the validation time grows slower than the code size by a factor of 1/2;
i. e., if the number of expressions of the code grow by a factor of 10, then
the corresponding validation time grows by a factor of 5. In the case of the
LTAL benchmarks, the validation time also grows slower than the code size.
However, the validation time growing rates tend to be similar as the code size
increases: if the code size changes from 32 to 870 lines of machine code (i.
e., it grows by a factor of 27), the validation time grows by a factor of 3; if the
code size changes from 870 to 1816 (a factor of 2) lines of code, the validation
time grows less than 2 times [Wu, 2005].

Syntactical FPCC: Hamid et al. [Hamid et al., 2003; Hamid et al.,
2002; Hamid and Shao, 2004; Hamid, 2005] introduced a syntactical ap-
proach to foundational proof-carrying code (SFPCC) in order to reduce the
complexity and size of the proofs generated by FPCC. The safety proof is
based on syntactical type inference. The certificate includes the safety proof
of the used type system, that is not assumed to be trusted. This framework was
used to certify code written in the typed assembly language FTAL (Feather-
weight Typed Assembly Language), a version of TAL. FTAL supports integer
arithmetic, records, recursive types, and pointers as first-class values. FTAL
can be used as the object language of Java, ML, and a typed restricted of C.
The safety policies include memory allocation safety and safe execution with
no illegal instructions. The authors use the Coq prover in order to generate the
proof, whereas the Coq type-checker is used to validate the proof. SFPCC can
also certify code written in XTAL, a language that can be used in combination
with other low and high level languages that could use different type systems.

Open Verifier, a non-standard FPCC approach: Chang et al. [Chang
et al., 2005; Schneck, 2004] introduced a framework called the Open Verifier
for developing foundational verifiers for FPCC. Non-trusted code is verified
by using customized verifiers. The code producer does not supply a safety
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proof. Instead, he delivers an executable extension of the verifier, which is
specific for a source language, together with some program meta-data. In this
way, the Open Verifier framework avoids common FPCC drawbacks regard-
ing proof encoding and proof size [Necula and Rahul, 2001]. The customized
verifier generates weak program post-conditions, while the Open Verifier gen-
erates stronger post-conditions by using executable code instead of logic ax-
ioms in order to describe machine transitions. The performed verifications are
not foundational in the sense that they are not fully based on a given compact
logic.

The code consumer generates the safety proof by using the Open Verifier
and the extension of the verifier that corresponds to the selected program-
ming language. The Open Verifier is considered trusted while the customized
extension is not. The framework includes a proof checker and a fix point ap-
proximation interpreter. The Open Verifier checker and the interpreter have
an implementation written in Ocaml with some extensions that support dif-
ferent verification strategies. There is an extension of traditional PCC (PC-
CExt), another for the TALx86 language (TALExt) [Morrisett et al., 1999a]
and other for Cool, a type-safe object oriented language similar to a subset of
Java, called CoolAid. The safety policies considered in [Chang et al., 2005;
Schneck, 2004] include memory and type safety. The extensions are the most
complex components of the Open Verifier: the PCCExt extension has 2400
lines of code, the TALExt extension has 9300 lines of code and the CoolAid
has 6900 lines of code. The TCB size of the Open Verifier has 4.250 lines of
code [Schneck, 2004].

Other remarkable PCC variants

Configurable PCC: Necula and Schneck [Necula and Schneck, 2003b]
introduced a configurable proof-carrying code approach (CPCC) that is more
trustworthy than PCC because the trusted code is only a small part of the ver-
ifier (core VCGen). The code producer supplies not only the code but also
most part of the code for the verifier (custom VCGen). The trusted verifier
(core VCGen) checks some properties of the supplied untrusted custom veri-
fier. The custom untrusted verifier is executable code. Instead of the language
semantics, the trusted code includes a decoder, which returns a symbolic pred-
icate that must be satisfied in the current state in order to ensure a safe exe-
cution. The core VCGen handles general safety policies (memory safety, safe
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arithmetic, and no side effects), while the custom VCGen may handle special
safety policies. In this way, CPCC is also more flexible that standard FPCC
approaches. CPCC can be applied to low level languages (assembly and vir-
tual machine languages). To the best of our knowledge, there is no known
implementation yet.

Prototype PCC: Wildmoser et al. [Wildmoser et al., 2004] introduced
Prototype Proof Carrying Code (ProtoPCC) as a complement of the men-
tioned CPCC proposal of Necula and Schneck [Necula and Schneck, 2002].
The framework is instantiated for a simple assembly language (SAL) and a
safety policy that includes safe types and lack of overflows in arithmetic oper-
ations. The safety policy is expressed as program annotations. The code pro-
ducer can enter his SAL annotated programs into the inductive theorem prover
Isabelle. The verification condition can be generated by a supplied simplifier.
The code producer can demonstrate the verification condition by using Is-
abelle, the simplifier, and a Presburger arithmetic procedure. The proof is a
lambda term whose type corresponds to the proved theorem. Proof validation
reduces to type-checking the term that encodes the proof. The code consumer
uses the Isabelle type-checker in order to validate the proofs. Wildmoser et
al. [Wildmoser et al., 2005] reported an implementation of this framework to
certify that bytecode programs have no overflows because of arithmetic opera-
tions, and that vector indexes are not out of bounds. The bytecode is generated
by the Jinja compiler, that considers only a subset of the bytecode language
(JVM language) with no objects and no method invocations. In previous work
the program annotations were written by hand, while they are automatically
generated in [Wildmoser et al., 2005].

Oracle PCC: Necula and Rahul [Necula, 2001a; Necula and Rahul,
2001] proposed the use of a higher-order logic program for representing the
trusted type inference rules, and the use of a non-deterministic higher-order
logic interpreter as a proof checker, and they introduce oracles instead of
proofs as certificates. The oracles are bit streams that resolve the non-determi-
nistic interpretation choices. The logic interpreter is similar to λ-Prolog. This
work considers type safety of assembly code generated by a Java compiler.
The oracles, i.e. the certificates, are 12% the size of the code, and 26-35%
the size of the corresponding LFi proofs (c.f. Section 1.1.1 of [Necula and
Lee, 1997a]). However, the validation times are three times higher than type
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checking LFi expressions [Necula and Rahul, 2001], and the TCB size is
about 26.000 lines of code.

Interactive Proof Carrying Code IPCC: This is a proposal that aims
to address the certificate size problem. It is known that the size of the proof
that a given code satisfies a safety property, increases as size and code com-
plexity increase such that it reduces PCC application to cases where the proof
checking time would be reasonable from the consumer point of view. Tsukada
et al. [Tsukada, 2000; Tsukada, 2005] proposed an interactive and proba-
bilistic extension to PCC, called Interactive PCC, that reduces the checking
time for a property of a given code with m lines of code and n conditionals,
from 2k ∗ poly(m) with PCC to poly(m) with iPCC. The probability that a
iPCC proof is correct is ≤ 1/2m.

The safety property is specified in negative form with boolean formulae
that are existentially quantified. The program is safe if and only if the formula
is false. The boolean formulae, disjunctions of conjunctions, are expressed in
arithmetic form as summation of multiplications (variables have 0 or 1 val-
ues, disjunction is transformed into addition, conjunction into multiplication,
and negation into complement). This way, the boolean formula is false iff
the corresponding arithmetic formula is evaluated to the 0 value. The arith-
metic formulae are grade one polynomials whose coefficients are interactively
delivered by the code producer to the code consumer, one by one. These co-
efficients are the proof that the code satisfies the given property. To the best
of our knowledge, this proposal has not been implemented yet.

Extended Proof Carrying Code EPCC: Pirzadeh and Dubé [Pirzadeh
and Dubé, 2008b; Pirzadeh and Dubé, 2008a] introduced the Extended Proof
Carrying Code EPCC approach in order to tackle the proof size issue of PCC
for assembly-like languages. Similarly to the non-standard PCC approach of
the Open Verifier, the code producer does not supply a safety proof by using
EPCC, but a program. The program delivered by using EPCC is a proof gen-
erator. In order to get the proof in a secure way, the code consumer runs the
proof generator by using a specific stack-based virtual machine that is small
and safe [Pirzadeh and Dubé, 2008b]. The EPCC virtual machine VEP is
part of the TCB and has less than 300 lines of code. VEP enforces mem-
ory safety (i.e. valid memory addresses), control-flow safety (no jumps out-
side the address space), type safety (including numeric ranges) and resource
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bounds safety (code size, stack size, heap size and timeout).
The authors implemented an EPCC prototype that includes an assembler

for the VEP machine, a C compiler that produces the assembly code for
the VEP assembler and a proof generator written in C [Pirzadeh and Dubé,
2008b]. The input of the proof generator is the proof produced by a theorem
prover, given the verification conditions generated by a suitable VCGen. The
transmitted proof generator is compressed by using an off-the-shelf compres-
sor. The code consumer uses GUNzip, a decompression-only program for
the VEP machine that is transmitted together with the proof generator. In the
EPCC approach the TCB is composed by the VEP machine, the proof checker
and the VCGen [Pirzadeh and Dubé, 2008a].

Resource consumption in high level programming languages

Resource consumption by programs has been recently considered a safety and
security issue because excessive resource consumption may compromise the
availability of the services offered by the hosting computer system. Most de-
nial of service (DoS) attacks to Internet servers are based on the exhaustion
of the limited resources of the attacked systems (processing time, bandwidth,
main memory, etc.). In the following, we summarize the approaches to re-
source consumption certification in three high level programming languages
C, Camelot and Java.

The Tinman framework for C: Mok and Yu [Mok and Yu, 2002a;
Mok and Yu, 2002b] proposed a framework to guarantee safe resources han-
dling by C programs. Tinman framework combines static analysis with run-
time monitoring. The certificate is a forecast of run-time resource consump-
tion that includes memory allocation. The security policy has three parts: i)
the resource consumption of each invoked service of the host system (pre and
post conditions), ii) the resource consumption of the code, and iii) the proof
system that interprets the policy specification. Time consumption analysis
considers the worst case, but there are programs that require programmers to
annotate the maximum execution time. Tinman uses the PVS (Prototype Ver-
ification System) prover system in order to generate the proof. PVS is a top-
down, goal oriented prover, based on a higher-order logic with types. In order
to reduce the size of the PVS proofs, the certificate only includes the tactics
used by PVS with their parameters, i.e. a proof skeleton. Tinman framework
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formalization and soundness are considered in [Yu and Mok, 2004].

The functional programming language Camelot: The MRG (Mobile
Resources Guarantees) european project [Sannella et al., 2005; Gilmore and
Prowse, 2005] developed two programming languages devised to certify the
resource consumption of mobile code written by using those languages. The
first-order functional programming language Camelot was designed in order
to certify linear heap memory consumption of Camelot functions. Camelot
is similar to ML but has classes and objects. The certificate proves that the
memory consumption is linear regarding the size of the input.

The Camelot compiler generates Grail code (Guaranteed Resources Al-
location Intermediate Language), a functional virtual machine bytecode, to-
gether with the corresponding resource consumption proof, i.e. the certificate
[Beringer et al., 2003]. The resource consumption certificate is a term of an
LDF type [Hofmann and Jost, 2003] encoded as an Isabelle term. The certifi-
cate includes an encoding of the abstract syntax of Grail. The Grail compiler
can generate bytecode for the JVM Java Virtual Machine, and also CIL code
for the .Net framework [Beringer et al., 2003; MacKenzie and Wolverson,
2004].

The code producer uses the Camelot and Grail compilers to verify, com-
pile and certify a Camelot function. The code producer transmits the JVM
code, together with the certificate (the LDF term and the Grail syntax). The
code consumer uses a Grail decompiler in order to generate the Grail code
from the JVM bytecode, and the Isabelle prover to type-check the certificate
and the Grail code. The theorem prover Isabelle big size in kbytes implies that
the code consumer cannot use it in mobile devices, nor desktops computers
[Aspinall et al., 2004].

JVer, a Java verifier: The work of Chander et al. [Chander et al.,
2005a; Chander et al., 2007] considered physical resource consumption bounds
(CPU time, memory and disk space, and bandwidth), and virtual resources
(files, database connections, and program threads). The resource consump-
tion policy is expressed as code annotations that mean run-time code behavior
regarding resource consumption. The annotations determine the allocation of
resources to the program, before its actual execution and resource consump-
tion. These “dynamic” annotations are verified statically.
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The framework has general application. It is composed of a VCGen, and a
prover based on logical satisfiability. The VCGen generates predicates that are
conjunctions of relations between integer variables and constants, i.e. linear
inequalities. These simple predicates can be more efficiently verified than
first-order formulae.

There is one implementation of the framework that applies to the certi-
fication of source Java code with non-standard JML annotations [Chander
et al., 2005a]. This implementation uses the ESC/Java tool as VCGen and
the theorem prover Simplify [Detlefs et al., 2003] as prover. The Symplify
prover implements a satisfiability procedure to solve linear inequalities. How-
ever, the prover Simplify cannot generate independently-checkable proofs.
The ESC/Java based implementation was used to verify a Java version of the
tar program, with 1700 lines of code that includes 577 relevant I/O lines of
code. There is another implementation that applies to annotated Java byte-
code [Chander et al., 2005b]. This implementation uses the JVer frame-
work [Chander et al., 2005a] as VCGen and the theorem prover Kettle as an
independent-checkable proof generator. JVer was used in experiments with
game code for mobile phones.

1.1.2 Model Carrying Code (MCC)

Sekar et al. [Sekar et al., 2001] introduced “Model-carrying code” MCC as a
new approach to software security certification, where the certificate is not a
proof in any computational logic. Instead, it is a high level model of the pro-
gram behavior. In this proposal, the model is the finite state automata whose
transitions correspond to system events that occur during program execution,
like file writing and reading and network communication.

As usual, the MCC code consumer knows the code and its model, and
can check if the code has conformance with the model, prior to program ex-
ecution. Moreover, the MCC code consumer can monitor and enforce the
observed policy during code execution, and also she can refine the policy, i.e.
the model. In [Sekar et al., 2003] the general policy corresponds to an appli-
cation classification that distinguishes between file only and communications
only applications. File only applications cannot communicate through the net-
work, but can read and write files. Communications only applications cannot
access any file but can communicate through the network. The general policy
file only can be refined in order to allow network accesses before any sensible
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file reading. Policies can be also refined in order to consider the sites where
files are located.

MCC cannot be applied to dynamically loaded code, or code that does not
use system calls for file handling and network communication.

Abstraction-Carrying Code (ACC)

In order to verify and certify liveness temporal properties of C code, Xia et
al. [Xia and Hook, 2003a; Xia and Hook, 2003c; Xia and Hook, 2003b;
Xia and Hook, 2004] introduced an MCC variant based on abstract interpre-
tation called “Abstraction-carrying code” ACC. In ACC, the certificate is an
abstract interpretation of the program. More formally, it is a boolean program
abstracted from the LTL predicate (without “next” operators) that expresses
the liveness condition. The C compiler generates the abstraction of the pro-
gram together with the corresponding assembly code. The boolean program
is encoded as a set of type annotations that are written in an assembly lan-
guage with dependent types called SDTAL (“Simplified Dependent Typed In-
termediate Language”). The code consumer checks the type of the certificate,
and then executes an abstract model checker in order to validate the tempo-
ral property. Typical ACC certificate sizes are smaller than the actual code
size, but ACC TCB size includes the model checker and the SDTAL type-
checker. The implementation of ACC, called ACCEPT/C, uses the BLAST
tool [Henzinger et al., 2002] in order to generate the control-flow graph of
the C program.

Abstract Carrying Code (ACC)

Albert et al. [Albert et al., 2005a] proposed another abstraction-based ap-
proach to MCC, which is based on Constraint Logic Programming CLP. The
framework is applied to analyze and certify CLP Ciao programs. It is also im-
plemented in Ciao, and uses the assertion language of the Ciao pre-processor
with pre- and post-conditions. In this case, the certificate is the result of a fix
point abstract analysis of the Ciao program.

The security policies include file access control based on regular file nam-
ing, i.e. file names are regular expressions [Albert et al., 2005a], determinacy,
termination, and non-failure, resource consumption bounds, time and space
cost, and absence of side-effects [Albert et al., 2004; Albert et al., 2005c].
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In [Albert et al., 2011], Albert et al. also introduced a reduced size cer-
tificate with a 60% size reduction. Validation time increases, but only a 6%.

This approach has some limitations reported in [Albert et al., 2004] which
are due to the approximation by abstract interpretation, and also because of
the undecidability of some properties.

Relational abstraction

As part of the Lande project, Besson et al. [Besson et al., 2005; Besson et al.,
2006; Besson et al., 2007] introduced a further FPCC approach: the certified
abstract interpretation approach to the verification of relational linear prop-
erties among integer program variables. The proposal considers a subset of
a stack-based language like JVM, i.e. imperative bytecode, with procedures,
arrays, and global variables. This framework can be applied to certify prop-
erties based on value ranges of integer variables. This way, it can be used to
verify resource consumption bounds and array bounds, another kind of mem-
ory safety property. Safe array index handling means that index variables are
within the corresponding array index bounds, as in the ProtoPCC framework.
The automatic abstract analysis of programs can infer relational invariants
and procedure pre- and post-conditions by an abstract interpretation of linear
relations between program variables and symbolic execution.

The result of the abstract certification is the certificate, which contains the
program annotations and the fix point abstract interpretation of the program,
i.e. a system of linear inequalities over program variables. This system of lin-
ear constraints is a polyhedra inclusion. The approach instantiates the abstract
domain by using polyhedra [Cousot and Halbwachs, 1978]. The system of
linear constraints can be validated in quadratic time. The certificate sizes are
one order of magnitude smaller than the program sizes.

The abstract interpretation analysis is specified in Coq. The code pro-
ducer uses this VCGen and Coq to generate the certificate, that is a lambda
term. The code consumer uses Coq and a simple type-checker to validate
the lambda term. The proof checker is also verified and certified in Coq. In
order to simplify and improve the efficiency of the certificate generation and
validation, the program analyzer and the certificate checker were compiled to
Caml.
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1.1.3 Certified components for FPCC
In order to reduce the risk associated to the use of the TCB, an alternative is to
introduce non-trusted components that replace part of the TCB, i.e. compo-
nents that are not assumed to be trustworthy, as in CPCC. Below we summa-
rize several approaches that rely on non-trusted components for FPCC which
are also verified and certified.

A certified proof checker

The Mobius project work of Barthe et al. [Barthe et al., 2007b] introduced
a verified proof checker for a bytecode-like language that could be used as a
FPCC proof checker by code consumers. In other words, the proof checker
is not a part of the TCB. This work considers non–interference policies as
discussed in Chapter 6. The verified checker was extracted from the Coq
soundness proof.

A certified program analyzer

Chang et al. [Chang et al., 2006; Chlipala, 2007] introduced an abstract in-
terpretation based program analysis framework that can be used by a FPCC
infrastructure regarding type and memory safety policies. The code producer
does not supply a proof of the fulfillment of a given code consumer safety
policy. Instead, he delivers the source code of the program analyzer that veri-
fies the fulfillment of the given safety policy, together with the corresponding
soundness proof, i.e. a verified and certified program analyzer developed by
using the proposed framework. The soundness proof are produced by using
abstract interpretation and the Coq theorem prover. The Coq specifications
are extracted from the source code implementations of the program analyses
written in ML. The code consumer extracts the specifications from the deliv-
ered source code, then she uses the specifications to validate the soundness
proof using a proof-checker. This validation uses three trusted components:
i) a compiler, ii) a specification extractor, and iii) a proof checker. If the proof
validation succeeds, then the code consumer installs the program analyzer.
The code consumer verifies non-trusted code using the compiled analyzer and
the proof checker.

There is a prototypical implementation that allows one to analyze assem-
bler code produced by the TALx86 compiler [Morrisett et al., 1999a]. The
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prototype disregards only the modular features of the language. There is a
partial implementation of a bytecode verifier, with no exceptions, object ini-
tialization, nor methods. This implementation allows one to certify ML code.
The specification extractor supports a significant subset of the ML language.
The TCB includes the Ocaml compiler and the Coq proof checker.

1.1.4 PCC with certifier authorities
Whitehead et al. [Whitehead et al., 2004] claim that there are some safety
policies that cannot be verified and certified with a PCC framework without a
certifier authority. They proposed a novel approach that complements a PCC
system with an authorization system based on the Binder language that allows
authorities to certify code by using digital signatures, when the safety policies
are outside the scope of the PCC subsystem. The Binder language can express
trust relationships between different agents.

1.1.5 Code synthesis and certification
Automated code generation has been considered an enabling technology by
model-driven software development (MDD) for specific domains, even for
safety-critical domains, where testing it is not enough and code generators
could be flawed. We summarize the main achievements in this research trend,
as follows.

Domain specific model driven code synthesis

Schuman et al. [Whalen et al., 2002; Schumann, 2003; Whalen et al., 2003]
simultaneously generated code and all annotations required to verify and cer-
tify code, by using Hoare logic and theorem proving. Their approach is im-
plemented as an extension of AutoBayes, a synthesis tool for automatically
generating C and C++ programs for data analysis from equations on a specific
domain. The extension generates Modula-2 code that includes formal proof
annotations. The generated and annotated code is processed by the verifica-
tion condition generator that is implemented with MOPS (Modula Proving
System) in order to generate proof obligations that are then discharged by the
first-order strategy-based theorem prover E-SETHEO. The framework was
used to certify operator safety regarding partial functions, and memory safety
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on a data-classification program. It was also used to certify variable initial-
ization safety [Whalen et al., 2003]. There are cases with proofs that have to
be obtained interactively with user input (4 of 69).

Denney and Fischer introduced a different approach to certifiable program
generation [Denney and Fischer, 2006a] for safety-critical applications that
uses Hoare logic, annotation inference [Denney and Fischer, 2005; Denney
and Fischer, 2006b] and a first-order theorem prover (E-SETHEO, Vampire,
and Spass were tried). The generated code is used for guidance, navigation,
and control of spaceships. A range of safety properties are considered, includ-
ing initialization safety, and no out-of-bounds array accesses. Initialization
safety ensures that each variable or array element has been explicitly assigned
a value before it is used. The approach has been implemented in the tool
Autocert [Denney and Trac, 2008], a software safety certification tool for
automatically generated C code from state flow Simulink models. The Auto-
Cert tool formally verifies that the generated code is free of different safety
violations, by constructing an independently checkable certificate. Code gen-
eration takes into account not only the code itself but also the annotations
required for verification. The tool generates verification conditions that are
discharged by the first-order theorem prover. The proof obligations generated
(25000 in some experiments) required a lot of preprocessing before they can
be discharged by the theorem prover. Some proofs have more than 8000 infer-
ence steps. The proofs are encoded as acyclic directed graphs that contain the
formulae derivations. Proofs can be checked by semantic derivation verifica-
tion. The certificate includes the proof, the proof explanations, and some links
that allow code consumer not only to check the proof but also to understand
it, by using a certification assistant.

Code-Carrying Theory (CCT)

Program synthesis follows the proof-as-program paradigm. That is, the pro-
gramming problem is stated, i. e., it is specified in some logic, and then, an
interactive theorem prover, for instance Coq or Isabelle, is used to build a
proof. Finally, the source code can be extracted from the proof. For instance,
CaML code can be extracted from Coq proofs. This is an alternative approach
to program verification, where programs are correct or safe by construction
and do not need to be verified a posteriori.

Musser and Vargun [Vargun, 2006] introduced Code-Carrying Theory
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CCT, a certification system where, given some code consumer functional re-
quirements, the code producer delivers code assertions and a functional cor-
rectness proof, but not the code itself. If the code consumer succeeds checking
the proof, she can automatically generate correct code by using the CodeGen
tool.

The code consumer supplies axioms, that are defined by means of func-
tions. Then, these functions are proved to have some required properties,
using conditional equations and induction. CCT transmits a set of axioms and
theorems, i.e. a theory, and the proofs of the theorems. There is no need for
code transmission neither verification condition generators.

CCT can be applied to general safety properties including security prop-
erties. However, in [Vargun, 2006], CCT is applied to functional correct-
ness of generic types code, and type safety and termination. CCT is applied
to generic types as numbers (sum-list) that can be instantiated with specific
numbers (natural, integer, etc.). It also includes characteristics of generic data
structures like the iterators of C++ Standard Template Library, but extended
with range properties that provide generic types safety.

The CCT approach is composable. It has been applied to problems com-
posed of different functions whose correctness were proved independently.
In this case, Oz code was generated. Oz is a multi-paradigm functional, im-
perative, and object-oriented programming language. CCT is implemented
in Athena, a higher-order theorem prover and functional programming lan-
guage, that allows one to express proofs as functions. Athena computation
ends with a theorem as an outcome, or generates an error condition. CCT
produces generic proofs, i.e. proofs that are sound for generic types, and can
be used to proof instances of the proved generic types.

Alpuente et al. [Alpuente et al., 2010a; Alpuente et al., 2010b] in-
troduced a rewriting logic framework for CCT based on automatic program
transformation, regarding sorts, rules, equational theories and algebraic laws.
In this case, the program functional requirements are specified as a rewrite
theory, from which a corresponding correct optimized program code can be
obtained via fold/unfold transformations. The transmitted certificate includes
the program requirements and the applied transformations. The proposed
CCT program transformation framework is implemented in Maude and ap-
plies to Maude code synthesis.

The main high-level properties considered for high-level languages are
summarized in Table 1.1.
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Table 1.1: High-level languages and certified properties.

Security Policies Language
The even result of an integer expression [Wu et al.,
2003; Wu, 2005]

Functional ML

Bounded resource consumption (the size of heap
memory used by a function linearly depends on in-
put size) [Hofmann and Jost, 2003; Beringer et al.,
2003; MacKenzie and Wolverson, 2004; Sannella
et al., 2005; Gilmore and Prowse, 2005; Aspinall
et al., 2004]

Functional Camelot

Secure file opening on temporal site [Albert et al.,
2005a]
Termination, determinacy, and non-failure [Albert
et al., 2004]
Bounded execution time, bounded data structures
memory consumption, and no side-effects [Albert
et al., 2004; Albert et al., 2005c]

Constraint logic Ciao

Bounded execution time, bounded data structures
memory consumption explicitly demanded, heap
memory, bandwidth [Mok and Yu, 2002a; Mok and
Yu, 2002b; Yu and Mok, 2004]

Imperative C

Temporal properties specified as LTL predicates
without next operators, like liveness [Xia and Hook,
2003a; Xia and Hook, 2003c; Xia and Hook, 2003b;
Xia and Hook, 2004]

Imperative C

Operator safety regarding partial functions, mem-
ory safety and variable initialization safety [Whalen
et al., 2003; Whalen et al., 2002; Schumann, 2003;
Whalen et al., 2003]

Generated imperative
C/C++ and Modula 2

Bounded resource consumption, including execu-
tion time, memory, bandwidth, files, threads and
database connections [Chander et al., 2005a; Chan-
der et al., 2007]

Imperative object-
oriented Java

Initialization safety, and no out-of-bound arrays
[Denney and Fischer, 2006a; Denney and Fischer,
2005; Denney and Fischer, 2006b]

C
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High-level languages and certified properties
Continued from previous page
Security Policies Language
Functional correctness, termination and type safety
[Vargun, 2006]

Multi-paradigm imper-
ative, functional and
object-oriented Oz,
and imperative object-
oriented C++

Correctness [Alpuente et al., 2010a; Alpuente et al.,
2010b]

Rewriting Logic Maude

At the end of this thesis we provide a table with the comparison of the
main approaches to software certification of security and safety properties
for: (i) low-level languages, (ii) C language, (iii) Java, (iv) Camelot and (v)
logic languages (Appendix A.1, A.2, A.3, A.4, and A.5, respectively). In
general, we do not consider other approaches to software verification that do
not explicitly deal with software certification, because there are too many of
these approaches, and most of them do not deliver a formal proof that could be
used as a certificate that would be independently validated by code consumers.

However, Chapters 5, 6 and 7 include specific proposals that deal with the
considered properties, particularly type systems and verification approaches
that are based on proof tools, i.e. theorem provers.
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1.2 Thesis publications

In [Alba-Castro et al., 2008], we consider some integer arithmetic properties
of Java source code of terminating and deterministic function methods with
integer parameters and integer results. The integer properties (e.g. “modulo
2”, i.e. parity, and “modulo 4”) are specified as safety policies in the style of
the specification language JML by using the requires and ensures clauses
and the operator \result. The specified integer properties include simple
relational properties of program variables (i.e. i <= n).

In [Alba-Castro et al., 2009a], we introduce our rewriting logic approach
to non–interference analysis and certification of Java source code. This pa-
per considers local non–interference of deterministic and terminating Java
function methods. We focus on the methodology as well as the PCC and
rewriting-based particulars of our approach, with a specific emphasis on prac-
ticality and good performance. The proof of concept prototypes developed
in previous work [Alba-Castro et al., 2008; Alba-Castro et al., 2009a] were
integrated into a web based tool (a running prototype) [Alba-Castro et al.,
2009b], that is publicly available at http://zenon.dsic.upv.es:8080/
rewritingLogic/control.

In [Alba-Castro et al., 2010a], we present a novel and sound security
model for global non–interference of Java source code which approximates
non–interference of complete Java classes as a safety property. This work
formalizes foundational semantic security aspects regarding complete Java
classes, but it also provides a comprehensive and full-fledged formulation
of our abstract original non–interference certification methodology [Alba-
Castro et al., 2009a], that considers Java methods. We also propose in [Alba-
Castro et al., 2010a] a certification technique for global non–interference of
complete Java classes based on rewriting logic. Starting from an existing
Java semantics specification written in Maude, we developed an extended,
information–flow Java semantics that allows one to correctly observe global
non–interference policies. In order to achieve a finite state transition system,
we also developed an abstract Java semantics that we use for secure and ef-
fective non–interference Java analysis. The analysis produces certificates that
are independently checkable and are small enough to be used in practice.

In [Alba-Castro et al., 2010b], we extended the certification technique for
non–interference of complete Java classes introduced in [Alba-Castro et al.,
2010a], in order to consider non–interference policies with and without era-

http://zenon.dsic.upv.es:8080/rewritingLogic/control
http://zenon.dsic.upv.es:8080/rewritingLogic/control
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sure policies. We implemented the global confidentiality certification method-
ology for non–interference and erasure, and developed some experiments that
demonstrate the feasibility of our approach. A completely redesigned, easy to
use, Web tool was developed [Alba-Castro et al., 2010c] and it is available at
http://zenon.dsic.upv.es:8080/certificateX/.

The publications derived from this thesis are:

* Alba-Castro, M., Alpuente, M., and Escobar, S.: Automatic certifica-
tion of Java source code in rewriting logic, in 12th International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS 2007),
Vol. 4916 of Lecture Notes in Computer Science, pp 200–217, Springer-
Verlag, 2008.

* Alba-Castro, M., Alpuente, M., and Escobar, S.: Automated certifica-
tion of non–interference in rewriting logic, in 13th International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS 2008),
Vol. 5596 of Lecture Notes in Computer Science, pp 182–198, Springer-
Verlag, 2009.

* Alba-Castro, M., Alpuente, M., and Escobar, S.: Abstract certification
of global non–interference in rewriting logic, in Proc. 8th Int. Symp.
Formal Methods for Components and Objects (FMCO 2009), Revised
Lectures., Vol. 6286 of Lecture Notes in Computer Science, pp 105–
124, Springer-Verlag, 2010.

* Alba-Castro, M., Alpuente, M., and Escobar, S.: Approximating non–
interference and erasure in rewriting logic, in 12th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2010) Sept. 23-26, Timisoara, Romania, pp 124–132, IEEE
Computer Society, 2010.

* Alba-Castro, M., Alpuente, M., and Escobar, S.: Confidentiality certifi-
cation of source Java code in JavaPCC, in Guest Editors: Jens Bendis-
posto, Michael Leuschel (ed.), Proceedings of the 10th International
Workshop on Automated Verification of Critical Systems (AVoCS 2010),
Vol. 35 of Electronic Communications of the EASST, To appear.

* Alba-Castro, M., Alpuente, M., Escobar, S., Ojeda, P., and Romero,
D.: A tool for automated certification of Java source code in Maude,

http://zenon.dsic.upv.es:8080/certificateX/
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in Revised selected papers of Spanish Conference on Programming and
Computer Languages, VIII Jornadas sobre Programación y Lenguajes
(PROLE 2008), Vol. 248 of Electronic Notes on Theoretical Computer
Science, pp 19–29, Elsevier, 2009.
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Chapter 2

Preliminaries

2.1 Rewriting Logic and Maude

We assume some basic knowledge of term rewriting [TeReSe, 2003] and
rewriting logic [Meseguer, 1992].

Maude is a high-level, declarative programming language supporting ex-
ecutable specification written in rewriting logic. Maude supports both equa-
tional and rewriting logic computation because rewriting logic includes equa-
tional logic as a sublogic [Clavel et al., 2002; Clavel et al., 2005; Clavel
et al., 2007]. A Maude program is a rewriting logic theory, that includes an
equational subtheory. A Maude computation is a logical deduction w.r.t. the
rewriting rules of the rewriting theory and the equations of the equational
theory.

The triple 〈K,Σ, S〉 is a membership equational logic signature, with K a
set of kinds, Σ = {Σ(w,k)}(w,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K

a K-kinded disjoint sets of sorts [Meseguer and Roşu, 2007]. [s] denotes the
kind of sort s. A membership equational logic K-algebra A contains a set AK

for each kind k ∈ K, a function Af : Ak1 × . . .Akn → Ak for each operator
f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. TΣ,k and TΣ(X)k denote,
respectively, the set of ground Σ-terms with kind k and the set of Σ-terms with
kind k over variables in X, where X = {x1 : k1, . . . , xn : kn} is a set of kinded
variables. In the following, Σ denotes the triple 〈K,Σ, S〉. Given the signature
Σ, the atomic formulae are either a Σ-equation of the form t = t′, or a Σ-
membership of the form t : s, with t, t′ ∈ TΣ(X)k and s ∈ Sk. Σ-sentences are
conditional formulae of the form (∀X) ϕ if (

∧
i pi = qi) ∧(

∧
j wj : sj) where ϕ

is either a Σ-equation or a Σ-membership, and all the variables in ϕ, pi, qi, and
wj are in X.

A membership equational logic theory is a pair 〈Σ,E〉, with Σ a member-
ship equational logic signature and E a set of Σ-sentences. Given a member-
ship equational logic theory 〈Σ,E〉, its initial algebra is denoted TΣ/E and its



32 Chapter 2. Preliminaries

elements are the E-equivalen- ce classes of ground terms in TΣ . An operator
specification f : s1 × . . . sn → s corresponds to specifying f at the kind level
and giving the axiom: ∀x1 : k1, . . . , xn : kn, f (x1, . . . , xn) : s if

∧
1≤i≤n xi = si.

The equation specification ∀x1 : k1, . . . , xn : kn, t = t′ if
∧

1≤i≤n xi : si, corre-
sponds to specifying ∀x1 : s1, . . . , xn : sn, t = t′.

The logical deduction of the equational logic is the equational deduction
using the equations of the theory, the axioms of the operators, and the five
natural deduction rules: reflexivity, symmetry, transitivity, congruence and
substitution [Chen et al., 2006].

A membership equational logic theory have some constraints regarding
program execution [Meseguer and Roşu, 2007]: i) the sentences of the theory
may be decomposed as (E ∪ A), where A is a set of equations that are used
for computation modulo; for instance, A may include any combination of
associativity, commutativity and idempotency laws for operators defined in
Σ; and ii) the sentences E have to be A-confluent and A-terminating, in order
to allow one to use the conditional equations in E as (equational) rewrite rules
modulo A. Therefore, regarding program execution, a membership equational
logic theory can be specified as the pair (Σ,E ∪ A), where the A axioms are
used to rewrite modulo.

Maude has functional and system modules. The Maude’s functional mod-
ules are theories in membership equational logic. Computation in a functional
module is the equational deduction accomplished by rewriting, orienting the
equations as rewriting rules from their left-hand side to their right-hand side,
until a canonical form is found. Given the above constraints of the mem-
bership equational logic theory, the Maude’s functional modules can be as-
sumed to be confluent, terminating and sort-decreasing, and the conditional
equational rewriting can be performed modulo the A axioms of associativity,
commutativity and identity eventually considered [Clavel et al., 2007].

The axioms of associativity, commutativity and identity are specified in
Maude as operator symbol attributes. As an example, the following Maude
specification, where the multiset union operator (denoted by the empty string,
i. e., the empty string is the operator symbol itself) has the attributes of com-
mutativity and associativity:

op __ : State State -> State [comm assoc]

The attributes comm and assocmean that the multiset union operator satis-
fies respectively the commutativity and associativity axioms that are specified
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by the following equations without the need to give them explicitly [Clavel
et al., 2005]:

X ( Y Z ) = ( X Y ) Z

X Y = Y X

Maude uses a multiset matching algorithm in which the multiset union is
matched modulo associativity and commutativity. The rewriting performed
onto terms of the multiset is multiset rewriting.

A rewriting logic specification or theory is a tuple 〈Σ,E ∪ A,R〉, where
(Σ,E ∪ A) is a membership equational theory with axioms A, and R is a collec-
tion of labelled and possibly conditional rewrite rules of the form: r : (∀ X)
t → t′ if (

∧
i ui = u′i)∧ (

∧
j vj : sj) ∧ (

∧
l wl → w′l), where: i) the variables in

the terms t, t′, ui, u′i , vj,wl and w′l are all in X, ii) the terms in each equation
or rewriting rule, have the same kind, and iii) the term vj in the membership
vj : sj has the kind [sj]. The rewriting rules are computationally interpreted
as local transition rules in a possibly concurrent system. The rewriting logic
theory specifies a concurrent system where the rewriting rules in R specify the
concurrent transition rules between system states. These states are elements
of the initial algebra TΣ/E∪A, specified by (Σ,E ∪ A).

The rewrite theory can prove sentences that are universally quantified
rewrites of the form (∀ X) t → t′, with t, t′ ∈ TΣ(X)k for some kind k, that are
obtained by the finite application of the five inference rules: reflexivity, equal-
ity, congruence, replacement and transitivity [Meseguer and Roşu, 2007].
The rewrite rules are intuitively interpreted as inference rules in a logical sys-
tem.

The Maude’s system modules are rewrite theories 〈Σ,E ∪ A,R〉. Rewrit-
ing in 〈Σ,E ∪ A,R〉 happens modulo the equational axioms in A, that are spec-
ified as the equational attributes given to the function symbols in the program.
Computation in system modules uses the equations to simplify the terms to
its canonical form before applying the rules to generate transitions. The rules
in the rewrite theory need not be confluent and need not be terminating, but
they must be coherent with respect to its equations. Then, given a set of rules,
many different rewriting paths are possible from a term. The rules are ap-
plied concurrently, hence a rewrite specification is a compact way to encode
concurrent and non-deterministic transition systems [Chen et al., 2006].

In Maude functional modules, we can evaluate expressions with the redu-
ce (red) comand. The reduce command simplifies the expression, a term,
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to its canonical form, by using the equations and membership axioms in the
module.

In Maude system modules, we can execute rewrite theories with the re-
write (rew) command. The rewrite command applies rules to a term un-
til termination, in a top-down and rule-fair way giving a chance to all rules.
However, before applying any rule to a term, it is reduced to its canonical form
by using the equations of the theory. Because we can have non-terminating
computations, the rewrite command can be given a numeric argument stating
the maximum number of rewrite steps. Since the rewriting rules of the the-
ory could correspond to a non-deterministic transition system, the rewrite
command only gives one possible behavior among many.

To obtain all behaviors from an initial state, we can use the search com-
mand, which is Maude’s search facility for doing breadth-first search with
cycle detection. The search command looks for all the rewrites of a given
state into states that match a given pattern satisfying some condition. When a
search command terminates, the state graph is retained in memory so that it
is possible to obtain the whole generated search graph to interrogate the state
graph for the path(s) from the start term to any reachable state [Clavel et al.,
2003]. Each path includes the states and the rewriting rules used in the tran-
sitions, and the state path graph can be used as a witness or certificate of the
rewriting logic deduction.

Since equations are deterministic, the state space associated to a rewrite
theory is determined in Maude only by the program rules. That is, rules and
equations are applied in the same way, but Maude, by default, only keeps track
of the rules applied and omits the information about the equations applied.
Therefore, the number of rules and equations is relevant and the smaller the
number of rules, the more efficient the verification analysis, since the search
space is smaller.

Let us provide a concrete example. The Maude simple system module
given in Figure 2.1, specifies a timer as a decreasing counter (seconds). The
initial state specifies the time period start in whatever combination of seconds,
minutes and hours, using at least one of their respective constructor operations
sec, min and hou. The timer stops when it reaches the final state “sec(0)
min(0) hou(0)” .

The terms “sec(7290)” , “sec(89) min(127)” and “sec(45) min(49)
hou(4)” are valid initial states. The last of these terms is the only one in
canonical form because it cannot be reduced by using the equations in the
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mod TIMER is

pr INT .

sort Time .

op sec : Int -> Time .

op min : Int -> Time .

op hou : Int -> Time .

op __ : Time Time -> Time [comm assoc] .

vars I1 I2 I3 : Int .

--- EQUATIONS:

eq sec(I1) sec(I2) = sec(I1 + I2) .

ceq sec(I1) = sec(I1 rem 60) min(I1 quo 60) if I1 >= 60 .

eq min(I1) min(I2) = min(I1 + I2) .

ceq min(I1) = min(I1 rem 60) hou(I1 quo 60) if I1 >= 60 .

eq hou(I1) hou(I2) = hou(I1 + I2) .

--- RULES:

crl [seconds] :

sec(I1) => sec(I1 - 1) if I1 > 0 .

crl [minutes] :

sec(0) min(I2) => sec(59) min(I2 - 1) if I2 > 0 .

crl [hours] :

sec(0) min(0) hou(I3) => sec(59) min(59) hou(I3 - 1) if I3 > 0 .

endm

Figure 2.1: Maude TIMER example.

module.
The equations reduce the terms of the sort Time to its standard time format

in seconds, minutes and hours. The reduce command “red sec(7290) .”
produces the canonical form of the term sec(7290), which is “sec(30)
min(1) hou(2)” , as follows:

Maude> red sec(7290) .

result Time: sec(30) min(1) hou(2)

The canonical form of the term sec(89) min(127) produced by the
reduce command “red sec(89) min(127) .” is as follows:

Maude> red sec(89) min(127) .

result Time: sec(29) min(8) hou(2)

The term sec(45) min(49) hou(4) cannot be further reduced by the
reduce command “red sec(45) min(49) hou(4) .” as shown in the
following Maude execution excerpt:

Maude> red sec(45) min(49) hou(2) .

result Time: sec(45) min(49) hou(2)
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The rules specify the time transitions as a decreasing counter second by
second. The result of the application of the rewrite command to the initial
state represented by the term sec(45) min(49) hou(4) is the following:

Maude> rew sec(45) min(49) hou(2) .

result Time: sec(0) min(0) hou(0)

The search command can be used to analyze the reachability of a given
state from an initial one. For example the command “search sec(888888)
=>* sec(0) min(0) hou(0) .” can be used to determine that the final
state sec(0) min(0) hou(0) is reachable from the initial state sec(888888)
as the following result shows:

Maude> search sec(888888) =>* sec(0) min(0) hou(0) .

Solution 1 (state 888888)

empty substitution

The following result shows a final state that represents a time count (sec(45)
min(23) hou(10)) that cannot be reached from an initial state that repre-
sents a lower time count (sec(7896)):

Maude> search sec(7896) =>* sec(45) min(23) hou(10) .

No solution.

2.2 Abstract Interpretation
Abstract interpretation is a theory of semantic approximation in which con-
crete domain and operations are approximated by abstract domain and opera-
tions. In the following we briefly recall some key aspects of the abstract inter-
pretation framework [Cousot and Cousot, 1977; Cousot and Cousot, 1979].

Let us begin by recalling some useful notions about sets, relations and
transition systems.

Sets
A set S is a collection of its elements S = {s1, s2, . . . } such that we can write
si ∈ S to denote that si is an element of S . There is a special set with no
element, the empty set denoted by ∅.

A set S 1 is a subset of set S 2, written S 1 ⊆ S 2 if every element of S 1 is
also element of S 2, i. e., for all s ∈ S 1 ⇒ s ∈ S 2. ∅ ⊆ S for all set S . Given a
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set S , the set of all subsets of set S , written ℘(S ), is the set {S S | S S ⊆ S }. For
every set S , S ⊆ ℘(S ) holds. Given two sets S 1 and S 2, their union, written
S 1 ∪ S 2, is the set S 3 such that s ∈ S 3 if s ∈ S 1 ∨ s ∈ S 2. Given two sets
S 1 and S 2, their intersection, written S 1 ∩ S 2, is the set S 3 such that s ∈ S 3 if
s ∈ S 1 ∧ s ∈ S 2.

Two sets S 1 and S 2 are equal if and only if they have the same elements:
S 1 = S 2 ⇔ for every s ∈ S 1 we have s ∈ S 2, and vice versa.

A set can be defined by a property (i. e., a predicate whose variables range
over set elements): S = {s | P(s)}, the elements of S are such that they satisfy
the property.

Relations and functions
A Cartesian product of two sets S 1 and S 2, written S = S 1 × S 2, is the set
whose elements are pairs formed with an element of each set: S 1 × S 2 =

{〈s1, s2〉 | s1 ∈ S 1 and s2 ∈ S 2}. A relation R between two sets S 1 and S 2 is
a set R ⊆ (S 1 × S 2). Two elements s1 and s2 of S 1 and S 2, respectively, are
related by R if 〈s1, s2〉 ∈ R.

A function f from the (domain) set S 1 to the (range) set S 2, written f :
S 1 → S 2 is a relation between the two sets, such that if 〈s1, s2〉 ∈ f , written
f (s1) = s2, there is not a s3 ∈ S 2 such that s2 , s3 ∧ f (s1) = s3. A function
f : S 1 → S 2 is surjective (or onto) if for every s2 ∈ S 2 there exist s1 ∈ S 1

such that f (s1) = s2. A function f : S 1 → S 2 is injective (or one-to-one)
if for every s1, s′1 ∈ S 1 with s1 , s′1 there exist f (s1), f (s′1) ∈ S 2 such that
f (s1) , f (s′1).

Complete lattices
A partially ordered set (S ,≤) is a set S with an order relation ≤ such that,
for all x, y, z ∈ S , it satisfies reflexivity (x ≤ x), transitivity (x ≤ y ∧ y ≤
z ⇒ x ≤ z), and antisymmetry properties (x ≤ y ∧ y ≤ x ⇔ x = y). A
totally ordered set (S ,≤) is a partially ordered set such that, for all x, y ∈ S , it
satisfies x ≤ y ∨ y ≤ x.

Given a partially ordered set (S ,≤) and X ⊆ S , if for all x ∈ X, it holds
x ≤ y with y ∈ S , y is an upper bound for X. If exists y ∈ S , such that y is
an upper bound for X, and for every upper bound y′ ∈ S for X it holds y ≤ y′,
then y is the least upper bound for X, lub or join, denoted by tX. Dually,
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given X ⊆ S , if for all x ∈ X, it holds y ≤ x with y ∈ S , y is a lower bound
for X. If there exists y ∈ S , such that y is a lower bound for X, and for every
lower bound y′ ∈ S for X it holds y′ ≤ y, then y is the greatest lower bound
for X, glb or meet, denoted by uX.

A complete lattice is a partially ordered set (S ,≤) such that, for every
X ⊆ S there exist tX and uX. tS is denoted by >, and uS by ⊥. Such a
complete lattice is denoted by 〈S ,≤,⊥,>,t,u〉. For instance, the set of all
possible subsets of any set S , ℘(S ) and the ⊆ relationship form a complete
lattice 〈℘(S ),⊆, ∅, S ,∪,∩〉 where t is set union, u is set intersection, the > is
S and ⊥ is ∅.

A semi lattice is a partially ordered set (S ,≤) such that, for every X ⊆ S ,
there exist either tX (join semi lattice) or uX (meet semi lattice), but not both.

Galois connection
Given two monotone functions α : A → B and γ : B → A, with (A,≤) and
(B,6), partially ordered sets, such that for all a ∈ A and for all b ∈ B, α(a) 6 b

if and only if a ≤ γ(b), then 〈α, γ〉 is a Galois connection: 〈A,≤〉
γoo

α
// 〈B,6〉 .

Galois connections satisfy the properties:

1. Deflationary: For all a ∈ A it holds a ≤ γ(α(a)).

2. Inflationary or extensive: For all b ∈ B it holds α(γ(b)) 6 b.

3. Idempotent: For all b ∈ B, α(γ(α(γ(b)))) = α(γ(b)).

Galois insertion
Given two functions α : A → B and γ : B → A, with 〈A,≤〉 and 〈B,6〉,
partially ordered sets, we can state that 〈α, γ〉 is a Galois surjection or Galois

insertion, i. e., 〈A,≤〉
γoo

α
// // 〈B,6〉 if, for every a ∈ A and b ∈ B, it holds

α(a) 6 b⇔ a ≤ γ(b).
The α, γ functions of a Galois insertion satisfy the properties:

1. Monotonicity of α and γ: For all a, a′ ∈ A and for all b, b′ ∈ B, it holds
a ≤ a′ ⇒ α(a) 6 α(a′) and b 6 b′ ⇒ γ(b) ≤ γ(b′).
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2. Deflationary: For all a ∈ A it holds a ≤ γ(α(a))).

3. Abstraction and concretization means no information loss: For all b ∈ B
it holds b = α(γ(b)). This implies that α is suryective and γ is inyective.

If 〈α, γ〉 is a Galois insertion, we also have: i) α ◦ γ is idempotent, i. e.,
α◦γ(b) = α◦γ(α◦γ(b)), and ii) α is a surjective function, and γ is an inyective
function.

A Galois connection where α is a surjective function and γ is an inyective
function, is a Galois insertion.

Transition systems
Programs can be formalized as transition systems τ = 〈Σ,Σini, t〉, where Σ is a
set of program states, Σini is the set of initial states Σini ⊆ Σ, and t ⊆ Σ × Σ is a
transition relation between a state and its possible successors. A finite partial
program execution trace is a sequence of states s0 s1 . . . sn, where s0 ∈ Σini,
si ∈ Σ for 0 ≤ i ≤ n, and 〈si, si+1〉 ∈ t, for 0 ≤ i ≤ n − 1. A Program state si is
defined by a mapping that holds the bindings of program variable identifiers
to their domain values in the considered state, i. e., si : Variable → Value.
The (concrete) value Val ∈ Value of a given variable Var ∈ Variable in state
si is obtained by the expression si(Var), i. e., Val = si(Var).

Example 1. For example, a finite partial execution trace corresponding to the
Java program int i = 0; while (i < 10) i++; is the state sequence s0 s1 . . . s9,
such that i is a Java integer variable, i. e., si(Var) ∈ Int. and s0(i) =

0 ∧ s j(i) = s j−1(i) + 1, for all j ∈ 1 . . . 9.

If Σn
τ denotes the set of all finite partial execution traces of length n of the

transition system τ, the collecting semantics of τ, denoted by Σ
−→
∗
τ , is the set of

all partial traces of any finite length of τ, i. e., Σ
−→
∗
τ =
⋃

0≤n Σn
τ [Cousot, 2004].

A terminating computer program can have an infinite number of differ-
ent initial program execution states and also infinite number of partial finite
execution traces. The corresponding collecting semantics can also have an in-
finite number of partial traces of any finite length. This state explosion makes
infeasible to apply most program analysis techniques. However, there are
program analysis techniques that correctly approximate program semantics
in such a way that programs have finite initial program states and finite col-
lecting semantics, so that their analysis is feasible in finite time. Moreover,
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there are program properties that don’t need every program execution state
and every partial execution trace to be analyzed because they are too precise
to express program properties under consideration. In these cases, we can use
abstraction.

Abstraction

Abstract interpretation is concerned with a particular underlying structure of
the concrete universe of computation. Abstract interpretation of programs
produces a summary of some aspects of the concrete executions. This sum-
mary is in general inaccurate and incomplete but it allows one to answer ques-
tions which do not need full knowledge of the program execution [Cousot and
Cousot, 1977]. For instance, if we are interested in the parity (an integer arith-
metic property) of the final value of variable i in the while program given
in Example 1, we can consider only the parity of the value of the variable i
in the initial and final states, disregarding both, the intermediate states of the
trace, and the specific concrete integer values of the program variable i in the
initial and final states.

Given a set of objects O (either program states or finite partial execution
traces) we represent the property P as the set P# ⊆ O, i. e., P# = {o ∈ O | P(o)}.
Regarding program states, the property P of states s ∈ Σ is represented by
the set of states P# ∈ ℘(Σ) which have the property P; i. e., P# ⊆ Σ and
P# = {s ∈ Σ | P(s)}. The correspondence between a state and its abstraction
is specified by an abstraction function α : ℘(Σ) 7→ ℘(Σ), that is based on the
properties at hand. At the variable level, there is a corresponding abstraction
function α : ℘(Value) → ℘(Value), that maps sets of concrete values into
properties or sets of concrete values.

For example, the properties even and odd of values of variable i can
be represented as the sets of values #even, #odd ⊆ Int, such that #even =

{i ∈ Int | i mod 2 = 0}, and #odd = {i ∈ Int | i mod 2 , 0}. In this
case, at the variable level we can use the abstraction function , α : ℘(Int) →
℘(Int), with α({Val}) = #even where Val is the value of variable i, and it
is such that Val mod 2 = 0 and α({Val}) = #odd if Val is such that
Val mod 2 , 0. We can extend homomorphically the α function from the
variable level to program states by using the abstraction function α : ℘(Σ) →
℘(Σ), such that given S ⊆ ℘(Σ), we have: i) α(S ) = #even if for all s ∈ S ,
s(i) mod 2 = 0; ii) α(S ) = #odd if for all s ∈ S , s(i) mod 2 , 0; and iii)
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Figure 2.2: Abstract lattice on Int values regarding their parity.

α(S ) = Int if exists s, s′ ∈ S such that s(i) mod 2 = 0 and s′(i) mod 2 , 0.
We also have that α(∅) = ∅.

The set #Parity = {⊥, #even, #odd,>} is a complete lattice 〈#Parity,v
,⊥,>,t,u〉 induced on integers by the parity property based on set inclusion
v, where ⊥ denotes the set ∅ and > denotes the set Int (see Figure 2.2). The
lub is > (i.e. t#Parity = >), the glb is ⊥ (i.e. u#Parity = ⊥), #even v >,
and #odd v >.

More generally, the set of properties of states in Σ is a complete Boolean
lattice 〈℘(Σ),⊆, ∅,Σ,∪,∩,¬〉 [Cousot, 2004].

There is another function that gives the concrete form of an abstract state:
the concretization function γ : ℘(Σ) 7→ ℘(Σ). Function γ has also a corre-
sponding concretization function at variable level γ : ℘(Value) → ℘(Value).
In the example, γ(#even) = #even, γ(#odd) = #odd, γ(Int) = Int, and
γ(∅) = ∅.

An abstract interpretation 〈Σ#,v,⊥,>,t,u〉 of a program is a complete
semi-lattice that is consistent with a concrete interpretation 〈℘(Σ),⊆,⊥,>,∪,∩〉
if the abstract state s# ∈ Σ# resulting from the abstract interpretation is a cor-
rect approximation of the concrete state {s} ∈ ℘(Σ) resulting from the concrete
and more refined interpretation. Correctness of the approximation means that
the abstract state contains at least the concrete state, i. e., {s} v s# [Cousot and
Cousot, 1977]. Formally, this can be expressed by using the correspondence
between concrete and abstract states (abstraction: α : ℘(Σ) → Σ#) and in-
versely between abstract and concrete states (concretization: γ : Σ# → ℘(Σ))
and requiring [Cousot and Cousot, 1977]:

1. For all S ∈ ℘(Σ) given α(S ) = S #, it holds that S ⊆ γ(S #) and α(S ) v
S #.

2. The α and γ functions are monotonic or order-preserving, i. e., for all
S , S ′ ∈ ℘(Σ), given S ⊆ S ′ we have that α(S ) ⊆ α(S ′), and for all
S #, S #

1 ∈ Σ#, S # v S #
1 implies that γ(S #) ⊆ γ(S #

1); this is necessary
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because state inclusion must be preserved by the abstraction and con-
cretization processes.

3. For all S # ∈ Σ#, i.e. S # ∈ ℘(Σ), it holds S # = α(γ(S #)); this means
that concretization introduces no loss of information and implies α is
surjective and γ is injective.

4. For all S ∈ ℘(Σ), S ⊆ γ(α(S )); this introduces the idea of approxima-
tion: the abstraction of a set of concrete states S , α(S ), may introduce
some loss of information so that when concretizing again we may get a
larger content S ⊆ γ(α(S )).

Formally, Σ] is an abstract interpretation of Σ ( Σ] approximates Σ or con-
versely Σ is a refinement of Σ) if and only if there exist functions α : ℘(Σ) →
℘(Σ) (α : ℘(Σ) → Σ]) and γ : ℘(Σ) → ℘(Σ) (γ : Σ] → ℘(Σ)), such that
conditions 1, 2, 3 and 4 hold [Cousot and Cousot, 1977].

The required conditions means that α and γ functions form a Galois sur-
jection1 [Cousot and Cousot, 1979; Cousot and Cousot, 2002; Cousot, 2004].

Definition 1 (Abstract interpretation [Cousot and Cousot, 1979; Cousot
and Cousot, 2002; Cousot, 2004]). Formally, Σ] is an abstract interpretation
of Σ if there exist functions α : ℘(Σ) → ℘(Σ) (α : ℘(Σ) → Σ]) and γ :
℘(Σ) → ℘(Σ) (γ : Σ] → ℘(Σ)), such that 〈α, γ〉 is a Galois surjection, i. e.,

〈Σ,⊆〉
γoo

α
// // 〈Σ

],v〉.

There are two directions of approximation. In the above approximation,
S ∈ ℘(Σ) is over-approximated by S̄ # ∈ ℘(Σ) such that S v S̄ #. In the
approximation from below, S ∈ ℘(Σ) is under-approximated by S # ∈ ℘(Σ)
such that S # v S [Cousot, 2004]. The condition 4 means that Σ] is an over-
approximation.

If we use a concretization that means a loss of information, relaxing con-
dition 3 such that instead of equality we have inclusion, i. e., for all S # ∈ Σ# it
holds α(γ(S #)) v S #. In this, case conditions 1, 2, the relaxed condition 3 and
condition 4 mean that the functions α and γ are such that 〈α, γ〉 is a Galois

connection: 〈Σ,⊆〉
γoo

α
// 〈Σ

],v〉 [Cousot and Cousot, 2002; Cousot, 2004].

1 It is also called a Galois insertion
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Other equivalent formalization uses closure operators in order to prove the
soundness of the abstraction [Cousot, 2004; Cousot and Cousot, 1979].

Intuitively, abstraction at variable level means that any set of values in the
concrete domain Value, an element S V ∈ ℘(Value), can be approximated by
any S V ′ ∈ ℘(Value) such that S V ⊆ S V ′. In the abstract domain Value] =

℘(Value), S V] can be approximated by any S V ∈ Value] such that S V ⊆
γ(S V]), but the most precise such abstract approximation is S V] = α(S V).

Abstraction soundness also requires the correctness of the abstract op-
erations that need to be defined over abstract domains [Cousot and Cousot,
1977; Cousot and Cousot, 1979; Cousot and Cousot, 2002]. Abstract op-
erations must corresponds to concrete operations regarding abstraction and
concretization functions, even though they can be less precise.

Abstraction operation (and function) soundness can be stated as follows
regarding binary operations. Abstract binary operation correctness regard-
ing the abstraction function at variable level, i. e., α : ℘(Value) → Value#,
means that, the ⊕ binary operation (over concrete Value domain) and the cor-
responding ⊕] binary operation (over abstract Value] domain) are such that:
given Val]0 = αVar({Val0}),Val]1 = αVar({Val1}),Val]2 = αVar({Val1}) with
Val]0,Val]1,Val]2 ∈ Value] and Val0,Val1,Val2 ∈ Value, if Val2 = Val0 ⊕Val1

then it holds that Val]2 = Val]0 ⊕
] Val]1.

Abstract binary operation correctness regarding the concretization func-
tion at variable level, γ : Value# → ℘(Value), means that the abstract ⊕]

binary operation and the corresponding concrete ⊕ binary operation are such
that the following holds: given γ(Val]0) = S etVal0, γ(Val]1) = S etVal1, and
γ(Val]2) = S etVal2 with Val]0,Val]1,Val]2 ∈ Value] and S etVal0, S etVal1,
S etVal2 ∈ ℘(Value), we have that, if Val]2 = Val]0 ⊕

] Val]1 then there exist
Val0 ∈ S etVal0,Val1 ∈ S etVal1,Val2 ∈ S etVal2 such that Val2 = Val0 ⊕

Val1.
Regarding the above Java program given in Example 1 and the parity inte-

ger property, we can specify the abstract post increment operator over #Parity
abstract values, as shown in Figure 2.3. The correctness of the specification
in Figure 2.3 can be proved straightforward by simply using the specification
of the corresponding abstraction function at variable level.

At the variable level, the abstraction of program variables can be done in-
dependently when the abstract value of any variable does only depend on the
concrete value of the variable, and it does not depend on the values of any
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Old value o f i i++ New value o f i
> > >

]even ]even ]odd
]odd ]odd ]even
⊥ ⊥ ⊥

Figure 2.3: Abstract post increment ++ integer operator.

other variable. In this case, the abstraction is not relational. When abstrac-
tion of program variables take into account the relations between the concrete
values of the variables, we have a more precise abstraction called relational.
Cousot et al. introduce relational abstraction regarding linear relations be-
tween program variables [Cousot and Halbwachs, 1978].



Chapter 3

The Java Rewriting Logic
Semantics

In the following, we briefly describe the rewriting logic semantics of Java
given in [Farzan et al., 2007] and used by the JavaFAN verification tool
[Farzan et al., 2004a; Farzan et al., 2004b]. Its novelty and interest are based
on the following four advantages: (i) formal specifications provide a rigorous
semantic definition for a language that can be mathematically scrutinized;
(ii) such formal specifications can be developed with relatively little effort
[Şerbănuţă et al., 2009; Meseguer and Roşu, 2007], even for large languages
like Java [Farzan et al., 2004a] and the JVM [Farzan et al., 2004b]; (iii)
the Maude programming language [Clavel et al., 2007], which implements
rewriting logic, provides a formal analysis infrastructure, so that its formal
analysis tools (such as state-space breadth-first search and LTL model check-
ing) become available for free for each programming language that is speci-
fied in Maude; and (iv) in spite of their generality, those formal analyses can
be performed with competitive performance (see [Farzan et al., 2004a]).

In [Farzan et al., 2007; Meseguer and Roşu, 2007], a sufficiently large
subset of the full Java 1.4 language is specified in Maude, including multi-
threading, inheritance, polymorphism, object references, and dynamic object
allocation. However, Java native methods and most of the Java built-in li-
braries available are not supported. The specification of the Java operational
semantics is a rewrite theory, that is, a triple RJava = (ΣJava, EJava,RJava), with
ΣJava an order-sorted signature, EJava = ∆Java ] BJava a set of ΣJava-equational
axioms where BJava are algebraic axioms such as associativity, commutativ-
ity and identity and ∆Java is a set of terminating and confluent (modulo BJava)
equations. Finally, RJava is a set of ΣJava–rewrite rules that are not required to
be confluent nor terminating.

Intuitively, the sorts and function symbols in ΣJava describe the static struc-
ture of the Java program state space as an algebraic data type, the equations
in ∆Java describe the operational semantics of its deterministic features, and
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the rules in RJava describe its concurrent features. Following the rewriting
logic framework [Meseguer, 1992], we denote by u →r

Java v the fact that
concrete terms u, v, denoting Java program states, are rewritten (at the top po-
sition, see [Farzan et al., 2007]) by using r, which is either a rule in RJava or
an equation in ∆Java both applied modulo BJava. We simply write u →Java v
when no confusion can arise. We denote by →∗Java the extension of →Java

to multiple rewrite steps, i.e., u →∗Java v if there exist u1, . . . , uk such that
u →Java u1 →Java u2 · · · uk →Java v. Associativity, commutativity and unity
(written ACU) axioms of binary operations in BJava allow us to elegantly and
effectively define (and implicitly implement) the crucial infrastructure of the
Java programming language, including environments, threads, memory, in-
put/output, synchronization information, and stores as well as the lookup op-
erations on them. All of them are implemented as a multiset union operation
that builds up a “soup” of elements; see [Farzan et al., 2007; Meseguer and
Roşu, 2007]. The Java operational semantics contains about 424 equations
and only 7 rules, which considerably saves memory and execution time dur-
ing the verification analysis of Java programs [Farzan et al., 2007].

3.1 The Java state

The rewrite theory RJava is defined on terms of a concrete sort JavaState, with
the main state attributes (represented by means of constructor symbols of the
algebraic type JavaState). Each state attribute has a sort and uninterpreted
operations, and the state itself is a multiset of its attributes. The state infras-
tructure is a two-level structure as shown in Figure 3.1, which distinguishes
the global state (the circle node upside in the figure) from the local state of
each thread (the middle circle node) because it was designed to allow mul-
tiple threads. The global state of a Java program has nine attributes (their
sorts are the upper oval nodes) wrapped by the uninterpreted operations (the
arc labels in the figure from left to right): 1) out for the output values list,
2) in for the input values list, 3) t for each thread local state, 4) the store
for assignments of memory locations to their actual values, 5) code for the
wrapped Java code, 6) static for storing all static variables, 7) busy for the
locks used by all threads, 8) nextLoc for the last allocated memory location
identifier, and 9) nextTid for the next thread identifier available. This state
infrastructure allows one to identify a state component by just mentioning the
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name of the corresponding attribute. This fact contributes to the modularity
of the Java language definition.
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Figure 3.1: Java program state.

The local state thread control attribute (sort ThreadCtrl) is also a multiset
and has nine parts or subattributes for each active thread, whose uninterpreted
operations are (the arc labels in Figure 3.1 from left to right): 1) id is the
unique thread identifier, 2) k is the thread continuation for handling control
flow, 3) obj is the active object corresponding to the thread, 4) fstack is
the function stack that is used for handling function calls, 5) xstack is the
exceptions stack, 6) lstack is the loop stack that is used for loop handling,
7) finalblocks is the final block stack, 8) env is the environment that is
used for allocation of non-static variables to memory locations and 9) holds
keeps the locks held by the thread.

These functions define an algebraic structure which is parametric on a
generic sort Value that defines all the possible values returned by Java func-
tions, or stored in the memory, etc. For instance, the int and bool construc-
tors respectively describe Java, integer and boolean values, and are defined in
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Maude as “op int : Int -> Value .” and “op bool : Bool -> Value

.”, where Int and Bool are the internal built–in Maude sorts that define in-
tegers and booleans. Intuitively, equations in ∆Java and rules in RJava are used
to specify the changes to the program state, i.e. the changes to the memory,
threads, input/output, etc. The semantics of Java is defined modularly, i.e. dif-
ferent features of the language are defined in separate Maude modules so to
ease extensions and maintenance; see [Farzan et al., 2007] for further details.

Since we consider only deterministic Java programs in Chapters 5, 6, and
7, our specification of the Java semantics in rewriting logic contains only
equations and no rules, and the program state has only one thread (one local
state), no locks are used, and no exceptions are thrown, as shown in Figure 3.2.
The reader can find a RWL specification of the semantics of a programming
language with threads in [Meseguer and Roşu, 2007; Farzan et al., 2007].
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Figure 3.2: Sequential Java program state.
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--- First evaluate arguments

eq k((E + E’) -> K) = k((E, E’) -> (+ -> K)) .

--- Once arguments are evaluated to integers, compute addition

eq k((int(I), int(I’)) -> (+ -> K)) = k(int(I + I’) -> K) .

Figure 3.3: Continuation-based equations for Java addition operator on inte-
gers.

3.2 Continuation-based semantics

The semantics of Java is defined in a continuation-based style. Continuations
maintain the control context which explicitly specifies the next steps to be
performed. Continuations are a typical technique to transform the uncontrol-
lable control context into controllable data context, by stacking the sequence
of actions that still need to be executed. Once the expression e on the top of
a continuation (e -> k) is evaluated, its result will be passed to the remaining
continuation k. Continuations significantly ease the definition of flow-control
instructions, such as break, continue, return, and exceptions.

For instance, the Java addition operation on Java integers is specified1 in
Figure 3.3 using continuations, where k is the constructor symbol used to
denote a continuation in a thread, -> is the constructor symbol used to con-
catenate continuations, int is the constructor symbol used to denote a Java
integer, and + with2 arity 2 and inside the constructor int is the Maude ad-
dition symbol, whereas + with arity 2 but outside the constructor int is the
Java addition symbol, and + with arity 0 is a continuation symbol used to
remember that the Java addition action is being stacked. For instance, con-
sider the evaluation of the Java expression “2 + 3”; the constant literals “2”
and “3” of the Java program are preprocessed into the Maude terms “i(2)”
and “i(3)”, respectively; these Maude terms are evaluated, respectively, to
the values “int(2)” and “int(3)”. The equational rewriting sequence (re-
duction) corresponding to the evaluation of the expression is given in Figure
3.4. The Java less-or-equal boolean operation on Java integers is specified in
a similar way in Figure 3.5.

1The Maude syntax is almost self-explanatory. The general point is that each item: a
sort, a subsort, an operation, an equation,etc., is declared with an obvious keyword: sort,
subsort, op, eq, etc., with each declaration ended by a space and a period. We use uppercase
letters to denote Maude variables and lowercase letters to denote Maude constructor symbols.
See [Clavel et al., 2007] for details.

2The Maude syntax allows overloading of operators, with different arities.
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k((i(2) + i(3)) -> K)

====> k((i(2), I(3)) -> (+ -> K))

====> k(i(2) -> ([ i(3), noExp | noVal ] -> (+ -> K)))

====> k(int(2) -> ([ i(3), noExp | noVal ] -> (+ -> K)))

====> k( i(3) -> ([ noExp | int(2) ] -> (+ -> K)))

====> k( int(3) -> ([ noExp | int(2) ] -> (+ -> K)))

====> k( ( int(2),int(3)) -> (+ -> K)))

====> k(int(2 + 3) -> K)

====> k(int(5) -> K)

Figure 3.4: Evaluation of ”2+3” Java expression.

--- First evaluate arguments

eq k((E <= E’) -> K) = k((E, E’) -> (<= -> K)) .

--- Once arguments are evaluated to integers, compute boolean

eq k((int(I), int(I’)) -> (<= -> K)) = k(bool(I <= I’) -> K) .

Figure 3.5: Continuation-based equations for Java less-or-equal operator on
integers.

--- No new variable, end buildEnv continuation

eq k(buildEnv(noParameters, noValues) -> K) = k(K) .

--- New variable with name Var and value Val is assigned to Location I’ + 1

eq t(k(buildEnv(((T d(Var)), Pl), (Val, Vl)) -> K) env(Env) TC) store(ST) nextLoc(I’)

= t(k(buildEnv(Pl, Vl) -> K) env([Var, l(I’ + 1)] Env) TC)

store([l(I’ + 1), Val] ST) nextLoc(I’ + 1) .

Figure 3.6: Continuation-based equations for building the environment.

---First obtain location in store from variable name

eq k(Var -> K) env([Var, Loc] Env) = k(#(Loc) -> K) env([Var, Loc] Env) .

---Then obtain value stored in this location

eq k(#(Loc) -> K) store([Loc,Value] Store) = k(Value -> K) store([Loc,Value] Store) .

Figure 3.7: Continuation-based equations for variable content retrieval.

A relevant construction in the Java semantics is the buildEnv continu-
ation symbol shown in Figure 3.6 that gives a new location in the memory
store to each new variable. It involves the following four elements of the Java
state: the unique thread adding new variables (denoted by constructor t), the
local environment of the thread (denoted by constructor env), the global store
(denoted by constructor store), and a counter for the last used location in the
store (denoted by constructor nextLoc).

Another important aspect of the semantics is the handling of Java vari-
ables. In Figure 3.7, we show how the contents of a Java variable are retrieved
from the store (or memory) in the Java state. The semantics of the assignment
operator for the Java variables is specified in Figure 3.8.

The semantics of the if-then-else statement is shown in Figure 3.9. The
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---Obtain variable location and evaluate expression

eq k(Var = E -> K) env([Var, Loc] Env) = k(E -> =(Loc) -> K) env([Var, Loc] Env) .

---Once the expression is computed, assign to location

eq k(Val -> =(Loc) -> K) = k([Val -> Loc] -> (Val -> K)) .

---General procedure to update the memory

eq k([Val -> Loc] -> K) store([Loc,Val’] ST) = k(K) store([Loc,Val] ST) .

Figure 3.8: Continuation-based equations for the Java assignment operator.

--- Evaluates boolean expression keeping the then and else statements

eq k((if E S else S’) -> K) = k(E -> (if(S, S’) -> K)) .

eq k(bool(true) -> (if(S, S’) -> K)) = k(S -> K) .

eq k(bool(false) -> (if(S, S’) -> K)) = k(S’ -> K) .

Figure 3.9: Continuation-based equations for the if-then-else statement.

--- Stack loop and transform while expression into while continuation

eq k((while E S) -> K) lstack(Lstack)

= k(while(E,S) -> popLStack -> K) lstack(while(E,S) -> K, Lstack) .

--- A while continuation is transformed into an if-then-else

eq k(while(E,S) -> K) = k(E -> if(S while ( E , S ),{}) -> K) .

--- Add semantics for popLStack

eq k(popLStack -> K) lstack(LItem,Lstack) = k(K) lstack(Lstack) .

Figure 3.10: Continuation-based equations for the while statement.

--- The state is restored from the loop stack

eq k(break -> K) lstack(while(E,S) -> K’, Lstack) = k(K’) lstack(Lstack) .

Figure 3.11: Continuation-based equations for the while-break statement.

semantics of while statements (loops) is specified in Figure 3.10, where the
term while E S denotes the Java iteration statement, the term while(E,S)
denotes both the while continuation and the while statement that is expressed
in terms of the if(S,S’) continuation, and lstack denotes a stack of loops
currently being executed, which is needed for a proper control of the Java
break statement.

Figure 3.11 shows the semantic specification of the break statement, that
simply pops the stack of loops. This is important for Chapters 6 and 7 since
it can also abruptly change the information flow.

Instance method calls are shown in Figure 3.12. Their semantics is sim-
ply defined by the eager evaluation of all arguments of the method, the search
for the corresponding method code, the creation of a new local empty envi-
ronment, the creation of a new empty loop stack, and the replacement of the
active object while keeping the local state in the function stack fstack (with
the exception of the local state function stack). This local state will be re-
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--- Evaluates target object expression, while keeping

--- the method and the arguments expressions

eq k((E . (M < El >)) -> K) = k(E -> ((M < El >) -> K)) .

--- Evaluates arguments expressions keeping target object and method

eq k(Obj -> ((M < El >) -> K)) = k(El -> (call(Obj, M) -> K)) .

--- Look for the method while keeping the arguments values

eq t(k(Vl -> (call(o(orig(C’) Oattr), M) -> K)) TC) code(Cl)

= t(k(findMethod(C’, M, getTypes(Vl), Cl) -> (call(o(orig(C’) Oattr), M, Vl) ->

K)) TC) code(Cl) .

--- Keep current local state in function stack, create an

--- empty new one, and create local environment.

eq t(k(m(Md, Pl, block, T) -> (call(o(curr(T’) Oattr), M, Vl) -> K)) obj(Obj’)

fstack(Fstack) lstack(Lstack) env(Env) TC)

= t(k(buildEnv(Pl, Vl) -> (block -> (return; -> noop))) obj(o(curr(T) Oattr))

fstack(fsi(K, (obj(Obj’) lstack(Lstack) env(Env) TC)) Fstack) lstack(noItem)

env(noEnv) TC) .

Figure 3.12: Continuation-based equations for the instance method call state-
ment.

--- If there is a value to be returned, first evaluate expression

eq k(return E ; -> K) = k(E -> return -> K) .

--- Release local environment, restore local state of calling method,

--- and keep returned value on continuation

eq t(k(V -> return -> K) fstack(fsi(K’, ( env(Env) TC)) Fstack) env(Env’) TC’)

= t(k(releaseEnv(Env’) -> (V -> K’)) fstack(Fstack) env(Env) TC) .

--- If there is no value to be returned, release local environment,

--- and restore local state of calling method.

eq t(k(return; -> K) fstack(fsi(K’, (env(Env) TC)) Fstack) env(Env’) TC’)

= t(k(releaseEnv(Env’) -> K’) fstack(Fstack) env(Env) TC) [owise] .

Figure 3.13: Continuation-based equations for the return statement.

stored when the method returns (Figure 3.13). The first action to be executed
before transferring control to the block of the called method is to build the lo-
cal method environment with the formal parameters and their corresponding
argument values.

Figure 3.13 shows the specification of “return E” and
“return” statements. The specification of “return E” statement includes
releasing the local environment, restoring the local state of the calling method,
and keeping the returned value on top of the continuation.
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3.3 Java execution
In order to interpret a Java program with this Java rewriting logic based op-
erational semantics, the Java program has to be compiled into a Maude ex-
pression by using a Java language processor that applies a congruent transfor-
mation. We use the Java wrapper available at http://fsl.cs.uiuc.edu/
index.php/Rewriting_Logic_Semantics_of_Java.

In the following, we show how a Java program is transformed into a
Maude term describing the initial configuration of the Java semantics cor-
responding to Figure 3.2. We also partially show the interpretation of a Java
function call. A complete Java code and the corresponding Maude term that
was produced by using the Java wrapper are illustrated as follows:

class Safe1Even3p1 {

public static void main(String[] args) {

TestClass t;

t = new TestClass();

System.out.println(t.summation(0)); }

}

class TestClass {

int summation(int n) {

int sum = 0 ;

int i = 0;

while (i<=n) {

sum += i;

i++; }

return sum; }

}

The Maude term compiled from the Java source has two parts: i) some
pre-processing code that is performed in order to remove the import Java
compiler directives and to congruently transform the types of program classes,
and, ii) the expression with the invocation to the mainmethod that will initiate
the program execution, after state initialization by the java operator. In this
example, the main method invocation has no parameter (noVal).

java((

preprocess((default class t(’Safe1Even3p1) imports nil extends Object implements none {

(public static) void ’main(t(’String)[] d(’args)) throws(noType) {

((((( t(’TestClass) d(’t) ;)

5 @ (’t = new t(’TestClass) < noExp > ;))

6 @ (’System . ’out . ’println < ’t . summation < i(0) > > ;)) }

default class t(’TestClass) imports nil extends Object implements none {

default int ’summation(int d(’n))throws(noType)

{(( (int d(’sum) = i(0) ;)

http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java
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(int d(’i) = i(0) ;))

24 @ (while ’i <= ’n 24 @ {

(22 @ (’sum += ’i ;))

23 @ (’i ++ ;)}))

25 @ return ’sum ;}}))

noType . ’main < new string [i(0)] > noVal

))

From this initial Maude term, the java operator creates the corresponding
initial program state, as specified in the equations below, that include: i) the
initial state of the continuation with three actions to be executed in the given
order: the building of the static environment as specified in the Java pre-
processed code (Cl), then the invocation of the main method, and, finally, the
stop action; ii) the initial empty state with no active object: the function stack,
the exception stack, the loop stack, the environment, the set of locks used,
the output, and the store are all empty; iii) the pre-processed code, the static
environment (the static classes and members), and the given input value list;
and iv) the next available store location identifier and the next available thread
identifier. The default thread has the identifier 0.

eq java((Cl E Vl)) = run(t(k(buildS(Cl) -> (E -> stop)) obj(nullo) fstack(noItem)

xstack(noItem) lstack(noItem) finalblocks(noItem) env(noEnv) id(-1) holds(nil))

out(noOutput) in(Vl) store(noStore) code(Cl) static(onil) busy(noObj)

nextLoc(0) nextTid(1)) .

Below, we show part of the trace that corresponds to the t.summation(0)
method invocation.

The trace shows, first, the retrieval of the store location and the value of
variable t (i.e. the object whose method is called), next the evaluation of the
parameter i(0) (a Java integer literal), and finally the search for the method
code (omitting some intermediate steps):

k(’t . ’summation < i(0) > -> K)

===> k(’t -> ’summation < i(0) > -> K)

===> k(#(l(2)) -> ’summation < i(0) > -> )

===> k(o(f([t(t(’TestClass)),f(noEnv)]) curr(t(’TestClass))

orig(t(’TestClass))) -> ’summation < i(0) > -> K)

===> k(i(0) -> call(o(f([t(t(’TestClass)),f(noEnv)])

curr(t(’TestClass)) orig(t(’TestClass))), ’summation) -> K)

===> k(int(0) -> call(o(f([t(t(’TestClass)),f(noEnv)])

curr(t(’TestClass)) orig(t(’TestClass))), ’summation) -> K)

===> k(findMethod(t(’TestClass), ’summation, getTypes(int(0)), CODE) ->

call(o(f([t(t(’TestClass)),f(noEnv)])

curr(t(’TestClass)) orig(t(’TestClass))), ’summation, int(0)) -> K)

===> k(m(default, int d(’n), {(int d(’sum) = i(0) ;)
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(int d(’i) = i(0) ;)

(24 @ (while ’i <= ’n 24 @ {

(22 @ (’sum += ’i ;))

23 @ (’i ++ ;)}))

25 @ return ’sum ;}, t(’TestClass)) ->

call(o(f([t(t(’TestClass)),f(noEnv)])

curr(t(’TestClass)) orig(t(’TestClass))), ’summation, int(0)) -> K)

Finally, the trace below shows the building of the local method environ-
ment corresponding to the formal parameter n: the keeping of the context of
the invocation in the function stack, and the creation and initialization of the
variable n:
t( id(0)

k(buildEnv(int d(’n), int(0)) -> {(int d(’sum) = i(0) ;)

(int d(’i) = i(0) ;) (24 @ (while ’i <= ’n 24 @ {

(22 @ (’sum += ’i ;)) 23 @ (’i ++ ;)})) 25 @ return ’sum ;} -> return; -> noop)

obj(o(f([t(t(’TestClass)),f(noEnv)]) curr(t(’TestClass)) rig(t(’TestClass))))

fstack(fsi(call(o(curr(System) orig(System)), ’println) -> ; -> (( 7 @ ( ’System .

’out . ’println < ’t . ’sum < i(1) > > ;)) ( 8 @ (’System . ’out . ’println <

’t . ’sum < i(2) > > ;)) 9 @ (’System . ’out . ’println < ’t . ’sum < i(3) > >

;)) -> e([’args,l(1)]) -> stop, id(0) obj(o(f(onil) curr(t( ’Safe1Even3p1))

orig(t(’Safe1Even3p1)))) xstack(noItem) lstack(noItem) finalblocks(noItem)

env([’args,l(1)] [’t,l(2)]) holds(nil)))

xstack(noItem) lstack(noItem) finalblocks(noItem) env(noEnv) holds(nil))

store([l(1),a( string, anil),0] [l(2),o(f([t(t(’TestClass)),f(noEnv)]) curr(

t(’TestClass)) orig(t(’TestClass))),0]) static([t(t(’Safe1Even3p1)),f(noEnv)]

[t(t( ’TestClass)), f(noEnv)])

busy(noObj) nextLoc(2) nextTid(1)

===>

t(

k(buildEnv(noPara, noVal) -> {(int d(’sum) = i(0) ;) (int d(’i) = i(0) ;) (24 @

(while ’i <= ’n 24 @ { (22 @ (’sum += ’i ;)) 23 @ (’i ++ ;)})) 25 @ return ’sum ;}

-> return; -> noop)

env(noEnv [’n,l(2 + 1)]) (obj(o(f([t(t(’TestClass)), f(noEnv)]) curr( t(’TestClass))

orig(t(’TestClass))))

fstack(fsi(call(o(curr(System) orig(System)), ’println) -> ; -> ((7 @ (’System . ’out .

’println < ’t . ’sum < i(1) > > ;)) (8 @ ( ’System . ’out . ’println < ’t . ’sum <

i(2) > > ;)) 9 @ (’System . ’out . ’println < ’t . ’sum < i(3) > > ;)) -> e([’args,

l(1)]) -> stop, id(0) obj( o(f(onil) curr(t(’Safe1Even3p1)) orig(t(’Safe1Even3p1))))

xstack(noItem) lstack(noItem) finalblocks(noItem) env([’args,l(1)] [’t,l(2)])

holds(nil)))

xstack(noItem) lstack(noItem) finalblocks(noItem) holds(nil)) id(0))

store(([l(1),a(string, anil),0] [l(2),o(f([t(t(’TestClass)),f(noEnv)]) curr(

t(’TestClass)) orig(t(’TestClass))),0]) [l(2 + 1),setTid(int(0), 0),0])

nextLoc(2 + 1)

code()

static([t(t(’Safe1Even3p1)),f(noEnv)] [t(t(’TestClass)), f(noEnv)]) busy(noObj)

nextTid(1))

Now, we are ready to introduce the main aspects of the certification technique
in Chapter 4, as follows.
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Chapter 4

Certifying Java programs

The certification methodology formalized in this thesis is essentially as fol-
lows. Consider a source Java program together with a specification of the Java
semantics written in Maude, as described in Chapter 3. The Java program is
a concrete expression (i. e., a term) that represents the initial state of the Java
interpreter running the considered Java program. Given a safety property (i.e.,
a system property that is defined in terms of certain events that do not happen
[Manna and Pnueli, 1995]), the unreachability of the system states that denote
the events that should never occur from the considered initial state allows one
to infer the desired safety property. Unreachability analysis is performed by
using the standard Maude (breadth–first) search command, which explores
the entire state space of the program from an initial system state.

In the case where the unreachability test succeeds, the corresponding rewrit-
ing proofs that demonstrate that those states cannot be reached are delivered
as the expected outcome certificate. Very often, the unreachability test does
not succeed because there is an infinite search space; thus, to achieve a finite
search space, abstraction is used [Cousot and Cousot, 1977].

The safety certificate essentially consists of the set of rewriting proofs of
the form t1 →

r1
Java# t2 · · · →

rk−1

Java# tk that describe the abstract program states
which can and cannot be reached from a given a (abstract) initial state. The
certificates, i.e. the encoded (abstract) rewriting sequences, together with an
encoding of the abstraction in Maude, can be checked by standard reduc-
tion. This methodology is an instance of the Proof–Carrying Code (PCC)
paradigm, a mechanism originated by Necula [Necula, 1997] for ensuring
the secure behavior of programs.

Since these proofs correspond to the execution of the abstract Java seman-
tics specification, which is made available to the code consumer, the certificate
can be inexpensively checked on the consumer side by any standard rewrite
engine by means of a rewriting process that can be very simplified. Actually,
it suffices to check that each abstract rewriting step in the certificate is valid
and that no other valid rewritings have been disregarded, which essentially
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amounts to use the matching infrastructure within the rewriting engine.

4.1 The Java Modeling Language JML
The safety property is specified by using a subset of the Java Modeling Lan-
guage JML syntax [Leavens et al., 2006]. The Java code is annotated with
the JML-like safety specifications that are pre-processed and compiled to a
Maude term that encodes the program initial state.

The Java Modeling Language [Leavens et al., 2006] is a behavioral and
interface specification language that allows Java programmers to write specifi-
cations of Java classes, interfaces, and modules without the difficulty of learn-
ing a language-independent formal specification language like OCL (Object
Constraint Language) (see c. f. [Burdy et al., 2005]). JML has been de-
signed as an easily accessible specification language that combines the design
by contract method and the model-based approach to specification in order
to guarantee that a program satisfies its specification. Java developers can
specify within JML the functional properties of their programs in a general-
ization of Hoare logic, tailored to Java. JML uses Java’s expression syntax in
assertions, with some specific keywords added for specification purposes of
the Java modules interfaces and behavior, so that the JML notation is easy to
learn for Java programmers.

As an interface specification language, JML can describe the names and
static information found in Java declarations of Java modules with pre-condi-
tions (in requires clauses), normal post-conditions (in ensures clauses),
invariants and exceptional post-conditions (with the signals clauses), that
express first-order logic statements (Figure 4.1). JML notation includes quan-
tifiers \forall and \exists and specification-only fields and methods that
allow more precise and complete specifications.

/*@ requires <precondition>;

@ ensures <postcondition if no exception raised>;

@ signals(E) <postcondition when exception E raised>;

@ assignable <modifiable fields and variables> @*/

Figure 4.1: JML method specification.

As a behavior specification language, JML can also describe how the mod-
ule will behave when used with assertions intermixed with the Java code, us-
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ing assert statements (Figure 4.2). These assertions can be checked at run
time.

//@ assert <expression>;

Figure 4.2: JML assert statement.

JML comes with a library with Java types that can be used for mathemat-
ically describing the behavior of sets, sequences and relations.

JML annotations may include class, field and method definitions that are
only used for specification purposes, i.e. they are not used in executable Java
code. These JML annotations include the modifier model within fields, meth-
ods, and class declarations [Leavens et al., 2008]. For instance, a model
method is a method that can be invoked in JML annotations, but cannot be in-
voked in executable Java code. Example 4.1, borrowed from [Leavens et al.,
2006], shows a class with a model field.

public abstract class UnBoundedStack {

/*@ public model JMLObjectSequence theStack;

@ public initially theStack != null && theStack.isEmpty();

@*/

...

}

Figure 4.3: JML specification clauses for a class with a model field.

The JML specifications of a Java program can either be written as code
annotations in Java program files or in separate files. The JML specifications
given as code annotations are treated like Java comments that are ignored by
the compiler. The text of an annotation could be either in one line, after the
marker //@ or, in many lines enclosed between the markers /*@ and @*/.

4.1.1 JML tools
The correctness of JML specifications can be currently verified either during
runtime or statically. The most basic static tool support for JML is the JML
checker (jmlc) that performs type checking and parsing of Java programs
with their JML annotations (see [Burdy et al., 2005]). There are several
tools for static verification of Java programs that use JML as a specification
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language. The main differences between these tools are its soundness, its level
of automation, its language coverage and whether they are proof tools or just
validation tools.

The ESC/Java tool [Flanagan et al., 2002] offers a higher level of automa-
tion without any user interaction and relies on an automatic prover to check
null pointers or array bound limits but it is unsound and incomplete and uses
its own specification language. The ESC/Java2 tool [Chalin et al., 2005]
extends ESC/Java to support Java 1.4 code with standard JML annotations,
but it is also unsound and incomplete. However, the ESC/Java2 tool cannot
generate checkable proofs when verification succeeds.

JML4, an Integrated Verification Environment (IVE) for Java [Chalin et al.,
2007; Chalin et al., 2008], is the first IVE that supports a full range of verifica-
tion technologies for a mainstream programming language. JML4 integrates
a non-null type system for JML, a run–time assertion checking component, an
Extended Static Checking (ESC) tool and a Full Static Program Verification
(FSPV). JML4 is built upon the Eclipse’s Java Development Tooling (JDT)
and has up-to-date support for Java. The JML4 tool has found bugs that were
not previously detected by ESC/Java2 because the size of the analyzed pro-
gram is so big that the corresponding verification condition is too large for
ESC/Java2.

The ESC component of JML4, called ESC4 can also verify more kinds of
methods and is generally more efficient than its predecessor. It can also be
used in off-line user-assisted mode, a new form of verification that lies be-
tween ESC and Full Static Program Verification (FSPV) [Janota et al., 2007].
ESC4 produces proof obligations for the first order provers Simplify and
CVC3 as well as Isabelle/HOL. The JML4 FSPV tool, called the FSPV The-
ory Generator (TG), generates theories written in the Hoare Logic of SIMPL
which is an Isabelle/HOL based theory designed for the verification of imper-
ative sequential programs. To prove the correctness of such theories, a user
can interactively get their proof using the Eclipse version of Proof General
(PG). The proof can then be validated by Isabelle [Chalin et al., 2008].

Other static and proof tools that are sound but require user interaction and
are targeted for the Java Card language (a sequential subset of the Java lan-
guage) are Krakatoa [Marché et al., 2004], JACK (the Java Applet Correct-
ness Kit) [Barthe et al., 2007a], Jive (Java Interactive Verification Environ-
ment) [Meyer and Poetzsch-Heffter, 2000; Ádám Darvas and Müller, 2007],
KeY [Ahrendt et al., 2007; Beckert et al., 2007] and LOOP [van den Berg
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and Jacobs, 2001].
These proof tools generate proof obligations that can be discharged by

using automatic provers or proof assistants in which the Java semantics is
specified: LOOP generates proof obligations for PVS [Owre, 2007] and Is-
abelle. Jive for PVS, Isabelle/HOL and Simplify [Dowek et al., 2001; Ádám
Darvas and Müller, 2007]. Krakatoa uses the Why tool, which can deliver a
multi-prover output, to generate the proof obligations for Coq, Simplify, Alt-
Ergo, CVC3, PVS, Isabelle/HOL, etc. See [Filliâtre and Marché, 2007] for
more information. JACK can interface with several theorem provers: Ate-
lierB, Simplify, Coq and PVS [Burdy and Pavlova, 2006].

JACK considers only Java sequential programs without dynamic loading
[Marché et al., 2004]. The JACK tool is integrated with Eclipse [eclipse,
2011] and provides an easy-to-use user interface. Moreover, it works both for
source code and for bytecode, but JACK verification takes place at the source
code level. JACK implements a weakest precondition calculus adapted for
Java, and automatically generates proof obligations that can be discharged
both by automatic and interactive theorem provers. JACK generates the proof
obligations in first-order logic by using an abstract formula language.

Krakatoa is a translator that reads Java files annotated with pre and post-
conditions, produces input specifications for the considered theorem provers
and a representation of the Java program to the Why tool. The Why tool pro-
duces proof obligations based on the code and the pre and post-conditions.
Krakatoa takes into account a subset of JML, w.r.t. clause invariant for
classes, clauses requires, assignable, ensures and signals for meth-
ods, and loop invariants and decreases clauses for while and for loops
[Marché et al., 2004]. Besides correctness, Krakatoa can prove loop termi-
nation, but not recursion termination. The Krakatoa tool was improved to
consider Java card transactions, Java floating point arithmetic, pointer aliasing
analysis based on separation logic, support for SMT provers and the Caduceus
extension for the analysis of C programs [Filliâtre and Marché, 2007].

The JACK and Krakatoa Coq proofs can be checked by type-checking the
generated Coq files by using the Coq small certification Kernel. This means
that Krakatoa and JACK could be used within a PCC framework, where the
tools and the Coq prover can be used by the code producers and the Coq
type-checker can be used by the code consumers.

Jive works with a sequential subset of Java [Poetzsch-Heffter and Müller,
2011]. The Jive tool uses the ANJA (annotated Java) specification language.
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Jive has its own program prover component that proves program-dependent
properties, while program-independent proof obligations are solved by us-
ing a theorem prover, i.e. PVS [Meyer and Poetzsch-Heffter, 2000]. These
proof obligations include type-checking and non-Hoare formulas. The pro-
gram prover component implements a Hoare logic by basic proof operations
supporting forward and backward proving. Proof tactics can be defined by
using these proof operations. Jive also supports most JML level 0 constructs
and can generate program-independent proof obligations for the Isabelle/HOL
and Simplify theorem provers [Ádám Darvas and Müller, 2007]. However,
PVS, Isabelle/HOL and Simplify produce proofs that cannot be independently
checked.

The KeY tool can be used for the formal specification and semi-automatic
verification of Java Card programs (programs with no floats, concurrency nor
dynamic class loading) [Ahrendt et al., 2007]. KeY uses its own deductive
verification prover, which also can be used as a stand-alone prover. KeY is
based on a free-variable sequent calculus for a first-order dynamic logic for
Java [Ahrendt et al., 2007]. KeY supports the OCL and JML specification
languages and is integrated both in Eclipse and Together [Together, 2011]
IDEs. However, KeY cannot generate proofs that could be checked without
relying on the KeY prover itself.

The LOOP compiler can be used in the verification of sequential Java pro-
grams. LOOP reasoning combines the application of semantic-based Hoare
logic and automatic rewriting. LOOP compiler uses Higher Order logic in
order to translate the Java code and the JML specifications into its seman-
tics. This semantics is a series of logic theories that are specified by using
an abstract syntax. The abstract syntax theories are used to generate concrete
syntax theories for different theorem provers, one for PVS and one for Isabelle
[van den Berg and Jacobs, 2001].

There are some JML-based verification tools for Java that are based on
model checking instead of theorem proving. For instance, Bogor, which is an
extensible framework designed to support both general purpose and domain-
specific software model checking. Bogor can model-check standard com-
plete heavy-weight JML specifications of sequential and concurrent Java pro-
grams [Robby et al., 2006]. Bogor implements explicit-state model checking
through use of sophisticated state-space reductions. Bogor reduces the space
required to store a state by sharing common parts of distinct states. Besides,
Bogor reduces the set of paths that need to be explored in the state-space by
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using partial order reductions. The combination of these techniques in Bogor
yields orders of magnitude of reduction in the space and time required for
model checking. However, Bogor does not generate any proof when verifica-
tion succeeds. Bogor is a validation tool, but not a proof tool, and it cannot be
used in a PCC framework.

One of the most popular certification approaches that apply to Java or
JVM is based on “types and effects” inference systems [Necula and Lee,
1996; Necula and Rahul, 2001]. As we already mentioned, our certification
methodology is different in its rewriting logic nature to all the above methods.

4.2 Full certificates

Our methodology can generate full certificates that include the initial program
state and all performed rewriting steps, showing for each of the rewriting
steps, the equation or rule used, the subterm to be rewritten (i.e. the redex),
the corresponding matching substitution, and the rewritten term. The full cer-
tificate may include also the full term that represents the entire program state
before and after each rewriting step. These full certificates contain all possi-
ble program traces, such that full certificate sizes grow depending on program
size and cyclomatic complexity, i.e. the number of program-independent ex-
ecution paths. However, the full certificates do not grow exponentially as a
function of the code size (see numeral 2 on page 6), and it could be reduced
without decreasing its information content, by eliminating its redundant con-
tent similarly to the LFi reduced version of the LF type derivations [Necula
and Lee, 1997a] (see last paragraph of Section 1.1.1 on page 8). For instance,
the program code in the Java program state does not change at all, i.e. it is the
same in all program states. The left-hand side of Figure 8.3 (on page 158) has
a screen snapshot that shows part of a full certificate.

Not only the size of full certificate is higher than the size of the corre-
sponding reduced one. The corresponding full certificate generation time is
also higher than the corresponding reduced certificate generation time be-
cause the trace option must be set on, slowing Maude’s execution. On the
other hand, full certificate checking time is smaller. Actually the time needed
to check the rewriting sequence is minimal, because it is enough to check
if the redex is a subterm of the current program state, if the redex matches
the left hand side of the applied rule or equation using the given matching
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substitution, and if the rewritten term corresponds to a rewriting step using
the applied rule or equation and the corresponding substitution. In this case,
for each given program state it suffices to apply pattern matching, and then
one reduction step, by using the corresponding given equation or rule in the
certificate.

In order to validate if there is some rewriting sequence that was disre-
garded and it is not in the full certificate, we need to check if there is an equa-
tion or a rule that could be applied and it is not. We would like to emphasize
that, in this case pattern matching is also enough.

4.3 Reduced certificates
We have considered two kinds of reduced certificates that only include the
rewrite steps corresponding to the applied rules, while excluding the used
equations. In this case, the Maude trace option is set off, taking advantage of
the efficient handling of equations by Maude:

• Reduced-rule certificate, that includes the used rules, the redexes, the
corresponding matching substitutions, and the program states before
and after rule application. The right-hand side of Figure 8.3 (on page
158) shows part of a reduced-rule certificate.

• Reduced-rule label certificate, that only includes the labels of the used
rules, while omitting the used rules, the corresponding matching sub-
stitutions and the program states.

These reduced certificates contain less information than the full certifi-
cates, since they omit most rewriting steps (the rewriting steps that correspond
to equational rewriting) of the rewriting logic deduction. In this way, the re-
duced certificates can be seen as the proof witnesses of FPCC [Appel et al.,
2003; Wu et al., 2003] and the oracles of OPCC [Necula, 2001a; Necula and
Rahul, 2001], but our reduced-rule certificates size (length of the text string)
is ten times the program size (bytes) while the size of the proof witnesses of
FPCC can be thousand times the program size (see FPCC section on page
10). Moreover, the reduced-label certificates size is unit times the program
size. However, the reduced (rule and label) certificates have higher relative
size than OPCC oracles which are 12% the size of the code (see OPCC sec-
tion on page 14).
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Generation time and size of any reduced-rule certificate is smaller than the
generation time and size of the corresponding full certificate, because Maude
does not record the rewriting steps that correspond to equation application,
neither the corresponding redexes, matching substitutions, and terms that cor-
respond to intermediate program states.

On the other hand, the time needed to check reduced-rule certificates is
higher than the checking time of full certificates because it is necessary to
reduce the terms that represent program states by using the equations before
considering a rewriting step using any given rule, without no information on
the equations used and the corresponding substitutions.

This means that standard reduction is enough to validate the reduced-rule
certificate. Moreover, in order to check in this case if there are no equations
and rules that are disregarded we also need standard reduction.

The size of the reduced-rule label certificate is the smallest one but its
validation time is the highest, because the certificate only includes the initial
program state, the final program states and the labels of the applied rules,
but no corresponding substitutions and no intermediate program states are
delivered.

The higher validation times of reduced certificates are similar to the FPCC
with witnesses, OPCC and ACC approaches. The use of witnesses in the
FPCC approach reduces the certificate sizes but increases the certificate vali-
dation times; the validation time grows slower than the code size [Wu, 2005]
(see FPCC section on page 11). In OPCC, the validation times of the oracles
are higher than the validation times of the full LFi certificates (see OPCC sec-
tion on page 14); while in ACC, the validation time of the reduced certificates
are 6% higher than the validation time of the full corresponding certificates
[Albert et al., 2011](see ACC section on page 19).

In order to validate the reduced-rule certificates, we also need standard
reduction.

The experiments reported in Sections 5.3, 6.5 and 7.5, include a compar-
ison among full certificates, reduced-rule certificates and reduced-rule label
certificates, regarding arithmetic integer properties, non–interference policies
and erasure policies, respectively.

Other versions of reduced certificates could be obtained by means of au-
tomatic transformation techniques such as trace slicing. Trace slicing is a
widely used technique for execution trace analysis that is effectively used in
program debugging, analysis and comprehension. In [Alpuente et al., 2011],
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a backward trace slicing technique is proposed that can be used for the analy-
sis of rewriting logic theories. The trace slicing technique allows one to sys-
tematically trace back rewrite sequences modulo equational axioms (such as
associativity and commutativity) by means of an algorithm that dynamically
simplifies the traces by detecting control and data dependencies, and dropping
useless data that do not influence the final result. The methodology is partic-
ularly suitable for analyzing complex, textually-large system computations
such as those delivered as counter-example traces by Maude model-checkers.
Trace slicing could be used to reduce the trace-based certificates generated by
our methodology at the code producer side, but also it can be used to check
them at the code consumer side. This is immediate thanks to availability of
the trace slicing facility for a wide class of rewrite logic theories.

4.4 Certificate checking vs. generation

In this section, we demonstrate how the code consumer can check that the
proof carried by the program is valid, so that the consumer can execute the
code. We also include some experiments that demonstrate that validation at
the consumer side is lighter than the proof generation effort at the code pro-
ducer side.

As explained above, certificate validation is faster than certification gener-
ation basically because the certificate contains information that avoids to look
for the equations and rules that could be applied. In the case of the full cer-
tificates, they have the smallest validation times because their checking only
requires matching, whereas the reduced-rule certificate and the reduced-rule
label certificate require standard reduction, i.e. we have the information about
the applied rules (at least their labels), but we have no information about ap-
plied equations, and thus, we have to look for the equations that could be
applied.

Therefore, the main difference between the validation time of full and
reduced certificates is based on the difference between matching and standard
reduction. This means that the generation of the program state space during
the verification process at the producer’s side requires more time than state
space exploration during the validation process at the consumer’s side.

In order to analyze proof checking (certificate validation) time at the con-
sumer side, we have developed an experiment involving state space explo-
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ration that allows us to find out the relative difference introduced by state
condition evaluation given a number of states. The experiment consists of a
Maude program that generates a very large search space that is then traversed
in different ways: one corresponding to proof generation, another correspond-
ing to proof verification (what the code consumer would be performing). The
Maude program generating the large search space is as follows:

mod TEST-PCC is

protecting NAT .

sort Conf .

op [_|_] : Nat Nat -> Conf .

vars N X Y Max : Nat .

crl [inc] : [ Max | N ] => [ Max | N + 1 ] if N < Max .

crl [dec] : [ Max | N ] => [ Max | sd(N,1) ] if N > 0 .

endm

In this specification1, there is an upper bound and a counter stored in a
configuration of the form “[ Upper | Counter ]”. There are also two tran-
sition rules, one incrementing the counter without reaching the upper bound
and another decrementing it without reaching the natural number zero.

First, we consider a search command within this specification that forces
two different ways of generating the search space: just generate all states, or
generate all states while also checking some extra condition on each generated
state. Figure 4.4 shows a table with the results for upper bounds 10000 and
100000, which also implies that there are 10000 and 100000 states in the
search space, respectively. The column “Generate All” corresponds to the
search command:

search [ 10000 | 0 ] =>* [10000 | 10000] .

Whereas the column “All & Condition” corresponds to the search command:

search [ 10000 | 0 ] =>* [10000 | N] such that N > 9999 .

We can easily see that the time associated to generating the search space
and to generating the search space while checking some property is remark-
able. Indeed, traversing the state space takes just 15% extra time than the time
necessary to generate the search space.

Furthermore, we have defined another experiment where we increase the
execution time of the property to be checked throughout the search space. We

1The symbol sd denotes the subtraction operation
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States Generate All All & condition Difference %
10000 147ms 173ms 26ms 17.69
100000 1585ms 1835ms 250ms 15.77

Figure 4.4: Time differences with a simple condition.

consider the simple condition and a Fibonacci number computation, whose
results are shown in Figure 4.5.

The search command used for generating the search space now is:

search [ 10000 | 0 ] =>* [10000 | 10000] such that fib(20) >= 0 .

Whereas the search command with the extra condition is:

search [ 10000 | 0 ] =>* [10000 | N] such that N > 9999 /\ fib(20) >= 0 .

In this case, the time associated to checking the extra condition“N > 0”
throughout the search space is very similar to the previous case (15% ex-
tra time of the generation time) which is reasonable because the condition is
exactly the same though the generation time is bigger due to the condition
“fib(20) >= 0”.

States All & fib(20) All & fib(20) & condition Difference %
10000 174ms 200ms 26ms 14.94
100000 1631ms 1902ms 271ms 16.62

Figure 4.5: Time differences with a simple condition and a costly computa-
tion.

Next, we consider the simple condition and a higher Fibonacci number
computation, whose results are shown in Figure 4.6. With this other exper-
iment we can see that the time associated to traversing the search space can
be negligible (1%) with respect to generating the states when the generation
time increases.

States All & fib(30) All & fib(30) & condition Difference %
10000 3821ms 3875ms 54ms 1.41

100000 6619ms 6856ms 237ms 3.58

Figure 4.6: Time differences with a simple condition and a more costly com-
putation.
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Finally, we can conclude that state generation and state exploration have
clearly different costs and that most of the time is devoted to state genera-
tion. Also, validation time for reduced-rule and label certificates is higher
than full certificates because full certificates contain all the data necessary for
the validation.
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Chapter 5

Analyzing Arithmetic Properties
of Java Programs

5.1 Introduction
In this chapter, we consider some simple integer arithmetic properties of
methods that accept integer parameters and return integer values (i.e. func-
tions from integers to integers). We use here two simple JML-like clauses: the
ensures clause in order to indicate the integer outcome of a function that is
expected by the code consumer, and the requires clause to indicate any pre-
condition on an input integer parameter of a function. We also use a JML-like
statement, the assert statement, to indicate conditions on the local variables
of the method. These integer arithmetic properties were initially analyzed in
[Alba-Castro et al., 2008].

Let us motivate our work by focusing on some simple Java programs bor-
rowed from the related literature, that we are interested to certify.

Example 2. Consider a simple Java program, introduced in [Wu et al., 2003],
with the requirement to produce an even number as a result. We express
this requirement as a safety policy in the specification language JML-style
by using the ensures clause and the JML operator \result. Namely, we
require that the Java outcome is not an odd number when the execution of the
method is completed.

/*@ requires true;

@ ensures AbsValue(\result) == #even ; @*/

static int even16() {

int x = 4; int y = x + 8;

return x+y;

}

A dedicated, standard verification tool for Java such as JavaFAN [Farzan
et al., 2004a] can help verify the program above since there is only one initial
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state and its space state is finite. JavaFAN [Farzan et al., 2004a] is a Java pro-
gram analysis framework that can symbolically execute multithreaded pro-
grams, detect safety violations by exploring an unbounded state space, and
verify finite state programs by explicit state model checking. Both Java source
language and JVM bytecode analyses are possible. JavaFAN’s implementa-
tion consists of a Maude program, specifying formally the semantics of Java
and JVM in rewriting logic. Unfortunately, no safety certificate would be de-
livered by JavaFAN that could be inexpensively tested at the consumer side.

The Bogor explicit-state model checking JML tool can also verify this
program because the state space is finite. However, Bogor cannot produce a
formal proof that would be used as a formal certificate (see Section 4.1.1 on
page 59 for a discussion on the Bogor tool).

The ESC/Java2 tool JML tool can be used to verify the above example
(see Section 4.1.1 for a discussion on ESC/Java2). Other similar static veri-
fiers based on theorem proving and targeted for the Java Card Language with
JML-like annotations such as JML4, JACK, Krakatoa, KeY, Jive and LOOP
can also be used to verify the above example (see Section 4.1.1). However,
ESC/Java2 can not generate certificates upon the success of the validation.
JML4, KeY, LOOP, and Jive proofs can be checked by relying on full theorem
provers themselves that were used to produce the proofs. JACK and Krakatoa
Coq-generated proofs can be used as certificates that can be validated by us-
ing the Coq type-checker, a small part of the theorem prover. However, Coq
proofs cannot be independently checked.

There are other verification tools based on theorem proving that do not
rely on the JML functional specification language. For instance, the KIV
tool (Karlsruhe Interactive Verifier). KIV is a tool for formal systems de-
velopment based on theorem proving that can be used with the functional
high-order algebraic specification language CASL (CoFI algebraic specifica-
tion language). KIV can be also used with dynamic abstract state machine
specifications [Balser et al., 2000]. KIV deduction is based on a sequent cal-
culus with proof tactics for first-order reasoning, and a proof strategy based-
on symbolic execution and induction for dynamic logic. KIV offers heuristics
for automated reasoning and includes a simplifier that is based on conditional
rewriting. The user can choose the heuristics and the rewriting rules. KIV
was used to verify sequential Java applications, including a full Java card ap-
plication, a decimal numbers program, and a linked list program [Stenzel,
2005]. KIV was also used to verify the Java implementation of the Mondex
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electronic purse [Grandy et al., 2008]. The KIV system can also be used to
verify the above example, but it cannot produce an independent checkable
proof.

The proposal in [Wu et al., 2003] is the first FPCC approach [Appel and
Felty, 2000; Appel, 2001; Appel and Mcallester, 2001; Felty, 2005](see Sec-
tion 1.1.1) that considered the verification and certification of integer arith-
metic properties of Java methods like the Example 2 above, but for the case
of a low-level language and by relying on type systems. This work uses a
simple integer type system based on the even/odd parity property.

The following example illustrates the mechanization of the Java semantics
of Chapter 3 by using the Java program of Example 2.

Example 3. Consider the Java program of Example 2 together with the fol-
lowing Java main function:

void main() { System.out.println(even16()); }

The Maude command search provides us with built–in breadth-first search,
i.e., it provides all the sequences of rules (recall that the application of equa-
tions is omitted throughout the whole search space) from an initial term (with-
out variables) to a final term (possibly with variables) [Clavel et al., 2007].
Note that the ground initial term describes a concrete initial Java state whereas
the final term (possibly with variables) describes a (possibly infinite) set of fi-
nal Java states. In the search command below, we ask for all possible values
returned by the main Java function of Example 2, and therefore, a variable
term denotes the goal state to be reached. Note that the code of the two Java
functions even16 and main is embedded within the search command, as well
as the initial call to main (see Section 3.3 and [Farzan et al., 2007] for details
on how to build an initial Java state).

search in PGM-SEMANTICS : java((preprocess(default class ’Safe1Even1

extends Object implements none {

(default static) int ’even16(noPara)throws(noType)

{int d(’x) = i(4) ; int d(’y) = ’x + i(8) ; 12 @ return ’x + ’y ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType)

{5 @ (’System . ’out . ’println < ’even16 < noExp > > ;)} })

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))

=>! X:Output .

Solution 1 (state 0)

X:Output --> pl(int(16))
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The search command returns that one unique possible Java execution trace is
possible, which leads to the Java value 16 as the outcome of the Java instruc-
tion “System.out.println(even16());”. The whole rewriting sequence lead-
ing to this Java value is also delivered by Maude.

Example 4. Consider a more elaborated Java program together with a sim-
ilar “even” safety policy required on both, the input and the output of the
function. The JML-like statement “assert AbsDomain(u) == EvenOdd;”
states that variable u should be “even” or “odd”.

/*@ requires AbsValue(j) == #even;

@ ensures AbsValue(\result) == #even ; @*/

static int evenOdd(int j) {

int u = 3; int v,z = 4;

/*@ assert AbsDomain(u) == EvenOdd ;

@ assert AbsDomain(v) == EvenOdd ;

@ assert AbsDomain(z) == EvenOdd ; @*/

z += 30;

v = u*8 + j;

return z - v;

}

In this case, an infinite number of initial states are considered, although the
search space is finite for each of them. Since Java verification tool JavaFAN
does not support program abstraction, all concurrent computations of the pro-
gram need to be explored. This can be done either by symbolic simulation
or by explicit-state model checking of the property (specified in linear tem-
poral logic). Thus, for the infinite-state program of Example 4 above, the
JavaFAN and Bogor tools can only be used as semi-decision procedures to
look for safety violations starting from specific initial states. Similarly, the
search command of Maude using the concrete Java semantics of Chapter 3
could not be used either.

There are some model checking tools that reduce the state search space by
using abstraction and do not use the JML specification language. For instance,
the Bandera tool generates finite-state models from concurrent Java source
code annotated with BSL (Bandera Specification Language) statements [Cor-
bett et al., 2000b; Corbett et al., 2000a]. Bandera uses abstract techniques
such as abstract interpretation, program slicing and specialization in order to
reduce the state space, to be model checked by SPIN and SMV [Corbett et al.,
2000a]. BSL statements behave as Javadoc comments and eases the model
checking process by avoiding property specification in LTL and CTL logics
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which may be difficult to use for non-experimented users. BSL has an asser-
tion sublanguage that allows developers to define constraints on the program
context in familiar assertion-style notation. BSL has also a temporal property
sublanguage which provides support for defining predicates on Java control
points (method invocation and return, and labels of break an continue state-
ments) using selected assertions written in the assertion sublanguage. BSL
examples consider proper shutdown pipeline computation properties [Corbett
et al., 2000b], bounded buffer non-temporal properties (positive bound, add
to end, index range invariant) and temporal properties (full buffers eventually
get emptied and empty buffers must be added before being taken) [Corbett
et al., 2000b], and readers and writers correctness properties [Corbett et al.,
2000a].

Bandera uses abstract interpretation to reduce the size of the variable do-
mains. Besides, Bandera has predefined abstractions for some concrete types;
for instance, the abstractions for integers that are organized by families, in-
clude range, set, modulo, and point families [Dwyer et al., 2001]. Then,
Bandera can be used to verify the Example 4 by model checking the corre-
sponding finite-state search space by using the modulo-k family for integer
variables, with k = 2. On the other hand, Bandera is just a validation tool;
then, after the successful verification, it cannot deliver any proof that would
be used as a formal certificate.

The JML-based theorem proving tools ESC/Java2, JML4, Jack, Krakatoa,
KeY, LOOP and Jive can indeed be used to verify the above example, as
well as the KIV tool, but they cannot produce independent checkable proofs.
These tools generate proofs that need the full prover in order to be validated.
However, Jack and Krakatoa Coq proofs can be validated by using the Coq
type-checker, without the need for the full theorem prover.

Appel et.al. type system [Wu et al., 2003](see 1.1.1) can also be used to
verify Example 4.

Our last example is more involved, containing loops and conditionals, as
follows.

Example 5. Consider a more realistic Java program, requiring a more in-
volved condition on the input to ensure the fulfilment of a specific safety
property [Alba-Castro et al., 2008]. The parity of the output is again en-
sured to be “even” under a more complex “modulo 4” safety policy on the
input parameter: the requires clause states that the input parameter should
be equal to 0 or 3 “modulo 4”.
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/*@ requires AbsValue(n) == #0 || AbsValue(n) == #3;

@ ensures AbsValue(\result) == #even ; @*/

static int summation(int n) {

int sum = 0 ;

//@ assert AbsDomain(sum) == EvenOdd ;

int i = 0;

//@ assert AbsDomain(i) == Mod4;

while (i<=n) {

sum += i;

i++;

}

return sum;

}

In order to deal with the condition of the while, we have to specify for
the counter variable i: the JML-like clause “assert AbsDomain(i) ==
Mod4;” states that the value of variable i “modulo 4” should range from 0
to 3.

Although the Java semantics of [Farzan et al., 2007] considers non-deter-
ministic Java programs, in this chapter we consider deterministic Java pro-
grams, i.e. programs with no threads, and no exceptions.

5.2 The abstract RL semantics of Java for the
arithmetic domain

In this section, we develop an abstract version of the rewriting logic seman-
tics of Java described by the rewrite theory RJava# = (ΣJava# , EJava# ,RJava#),
EJava# = ∆Java# ] BJava# and its corresponding→Java# rewriting relation. Recall
that the rewrite theory RJava of Chapter 3 is defined on a generic sort Value.
Our approach consists in extending RJava (taking advantage of its modular-
ity) by creating abstract domains as subsorts of the sort Value and adding
the appropriate versions of the Java constructions and operators for the corre-
sponding abstract domains.

In our approach, the code consumer can assign a different abstract domain
to each variable in the Java source code in order to obtain a finite-state model
of the program. This is an important point, since a potential user of the tool
only has to select some source variables to be abstracted together with the se-
lected abstraction. A graphical interface equipped with user–friendly advisory
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Figure 5.1: Lattice of integers for the mod2 and mod4 abstractions.

facilities can help her in this process. Furthermore, the user could simply an-
notate the source code with JML-like assertions encoding the required safety
policy so that the critical variables (together with their appropriate abstract
domains) might be automatically inferred, although in this case the abstrac-
tion might be less accurate.

For the process of assigning an abstract domain to each source variable,
we have to consider both the theoretical and practical aspects of the prob-
lem. On the theoretical side, we define an abstract function for each Java
variable name x, e.g., αx : ℘(Int) → ℘(Int), and homomorphically extend
those abstract functions to an abstract function α : ℘(State) → ℘(State).
Indeed, for each variable x, function α abstracts the values stored in the
Java memory for x using αx, which can be the identity function if no ab-
stract domain is selected. As mentioned before, these assignments of an ab-
stract domain to a source variable can be inferred from the JML-like annota-
tions, e.g. “AbsValue(\result) == #even” or “assert AbsDomain(u)
== EvenOdd”, in the Java source code. The following example shows some
abstract domains which are relevant to this work [Alba-Castro et al., 2008].

Example 6. Let us consider an abstract function that classifies Java integers
into even and odd classes, i.e., mod2 : ℘(int(Int)) → ℘(int(Int)) where
int(Int) denotes the Maude terms of sort Value that correspond to the Java
integers. This abstraction is relevant for Examples 2, 4, and 5. We can choose
the following abstract symbols EvenOdd = {bot, #even, #odd, top} to denote
the following subsets top = int(Int), bot = ∅, #even = {int(n) | n mod 2 =

0}, and #odd = {int(n) | n mod 2 = 1}. And we consider the abstraction
function mod2 : ℘(int(Int))→ EvenOdd. We can even refine such an abstract
domain by including the abstraction for Java integers modulo 4, i.e., mod4 :
℘(int(Int))→ ℘(int(Int)). This abstraction is suitable for Example 5. Let us
introduce the following abstract symbols Mod4 = {bot, #0, #1, #2, #3, top},
where #k = {int(n) | n mod 4 = k} for k ∈ {0, 1, 2, 3}, and the abstraction
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--- Define abstract domains

sorts EvenOdd Mod4 . subsort EvenOdd Mod4 < Value .

ops even odd : -> EvenOdd .

op #_: Int -> Mod4 .

--- Define abstraction functions

op mod2 : Value -> EvenOdd .

eq mod2(int(I)) = if (I rem 2 == 0) then even else odd fi .

op mod4 : Value -> Mod4 .

eq mod4(int(I)) = #(I rem 4) .

--- Equations for abstracting concrete values

op inAbsDomain : Qid Value -> Value .

eq inAbsDomain(’x,int(I)) = mod2(int(I)) . --- Examples 1,2

eq inAbsDomain(’y,int(I)) = mod2(int(I)) . --- Examples 1,2

eq inAbsDomain(’n,int(I)) = mod4(int(I)) . --- Example 3

eq inAbsDomain(Var,Value) = Value [owise] .

Figure 5.2: Abstract domain and association of abstract domain to variable
name.
--- BuildEnv modified equation

eq t(k(buildEnv(((T d(Var)), Pl), (Value, Vl)) -> K) env(Env) TC) store(ST) nextLoc(I’)

= t(k(buildEnv(Pl, Vl) -> K) env([Var, l(I’ + 1)] Env) TC)

store([l(I’ + 1), inAbsDomain(Var,Value)] ST) nextLoc(I’ + 1) .

--- Assignment modified equations

op = : Exp Qid -> Continuation . --- new definition

op = : Location Qid -> Continuation . --- new definition

eq k((Var = E) -> K) = k(getLoc(Var) -> (=(E,Var) -> K)) .

eq k(Loc -> (=(E,Var) -> K)) = k(E -> (=(Loc,Var) -> K)) .

eq k(Val -> (=(Loc,Var) -> K)) = k([inAbsDomain(Var,Val) -> Loc] -> (Val -> K)) .

Figure 5.3: Modified continuation-based equations for building environments
and Java assignment.

function mod4 : ℘(int(Int)) → Mod4. The lattice induced by the relation ⊆
on sets of Java integer values is shown in Figure 5.1.

On the practical side, we have to supplement the original Java semantics
with a new Maude function, called inAbsDomain, that records the abstract
domain associated to each variable name and that will be used in two exe-
cution points: when the variable is initially created in the Java memory and
everytime its value is updated in the memory. For instance, Figure 5.2 shows
the code of the inAbsDomain function for variables x,y of Example 2, also
for the variable n of Example 5, according to the JML-like annotations, to-
gether with the Maude code for the abstract functions mod2 and mod4. We
also have to add a call to the inAbsDomain function in the buildEnv contin-
uation symbol of Figure 3.6 and the Java assignment operator of Figure 3.8;
all these modifications are shown in Figure 5.3. Obviously, we have to pro-
vide abstract versions of all the Java operators in the Java semantics dealing
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--- Add abstract mod2 values

eq k((even, even) -> (+ -> K)) = k(even -> K) .

eq k((even, odd) -> (+ -> K)) = k(odd -> K) .

eq k((odd, even) -> (+ -> K)) = k(odd -> K) .

eq k((odd, odd) -> (+ -> K)) = k(even -> K) .

--- Add mod2 values with standard integer values

var Val EvenOdd .

eq k((int(I), Val) -> (+ -> K)) = k((mod2(int(I)), Val) -> (+ -> K)) .

eq k((Val, int(I)) -> (+ -> K)) = k((Val, mod2(int(I))) -> (+ -> K)) .

--- Add mod2 with Mod4 values

eq k((# I, Val) -> (+ -> K)) = k((mod2(int(I)), Val) -> (+ -> K)) .

eq k((Val, # I) -> (+ -> K)) = k((Val, mod2(int(I))) -> (+ -> K)) .

+ even odd

even even odd

odd odd even

Figure 5.4: Abstract definition and equations for the abstract Java addition
operator with EvenOdd values.

with such kind of values, e.g., we must provide an approximation of integer
addition, less-or-equal boolean operator, etc. dealing with the new abstract
domains for integers. For instance, given the abstract function mod2, the ad-
dition operation on integers is specified in Figure 5.4.

In abstract interpretation, it is common to compress several computation
steps into one abstract computation step, in order to reflect the fact that several
distinct behaviors are mimicked by an abstract state. Consider for instance the
Java less-or-equal operator <= of Figure 3.5 and the abstract function mod2.
For the case when we compare two even expressions with <=, an (inaccu-
rate) approximation of the result is the union of true and false, which is
denoted by the symbol top. A naı̈ve implementation of this idea would con-
sist in including the following equation into the abstract Java semantics RJava#

(following the definition of operator <= in Figure 3.5):

eq k((even, even) -> (<= -> K)) = k(top -> K) .

This instrumentalization of the Java semantics for dealing with abstraction
implicitly means too many modifications of the semantics, since completely
different Java states could be generated that have to be packed together into
a unique abstract Java state. For instance, consider a Java expression “if eb
then et else ef” such that the expression eb returns top so that we have
to represent within a single Java state both, the case when we reach a Java
state continued by executing instruction et and also the case when we reach
a Java state continued with the instruction ef. This would amount to a deep
modification of the whole Java semantics, in order to cope with sets of Java
states. Therefore, we adopt a different approach. When several→Java rewrite
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--- EvenOdd

vars Eo1 Eo2 : EvenOdd .

rl k((Eo1, Eo2) -> (<= -> K)) => k(bool(true) -> K) .

rl k((Eo1, Eo2) -> (<= -> K)) => k(bool(false) -> K) .

--- Mod4

rl k((# I, # I’) -> (<= -> K)) => k(bool(true) -> K) .

rl k((# I, # I’) -> (<= -> K)) => k(bool(false) -> K) .

Figure 5.5: Continuation-based equations for Java less-or-equal abstract op-
erator on EvenOdd and Mod4 abstract integers.

steps are mimicked by an abstract Java state and those rewrite steps apply
different rules or equations, we use concurrency at the Maude level. That is,
we add rules to RJava# to reflect the different possible evolutions of the system.
Following this approach, the Java less-or-equal operator is defined as shown
in Figure 5.5, describing that the comparison operator <= can indifferently
return true or false [Alba-Castro et al., 2008].

The specifications given in Chapter 3 for the variable content retrieval
(Figure 3.7), the if-the-else statement (Figure 3.9), the while statement (Figure
3.10), and the break statement (Figure 3.11) do not need any modification.
The specification of instance method invocation shown above in Figure 3.12
can also be used here with no modification, given the specification for abstract
environment building provided in Figure 5.3. The local environment of the
method is built by applying the generic abstraction function inAbsDomain
specified in Figure 5.2 above to all method parameters.

5.2.1 Abstract rewriting formalization
Now, we are ready to formalize the abstract rewriting relation →Java# , which
intuitively develops the idea of applying only one rule or equation from the
concrete Java semantics to an abstract Java state while exploring the different
alternatives in a non-deterministic way. By abusing notation, we denote the
abstraction of a rule α({l})→ α({r}) by α({l} → {r}).

Definition 2 (Abstract rewriting). Let α : ℘(State)→ ℘(State) be an abstrac-
tion. We define the approximated version of rewriting →Java#⊆ ℘(State) ×
℘(State) by:

SSt1 →Java# SSt2 using α({l} → {r}) ∈ (RJava# ∪ ∆Java#)
iff ∃u ∈ α(SSt1),∃v ∈ SSt2 s.t. u→Java v, using l→ r ∈ RJava ∪ ∆Java.
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We denote by→∗Java# the extension of→Java# to multiple rewrite steps.
In order to guarantee that the abstract semantics correctly (over-) approx-

imates the concrete semantics, we have to demonstrate that:

1. The abstraction is sound regarding the relation between the concrete and
abstract domains of program states, based on the abstraction function
α. This can be done by proving that this abstraction function α and a
corresponding concretization function γ, i.e. the pair 〈α, γ〉 is a Galois
insertion [Cousot and Cousot, 1979; Cousot and Cousot, 2002; Cousot,
2004]. This result is formalized in the Theorem 1 below.

2. All concrete program traces have corresponding abstract program traces,
such that no concrete program trace is disregarded. The transformation
of a set of equations (which are confluent and terminating modulo ax-
ioms) into rules preserves the execution traces. The abstraction of the
value component of states, i.e. the replacement of the concrete value by
the abstract one, does not eliminate execution traces either. This result
is formalized in the Theorem 2 on page 85.

Theorem 1. Given an abstraction function α : ℘(State) → ℘(State) (or
α : ℘(State) → State#) and the corresponding concretization function γ :
℘(State) → ℘(State) (or γ : State# → ℘(State)) it holds that, for all S ∈
℘(State) and S # ∈ State#, α(S ) v S # if and only if S ⊆ γ(S #).

Proof. In order to prove that the pair of functions 〈α, γ〉 is a Galois insertion,
it is enough to prove that the pair 〈α, γ〉 satisfy the following conditions: i)
monotonicity, i.e. for all S , S ′ ∈ ℘(Σ), given S ⊆ S ′ we have that α(S ) v
α(S ′), and for all S #, S #

1 ∈ Σ#, S # v S #
1 implies that γ(S #) ⊆ γ(S #

1), ii) the
deflationary property, S ⊆ γ(α(S )), and iii) the non-information loss property,
α(γ(S #)) = S # [Cousot and Cousot, 1979; Cousot and Cousot, 2002; Cousot,
2004].

Next, we prove that the pairs 〈α, γ〉 satisfy the monotonicity, deflationary
and non-information loss properties at the variable level.

The concretization functions corresponding to the two abstraction func-
tions mod2 and mod4 are the functions mod2] and mod4], in Figures 5.6 and
5.7, respectively.

Recall that the lattice in Figure 5.1 is a complete lattice of parity properties
〈Int#,v, bot, top,t,u〉 with Int# = {bot, #even, #0, #2, #odd, #1, #3, top},
and that the set of integers is also a complete lattice regarding set inclusion,
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mod2](bot) = ∅

mod2](top) = Int
mod2](#even) = {int(i) ∈ Int | i mod 2 = 0}
mod2](#odd) = {int(i) ∈ Int | i mod 2 , 0}

Figure 5.6: Concretization function mod2].

mod4](bot) = ∅

mod4](top) = Int
mod4](#0) = {int(i) ∈ Int | i mod 4 = 0}
mod4](#1) = {int(i) ∈ Int | i mod 4 = 1}
mod4](#2) = {int(i) ∈ Int | i mod 4 = 2}
mod4](#3) = {int(i) ∈ Int | i mod 4 = 3}

Figure 5.7: Concretization function mod4].

i.e. 〈Int,⊆,⊥,>,∪,∩〉. We abuse of notation by using the same term to denote
both an abstract value in Int# and the set of integer numbers that satisfy the
corresponding property, for instance #even denote the property and the set
{int(i) ∈ Int | i mod 2 = 0}.

i) monotonicity of γ, for all S #, S #
1 ∈ Σ#, S # v S #

1 implies γ(S #) ⊆ γ(S #
1):

given the specification of this function and the two lattices, it is easy to see that
whenever it holds Int#1 v Int#2 with Int#1, Int#2 ∈ Int#, it also holds that γ(Int#1) ⊆
γ(Int#2); therefore, γ is monotonic; monotonicity of α, for all S , S ′ ∈ ℘(Σ),
given S ⊆ S ′ we have that α(S ) v α(S ′):

1. If S 1 = ∅ we have that S 1 ⊆ S 2 for all S 2 ∈ ℘(Int), then we have that
α(S 1) v α(S 2) holds, regarding both abstraction functions, mod2 and
mod4;

2. if S 2 = Int we have that S 1 ⊆ S 2 for all S 1 ∈ ℘(Int), then we have
that α(S 1) v α(S 2) also holds in this case, regarding both abstraction
functions.

3. Given S 1, S 2 ∈ ℘(Int) such that S 1 , ∅, S 2 , Int, and S 1 ⊆ S 2, we have
several cases depending on the inclusion relation of these sets S 1 and S 2

with the proper subsets of Int different from ∅, i.e. #even, #odd, #0, #1, #2
and #3;
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(a) If ∅ ⊂ S 1 ⊆ #even, and ∅ ⊂ S 2 ⊆ #even, its easy to see
that regarding the mod2 abstraction function, α(S 1) = #even and
α(S 2) = #even, therefore α(S 1) v α(S 2) also holds in this case;

(b) The precedent case 3a is very similar to the case with ∅ ⊂ S 1 ⊆

#odd, and ∅ ⊂ S 2 ⊆ #odd;

(c) The cases 3a and 3b are very similar to some cases regarding mod4
abstraction function: ∅ ⊂ S 1 ⊆ #0, and ∅ ⊂ S 2 ⊆ #0, ∅ ⊂ S 1 ⊆ #1,
and ∅ ⊂ S 2 ⊆ #1, ∅ ⊂ S 1 ⊆ #2, and ∅ ⊂ S 2 ⊆ #2, and ∅ ⊂ S 1 ⊆ #3,
and ∅ ⊂ S 2 ⊆ #3.

(d) If ∅ ⊂ S 1 ⊆ #0, and ∅ ⊂ S 2 ⊆ #even, its easy to see that α(S 1) =

#0 and α(S 2) = #even, therefore given the lattice of Figure 5.1,
the inclusion α(S 1) v α(S 2) also holds in this case, regarding
abstraction functions mod2 and mod4 over S 2 and S 1, respectively.

(e) The case 3d is similar to the cases where ∅ ⊂ S 1 ⊆ #2, and ∅ ⊂
S 2 ⊆ #even, ∅ ⊂ S 1 ⊆ #1, and ∅ ⊂ S 2 ⊆ #odd, and ∅ ⊂ S 1 ⊆ #3,
and ∅ ⊂ S 2 ⊆ #odd.

(f) If ∅ ⊂ S 1 ⊆ #even, and ∅ ⊂ S 2 ⊆ #0 and S 1 ⊆ S 2, means that
the integer numbers that are elements of the set S 1 are such that
all them are even but also that all them are multiples of 4 (i.e.
int(i) ∈ Int and i mod 4 = 0), thus S 1 ⊆ #0 and this case is
reduced to one sub-case of case 3c above;

(g) The case 3f is similar to cases ∅ ⊂ S 1 ⊆ #even, and ∅ ⊂ S 2 ⊆ #2,
∅ ⊂ S 1 ⊆ #odd, and ∅ ⊂ S 2 ⊆ #1 and ∅ ⊂ S 1 ⊆ #odd, and
∅ ⊂ S 2 ⊆ #3.

Therefore, we have that α is also monotonic.
ii) the deflationary property S ⊆ γ(α(S )): we consider the cases corre-

sponding to the inclusion relation ⊆ between S and the sets of integers ∅,
#even, #0, #2, #odd, #1, #3, and Int.

1. The mod2 abstraction:

(a) If S ⊆ ∅, S ⊆ #even, S ⊆ #odd and S ⊆ Int, then α(S ) = bot,
#even, #odd and top, respectively.

(b) Given the abstraction function mod2] (Figure 5.6), therefore we
also have that γ(α(S )) = ∅, #even, #odd, and Int, respectively.
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(c) Given 1a and 1b, we have that γ(α(S )) = ∅, if S ⊆ ∅, γ(α(S )) =

#even, if S ⊆ #even, γ(α(S )) = #odd, if S ⊆ #odd, and γ(α(S )) =

Int, if S ⊆ Int. Therefore, we have that γ(α(S )) = S ′, if S ⊆ S ′

hence S ⊆ γ(α(S )).

2. The mod4 abstraction:

(a) If S ⊆ ∅, S ⊆ #0, S ⊆ #2 S ⊆ #1, S ⊆ #3, and S ⊆ Int then we
have that α(S ) = bot, #0, #2, #1, #3, and top, respectively.

(b) Given the abstraction function mod4] (Figure 5.7) we also have
that γ(α(S )) = ∅, #0, #2, #1, #3, and Int, respectively;

(c) Given 2a and 2b, and similarly to case 1c we have that γ(α(S )) =

S ′ if S ⊆ S ′hence S ⊆ γ(α(S )).

iii) non-information loss, α(γ(S #)) = S #:

1. The mod2 and mod2# functions:

If S # = bot, #even, #odd and top ∈ Int# then γ(S #) = ∅, #even, #odd
and Int ∈ ℘(Int), respectively.

Therefore, we have that α(γ(S #)) = bot, #even, #odd and top ∈ Int#,
respectively.

We conclude α(γ(S #)) = S #.

2. The mod4 and mod4# functions:

If S # = bot, #0, #2, #1, #3 and top ∈ Int# then γ(S #) = ∅, #0, #2, #1, #3
and Int ∈ ℘(Int), respectively.

Therefore, we have that α(γ(S #)) = bot, #0, #2, #1, #3 and top ∈ Int#,
respectively.

The result α(γ(S #)) = S # follows, regarding mod4 and mod4# functions.

�

This result for Int (and Int#) can be homomorphically extended to State
(and State#) so that, the α : State → State# and its corresponding γ :
State# → State functions, satisfy the monotonic, deflationary and non-infor-
mation loss properties.
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Alternatively, this can also be done by proving that the given abstraction
function α is an upper closure operator with monotonicity, idempotency, and
extensitivity [Cousot, 2004; Cousot and Cousot, 1979].

Theorem 2 (Correctness). Let α : ℘(State) → ℘(State) be an abstraction.
Let S t1, S t2 ∈ State. If S t1 →

∗
Java S t2, then there exists S S t3 ⊆ ℘(State) s.t.

α({S t1})→∗Java# S S t3 and S t2 ∈ S S t3.

Proof. The proof is done by induction on the length n of the concrete program
trace or rewriting sequence denoted by→∗Java.

1. (n = 1). There is only one rewriting step 〈PJava, S t1〉 →Java 〈S t2〉. Given
S t1 ∈ α({S t1}) and S t2 ∈ α({S t2}), if S S t1 = α({S t1}) and S S t2 =

α({S t2}), then by Definition 2 (on page 80) it holds that 〈PJava, α({S t1)}〉
→Java# 〈α({S t2)}〉. Thus, the result holds for n = 1.

2. (n > 1). The program trace of length n, 〈PJava, S t1〉 →
∗
Java 〈S t2〉, can be

split into two sub–traces of length n − 1 and 1 respectively:

〈PJava, S t1〉 →
∗
Java 〈PJavaint , S t2′〉︸                                 ︷︷                                 ︸ →Java 〈S t2〉

length n − 1

By the induction hypothesis, the extended sub–trace of length n− 1 has
a corresponding abstract sub–trace:

〈PJava, α(S t1)〉 →∗Java# 〈PJavaint , α(S t2′)〉.

Since S t1 ∈ α({S t1}) and S t2′ ∈ α({S t2′}), by Definition 2, the rewriting
step 〈PJavaint , S t2′〉 →Java 〈S t2〉, has a corresponding abstract rewriting
step: 〈PJavaint , α(S t2′)〉 →Java# α(〈S t2〉). Then, the conclusion
also holds for n > 1. �

The breadth-first search for the abstract finite state system (finite due to
the use of finite abstract domains) gives us a useful tool for symbolic execu-
tion, while keeping simple the modifications of the Java semantics in Maude.
Actually, verification in our framework simply boils down to the exploration
of all the rewriting sequences.

Example 7. Consider the Java functions even16 and main of Example 3, and
the abstract Java semantics shown above with the inAbsDomain function of
Figure 5.2. Note that, for the search command, the only change we need in
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this case is the replacement of PGM-SEMANTICSwith PGM-SEMANTICS-ABSTR,
since the considered Java function even16 of Example 2 has no input param-
eters. Now we invoke function main as follows.

search in PGM-SEMANTICS-ABSTR : java((preprocess(

default class ’Safe1Even1 extends Object implements none {

(default static) int ’even16(noPara)throws(noType) {

((int d(’x) = i(4) ;)

(int d(’y) = ’x + i(8) ;))

12 @ return ’x + ’y ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType) {

5 @ (’System . ’out . ’println < ’even16 < noExp > > ;)}})

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))

=>! X:Output .

The outcome of this search command is the following result, meaning that
exactly one abstract Java execution trace is proven, which returns the ab-
stract value even as a result of the Java instruction “System.out.println(
even16());”:

Solution 1 (state 0)

X:Output --> pl(even)

and therefore every real execution of the Java program of Figure 2 also returns
an even value, according to Theorem 2.

However, the abstraction defined in Example 6 is not accurate enough for
the Java program of Example 5, as shown in the following example.

Example 8. Consider the Java code of Example 5 together with the following
function main:

void main() { System.out.println(summation(0)); }

We provide the following assignment of abstract domains for the variables in
the Java program:

op inAbsDomain : Qid Value -> Value .

eq inAbsDomain(’n,int(I)) = mod4(int(I)) .

eq inAbsDomain(’i,int(I)) = mod4(int(I)) .

eq inAbsDomain(’sum,int(I)) = mod2(int(I)) .

eq inAbsDomain(Var,V) = V [owise] .

When we search for all the results of the function main
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search in PGM-SEMANTICS-ABSTR : java((preprocess(

default class ’Safe1Even1 extends Object implements none {

(default static) int ’summation(int d(’n))throws(noType) {

(((int d(’sum) ;)

(int d(’i) = i(0) ;))

17 @ (while ’i <= ’n 17 @ {

(15 @ (’sum += ’i ;))

16 @ (’i ++ ;)}))

18 @ return ’sum ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType) {

7 @ (’System . ’out . ’println < ’summation < i(0) > > ;)}})

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))

=>! X:Output .

Maude delivers the following two results

Solution 1 (state 2) Solution 2 (state 5)

X:Output --> pl(even) X:Output --> pl(odd)

which are useless since both, an even and an odd output values are equally
possible. The problem is that the boolean condition (i <= n) returns both
true and false (in a non-deterministic way) under the mod2 and mod4 ab-
straction operators in too many situations.

5.2.2 Extending the approach to relational domains
In order to improve accuracy, we define a new, more precise abstract do-
main leq#

x,y that is parametric w.r.t. two Java variable names x, y (which have
different abstraction domains). For the previous example, this can be used
to abstract variable i w.r.t. n. On the theoretical level, there are two ab-
stract domains αx, αy : ℘(Int) → ℘(Int) that are used for the values stored
in the Java memory for variables x, y, respectively. The extension leq#

x,y :
℘(State) → ℘(State) takes the abstract domains αx, αy and captures also
whether x ≤ y or x > y. On the practical level, we use the abstract symbols
leq# and gt# defined in Maude as “leq# : Abst Qid -> AbstLeqN” and
“gt# : Abst Qid -> AbstLeqN” where the first argument denotes the ab-
stract domain for variable x (i.e., αx) and the second argument is just y (the
name of the second variable). For instance, for the previous example we will
have an abstract expression that approximates variable i as leq#(#0,’n)
which denotes that the current value of variable i modulo 4 is 0 and that
variable i is less than or equal to variable n, whatever value n has been as-
signed during the execution; the corresponding JML-like annotation is “//@
assert AbsDomain(i) == (Mod4,(<=,n));”. Note that we cannot use
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<= any value o f Var
leq#(Val, Var) true

gt#(Val, Var) false

<= leq#(Val, Var) gt#(Val, Var)
any value o f Var true, false true

Figure 5.8: Java less-or-equal operator on integers.

--- If two integer variables are compared using a relational operator,

--- first, keep the variables in the continuation and evaluate them

ceq k((Var,Var’) -> ( Con -> K))

= k((Var,Var’) -> (RelOp(Var,Var’) -> ( Con -> K))) if RelOp(Con) .

--- if the value of one is related to the value of the other by "leq#"

eq k((leq#(V, Var’), V’) -> (RelOp(Var,Var’) -> ( <= -> K))) = k(bool(true) -> K) .

eq k((gt#(V, Var’), V’) -> (RelOp(Var,Var’) -> ( <= -> K))) = k(bool(false) -> K) .

eq k((V, gt#(V’, Var)) -> (leqN(Var,Var’) -> ( <= -> K))) = k(bool(true) -> K) .

rl k((V, leq#(V’, Var)) -> (RelOp(Var,Var’) -> ( <= -> K))) => k(bool(true) -> K) .

rl k((V, leq#(V’, Var)) -> (RelOp(Var,Var’) -> ( <= -> K))) => k(bool(false) -> K) .

Figure 5.9: Continuation-based equations for Java less-or-equal operator on
integers.

the same abstract domain for the second variable, since the value of this vari-
able can change dynamically. To see this consider, for instance, a variant of
Example 5 where the loop therein contains the assignment n− = 1, and thus
variable n changes at each iteration.

The adequate versions of the less-or-equal operator for this new abstract
domain is shown in Figures 5.8 and 5.9. Note that here, we also introduced
non-determinism by using rules when the comparison operator <= can return
true or false indifferently. Note also that, for the less-or-equal operator
(and for all relational operators), we have to handle as a special case the re-
lation between two integer variables: we have to consider the possibility that
the involved variables would be (abstractly) related by the “leq#” or “gt#”
abstractions.

The appropriate specification of the Java abstract increment (++) integer
operator is shown in Figure 5.10. The corresponding rewriting logic specifica-
tions of the Java post-increment (Var++) and pre-increment (++Var) operators
are shown in Figures 5.11, 5.12, and 5.13.

Note that the post-increment and pre-increment integer operators may
change the relation leq# of leq#(Val,Var) values, depending on the rela-
tion between the value Val and the value of variable Var “modulo 2” or “mod-
ulo 4”. For instance, if the value Val is #I, the value of Var is int(J), and
I == J modulo 4 (see Figure 5.10), then the abstract value leq#(Val,Var)
may correspond to the concrete value int(J), and hence the incremented
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++ result condition
leq#(#(I), Var) leq#(mod4(I + 1), Var) true
leq#(#(I), Var) gt#(mod4(I + 1), Var) if mod4(Var) = #(I)
gt#(#(I), Var) gt#(mod4(I + 1), Var) true

Figure 5.10: Specification of Java post- and pre-increment operator on inte-
gers.
--- Keep ++’ operator, location and the old value in the continuation,

--- and use the ++ operator to increment the leq# value

eq t(k(leq#(Val,Var) -> ++’(L) -> K)

= t(k(leq#(Val,Var) -> ++ -> (++’(nullv,L,leq#(Val,Var)) -> K)) .

--- The value of Var in memory has to be obtained before incrementing.

--- We have two cases:

--- 1) if the value of Var is not equal to Val,

--- keep the leq# contructor with a null value part and its variable

--- part in the continuation, and increment the value part

ceq t(k(leq#(Val,Var) -> ++ -> K) env(E [Var,L2]) Tc) store(St [L2,Val’,N’])

= t(k(Val -> ++ -> (leq#(nullv,Var)-> K)) env(E [Var,L2]) Tc)

store(St [L2,Val’,N’]) if (Val =/= Val’) .

Figure 5.11: Continuation-based equations for Java post- and pre-increment
operator for leq# values: Case 1) if the value of Var is not equal to Val.

value might now not be less or equal than the value of variable Var (i.e. it can
become greater than the value of variable Var).

In other words, the post-increment and pre-increment integer operators
have non-deterministic results when applied to leq#(Val,Var) values, thus
they have to be specified by using rules instead of equations, as shown in
Figures 5.10, 5.11 and 5.12. The post-increment operator is defined by using
the pre-increment operator. The relation gt# of the gt#(Val,Var) values
is invariant regarding the post-increment and pre-increment integer operators,
as shown in Figure 5.13.

Example 9. Let us reconsider now Example 8. The code of function
inAbsDomain for Example 5 is as follows, denoting that variables i and n
have domains mod4, variable sum has domain mod2 and that the relation i ≤ n
is also represented in the abstract domain:
op inAbsDomain : Qid Value -> Value .

eq inAbsDomain(’n,int(I)) = mod4(int(I)) .

eq inAbsDomain(’i,int(I)) = leq#(mod4(int(I),’n) .

eq inAbsDomain(’sum,int(I)) = mod2(int(I)) .

eq inAbsDomain(Var,V) = V [owise] .

When we search for solutions to the Java function main using the following
command
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--- The second case:

--- 2) if the value of Var is equal to Val, either

--- 2.1) the relation "leq#" may not change:

crl t(k(leq#(Val,Var) -> ++ -> K) env(E [Var,L2]) Tc)

store(St [L2,Val’,N’])

=> t(k(Val -> ++ -> (leq#(nullv,Var)-> K)) env(E [Var,L2]) Tc)

store(St [L2,Val’,N’]) if (Val == Val’) .

--- or 2.2) the relation "leq#" may change:

crl t(k(leq#(Val,Var) -> ++ -> K) env(E [Var,L2]) Tc) store(St [L2,Val’,N’])

=> t(k(Val -> ++ -> (gt#(nullv,Var)-> K)) env(E [Var,L2]) Tc)

store(St [L2,Val’,N’]) if (Val == Val’) .

--- fill the null value part of the leq# and gt# contructors

eq k(Val -> leq#(nullv,Var) -> K) = k(leq#(Val,Var) -> K) .

eq k(Val -> gt#(nullv,Var) -> K) = k(gt#(Val,Var) -> K) .

--- store the new value and yield the old value

eq k(Val -> ++’(nullv,L,Val’) -> K) = k([Val -> L] -> (Val’ -> K)) .

Figure 5.12: Continuation-based equations for Java post- and pre-increment
operator for leq# values: Case 2) if the value of Var is equal to Val.

--- Keep ++ operator, gt# constructor with a null value and the variable Var

--- and use the ++ operator to increment the value Val

eq k(gt#(Val,Var) -> ++(L) -> K) = k(Val -> ++ -> (++(gt#(nullv,Var),L) -> K)) .

--- put the incremented value part within the constructor "gt#"

eq k(Val -> ++(gt#(nullv,Var),L) -> K) = k([gt#(Val,Var) -> L] -> (gt#(Val,Var) -> K)) .

--- Keep the old value, gt# constructor with a null value and the variable Var

--- and increment the value part

eq k(gt#(Val,Var) -> ++’(L) -> K) =

k(Val -> ++ -> (++’(gt#(nullv,Var),L,gt#(Val,Var)) -> K)) .

--- put the incremented value part within the constructor gt#

eq k(Val -> ++’(gt#(nullv,Var),L,Val’) -> K) = k([gt#(Val,Var) -> L] -> (Val’ -> K)) .

Figure 5.13: Continuation-based equations for Java pre- and post-increment
operator for gt# values.

search in PGM-SEMANTICS-ABSTR : java((preprocess

(default class ’Safe1Even1 extends Object implements none {

(default static) int ’summation(int d(’n))throws(noType) {

(((int d(’sum) ;)

(int d(’i) = i(0) ;))

17 @ (while ’i <= ’n 17 @ {

(15 @ (’sum += ’i ;))

16 @ (’i ++ ;)}))

18 @ return ’sum ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType) {

7 @ (’System . ’out . ’println < ’summation < i(0) > > ;)}})

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))

=>! X:Output .

we get the following unique output, meaning that exactly one abstract Java
execution trace is proven, which returns the abstract value even as a result of
the Java instruction “System.out.println(summation(0))”:
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Solution 1 (state 2)

X:Output --> pl(even)

This certifies that every possible Java execution starting with an integer n
such that n mod 4 = 0 does always return an even value. Indeed, we can
verify that the initial calls “System.out.println(summation(0))” and
“System.out.println(summation(3))” do return the abstract value even
whereas “System.out.println(summation(1))” and “System.out.
println(summation(2))” return the abstract value odd.

Regarding Example 5, the user of the Bandera tool can choose modulo-
2 abstraction for the variable sum and modulo-4 for the variables i and n.
The assignment sum+ = i does not cause an abstract type conflict because
each modulo-4 value has one corresponding modulo-2 value. However, the
problem here is the relational operation i <= n, i.e. the comparison between
modulo-4 and modulo-2 values, that yields the boolean values {true,false }, the
only correct abstraction in this case. This problem is similar to the problem
of our non-extended abstract semantics, as shown in Example 8 on page 86.
Alternatively, the Bandera’s user may choose to abstract the variables i and
n to their concrete type in order to maximize the precision of the abstraction
but in this case the state space becomes infinite. This means that the Bandera
tool does not handle relational abstraction [Cousot and Halbwachs, 1978] and
then it cannot verify Example 5.

The JML-based theorem proving tools JML4, LOOP, Jack, Krakatoa, KeY,
and Jive can also be used to verify Example 5 (and ESC/Java2 with the -
loopSafe switch) as well as the KIV tool, but they require users to supply
loop invariants. Alternatively, KIV and KeY users may choose to prove loop
post-condition by induction. Recall that these tools cannot produce indepen-
dent checkable proofs. These tools generate proofs that need the full prover
in order to be validated.

The type system of Appel et al. work [Wu et al., 2003] (see FPCC Sec-
tion 1.1.1 on page 10) deals with even/odd properties only, and it does not
considers programs with loops as Example 5.

Besson et al. [Besson et al., 2005; Besson et al., 2006; Besson et al., 2007]
(see Section 1.1.2 on page 20) introduced a certified abstract interpretation ap-
proach to the verification of relational linear properties among program inte-
ger variables. These relational, abstraction-based techniques can handle more
complex relations among integer variables than the considered in Example 5,
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i.e. linear relations involving more than two variables. However, it does not
simultaneously consider properties of integer results of Java methods, like the
parity properties.

The abstract domains EvenOdd and Mod4 could be specified in rewriting
logic by using equational abstractions [Meseguer et al., 2003]. For instance,
regarding the EvenOdd domain, the even integers can be reduced to int(0)
while the odd ones can be reduced to int(1). In this case, we have to in-
troduce conditional equations to reduce stored values of program variables
depending on the corresponding JML-style annotation, if any. The specifica-
tion of the integer arithmetic operators does not need any change. However,
the specification of the relational operators need to be modified in order to
recover correctness while keeping equations confluent by introducing rules to
cope with non-determinism. For instance the expression “int(0) ≤ int(1)”
should be evaluated to bool(true) and to bool(false). The difference be-
tween concrete and abstract operations become unclear. This way, equational
abstractions can be applied to analyse Examples 2 and 4, yet avoiding the
specification of some abstract operators, but with the additional cost of con-
ditional evaluation during term reduction. The kind of relational abstraction
based on inequations or linear constraints that is required for the analysis of
Example 5 can also be specified by using slightly more complicated condi-
tional equational abstractions, but all abstract operations need to be specified
because of the involved non-determinism that implies the “leq#” and “gt#”
abstractions.

Examples with more complicated but linear relations among integer vari-
able values would require a more general approach to linear constraint solving
like polyhedra [Cousot and Halbwachs, 1978; Besson et al., 2005; Besson
et al., 2006; Besson et al., 2007].

However, we cannot handle recursive functions because their abstraction
may introduce an infinite sequence of recursive invocations, as in the case of
Example 10.

Example 10. This is the recursive version of the summation method in Ex-
ample 5.

/*@ requires AbsValue(n) == #0 || AbsValue(n) == #3;

@ ensures AbsValue(\result) == #even ; @*/

static int summation(int n) {

aux_summation(n);

}
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SourceFull Cert.Red. Rule Cert. Full Cert. Red. Rule Cert.Full Cert.
Code example Size Size Size F/R Gen. Time Gen. Time Val. Time

(bytes) (Kbytes) (Kbytes) (ms) (ms) (ms)
even16 562 117 0.93 126 ∼0 ∼0 ∼0
even16∗ 767 401 3.58 112 6 4 1
evenOdd 671 312 1.08 288 ∼0 ∼0 ∼0

summation 870 1551 39.03 40 2294 146 344

Table 5.1: Sizes of source code and certificates, and certificate generation and
validation times.

static int aux_summation(int n) {

if (n>0)

return n + aux_summation(n-1);

else

return 0;

}

The non–deterministic execution of the if then else statement means
that, in every invocation of the method aux summation, both the then part
and the else part are executed. Maude cannot detect this cycle because given
the Java semantics, every invocation to the aux summation method creates a
new local variable so that the program state always changes.

5.3 Experimental Evaluation
In Table 5.1, we study two key points for the practicality of our proposal:
the size of the reduced certificate versus the full certificate and the relative
efficiency of checking1 certificates w.r.t. their generation. The experiments
have been performed on a MacBook with 2 Gb RAM. Programs even16,
evenOdd, and summation are the Java programs of Examples 2, 4, and 5,
respectively. Program even16∗ performs more involved arithmetic computa-
tions than even16, including subtraction and multiplication, while returning
the same result (see Example 24 in the Appendix B). The first column con-
tains the size (in bytes) of the source code for each benchmark program. The
three columns for Full Certificates show the size in Kbytes, the generation
time, and the validation time, respectively, for the full certificates. Similarly
the two columns for Reduced Rule Certificate show the size in Kbytes and
the generation time, respectively.

1The checking time is estimated (see Section 4.4 on page 66).
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The validation time of the reduced-rule certificates is similar to but greater
than the validation time of the full certificates; this is because the reduced-rule
certificate includes the state space (i.e. there is no need to generate the state
space). On the other hand, the reduced-label certificate does not include the
state space but only the labels of the used rules; then the validation time of
the reduced-label certificate is similar to but less than the generation time of
the full certificates.

Running times are given in milliseconds and were averaged over a suffi-
cient number of iterations. Our figures demonstrate that the reduction in size
of the certificate is very significant in all cases, ranging the quotient F/R (Full
Cert. Size/Red. Rule Cert. Size) from 288 in even16∗ to 40 for summation.
When we compare the time employed to generate the (full and reduced-rule)
certificates w.r.t. the corresponding validation time, we have that if the cer-
tificate size is reduced by a factor of 40 the validation time only grows by a
factor of 3. Thus we conclude that, by minimizing the number of equations
in the certificate, we achieve a simpler and indeed superior certificate that can
be verified efficiently.



Chapter 6

Analyzing Confidentiality of Java
Programs

6.1 Introduction

Confidentiality is a property by which information that is related to an entity
or party is not made available or disclosed to unauthorized individuals, enti-
ties, or processes. One way to protect confidential data is by establishing an
access control policy [Bishop, 2004] that restricts the access to objects de-
pending on the identity or the role performed by the user, meaning that some
privilege is required to access confidential data.

A user might establish an access control policy by stipulating that no data
that is visible to other users be affected by confidential data. Such a policy
allows programs to manipulate and modify confidential data as long as the
observable data generated by those programs do not improperly reveal infor-
mation about the confidential data. A security policy of this sort is called a
non–interference policy [Denning and Denning, 1977] because confidential
data should not interfere with publicly observable data. Thus, ensuring that a
program adheres to a non–interference policy means analyzing how informa-
tion flows within the program.

The mechanism for transfering information through a computing system is
called a channel. Variable updating, parameter passing, value return, file read-
ing and writing, and network communication are channels. Channels that use
a mechanism that is not designed for information communication are called
covert channels [Sabelfeld and Myers, 2003]. There are covert channels such
as the control structure of a program, termination, timing, exceptions, and re-
source exhaustion channels.

The information flow that occurs through channels is called explicit flow
[Denning and Denning, 1977] because it does not depend on the specific in-
formation that flows. The information flow that occurs through the control
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structure of a program (conditionals, loops, breaks, and exceptions) is called
an implicit flow [Denning and Denning, 1977] because it depends on the value
of the condition that guards the control structure.

In this chapter, we are interested in both explicit and implicit flows for
non–interference analysis of deterministic Java programs. However, we do
not consider covert channels such as termination, timing, exceptions, and re-
source exhaustion channels, i.e., releasing information through termination or
non termination of a computation, through the time at which an action occurs,
or by the exhaustion of a finite shared resource such as memory.

This chapter provides a comprehensive and full-fledged formulation of our
abstract non–interference certification methodology, namely: (i) the charac-
terization of non–interference as a safety property on extended Java computa-
tions; (ii) the conditions required by Java programs in order to ensure the cor-
rectness of our methodology; (iii) the observational capabilities of an attacker;
and (iv) the soundness of our abstract non–interference analysis technique.
This non–interference certification technique was originally introduced at the
local level, i.e. for Java methods, and at the global level, i.e. for complete Java
programs, in [Alba-Castro et al., 2009a] and [Alba-Castro et al., 2010a], re-
spectively.

6.2 Non–interference policies

A non–interference policy establishes a confidentiality level for each source
program variable of primitive datatypes. It guarantees that actual values of
variables with a higher confidentiality level do not influence the output of a
variable with a lower confidentiality level during program execution [Den-
ning and Denning, 1977; Goguen and Meseguer, 1982; Sabelfeld and Myers,
2003; Barthe and Rezk, 2005; Warnier, 2005; Dufay et al., 2005]. It is implic-
itly assumed that constants that appear in a program always have the lowest
confidentiality level as in [Denning and Denning, 1977] (i.e., the considered
program is authorized to access secret data, but it does not contain secret data
in its code).

A non–interference policy can be represented by a partially ordered set
〈Labels,≤〉 and a labeling function Labeling : Var → Labels, where Labels
is the finite set of confidentiality levels, ≤ is a partial order between confiden-
tiality levels, and Var is the set of source program variables [Volpano et al.,
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1996; Barbuti et al., 2002; Hunt and Sands, 2006].
There are usually two confidentiality levels given by: Labels = {Low, High}.

These represent public non-secret data (low confidentiality) and secret data
(high confidentiality), respectively. 〈Labels,≤〉 forms a lattice where Low
is the greatest lower bound or bottom element (⊥), High is the least upper
bound or top element (>), and Low < High. The join operator (t) is defined
as Low t Low = Low; otherwise, X t Y = High. Enforcing non–interference
means that the values of High-labeled source variables cannot flow to Low-
labeled source variables, whereas the values of Low-labeled source variables
can flow to High-labeled source variables.

The attacker model for global non–interference that we formalize below
assumes that the attacker is passive and can only see the Low-labeled source
variables of the Java program at the initial and final execution states but not
at the intermediate states. Our methodology can certify programs that have
temporal breaches and are still non–interferent.

The initial confidentiality level of a variable in a Java program is written in
JML-like syntax with the word setLabel (e.g. setLabel(var, High)). The
confidentiality label of program variables is Low if nothing is specified (i.e.,
program variables are public by default). We do not need to specify the label
of either the formal parameters or local variables because they can be inferred
from the confidentiality labels of other program variables if they are properly
initialized. These JML-like annotations, together with the default assumption,
define the labelling function of the non–interference policy.

Example 11. Consider the following Java program borrowed from [Darvas
et al., 2005] that models a bank account and the initial state given by the
execution of the function main:

class System {

static Account a = new Account();

public static void main(String[] args) {

int initbalance; //@ setLabel(initbalance, High);

initbalance = Integer.parseInt(args[0]);

a.writeBalance(initbalance);

System.out.println(a.readExtra());

}

}

public class Account {

int balance; //@ setLabel(balance, High);

public boolean extraService;

public Account() {

balance = 0;
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extraService = false;

}

public void writeBalance(int amount) {

balance = amount;

if (balance>=10000)

extraService=true;

else extraService=false;

}

private int readBalance() {

return balance;}

public boolean readExtra() {

return extraService;}

}

This non–interference policy specifies that the object field balance of the
global object a and the initialization parameter initbalance (i.e., args[0])
hold secret data. This program is insecure w.r.t. this policy since an ob-
server with low access rights can obtain partial information about the variable
balance via an observation of the non–secret variable extraService.

We assume a fixed Java program PJava. Vars(PJava) denotes the set of
static program source variables that may be initialized by the main func-
tion call. We denote the set of Low program variables as Low(PJava) = {var ∈
Vars(PJava) | Labeling(var) = Low}. A program state S t is a set of value
assignments to program variables. Given var ∈ Vars(PJava) and a state S t,
S t[var] denotes the value of variable var in S t. We model a Java program
PJava as a state transition system between pairs 〈P, S t〉, where P is the cur-
rent, still-to-be-executed part of the Java program PJava and S t represents the
current program state. 〈PJava, S t0〉 denotes the initial configuration of stan-
dard program execution and 〈X, S t〉 denotes a final configuration, where X
stands for the empty program. Note that we assume that every Java pro-
gram properly terminates for each set of input data (i.e., we do not con-
sider non-terminating programs, deadlocks, or runtime errors). We also as-
sume deterministic Java programs, without threads or exceptions. 7→Java is
the transition relation that describes any possible one-step transition between
any two Java program states. An execution (or trace) of PJava is a sequence
〈PJava, S t0〉 7→Java · · · 〈Pi, S ti〉 7→Java · · · 7→Java 〈X, S tn〉, which is simply
denoted by 〈PJava, S t0〉 7→

∗
Java 〈X, S n〉 if the intermediate states are irrelevant.

We can also abbreviate 〈X, S n〉 by 〈S n〉.
We define program non–interference by using an equivalence =Low rela-

tionship between states [Sabelfeld and Myers, 2003; Volpano et al., 1996;
Barbuti et al., 2002; Matos and Boudol, 2005]. Roughly speaking, non–
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interference establishes that any two terminating runs of a program that start
from indistinguishable initial states produce indistinguishable final states.

Definition 3 (State equality [Sabelfeld and Myers, 2003]). Given a Java pro-
gram PJava, two states S t1 and S t2 for PJava are indistinguishable at the confi-
dentiality level Low, written S t1 =Low S t2, if for all var ∈ Low(PJava), S t1[var] =

S t2[var].

What the attacker can see from a final state is determined by a relation
≈Low. Two executions of a program PJava are related by ≈Low if they are indis-
tinguishable to the attacker [Sabelfeld and Myers, 2003]. The notion of non–
interference is therefore parametric on ≈Low. A program is non–interferent if,
whenever different initial program states are indistinguishable at level Low,
this implies that the corresponding final states are also indistinguishable at
level Low.

Definition 4 (Non–interference [Sabelfeld and Myers, 2003]). A Java pro-
gram PJava is non–interferent if for every pair of different program initial states
S t1 and S t2, and for their corresponding final program states S t′1, S t′2 such that
〈PJava, S t1〉 7→

∗
Java 〈S t′1〉 and 〈PJava, S t2〉 7→

∗
Java 〈S t′2〉, we have that S t1 =Low

S t2 implies S t′1 ≈Low S t′2.

In our formulation, we follow the standard approach in the literature that
considers S t ≈Low S t′ iff S t =Low S t′. Then, the non–interference condition
of Definition 4 is understood as the lack of any strong dependence [Sabelfeld
and Myers, 2003] of Low-labeled variables on any of the High-labeled vari-
ables.

The following example illustrates two executions of a given program using
the Java semantics of Chapter 3.

Example 12. Consider again the Java program of Example 11 and two pro-
gram executions, respectively fed with values 5000 and 10000 for the initial-
ization parameter initbalance. Note that the corresponding initial states are
indistinguishable at the Low confidentiality level (e.g. the only Low-labeled
variable, extraService, is set to false in both of them). The Maude com-
mand search provides built–in breadth-first search. We ask for the final Java
program state of each execution trace (actually, in order to visualize the re-
sults, we show the output of println Java instructions). The Maude terms
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EX1-MAUDE and EX2-MAUDE stand for the Java program with the correspond-
ing initial call (for input values 5000 and 10000, respectively), which are
compiled into a Maude expression.

search in PGM-SEMANTICS :

java((preprocess(EX1-MAUDE) noType . ’main < new string [i(0)] > noVal))

=>! JO:Output .

Solution 1 JO:Output --> pl(bool(false))

No more solutions.

search in PGM-SEMANTICS :

java((preprocess(EX2-MAUDE) noType . ’main < new string [i(0)] > noVal))

=>! JO:Output .

Solution 1 JO:Output --> pl(bool(true))

No more solutions.

If the attacker observes these two final states, she will appreciate the two
different values for the variable extraService.

The standard JML [Leavens et al., 2006] property specification language
has no constructs for expressing non–interference, hence existing Java ver-
ification tools that use standard JML do not support non–interference ver-
ification and certification. Nevertheless, the confidentiality aspect of non–
interference is expressible using the JML specification pattern suggested in
[Jacobs et al., 2005; Warnier, 2005] as an instrument for program verification
using the theorem prover PVS. Unfortunately, this proposal abuses notation
by identifying the confidentiality levels with the values of program variables,
and it does not consider important Java features such as method calls and in-
terruptions (break, return or continue statements) within conditional in-
structions and iterations. Moreover, a specification pattern for confidentiality
cannot be created in all cases, as mentioned in [Warnier, 2005].

Although non–interference has not been considered in current PCC im-
plementations, there are some proposals that are based on type systems for a
subset of Java [Barthe et al., 2006], Java bytecode [Rose, 2003; Barthe and
Rezk, 2005; Barthe et al., 2007b], and simple imperative languages [Volpano
et al., 1996; Hunt and Sands, 2006; Beringer and Hofmann, 2007]. However,
to the best of our knowledge none of these have yet been implemented.

In [Barthe et al., 2006], a type system is proposed as a basis for deriving a
certifying compiler for a subset of Java source code with objects, inheritance,
methods and simplified exceptions. In [Barthe et al., 2007b] is defined the
first information flow type system for a sequential JVM-like language with
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classes, objects, arrays, exceptions and method calls that guarantees non–
interference in type checked programs. The soundness was proven by using
the theorem prover Coq, and a certified lightweight bytecode verifier for infor-
mation flow was extracted from the proof. The system follows the principles
of standard bytecode verification and can be used in a standard Java security
architecture within the JVM. The certified verifier could also be used as a
PCC proof checker at the consumer’s side, as it was already mentioned in the
FPCC Subsection 1.1.3 on page 21.

Volpano et al. [Volpano et al., 1996] developed the first sound information-
flow type system that can be used to check non–interference of programs writ-
ten in a generic deterministic sequential imperative language.

In [Hunt and Sands, 2006], Hunt and Sands proposed a flow sensitive,
dynamic type system that has not yet been implemented. It tracks syntacti-
cal dependences between program variables in a simple imperative language
without objects or function calls.

To verify non–interferent source Java programs, there are other type-based
proposals that also do not use JML to specify information flow policies, namely
the Java extensions JFlow [Myers, 1999] and Jif [Myers et al., 2001]. JFlow
and Jif are security-typed programming languages with support for enforc-
ing information-flow and access control with dynamic label policies, at both
compile time and run time. These compilers produce secure Java source code
for verified programs. Dynamic labels are introduced in order to deal with
program variables whose confidentiality labels are only known at run time.
However, JFlow does not have a soundness proof [Myers, 1999], and the
dynamic labels of Jif have not yet been demonstrate to enforce secure infor-
mation flow [Zheng and Myers, 2007].

The work of Banerjee and Naumann [Banerjee and Naumann, 2002] pro-
posed a type system with security levels as annotations for a Java-like lan-
guage, to deal with non–interference with object aliasing, a problem that the
aforementioned works have not considered. They introduce a new security
level to constraint object field updating and evaluation. The type system as-
sume that all classes and methods are public, and that all object fields are
secret. This work considers sequential terminating programs with dynamic
object creation, references (pointers), and mutable fields. However, it does
not consider loops, threads and exceptions, and it is not implemented yet
when this dissertation is written. By now, our proposal does not consider
dynamic objects in order to deal with object confidentiality levels and object
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aliasing in a proper way.
In [Banerjee and Naumann, 2005] Banerjee and Naumann extended the

type system of its previous work [Banerjee and Naumann, 2002] with permis-
sions, in order to consider an access policy with a stack-based access control
mechanism. The classes have permissions. The permissions can be enabled
and checked at run time. Methods have types that depend on the permissions
authorized by the caller. As far as we know this proposal has not been imple-
mented yet.

A flow-sensitive and termination-insensitive analysis for object-oriented
programs based on Hoare logic and separation logic is proposed in Amtoft et
al. [Amtoft et al., 2006]. This analysis considers pointer aliasing that can leak
confidential information. The non–interference property is specified by using
independence assertions that are written in JML. In order to compute post-
conditions, the analysis uses an algorithm that is sound and complete given
some assumptions, but it does not generate a program security proof.

Wasserrab et al. presented in [Wasserrab et al., 2009] the first machine-
checked correctness proof for information-flow control that is based on pro-
gram dependence graphs using static intraprocedural slicing. The proof is
formalized in Isabelle/HOL. The analysis applies to deterministic terminating
programs and is flow-sensitive, object-sensitive and context-sensitive. The
machine-checked proof was instantiated for a simple imperative language
with loops and for a subset of Jinja (a sequential definition of Java bytecode)
[Klein and Nipkow, 2006], which must be manually annotated with security
labels. The Jinja language has boolean and integer values (including null val-
ues) as well as references (including null references). Jinja is an expression-
oriented language and it has object creation, casting, literal, binary operation,
and method call expressions, as well as variable and field access, blocks, se-
quential composition, conditionals, while loops, and exception throwing and
catching. Jinja does not include break neither continue statements. Also,
method calls are not considered in the proposed validation methodology.

Bavera and Bonelli presented in [Bavera and Bonelli, 2008] a flow-sensitive
type system for verifying non–interference of bytecode, where class fields
may have different confidentality labels for different instance objects. This
methodology does not consider method calls and it does not generate check-
able proofs. Moreover, as is usually the case in type-based analysis, once
the object fields and the variable labels are determined, they remain fixed
throughout the analysis.
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A proposal that deals with dynamic information-flow policies is in [Shroff

et al., 2007]. This technique is based on runtime tracking of indirect depen-
dencies between program points. While our confidentiality label tracking is
also dynamic, our approach is based on static analysis rather than runtime
monitoring, similarly to [Hunt and Sands, 2006; Jacobs et al., 2005].

As an important difference with respect to the related literature, our work
considers global non–interference of complete Java classes. We do not need to
explicitly state the confidentiality level for all program variables. Moreover,
we provide a general and language-independent characterization as well as
a formal and rigorous relation between the approximate properties and the
security model.

Our global policies are very flexible since the security levels of object
variables, local variables, and method parameters may change temporarily as
in [Hunt and Sands, 2006; Jacobs et al., 2005; Barbuti et al., 2002; Francesco
and Martini, 2007; Barthe et al., 2004].

6.3 The extended Rewriting Logic semantics of
Java for non–interference

Goguen and Meseguer [Goguen and Meseguer, 1982] formalized non–inter-
ference of deterministic and terminating systems as a security property that is
defined for pairs of system output traces that are indistinguisable for an ob-
server. Non–interference is usually understood to be a security property and
is therefore defined as a hyperproperty [Clarkson and Schneider, 2008] (i.e.,
a property defined on a set of sets of traces, see Figure 6.1). For instance, in
Example 12, the verification process for non–interference should check the
(possibly infinite) set of (possibly infinite) sets of program traces with indis-
tinguishable initial and final configurations regarding the Low confidentiality
program variables. Note that checking the final states issued from EX1-MAUDE
and EX2-MAUDE is just one of the combinations to be analyzed. In this case,
the sets of sets of traces are defined by the indistinguishability relationship
among initial states and among final states at the Low confidentiality level
(Definition 4).

In contrast, the verification process for a safety property should simply
check the traces issuing from the (possibly infinite) set of initial configura-
tions, which is much simpler (see Figure 6.2).
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Figure 6.1: Sets of sets of Java program traces.

In this chapter, we prove non–interference as a safety property by instru-
menting the Java semantics in order to dynamically keep track of the change
of the confidentiality levels of program variables. Intuitively, the semantic
instrumentation is defined as follows:

1. Attach a confidentiality level label to each memory location; this allows
us to observe their confidentiality level at the final execution state.

2. Attach a confidentiality level label to the evaluation of program expres-
sions; this allows us to know whether the evaluation of an expression
involves high confidentiality data.

3. Associate a confidentiality level label to the evaluation of program state-
ments, particularly those involving conditional expressions or guards;
this allows us to determine whether the control flow at a given execu-
tion point depends on the actual value of high confidential variables.
However, this label is not attached to each program statement; it is kept
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StateI 1
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StateI n

Initial Program States

StateF 1
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Final Program States

// //
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Figure 6.2: Sets of Java program traces.

as an extra attribute of a state in the extended Java semantics. This
corresponds to the notion of a context level being updated after each
evaluation step in order to take into account implicit information flows
as in [Denning and Denning, 1977; Volpano et al., 1996; Barbuti et al.,
2002; Sabelfeld and Myers, 2003; Jacobs et al., 2005; Hunt and Sands,
2006], which is introduced in the following example.

Example 13. Consider the following Java program LeakClass that is bor-
rowed from [Warnier, 2005]. We endow it with the attached non–interference
policy:

public class LeakClass {

static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {

high = Integer.parseInt(args[0]);

while (high > 0) {

high--;

low++;}

}

}

Here there is an illicit and implicit information flow from the High-labeled
source variable high to the Low-labeled source variable low. For instance,
when the variable high contains the value 0 or 1, the variable low is as-
signed the value 0 and 1, respectively. This implicit flow would be detected
using the context label, which is set to High after evaluating the expression
high>0, and which forces variable low to be set to High independently of the
confidentiality level of the expression low++.

In contrast to the previous chapter where we studied local method proper-
ties, here we consider a global program property (i.e., we are able to ensure
a non–interference policy at the final state of the whole Java program execu-
tion, which contains several methods, classes, and function calls). This global
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eq k(i(I) -> K) lenv(CL) = k(<int(I),CL> -> K) lenv(CL) .

eq k(b(B) -> K) lenv(CL) = k(<bool(B),CL> -> K) lenv(CL) .

Figure 6.3: Extended equations for constant evaluation.

non–interference analysis requires to address the difficult (or costly) process
of tracing the current confidentiality label of a memory location back to the
point where this location was created.

1. We introduce an additional confidentiality label (Low � High), which
allows us to represent not only the current confidentiality level label of
a memory location but also to keep track, at a global level, of hazardous
transitions from an initial confidentiality level Low to High. Similarly,
we introduce the confidentiality label (High � Low), in order to avoid
false positives where a High–labeled variable is updated with the value
of a Low–labeled expression and then updated again with the value of a
High–labeled expression.

2. In this chapter, we use the context level label during expression eval-
uation, as in [Barbuti et al., 2002], instead of using it when updating
the value of a variable in memory, as in [Jacobs et al., 2005; Warnier,
2005; Hunt and Sands, 2006; Francesco and Martini, 2007], or when
returning values as in [Francesco and Martini, 2007].

We describe the information-flow extended version of the rewriting logic
semantics of Java by the rewrite theory RJavaE = (ΣJavaE , EJavaE ,RJavaE), EJavaE =

∆JavaE ] BJavaE and its corresponding→JavaE rewriting relation. In the new se-
mantics, program data not only consist of standard concrete values but each
value is actually decorated with its corresponding confidentiality label. For-
mally, we consider the label change LabelChange = {Low � High, High �
Low} so that the domain of program variables in the extended semantics is
Value × (Labels ∪ LabelChange). We write <Value,LValue> for a pair
consisting of a concrete value and its corresponding confidentiality label in
Labels ∪ LabelChange.

Thanks to the modularity of the rewriting logic approach to formalizing
program semantics [Farzan et al., 2007], our changes to the semantics of
Section 3 are incremental and minimal.

As Figures 6.3 and Figure 6.4 show, the evaluation of constants and vari-
ables uses the context label and the join operator. The join operator specifi-
cation is shown in Figure 6.5. This means that the actual label of the constant



6.3. The extended Rewriting Logic semantics of Java for non–interference 107

---First obtain location in store from variable name

eq k(Var -> K) env([Var, Loc] Env) = ... .

---Then obtain value stored in this location

eq k(#(Loc) -> K) store([Loc,<Val,LVal>] Store) lenv(CL)

= k(<Val,LVal join CL> -> K) store([Loc,<Val,LVal>] Store) lenv(CL) .

Figure 6.4: Extended equations for variable content retrieval.

t Low High

Low Low High

High High High

t Low � High High � Low

Low � High Low � High High

High � Low High High � Low

Figure 6.5: Specification of the join operator.

eq t(k(buildEnv(((T d(X)), Pl), (V, Vl)) -> K) env(Env) id(I) lenv(Lab) TC)

store(store) nextLoc(I’)

= t(k(buildEnv(Pl, Vl) -> K) env([X, l(I’ + 1)] Env) id(I) lenv(Lab) TC)

store([l(I’ + 1), setTid(setAbsValue(X,V,Lab), I), I] store)

nextLoc(I’ + 1) [owise] .

Figure 6.6: Continuation-based equations for building the extended environ-
ment.

op setLabel : Var Value Label -> Value .

--- equation generated from JML-like annotation setValue(h, High)

eq setLabel(’h, < Val, Label >, EnvLabel ) = < Val, High > .

--- Default case:

eq setLabel(Var, < Val, Label >, EnvLabel ) = < Val, Label join EnvLabel > [owise] .

Figure 6.7: Continuation-based equations for setting the initial variable con-
fidentiality level.

and the actual label of the variable, both depend, not only on their own labels
but also, on the context label at the program point where they are evaluated.

Figure 6.6 shows the extended equation that builds the environment for
a new variable using the setLabel function that sets up the initial confi-
dentiality level of the variable with the label given within the corresponding
setLabel JML-like annotation, if any. Figure 6.7 shows the specification
of the setLabel function. Figure 6.8 shows the specification of the Java +

binary operator that also uses the join operator. The extended specification
of the Java <= operator is shown in Figure 6.9. Note that the specification of
binary operators are very similar. The label of the resulting value is the join
of the operand’s labels. Figure 6.10 shows the specification of the Java post-
increment unary operator. Note that this unary operator updates the involved
variable but it does not change its confidentiality label.
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eq k((<int(I),Lab1>, <int(I’),Lab2>) -> (+ -> K))

= k(<int(I + I’),Lab1 join Lab2> -> K) .

Figure 6.8: Equations of extended Java + operator.

eq k((< int(I), Lab1 >,< int(I’), Lab2 >) -> (<= -> K))

= k(< bool(I <= I’), Lab1 join Lab2 > -> K) .

Figure 6.9: Equations of extended Java <= operator.

eq k(< int(I), Lab > -> ++’(L) -> K)

= k([< int(I + 1),Lab > -> L] -> (< int(I), Lab > -> K)) .

Figure 6.10: Equations of extended Java ++ post-increment operator.

---Obtain variable location and evaluate expression

eq k(Var = E -> K) env([Var, Loc] Env) = ... .

---Once the expression is computed, assign to location

eq k(<Val,LVal> -> =(L) -> K) = k([<Val,LVal> -> L] -> (<Val,LVal> -> K )) .

---General procedure to update the memory

eq k([<Val,LVal> -> Loc] -> K) store([Loc,<Val’,LVal’>] ST)

= k(K) store([Loc,<Val, LVal’ >>> LVal >] ST) .

Figure 6.11: Extended equations for the Java assignment operator.

LVal’ LVal LVal’≫ LVal
L L L

Low High Low � High

High Low High � Low

L1 � L2 L1 L1
L1 � L2 L2 L1 � L2
L L1 � L2 L≫ L2

L1 � L2 L3 � L4 (L1 � L2)≫ L4

L, L1, L2, L3, L4 ∈ {Low, High}, L1 , L2, L3 , L4

Figure 6.12: Updating memory locations.

As Figure 6.11 shows, the assignment computes the new confidentiality
label in terms of the previous label at the memory location, namely NewVal =
LVal’ ≫ LVal. The new operator ≫ is defined in Figure 6.12 following
[Alba-Castro et al., 2010a].

The context label can only change due to conditional control flow state-
ments. According to [Denning and Denning, 1977; Barbuti et al., 2002;
Sabelfeld and Myers, 2003; Jacobs et al., 2005; Hunt and Sands, 2006], the
evaluation of its boolean guards returns a confidentiality level that is associ-



6.3. The extended Rewriting Logic semantics of Java for non–interference 109

ated to the resulting true or false value, and it may also return a modified
context label. The semantic equations for the if-then-else operator of
Figure 3.9 need some slight revision, which is motivated by the following
example.

Example 14. Consider the following Java class, where the value computed
for the variable low does not actually depend on the value of the high confi-
dentiality variable high (which only affects the temporal variable aux). This
program does fulfill the non–interference policy at the final state, which can
be proved by using our non–interference verification methodology.
class NoLeakclass {

static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {

high = Integer.parseInt(args[0]);

int aux=0;

if (high > 2) aux = 1;

else aux = 0;

low = 0;

}

}

In order to avoid false positives during the evaluation of conditional state-
ments, we dynamically restore the previous context label after its execution.
The extended semantic equations for the if-then-else are shown in Fig-
ure 6.13, where a new continuation symbol restoreLEnv is used to restore
the previous confidentiality label. This allows us to verify safe programs that
have temporary breaches, i.e. the implicit flow from variable high to variable
aux in Example 14, as the dynamic typing approaches [Jacobs et al., 2005;
Warnier, 2005; Hunt and Sands, 2006] and the self-composition type system
approach of Barthe et al. [Barthe et al., 2004]. This example cannot be
verified by the type system in [Volpano et al., 1996]

However, restoring the previous context label has to be carefully consid-
ered in the presence of break or continue statements within a loop, since
they can abruptly change the information flow as shown in the following ex-
ample.

Example 15. Consider a variation of Example 13 where the while loop has a
bogus guard together with a break statement to exit the loop:
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--- Evaluates boolean expression keeping the then and else statements

ceq k((if E S else S’) -> K) lenv(CL)

= k(E -> (if(S, S’) -> restoreLEnv(CL) -> K)) lenv(CL)

if not break-or-continue(S) and not break-or-continue(S’) .

ceq k((if E S else S’) -> K) lenv(CL) = k(E -> (if(S, S’) -> K)) lenv(CL)

if break-or-continue(S) or break-or-continue(S’) .

eq k(<bool(true),LVal> -> (if(S, S’) -> K)) lenv(CL) = k(S -> K) lenv(CL join LVal) .

eq k(<bool(false),LVal> -> (if(S, S’) -> K)) lenv(CL) = k(S’ -> K) lenv(CL join LVal) .

--- New equation to restore previous context label

eq k(restoreLEnv(CL) -> K) lenv(CL’) = k(K) lenv(CL) .

Figure 6.13: Extended equations for the if-then-else statement.

--- Stack loop and transform while expression into while continuation

eq k((while E S) -> K) lstack(Lstack) lenv(CL)

= k(while(E,S) -> restoreLEnv(CL) -> popLStack -> K) lstack(while(E,S) -> K, Lstack)

lenv(CL) .

Figure 6.14: Extended equations for the while statement.

public class Leakclass {

static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {

high = Integer.parseInt(args[0]);

int aux=0;

while (true) {

high--;

low++;

if (high == 0) break;

}

}

}

As in Example 13, when the while loop ends, the variable low has the initial
value of the variable high. Whenever high , 0, the break statement is not
executed. In this case, the conditional guard uses High-labeled data, and the
conditional statement should not restore the previous context label. In other
words, the critical component here is not the break statement but rather the
else branch that does not contain the break.

In order to solve this problem, the equations in Figure 6.13 check whether
each of the two branches of a conditional statement contains a break or
continue statement and no other conditional statement or while loop in
between. If there is such a statement, restoreLEnv is not used. This case
was not considered in [Jacobs et al., 2005; Warnier, 2005] nor in [Hunt and
Sands, 2006], which do not consider neither break nor continue statements.

Since while statements were expressed in terms of if-then-else statements,
they need a slight extension in order to introduce the restorelEnv continu-
ation (shown in Figure 6.14).
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The semantic specification of the break statement stays the same as shown
in Figure 3.11: the context label lenv(CL) is not modified and the restoreLEnv
expression introduced by the while statement is removed.

Method invocation propagates the context label without changes as pro-
posed in [Jacobs et al., 2005], where it was not implemented. Thus, the stan-
dard specifications of instance method invocation (Figure 3.12) and return
statements (Figure 3.13) can be used here with no modification. Hunt and
Sands work [Hunt and Sands, 2006] does not considers objects, nor method
invocations.

We do not consider exceptions, nor Hunt and Sands work [Hunt and
Sands, 2006], neither Jacobs et al. and work [Jacobs et al., 2005]. How-
ever, exceptions could by handled in a similar way as break and continue
statements.

6.3.1 Proving non–interference as a safety property

Now, we are ready to formulate a novel characterization of non–interference
that allows us to check it as a property that is verified for each possible execu-
tion trace instead of being verified for each set of indistinguishable execution
traces. We state non–interference as a safety property in Definition 5.

Darvas et al. [Darvas et al., 2005] and Barthe et al. [Barthe et al., 2004]
approaches used self-composition of programs for proving non–interference
as a safety property. Barthe et al. [Barthe et al., 2004] developed a method-
ology for proving non–interference of deterministic terminating programs in
an imperative language with loops, conditionals, and mutable data structures
(i.e. objects). Their methodology relies on using Hoare logic and separation
logic, and handles non–interference as a safety property by using program
self–composition with variable renaming (i.e., they compose a program with
a copy of itself without sharing memory positions). This proposal is complete
and sound, but the criterion is undecidable.

Some sophisticated non–interference policies can be expressed by using
the JML extensions of the Krakatoa Java verification tool [Dufay et al., 2005].
These JML extensions were developed for Hoare-style assertions regarding
program self-composition [Barthe et al., 2004]. This means duplicating the
code of the program and makes it necessary to distinguish the same pro-
gram variables in its two runs. The JML extensions are used to express non–
interference pre– and post–conditions, but they do not handle confidentiality
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labels of program variables explicitly. The method assumes that all the vari-
ables annotated with the extended JML assertions called “ni1” and “ni2”,
are labeled Low. This means that the confidentiality level of all Low variables
have to be explicitly stated, whereas in our framework it isn’t because of the
default policy.

Hunt and Sands work also proved non–interference as a safety property,
but by using flow sensitive security types [Hunt and Sands, 2006].

Definition 5 (Strong Non–Interference). A Java program PJava is strongly
non–interferent for a given labeling function if, for every extended initial state
S tE

1 and for its corresponding final program state S tE
2 given by 〈PJava, S tE

1 〉

7→∗JavaE 〈S tE
2 〉, we have that for each var ∈ Low(PJava), S tE

2 [var] = 〈Val, Low〉
for some value Val.

Since in our model, a public variable can only have the label Low or the
label Low � High, this means that in the extended execution of a program
that is not strongly non–interferent, the label of at least one program variable
is Low � High. Given an initial state S t and a given labeling function, we
denote the corresponding extended state by S tE.

Theorem 3 (Strong non–interference soundness). Consider a Java program
PJava and two initial states S t1 and S t2 such that S t1 =Low S t2. Consider the
two corresponding final program states S t′1 and S t′2 given by 〈PJava, S t1〉 7→

∗
Java

〈S t′1〉, 〈PJava, S t2〉 7→
∗
Java 〈S t′2〉. If there exists var ∈ Low(PJava) such that

S t′1[var] , S t′2[var], then 〈PJava, S tE
1 〉 7→∗JavaE 〈S t′E1 〉 and S t′E1 [var] =

〈Val, Low � High〉 for a value Val.

Proof. Consider the two traces D1 : 〈PJava, S t1〉 7→
∗
Java 〈S t′1〉 and D2 :

〈PJava, S t2〉 7→
∗
Java 〈S t′2〉. Let {var1, . . . , vark} ⊆ Low(PJava) be those vari-

ables such that S t′1[vari] , S t′2[vari] for all 1 ≤ i ≤ k. Since we assume k > 0,
then there is at least one of those variables (say var1) and an assignment state-
ment var1 = E1 that is executed at least once in one of the two traces (sayD1).
Let n be the total number of assignments in D1 to variables {var1, . . . , vark}.
Note that n is finite since execution traces are finite because of the termination
assumption, and that k ≤ n, i.e. all k variables were updated at least once in
one of the traces. The result is reformulated as Proposition 1, where PI(n, k)
is the predicate that relates n and k. The proof proceeds by induction on n.

Proposition 1. PI(n, k):
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D1 has n assignments to the k variables {var1, . . . , vark}
1, and it holds that

for all j ∈ {1, . . . , k}, S t′E1 [var j] = 〈Val j, Low � High〉 for a value Val j.

1. (n = 1 and k = 1) Let us consider the last execution step in D1 where
the assignment var1 = E1 is executed. Then, it may happen that the
assignment var1 = E1 is also executed inD2, or not. We consider these
two cases separately.

(a) If var1 = E1 is also executed in D2, then S t′1[var1] , S t′2[var1]
implies that the values for E1 are different in the two traces. Thus,
expression E1 must contain at least one variable var′ such that
the actual values of var′ are different in the two traces when the
considered assignments to var1 are executed. Since S t′1[var′] ,
S t′2[var′] and n = 1, then var′ < Low(PJava). Therefore var′ is
a High confidentiality variable, hence it has a High label in our
extended semantics. This means that the label Low � High is
assigned to variable vari (according to Figure 6.12) in D1, then
S t′E1 [var1] = 〈Val1, Low � High〉 for a value Val1, and PI(1, 1)
follows.

(b) If var1 = E1 is not executed inD2, then S t′1[var1] , S t′2[var1] im-
plies that the execution of this last assignment statement var1 = E1

in D1 is conditioned to the result of a boolean expression con-
taining High confidentiality variables that guard a conditional (or
while loop) statement so that the assignment is executed in D1

and not in D2. Then, the assignment statement var1 = E1 in
D1 was executed either (i) within the then or else branch of an
if−then−else Java statement (recall that while loops are ex-
pressed as if−then−else statements), (ii) within the then branch
of an if−then Java statement, or (iii) after evaluating a condi-
tional expression within a while loop that includes a break ex-
pression. Note that no other case can generate an interference
condition. In all three cases, our extended semantics assigns a
High label to the boolean guard expression of such a conditional
expression, and the context label is set to High (according to Fig-
ures 6.13 and 6.14) before the expression E1 is evaluated in the

1These k variables {var1, . . . , vark} satisfy the interference condition, i.e. S t′1[vari] ,
S t′2[vari] for all 1 ≤ i ≤ k.
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statement var1 = E1. Note that in case (iii), the conditional ex-
pression propagates the High context label outside itself (accord-
ing to Figure 3.11), i.e. the conditional does not restore the previ-
ous context label precisely to record that even if sequenceD1 does
not execute the break statement, another possible trace (e.g. D2)
can do it. Finally, in all three cases, the expression E1 is evaluated
within a High–labeled context and then the label Low � High
is assigned to variable var1, independently of whether expression
E1 manipulates High confidential data or not. This means that
S t′E1 [var1] = 〈Val1, Low � High〉 for a value Val1; then, PI(1, 1)
holds.

2. (n > 1) Let us consider the last execution step in D1 where the assign-
ment vari = Ei is executed, with 1 ≤ i ≤ k. We split into two cases.

(a) If vari = Ei is also the last assignment of variables {var1, . . . , vark}

executed in D2, then S t′1[vari] , S t′2[vari] implies that the val-
ues for Ei are different in the two traces. Thus, expression Ei

must contain at least one variable var′ such that the actual val-
ues of var′ are different in the two traces when the considered
assignments to vari are executed. Then, let us consider whether
var′ ∈ {var1, . . . , vark} or not. If it is, consider the replacement
of the last assignment vari = Ei by an empty statement in both
tracesD1 andD2, both traces will have n− 1 assignments to the k
variables {var1, . . . , vark}, and the program will be still interferent.
There are two cases:

i. vari and var′ are the same variable. By induction hypothesis,
it can be assumed that PI(n − 1, k) holds for the modified
program with n−1 assignments to the k variables (Proposition
1). If the empty statements are replaced in both traces by the
assignment vari = Ei, then the original program tracesD1 and
D2 with n assignments are obtained, and the variable vari is
updated by the introduced assignment statement, but its label
Low � High is not modified. This is because the label of
expression Ei is either High (if Ei contains a secret variable)
or Low � High (if Ei contains variable vari).
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ii. vari and var′ are different variables. By induction hypothesis,
it can be assumed that the Proposition 1 holds for the modified
program with n − 1 assignments to k′ variables, PI(n − 1, k′),
where
A. k′ = k − 1, when the deleted assignment vari = Ei is the

unique assignment that updates variable vari. In this case,
the set of variables that satisfies the interference condition
does change, because variable vari does not satisfy it in
the program without the last assignment over it. The k′

variables that satisfies the interference condition, are such
that {var1, . . . , vark′} = {var1, . . . , vark} − {vari}.

B. k′ = k, otherwise. The set of variables that satisfies the
interference condition does not change.

If the empty statements are replaced in both traces by the as-
signment vari = Ei, then the original program traces D1 and
D2 with n assignments are obtained, and the variable vari is
updated as before in both cases 2(a)iiA and 2(a)iiB. In case
2(a)iiA, the label of variable vari is also updated from Low
to Low � High. In case 2(a)iiB, the label Low � High of
variable vari is not modified (similarly to case 2(a)i).

If var′ < {var1, . . . , vark}, then var′ is a High confidentiality vari-
able and it has a High label in our extended semantics.
In all cases, the label Low � High is assigned to variable vari (ac-
cording to Figure 6.12). This means that in all cases S t′E1 [vari] =

〈Vali, Low � High〉 for a value Vali, and thus PI(n, k) holds for
the original program, and the result follows.

(b) If vari = Ei is not the last assignment of variables {var1, . . . , vark}

executed in D2, then either there is no such an assignment in D2

to variables {var1, . . . , vark}, or the last assignment in D2 has the
form vari = E′, with E′ different from Ei, or it affects a vari-
able var′′ that is different from vari. All three cases imply that
the execution of the last assignment statement vari = Ei in D1 is
conditioned to the result of a boolean expression containing High
confidentiality variables that guard a conditional (or while loop)
statement so that such assignment is executed inD1 and not inD2.
Then this case is perfectly similar to case (1)(b) above, so that in
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all cases S t′E1 [vari] = 〈Vali, Low � High〉 for a value Vali, and
thus PI(n, k) holds for the original program, and the conclusion
follows.

�

From Theorem 3 we derive that strong non–interference implies non–
interference, as given by the following result.

Theorem 4 (Strong Non–Interference Soundness). Given a Java program
PJava, if PJava is strongly non–interferent (Definition 5), then PJava is non–
interferent (Definition 4).

Proof. (By contradiction) Assume that program PJava is strongly non–inter-
ferent and that PJava is interferent. Since PJava is strongly non–interferent, for
every extended initial state S tE and for its corresponding final program state
S tE′ given by 〈PJava, S tE〉 7→∗JavaE 〈S tE′〉, we have that for all var ∈ Low(PJava),
S tE′[var] = 〈Val, Low〉 for a value Val. By Lemma 3 and the assumption that
PJava is interferent we have that S tE′[var] = 〈Val, Low � High〉 for a value
Val, hence PJava is not strongly non–interferent, contradicting the hypothesis.

�

Foccardi and Gorrieri [Focardi et al., 1994] defined a security–based no-
tion of non–interference stronger than the notion of Goguen and Meseguer
[Goguen and Meseguer, 1982], that also considers pairs of system input/output
traces, but with both secret inputs and outputs, instead of secret outputs only.
In contrast to [Focardi et al., 1994], our safety-based notion of strong non–
interference only considers secret outputs, similarly to [Goguen and Meseguer,
1982].

The following example illustrates the mechanization of our verification
methodology.

Example 16. Consider again the Java program of Example 11. Now, we com-
pute the final state in the extended Java program execution for EX1-MAUDE (for
simplicity we show only the value of variable extraBalance).

search in PGM-SEMANTICS-EXTENDED :

java((preprocess(EX1-MAUDE) noType . ’main < new string [i(0)] > noVal)) =>! M:Store .

Solution 1 M:Store --> store([l(6),<bool(false),Low >> High>] ...)

No more solutions.
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The execution for EX2-MAUDE will also contain the label Low � High for
variable extraBalance.

In other words, we transform non–interference into a stronger property
which can be effectively checked in the extended semantics. Although we
consider only two security levels, our methodology can easily been extended
to the multilevels of confidentiality of [Hunt and Sands, 2006; Barthe et al.,
2007b]. Moreover, we have shown that our analysis can achieve more pre-
cision than traditional, type-based approaches, thanks to the combination of
static analysis and dynamic labeling.

Obviously, we are not able to certify the security of all the programs that
are secure, as shown in Example 17.

Example 17. Consider the following Java program borrowed from [Warnier,
2005].
class NoLeakclass {

static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {

high = Integer.parseInt(args[0]);

low = high;

low = low - high;

}

}

Apparently, there is an explicit flow from variable high to variable low through
the two assignment statements. However for any execution, when program
execution ends, the value of variable low is always 0 so that the variable low
does not depend on the variable high. According to Definition 4, the program
is non–interferent. However, we give a false positive by using our notion of
strong non–interference since the assignment “low = high” assigns to the
variable low a high confidentiality label Low � High and the last statement
“low = low − high” does not revert the label back to low.

The program of Example 17 cannot be verified by traditional type infer-
ence approaches [Zanotti, 2002; Avvenuti et al., 2003] either, since they fail
to verify (type check) any program with temporary breaches, e.g. Exam-
ples 14 and 17 above, whereas Example 14 is effectively verified by using our
methodology.

The self-composition method in [Barthe et al., 2004] can verify non–
interference of secure programs with temporary breaches such as “low=high;
low=2”, Example 14 and Example 17 above, whereas imprecise conservative
type systems like the proposed in [Volpano et al., 1996] cannot.
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6.4 The extended abstract Rewriting Logic seman-
tics of Java

The extended, instrumented Java semantics defined so far allows us to develop
a technique for proving non–interference. However, this technique is still
not feasible in general because there are too many possible initial states to
consider for the safety property to be checked. In the following, we develop
an abstract, rewriting logic Java semantics that allows us to statically analyze
global non–interference. Similar to Chapter 5, the purpose of the abstract
semantics is to correctly approximate the extended computations in a finite
way. But, differently than Chapter 5, the abstract values used in this chapter do
not depend on the concrete values given by the standard semantics of Chapter
3.

Given the extended Java semantics of Section 6.3, where there are con-
crete labeled values, we simply get rid of the values in the abstract semantics,
and use their confidentiality labels as the abstract values instead.

In the following, we develop an abstract version of the extended rewriting
logic semantics of Java developed in Section 6.3, which we describe by the
rewrite theory RJava# = (ΣJava# , EJava# , RJava#), EJava# = ∆Java# ] BJava# and its
corresponding →Java# rewriting relation. As in Section 6.3, our approach for
the abstract Java semantics consists of modifying the original theory RJavaE

(taking advantage of its modularity) by abstracting the domain to Labels ∪
LabelChange and introducing approximate versions of the Java constructions
and operators tailored to this domain.

Our abstraction function α : ℘(StateE) → ℘(StateE) is a simple ho-
momorphic extension to sets of states of the function α : ℘(ValueE) →
℘(ValueE), where ValueE = Value × (Labels ∪ LabelChange), and given
S ValueE = S Value×{SecLab}, with S Value ⊆ Value, α(S ValueE) = Value×
{SecLab}; for instance, α({int(2)} × {SecLab}) = Value × {SecLab}. This
means that we abstract the actual values S Value, int(2) of data, and only
keep their sorts (Value, Int); this is actually equivalent to discard the actual
value of data by using the projection function 2nd : Value × (Labels∪
LabelChange)→ (Labels ∪ LabelChange).

Figures 6.15 and 6.16 show the abstract equations for constant evaluation
and variable content retrieval, that correspond to the concrete extended equa-
tions of Figures 6.3 and 6.4, respectively. The specification of the abstract
addition and less-or-equal operators, corresponding to the extended ones of
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eq k(i(I) -> K) lenv(CL) = k( CL -> K) lenv(CL) .

eq k(b(B) -> K) lenv(CL) = k( CL -> K) lenv(CL) .

Figure 6.15: Extended abstract equations for constant evaluation.

---First obtain location in store from variable name

eq k(Var -> K) env([Var, Loc] Env) = ... .

---Then obtain value stored in this location

eq k(#(Loc) -> K) store([Loc, LVal ] Store) lenv(CL)

= k( (LVal join CL) -> K) store([Loc, LVal ] Store) lenv(CL) .

Figure 6.16: Extended abstract equations for variable content retrieval.

eq k((Lab1 , Lab2 ) -> (+ -> K)) = k( ( Lab1 join Lab2 ) -> K) .

Figure 6.17: Abstract equations of extended Java + operator.

eq k(( Lab1 , Lab2 ) -> (<= -> K)) = k( ( Lab1 join Lab2 ) -> K) .

Figure 6.18: Abstract equations of extended Java <= operator.

eq k( Lab -> ++’(L) -> K) = k([ Lab -> L] -> ( Lab -> K)) .

Figure 6.19: Abstract equations of extended Java ++ post-increment operator.

Figures 6.8 and 6.9 are shown in Figures 6.17 and 6.18, respectively. Fig-
ure 6.19 shows the specification of the abstract unary post-increment operator
whose concrete extended specification was given in Figure 6.10. The ex-
tended specification for building the environment given in Figure 6.6 can be
used here with no changes, but the specification of the setLabel function re-
garding abstraction need to be modified as shown in Figure 6.20. The variable
assignment abstract specification corresponding to the extended equations of
Figure 6.11 is shown in Figure 6.21.

Because of abstraction, some extended concrete equations are such that
their corresponding abstract versions are not confluent: the equations have
left-hand sides that are equal but their right-hand sides are not. This means
that the program can behave concurrently when abstractly interpreted. In this
case, as is Section 5.2, we use concurrency at the Maude level, using rules in-
stead of equations. Despite the fact that our extended Java semantics contains
only equations and no rules, the abstract Java semantics does contain rules in
RJava# to reflect the different possible evolutions of the system.

The abstract rules associated to two of the equations of the extended se-
mantics of the if−then−else statement are shown in Figure 6.22.
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op setLabel : Var Value Label -> Value .

--- equation generated from JML-like annotation setValue(h, High)

eq setLabel(’h, Label , EnvLabel ) = High .

--- Default case:

eq setLabel(Var, Label , EnvLabel ) = Label join EnvLabel [owise] .

Figure 6.20: Continuation-based equations for setting initial variable confi-
dentiality level.

---Obtain variable location and evaluate expression

eq k(Var = E -> K) env([Var, Loc] Env) = ... .

---Once the expression is computed, assign to location

eq k( LVal -> =(L) -> K)= k([ LVal -> L] -> ( LVal -> K )) .

---General procedure to update the memory

eq k([ LVal -> Loc] -> K) store([Loc, LVal’] ST) = k(K) store([Loc,LVal’ >>> LVal] ST) .

Figure 6.21: Abstract equations for the Java assignment operator.

rl k(LVal -> (if(S,S’) -> K)) lenv(CL) => k(S -> K) lenv(CL join LVal) .

rl k(LVal -> (if(S,S’) -> K)) lenv(CL) => k(S’ -> K) lenv(CL join LVal) .

Figure 6.22: Abstract rules for the if-then-else statement.

Now, we are ready to formalize the abstract rewriting relation →Java# ,
which intuitively develops the idea of applying only one rule or equation from
the concrete Java semantics to an abstract Java state while exploring the dif-
ferent alternatives in a non-deterministic way. By abusing of notation, we
denote the abstraction of a rule α({l}) → α({r}) by α({l} → {r}). PJava denotes
the sort of Java programs PJava (i.e. PJava ∈ PJava).

Definition 6 (Abstract rewriting). We define the abstract rewriting relation
→Java#⊆ (PJava × ℘(StateE)) × (PJava × ℘(StateE)) by 〈PJava1 , S S t1〉 →Java#

〈PJava2 , S S t2〉 if ∃u ∈ S S t1,∃v ∈ S S t2 s.t. 〈PJava1 , u〉 →JavaE 〈PJava2 , v〉.

Note that in particular this applies to S S t1 = α({u}) and S S t2 = α({v}), given
u ∈ α({u}) and u ∈ α({u}). We denote by →∗Java# the extension of →Java# to
multiple rewrite steps.

Our abstraction consists of transforming equations into rules and getting
rid of the value component of states. In order to guarantee that the abstract
semantics correctly (over-)approximates the extended semantics, we need to
prove that:

1. The abstraction is correct regarding the relation between the concrete
and abstract domains of program states, based on the abstraction func-
tion α. This is done by proving that this abstraction function α and
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a corresponding concretization function γ, both constitute a Galois in-
sertion [Cousot and Cousot, 1979; Cousot and Cousot, 2002; Cousot,
2004]. This statement is presented in Theorem 5 below, with the corre-
sponding proof.

2. All extended program traces have corresponding abstract program traces,
such that no extended program trace is disregarded. The transformation
of a set of equations (which are confluent and terminating modulo ax-
ioms) into rules preserves the execution traces. The removal of the
value component of states does not eliminate execution traces neither.
This formal statement is presented in Theorem 6 (on page 123). This
theorem and its proof are very similar to Theorem 2 in Chapter 5.

Recall the abstraction function α : ℘(StateE) → ℘(StateE), that is a sim-
ple homomorphic extension to sets of states of the function α : ℘(Value ×
S ecLabels) → ℘(Value × S ecLabels), where S ecLabels denotes the sort
Labels∪LabelChange. Given S ValueE ∈ ℘(Value×S ecLabels), i.e. S ValueE

= {〈Value, SecLab〉}with SecLab ∈ {Low, High, Low � High, High � Low},
α(S ValueE) = Value × {SecLab}; note that all tuples of set S ValueE have
the same and unique confidentiality level, w.r.t. the confidentiality level of
the corresponding variable; we denote the set Value × {SecLab} ∈ ℘(Value ×
S ecLabels) by #SecLab, such that α({〈Val, SecLab〉}) = #SecLab; this means,
for instance, that α({〈Val, High〉}) = #High.

The corresponding concretization function γ : ℘(StateE) → ℘(StateE),
is the homomorphic extension to sets of states of the function γ : ℘(Value ×
S ecLabels) → ℘(Value × S ecLabels), given S S ecLabel ∈ ℘(Value ×
S ecLabels) such that S S ecLabel = Value × {SecLab}, γ(S S ecLabel) =

S S ecLabel; γ(S S ecLabel) = Value×{SecLab}, e.g. γ(#SecLab) = #SecLab,
for instance, γ(#High) = Value × {High}.

Theorem 5. The abstraction function α : ℘(StateE) → ℘(StateE) (or α :
℘(StateE) → StateE#) and the corresponding concretization function γ :
℘(StateE) → ℘(StateE) (or γ : StateE# → ℘(StateE)) satisfy that, 〈α, γ〉
is a Galois insertion: for all S ∈ ℘(StateE) and S # ∈ StateE#, it holds that
α(S ) v S # if and only if S ⊆ γ(S #).

Proof. In order to prove that 〈α, γ〉 is a Galois insertion, it is enough to prove
that α and γ satisfy: i) monotonicity, ii) the deflationary property, and iii) the
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non-information loss property [Cousot and Cousot, 1979; Cousot and Cousot,
2002; Cousot, 2004], at the variable level.

1. monotonicity property:

(a) monotonicity of γ : ℘(Value×S ecLabels)→ ℘(Value×S ecLabels):
Given S ValueE

1 , S ValueE
2 ∈ ℘(Value × S ecLabels), we have

S ValueE
1 = Value×{SecLab1}, and S ValueE

2 = Value×{SecLab2};
by definition, γ(S ValueE

1 ) = S ValueE
1 and γ(S ValueE

2 ) = S ValueE
2 .

given S ValueE
1 v S ValueE

2 , then we have γ(S ValueE
1 ) ⊆

γ(S ValueE
2 ).

Consequently γ satisfies monotonicity.

(b) monotonicity of α : ℘(Value×S ecLabels)→ ℘(Value×S ecLabels):
S ValueE

1 , S ValueE
2 ∈ ℘(Value × S ecLabels), with S ValueE

1 =

S Value1 × {SecLab1}, S ValueE
2 = S Value2 × {SecLab2}, and

S Value1, S Value1 ∈ ℘(Value).

i. given S ValueE
1 ⊆ S ValueE

2 , we have S Value1 × {SecLab1} ⊆

S Value2 × {SecLab2}; then SecLab1 = SecLab2;
ii. By definition, α(S ValueE

1 ) = Value × {SecLab1}, and
α(S ValueE

2 ) = Value×{SecLab2}, so given 1(b)i, α(S ValueE
1 )

= α(S ValueE
2 ), therefore we have α(S ValueE

1 ) v α(S ValueE
2 ).

2. deflationary property:

(a) S ValueE ∈ ℘(Value × S ecLabels), with S ValueE = S Value ×
{SecLab}, S Value ⊆ Value and SecLab ∈ S ecLabels.

(b) By definition, α(S ValueE) = Value × {SecLab}.

(c) By definition, γ(Value × {SecLab}) = Value × {SecLab}, then
γ(α(S ValueE)) = Value × {SecLab}.

(d) Given 2a we have S Value × {SecLab} ⊆ Value × {SecLab}.
Consequently, given 2b we have S ValueE ⊆ γ(α(S ValueE)).

3. non-information loss property:

(a) Given S ValueE ∈ ℘(Value × S ecLabels), we have S ValueE =

Value×{SecLab}; by definition, γ(S ValueE) = S ValueE = Value×
{SecLab}.
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(b) By definition α(Value × {SecLab}) = Value × {SecLab}, so we
have α(S ValueE) = S ValueE.

(c) Given 3a and 3b we have S ValueE = α(γVar(S ValueE)), conse-
quently S ValueE v α(γ(S ValueE)).

�

This result can be homomorphically extended to α : ℘(StateE) →
℘(StateE), so that the abstraction function α and the concretization function
γ constitute a Galois insertion.

As it is well known, an alternative proof technique for demonstrating the
correctness of the approximation would consist in proving that the abstraction
function α is an upper closure operator with monotonicity, idempotency, and
extensitivity.

Theorem 6 (Correctness). If 〈PJava, S tE
1 〉 →

∗

JavaE 〈S tE
2 〉, then there exists S S t3 ∈

℘(StateE) s.t. 〈PJava, α({S tE
1 })〉 →

∗

Java# 〈S S t3〉 and S tE
2 ∈ S S t3.

Proof. The proof is by induction on the length n of the extended program
trace or rewriting sequence denoted by →∗JavaE (n is also the length of the
corresponding abstract program trace→∗Java#).

1. (n = 1). There is only one rewriting step 〈PJava, S tE
1 〉 →JavaE 〈S tE

2 〉.
Given S tE

1 ∈ α({S tE
1 }) and S tE

2 ∈ α({S tE
2 }), if S S t1 = α({S tE

1 }) and
S S t2 = α({S tE

2 }), then by Definition 6 it holds that 〈PJava, α({S tE
1 )}〉 →Java#

〈α({S tE
2 )}〉, then it holds for n = 1.

2. (n > 1). The program trace of length n, 〈PJava, S tE
1 〉 →

∗

JavaE 〈S tE
2 〉, can

be split as formed by two sub–traces of length n − 1 and 1 respectively:

〈PJava, S tE
1 〉 →

∗

JavaE 〈PJavaint , S tintE
1 〉︸                                     ︷︷                                     ︸ →JavaE 〈S tE

2 〉

length n − 1
By the induction hypothesis, the extended sub–trace of length n− 1 has
the following corresponding abstract sub–trace (of equal length):

〈PJava, α(S tE
1 )〉 →∗Java# 〈PJavaint , α(S tintE

1 )〉.

Since S tE
1 ∈ α({S tE

1 }) and S tintE
1 ∈ α({S tintE

1 }), by Definition 6, the
rewriting step 〈PJavaint , S tintE

1 〉 →JavaE 〈S tE
2 〉, has a corresponding abstract

rewriting step 〈PJavaint , α(S tintE
1 )〉 →Java# α(〈S tE

2 〉), then it also holds for
n > 1.
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Thus the conclusion follows. �

A program is non–interferent for a given labeling function if the abstract
values (the confidentiality labels) of the Low variables in the final state of an
abstract program execution do not have the label Low � High.

Theorem 7 (Abstract Non–Interference Soundness). Given a Java program
PJava, PJava is non–interferent (Definition 4) if for all S S t1 ∈ ℘(StateE) s.t.
〈PJava, S S t1〉 7→

∗

Java# 〈S S t2〉, for all S t ∈ S S t2, and for all variables var ∈
Low(PJava), S t[var] = 〈Val, Low〉 for a value Val.

Proof. By contradiction. Let us assume that PJava is not non–interferent, i.e.,
there exists S tE

1 with 〈PJava, S tE
1 〉 7→

∗

JavaE 〈S tE
2 〉 and var ∈ Low(PJava) s.t.

S tE
2 [var] = 〈Val, L〉 for a value Val and L , Low. Since 〈PJava, S tE

1 〉 7→
∗

JavaE

〈S tE
2 〉, by Lemma 6, there exists S S t3 ∈ ℘(StateE) s.t. 〈PJava, α({S tE

1 })〉 →
∗

Java#

〈S S t3〉 and S tE
2 ∈ S S t3. This contradicts the assumption that for all S t ∈ S S t3,

and for all variables var ∈ Low(PJava), S t[var] = 〈Val′, Low〉 for a value
Val′. �

The following example illustrates the mechanization of the Java non–interfe-
rence analysis.

Example 18. Consider again the Java program of Example 11. By virtue of
the abstraction, we consider just one abstract initial state that safely approxi-
mates any extended initial state and compute the corresponding abstract final
states.

search in PGM-SEMANTICS-ABSTRACT :

java((preprocess(EX1-MAUDE) noType . ’main < new string [i(0)] > noVal)) =>! M:Store .

Solution 1 M:Store --> store([l(6),Low >> High] ...)

No more solutions.

Due to the transformation of some equations into rules in the abstract seman-
tics, there may be several execution paths but all lead to the same abstract
final state.

Some proposals also exist for non–interference verification that are based
on abstract interpretation [Barbuti et al., 2002; Zanotti, 2002; Giacobazzi and
Mastroeni, 2004; Francesco and Martini, 2007; Zanardini, 2007]. However,
these proposals do not generate a certificate as an outcome of the verification
process, and they do not use JML to express non–interference policies.
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The idea of first enriching the original semantics of the language by pair-
ing each data value to its security level, and then approximating it by only
considering the security level was also proposed in [Barbuti et al., 2002;
Zanotti, 2002]. A similar idea is pursued in [Francesco and Martini, 2007],
where an abstract information–flow sensitive collecting semantics, which is
called instruction–level security typing, for programs with dynamic struc-
tures is proposed; here input and output channels are given security levels,
but the variables have no associated security levels. On the one side, these
approaches [Barbuti et al., 2002; Francesco and Martini, 2007] can verify
non–interference of secure programs with temporary breaches such as Exam-
ple 14, as well as program “low = high; low = 2”. On the other side, these
proposals fail to verify Example 17.

A different notion of abstract non–interference is proposed in [Giacobazzi
and Mastroeni, 2004] that approximates the standard notion of non–interference
by making it parametric relative to input/output abstractions. In abstract non–
interference, the abstract domains encode the allowed flows that characterize
the degree of precision of the knowledge of a potential attacker observing the
data. By using classes and class hierarchies as abstract domains, Zanardini
adopts a different perspective of abstract non–interference for classes in [Za-
nardini, 2007], where the abstract value of a concrete object is its class. Two
objects (values) are indistinguishable at an abstraction level (class) if the ob-
jects belong to the given class or if the given class is a superclass of object
classes. An algorithm for checking abstract non–interference of Java classes
is proposed that relies on class–based dependencies.

Our global policies are very flexible since the security levels of object
variables, local variables, and method parameters may change temporarily as
in [Hunt and Sands, 2006; Jacobs et al., 2005; Barbuti et al., 2002; Francesco
and Martini, 2007; Barthe et al., 2004]. This is illustrated in the Example 14
as well as in program “low = high; low = 2”.

Equational abstractions [Meseguer et al., 2003] can be used to spec-
ify the abstract extended Java semantics, i.e. all extended integer values
〈int(i), SecLab〉 can be reduced to 〈int(1), SecLab〉. In this case, the multi-
plicative operations need no change. The extended integer arithmetic additive
operations have to be modified so that the value int(1) become the unique
possible result. The abstract extended relational integer operations need to be
modified by using rules in order to maintain correctness and confluent equa-
tions while becoming non-deterministic. In this case, its is enough to intro-
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duce equations without conditions in order to reduce stored values of program
variables, because the abstraction of a given variable value does not depend
on which program variable is or which is the corresponding actual concrete
value.

However, all computations over integer numbers are useless and can be
avoided as we do.

6.5 Experimental evaluation

The abstract certification methodology described here has been implemented
in Maude. The tool is provided with a novel Web interface written in Java and
is publicly available at http://zenon.dsic.upv.es:8080/certificateX/
controler. The prototype system offers a rewriting-based program certifica-
tion service, which is able to analyze global confidentiality properties related
to program non–interference. Our certification tool can generate three types
of certificates: (i) the full certificates consist of complete rewriting sequences
including all rewrite steps; (ii) the reduced rules certificates only contain the
rewrite steps that use rules; and (iii) the reduced labels certificates only record
the labels of the used rules. A detailed description of the tool is given in Chap-
ter 8.

Code Examples→ 1 2 3 4 5
Experiment Measures ↓

Code size in LOC 27 31 48 80 117
Code size in bytes 869 924 1981 3305 3504

Code cyclomatic complexity 1 1 4 16 192
Full Cert. size (Kb) 1134 1251 4223 10619 24176

Red. Rules Cert. size (Kb) 6.1 6.3 21.1 47.1 21.3
Red. Labels Cert. size (Kb) 1.8 1.8 2.6 3.7 5.2
Full Cert. Gen. Time (ms) 10408 23574 29482 45709 84331

Red. Rules Cert. Gen. Time (ms) 7057 7030 7527 8215 9547
Red. Labels Cert. Gen. Time (ms) 7030 6700 7190 8198 9537

Table 6.1: Code measures, certificate sizes, and generation times.

In Table 6.1, we analyze three key points for the practicality of our ap-
proach: the size and complexity of the program code, the size of the three
types of certificates, and the certificate generation times. The running times

http://zenon.dsic.upv.es:8080/certificateX/controler
http://zenon.dsic.upv.es:8080/certificateX/controler
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are given in milliseconds and were averaged over a sufficient number of iter-
ations. We considered three code measures, the code size in LOC (lines of
source code), the code size in bytes, and the cyclomatic complexity, which
counts the execution paths of a program. The experiments were performed on
a laptop with a Pentium M 1.40 GHz processor and 0.5 Gb RAM.

Program 1 mainly consists of a simple non–interferent code example bor-
rowed from [Warnier, 2005; Jacobs et al., 2005] (Example 25 in Appendix C).
The program has been structured into two classes. The first class has one se-
cret variable and one public variable, a constructor method, two get methods,
and a method that contains the non–interferent piece of code of [Warnier,
2005; Jacobs et al., 2005]. The second class is the main class with four
method invocations. Similarly, program 2 is a simple non–interferent exam-
ple borrowed from [Hunt and Sands, 2006]. It is structured into two classes
(Example 26 in the Appendix). Program 3 includes three simple methods in
two classes: the non–interferent method included in program 1, an interferent
method borrowed from [Warnier, 2005; Jacobs et al., 2005], and another non–
interferent method borrowed from [Sabelfeld and Sands, 2009]. The main
method has a sequence of method invocations such that the last invocation
calls a non–interferent method, and thus the entire program is non–interferent
(Example 27 in the Appendix). Program 4 includes six simple methods, the
three methods included in program 3 and three other interferent methods also
borrowed from [Warnier, 2005; Jacobs et al., 2005], including a method with
a while loop and a method that calls another method. In this case, the last
invoked method as well as the whole example program are non-interferent
(Example 28 in the Appendix). Similarly, program 5 includes nine simple
methods, the six examples included in program 4 plus three other interferent
methods: two interferent variations of the loop example of Example 13 and
an interferent method with a return statement within a conditional statement
(Example 29 in the Appendix). The source code of all our benchmarks is also
provided within the distribution package.

The experiments are very encouraging since they show that the reduction
in size of the certificate is very significant in all cases, with the quotient “Red.
Rules Cert. Size/Full Cert. Size” ranging from 0.54% in program 2 to 0.09%
in program 5. Note that the biggest reduction occurs for the largest program.
When the time employed to generate the full and reduced rules certificates
are compared, the reduced certificate generation time vs. the full certificate
generation time range from 11.32% to 67.80%. The reduction for the biggest
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example (program 5) was the largest one (11.32%). Note that the generation
time for the reduced labels certificate were not significantly lower than the
reduced rules certificate. These results confirm that the technique scales up
much better when reduced certificates are considered.



Chapter 7

Analyzing Erasure with or without
Non–Interference of Java

Programs

7.1 Introduction
The non–interference policies considered in Chapter 6 are not restrictive enough
for computer systems that are required to remove (or erase) the secret data
after its intended use. Erasure is a way of strengthening confidentiality by
upgrading data confidentiality levels, up to the extreme of demanding the re-
moval of secret data from the system after it was used [Chong and Myers,
2005; Chong and Myers, 2008].

Let us illustrate the erasure policies by means of the following medical
information example adapted from [Chong and Myers, 2008].

Example 19. Consider an on–line diagnosis web system implemented in Java
which, once the patient has entered information about her symptoms, returns
information about possible corresponding diseases back to the user. The web-
site confidentiality policy states that the client symptoms and diagnostics are
private, and that no record of them will be stored after the user has finished
the application session.

class MedicalDiagnosis {

boolean malaise, fever, influenza, userReqExit;

//@ setLabel(fever, High);

//@ setLabel(malaise, High);

public void getSymptoms(){/* */}

public void getUserReq(){/* */}

public void exit(){/* */}

public void diagnosis(){

if (malaise && fever) then influenza = true; }

public void appEnd(){

malaise=false; fever=false; influenza=false;}

public void medicalDiagnosis(){
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while (!userReqExit){

getSymptons();

diagnosis();

getUserReq();};

appEnd();

exit();}

}

When the user requests to exit the application, the condition userReqExit
becomes true, the method appEnd is executed, and the three sensitive vari-
ables malaise, fever, and influenza are erased. That is, after the execu-
tion of method diagnosis, the variables malaise, fever, and influenza
have a high confidentiality level but no record of their values is kept after
execution.

There are many situations where organizations or individuals have to make
available to other organizations or systems some sensitive confidential data
for specific purposes. These organizations and individuals assume that the
receptors of their confidential information will erase this information once the
purpose was achieved. For instance, when a customer pays a purchase using a
credit card, the customer assumes that the merchant -and the payment system-
keeps secure the customer and credit card details until the transaction ends,
when the merchant -and the payment system- must erase them. The payment
system is allowed to transmit credit card details to the bank system in order
to obtain the bank authorization, but not to other users. All authentication
systems must receive sensitive user data, i.e. login and password, biometric
data such as finger-prints or images of the iris, but they have to erase them
once authentication was done [Hunt and Sands, 2008].

7.2 Erasure policies
An erasure policy is a confidentiality policy that specifies that the confiden-
tiality level of a given variable is upgraded to the extent that the system should
not keep its value [Chong and Myers, 2005; Chong and Myers, 2008; Hunt
and Sands, 2008]. Erasure does not imply non–interference (a program that
satisfies erasure may not satisfy non–interference), nor vice versa. The era-
sure of a variable var is expressed as var : L1↗L2 where L1 ∈ {Low, High},
L2 ∈ {High,>}, and L1 < L2. This means that the (value of the) variable var
should be explicitly erased within the program code in every execution, as
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well as any other variable that depends on it. The partial order ≤ is extended
so that Low < High < >. The commutative t operator is also extended such
that Low t Low = Low, Low t High = High, and X t > = >.

If var : L1↗>, the erasure policy means complete erasure [Hunt and
Sands, 2008], i.e. initial states that differ only in the value of variable var
produce the same final state. This means that, even if an observer can see
High–labeled variables, it should not distinguish the erased values. Erasure
policies with complete erasure mean that attackers can see Low–labeled vari-
ables (as the Low clearance of the non–interference attacker) and also High–
labeled variables. If var : L1↗High, this means partial erasure, i.e. initial
states that differ only in the value of variable var produce the same final state,
except for High variables. In summary, given an erasure policy var : L1↗L2,
the erasure attacker has a clearance level as high as the highest level L such
that L < L2.

The erasure policy will be enforced from the program point where the
JML-like annotation is located until the end of the entire program execution.
This means that we should place the erase annotation at the program point
just after the point where the variable is updated with the confidential data
that must be erased. This can be seen as an instrumentation in our setting
of the (conditioned) erasure of [Chong and Myers, 2005; Chong and Myers,
2008].

In our notation for erasure policy specification, an erasure policy var
: L1↗ L2 is written as a JML-like annotation with the word erase, e.g.
erase(influenza, High, Top) represents influenza : High↗>.

Example 20. Consider the following example program adapted from [Hunt
and Sands, 2008] and the initial state given by the execution of the function
main:

class Eraserclass {

int xh, yh, zl; //@ setLabel(xh, High); setLabel(yh, High);

public void Testclass() { }

public void setxh(int xp) {

/*@ setLabel(xp, High); @*/

xh = xp; }

public void setyh(int yp) {

/*@ setLabel(yp, High); @*/

yh = yp; }

public void setzl(int zp) {

zl = zp; /*@ erase(zl, Low, High); *@/}

public void mE3(){

xh = xh + yh + zl;

yh = yh + 2;
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zl = 0;} }

class Erasure3 {

static Eraserclass t = new Eraserclass();

static int initzl;

public static void main(String[] args) {

initzl = Integer.parseInt(args[0]);

t.setzl(initzl);

t.mE3();}}

In the Eraserclass, the fields xh and yh are labeled High, and the field zl
is labeled Low by default. The program Erasure3 obeys the erasure policy
zl : Low↗High because it erases the value of the zl variable that is set by the
method setzl before program ends execution. In fact, it erases this value in
the last assignment statement of the method mE3. The other variable yh that is
labeled High does not depend on zl, whereas the variable xh depends on zl
but it remains labeled as High. It must be noted that if we modify the erasure
policy of zl from zl : Low↗High to zl : Low↗>, the program is no longer
secure, since variable xh should also be erased. Finally, if we replace the
statement “zl = 0;” by “zl = yh;”, the program satisfies the erasure policy
but not the non–interference policy.

We define erasure of variables following the end-to-end erasure of non-
interactive programs [Hunt and Sands, 2008], but we generalize it to support
the erasure of n variables. A variable vari is erased to some confidentiality
level Li if varying the initial value of vari does not change the final state to
all observers except for those at level Li or above. Given a subset of program
variables V ⊆ Vars(PJava), we define an equivalence relationship =V between
states as S t1 =V S t2 if for all var ∈ Vars(PJava) − V, it holds that S t1[var] =

S t2[var]. We extend the notation S t1 =Low S t2 of Definition 3 as follows:
S t1 =L S t2 with L ∈ Labels = {Low, High,>}, if for all var ∈ Vars(PJava)
such that Labeling(var) ≤ L it holds that S t1[var] = S t2[var]. Note that
S t1 => S t2 implies S t1 =High S t2, which implies S t1 =Low S t2.

Definition 7 (Erasure). Given a program PJava and the program variables V =

{var1, . . . , varn}, PJava complies with the erasure policy vari : Li ↗ L′i , with i =

1 . . . n, iff for every pair of different program initial states S t1 and S t2, and for
their corresponding final program states S t′1, S t′2 such that 〈PJava, S t1〉 7→

∗
Java

〈S t′1〉 and 〈PJava, S t2〉 7→
∗
Java 〈S t′2〉, we have that S t1 =V S t2 implies S t′1 =L S t′2

for all L < dLe, where dLe = L′1 t · · · t L′n .

This means that if each variable vari is erased to confidentiality level L′i ,
then varying the values of vari does not change the final state to all observers
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except for those at level dLe or above, where dLe is the lowest upper bound
(join) of the L′i confidentiality levels. Note that the attacker clearance depends
on that lub level dLe. The following example considers the erasure of two
variables to different confidentiality levels.

Example 21. Consider the following example program with two High–labeled
variables xh and yh, and two Low–labeled variables ul and zl, together with
a main function and a constructor method similar to Example 20, but with a
different erasure policy.
class NoEraserclass {

int xh; int yh; int zl; int ul;

//@ setLabel(xh, High); setLabel(yh, High);

public void setxh(int xp) {

/*@ setLabel(xp, High); @*/

xh = xp; }

public void setyh(int yp) {

/*@ setLabel(yp, High); @*/

yh = yp; }

public void setul(int up) {

ul = up; /*@ erase(ul, Low, Top); *@/ }

public void setzl(int zp) {

zl = zp; /*@ erase(zl, Low, High); *@/ }

public void mE4() {

xh = xh + zl;

yh = yh + ul ;

zl = 0;

ul = 0;} }

class Erasure4 {

static NoEraserclass t = new NoEraserclass();

static int initul, initzl;

public static void main(String[] args) {

initul = Integer.parseInt(args[0]);

t.setul(initul);

initzl = Integer.parseInt(args[1]);

t.setzl(initzl);

t.mE4(); } }

This program does comply with the single erasure policy zl : Low↗High
because it satisfies the condition S t′1 =Low S t′2. However, it does not comply
with the single erasure policy ul : Low↗> even if it satisfies the condition
S t′1 =Low S t′2, because the condition S t′1 =High S t′2 (i.e. the variable ul is
erased, but the variable yh is not) is not satisfied. When we consider the
erasure of two variables zl : Low↗ High and ul : Low↗> altogether, it
is enough to require the conditions corresponding to the later erasure, e.g.
S t′1 =High S t′2 and S t′1 =Low S t′2, because this implies the condition required
by the former erasure (i.e. S t′1 =Low S t′2) . Thus, the erasure policy of the two
variables is fullfilled, whenever S t′1 =L S t′2, for all L < High t >.
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7.2.1 Erasure and non–interference
In practice, it is useful to enforce erasure together with non–interference
[Hunt and Sands, 2008; Chong and Myers, 2008]. We state that a pro-
gram PJava complies with a combined erasure with non–interference policy
if it simply satisfies the conditions of both, Definition 4 and Definition 7,
independently. If we wish to enforce an erasure policy together with a non–
interference policy, regarding both the variables directly affected by the era-
sure policy and the variables that depend on variables directly affected by an
erasure policy, the erasure of a given variable var should be done by using an
expression whose value has a confidentiality label as high as Labeling(var).

7.3 The extended Rewriting Logic semantics of
Java for erasure

In order to consider both erasure and non–interference, the semantic instru-
mentation for non–interference of Chapter 6 is extended all together in this
Section as follows:

1. Attach two extra labels to each memory location: a confidentiality label
from the set {Low, High, Low�High, Low�>, High�Low, High�>}
and an erasure label from the set {∅, Low↗High, Low↗>, High↗>}.
When program ends execution, a label L � L′ with L , L′ indicates
a change of the confidentiality level label of the associated memory
location, from the initial level L to the final level L′. This way we can
detect hazardous confidentiality level changes of these locations, e.g.
from level Low to level High. In other words, we can not only observe
the confidentiality levels of the memory locations at the final execution
state but also detect whether a location is directly affected by an erasure
policy (or if it depends on variables that must obey an erasure policy).

2. Attach a confidentiality label and an erasure label to the evaluation of
program expressions; this allows us to track whether the evaluation of
the expression involves high confidentiality data and data that are af-
fected by an erasure policy.

3. Associate a confidentiality label and an erasure label to the evaluation
of program statements, especially conditional statements, to control im-
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plicit flows from high confidential variables and from variables that
should be erased. However, these confidentiality and erasure labels are
not attached to each program statement. Rather they are kept as extra
attributes of states in the extended Java semantics.

The confidentiality level labels for non–interference are extended here for
erasure policies with the new confidentiality level label associated with com-
plete erasure, i.e. >, and the corresponding new confidentiality level changes,
i.e. Low � >, and High � >. The new erasure label is introduced in order
to propagate the erasure policies as information flows between the variables
of the program, either explicitly by assignment statements or implicitly by
control flow statements.

Here we extend further, in a modular way, the extended Java seman-
tics for non–interference of Section 6.3 to deal with the JML-like annota-
tions of the form erase(Var, L1, L2), which correspond to the erasure poli-
cies. We describe the information flow extended version of the rewriting
logic semantics of Java by the rewrite theory RJavaE = (ΣJavaE , EJavaE ,RJavaE),
EJavaE = ∆JavaE ] BJavaE and its corresponding→JavaE rewriting relation [Alba-
Castro et al., 2010b].

In the new semantics, program data do not only consist of standard con-
crete values but each value is decorated with its corresponding confidential-
ity and erasure labels. We introduce the new confidentiality label >. Thus,
we now have Labels = {Low, High,>} and Con f LabChange = {Low �

High, Low�>, High� Low, High�>}. We extend the join operator con-
sistently in order to consider the new > label, as well as the new composed
labels {Low�>, High�>}. Also, L join > = > for any L ∈ Labels. Regard-
ing variable updating, we also extend the≫ operator (that computes the new
confidentiality label in terms of the previous label at the memory location) as
shown in Figure 7.1.

In order to record erasure, we introduce the sort EraLabels = {∅, Low ↗
High, Low ↗ >, High ↗ >}. The domain of program variables in the ex-
tended semantics for erasure and non–interference is now Value × (Labels ∪
Con f LabChange) × EraLabels. The empty label (∅) of domain EraLabels
means no erasure policy. If a variable var has the labeled value 〈val, L, L′↗
L′′〉, L is the confidentiality level of the variable, with L ∈ Labels ∪
Con f LabChange, and L′↗L′′ is the erasure label of the variable. It holds
that either L = L′′ or L = L′′′�L′′. The erasure label L′↗L′′ means that the
variable var has to be erased, either because this erasure label corresponds
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LVal LVal’ LVal≫ LVal’
L1 L1 L1
L1 L2 L1 � L2

L1 � L2 L1 L1
L1 � L2 L2 L1 � L2
L1 � L2 L3 L1 � L3
L L1 � L2 L≫ L2

L1 � L2 L � L3 (L1 � L2)≫ L3
L1, L ∈ {Low, High}, L2, L3 ∈ {Low, High,>}
L1 , L2, L , L3 , L1 , L3, L2 , L3

Figure 7.1: Updating memory locations for Erasure.

to an erasure policy for var (i.e. var : L′↗ L′′) or because, the variable
var is (recursively) affected by an erasure policy for other variables on which
var depends on. With these labels, we can check whether the variables are
involved in erasure or non–interference policies. If they are involved in an
erasure policy, we can also check if they must be erased or not when program
ends execution, using their confidentiality labels.

We also extend the labels of expressions and statements in order to propa-
gate the erasure label of a variable to the variables that depend on it, explicitly
or implicitly. The context label has now two labels, the confidentiality label
and the erasure label. We introduce a new commutative | (join) operator for
erasure labels in order to propagate the strongest policies on erased values and
its dependences, as shown in Figure 7.2.

Erasure Label | Erasure Label = Resulting Erasure Label
l1 ↗ l2 | ∅ = l1 ↗ l2
l1 ↗ l2 | l3 ↗ l4 = (l1 t l3)↗ (l2 t l4)

l1, l2, l3, l4 ∈ Labels ∪Con f LabChange, l1 ↗ l2, l3 ↗ l4 ∈ EraLabels

Figure 7.2: Joining over erasure labels.

The | operator is used during the evaluation of expressions with operators
to join the erasure labels of the operands, as shown in Figure 7.3 for an op
binary operator. The t operator introduced in Figure 6.5 for non–interference
is extended here to join the confidentiality labels Labels = {Low, High,>}
and the confidentiality level changes Con f LabChange = {Low�High, Low�
>, High�Low, High�>} during binary expression evaluation, as shown in
Figure 7.3.
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Labeled Value op Labeled Value = Resulting Labeled Value
〈v1, l1, p1〉 op 〈v2, l2, p2〉 = 〈v1 op v2, l1 t l2, p1 | p2〉

v1, v2 ∈ Value, l1, l2 ∈ Labels ∪Con f LabChange, p1, p2 ∈ EraLabels

Figure 7.3: Binary expression evaluation.

The new | operator is used during variable evaluation to join the erasure
label of the variable with the erasure label of the program context, as shown in
Figure 7.5. The extended t operator is also used during variable evaluation,
to join the confidentiality label of the variable with the confidentiality label of
the context as specified in Figure 6.4 for non–interference, but here it works
over the extended domain Labels ∪Con f LabChange.

eq k(i(I) -> K) lenv(CL,CEraL) = k(< int(I),CL, CEraL > -> K) lenv(CL,CEraL) .

eq k(b(B) -> K) lenv(CL,CEraL) = k(< bool(B), CL, CEraL > -> K) lenv(CL,CEraL) .

Figure 7.4: Equations of extended constant evaluation with erasure labels.

---First obtain location in store from variable name

eq k(Var -> K) env([Var, Loc] Env) = ... .

---Then obtain value stored in this location

eq k(#(Loc) -> K) store([Loc, < Val, ValLab, ValEraLab > ] Store) lenv(CL,CEraL)

= k(< Val, ValLab join CL, ValEraLab join CEraL > -> K)

store([Loc, < Val, ValLab, ValEraLab > ] Store) lenv(CL,CEraL) .

Figure 7.5: Equations of extended variable content retrieval with erasure la-
bels.

The extended equations that build the environment for non–interference
analysis (Figure 6.6) can be used here with no modification. However, here
we need a new specification of the setLabel function to take into account the
introduced erasure label, as shown in Figure 7.6. Note the use of the extended
t operator to join the confidentiality level of the program variable with the
confidentiality level of the program context, and the use of the | operator to
join the erasure label of the variable with the erasure label of the program
context.

In Figure 7.7 we show the specification of the Java + binary operator ex-
pression that also uses the join operators: t to join confidentiality labels
and | to join erasure labels. The extended specification of the Java <= op-
erator is shown in Figure 7.8. Note that the specifications of binary operators
are very similar. The confidentiality label and erasure label of the resulting
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op setLabel : Var Value SecLabel ErasureLabel -> Value .

--- equation generated from JML-like annotation setLabel(h, High)

eq setLabel(’h, < Val, ConfLab, EraLab >, EnvConfLab, EnvEraLab ) = < Val, High, nopol > .

--- Default case:

eq setLabel(Var, < Val, ConfLab, EraLab >, EnvLab, Pole )

= < Val, ConfLab join EnvLab , EraLab join EnvEraLab > .

Figure 7.6: Continuation-based equations for setting the initial variable con-
fidentiality level.

eq k((< int(I), SecLab1, EraLab1 >, < int(I’), SecLab2, EraLab2 >) -> (+ -> K))

= k(< int(I + I’), SecLab1 join SecLab2, EraLab1 join EraLab2 > -> K) .

Figure 7.7: Equations of extended Java + operator.

eq k((< int(I), SecLab1, EraLab1 >,< int(I’), SecLab2, EraLab2 >) -> (<= -> K))

= k(< bool(I <= I’), SecLab1 join SecLab2, EraLab1 join EraLab2 > -> K) .

Figure 7.8: Equations of extended Java <= operator.

eq k(< int(I), SecLab, EraLab > -> ++’(L) -> K)

= k([< int(I + 1),SecLab, EraLab > -> L] -> (< int(I), SecLab, EraLab > -> K)) .

Figure 7.9: Equations of extended Java ++ post-increment operator.

---Obtain variable location and evaluate expression

eq k(Var = E -> K) env([Var, Loc] Env) = ... .

---Once the expression is computed, assign to location

eq k(<Val,LVal, ELab> -> =(L) -> K)

= k([<Val,LVal, ELab> -> L] -> (<Val,LVal, ELab> -> K )) .

---General procedure to update the memory

eq k([<Val,LVal, ELab> -> Loc] -> K) store([Loc,<Val’,LVal’, ELab’>] ST)

= k(K) store([Loc,<Val, LVal’ >>> LVal, ELab >] ST) .

Figure 7.10: Equations of extended Java assignment operator.

value is the join of the operand’s confidentiality labels and erasure labels, re-
spectively. Figure 7.9 shows the specification of the Java ++ post-increment
unary operator. Note that this unary operator updates the involved variable
but it does not change its confidentiality label, nor its erasure label.

The specification of the assignment operator extended for erasure is shown
in Figure 7.10. The specifications uses the≫ operator extended for erasure
in Figure 7.1.

When a boolean expression guards a conditional statement, the | operator
is also used to update the erasure label of the program context in order to
consider implicit flows regarding erasure policies, as shown in Figure 7.11.
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--- Evaluates boolean expression keeping the then and else stmnts

ceq k((if E S else S’) -> K) lenv(CL, EL) = k(E -> (if(S, S’) ->

restoreLEnv(CL,EL) -> K)) lenv(CL,EL)

if not break-or-continue(S) and not break-or-continue(S’) .

ceq k((if E S else S’) -> K) = k(E -> (if(S, S’) -> K))

if break-or-continue(S) or break-or-continue(S’) .

eq k(<bool(true),LVal, EVal> -> (if(S, S’) -> K)) lenv(CL,EL)

= k(S -> K) lenv(CL join LVal,EL join EVal) .

eq k(<bool(false),LVal, EVal> -> (if(S, S’) -> K)) lenv(CL,EL)

= k(S’ -> K) lenv(CL join LVal,EL join EVal) .

--- New equation to restore previous context labels

eq k(restoreLEnv(CL,EL) -> K) lenv(CL’,EL’) = k(K) lenv(CL,EL) .

Figure 7.11: Equations of extended if-then-else with erasure labels.

On the one side, the setLabel annotations that specify in the JML-style
syntax the confidentiality level of some program variables are translated to
the Maude setLabel operator (see Figure 7.6) invocations that are used to
set the confidentiality label and the erasure label of the variables when their
environments are built. The default confidentiality label is Low and the initial
erasure label is always ∅. On the other side, the erase JML-like annotations
corresponding to the erasure policies are translated into calls to the special
Java operators eraseT and eraseH, depending on the specified complete or
partial erasure policy, in order to enforce it from the program execution point
where the annotation is located and executed until the program ends its exe-
cution.

The automatic translation of the erase(Var, L1, L2) annotations is speci-
fied as shown below, where X ∈ {Low, High}.

JML-like erasure annotations: Java generated code:
//@ erase(Var, X, Top); eraseT(Var);
//@ erase(Var, Low, High); eraseH(Var);

These eraseT and eraseH Java operators have no semantics in Java (i.e.,
they behave as the identity function), but our technique interprets them in the
proper way as shown in Figure 7.12.

The Java eraseH operator upgrades the Low confidentiality label of the
variable var up to High. The definitions and equations of the Java and Maude
eraseH operator are similar to the eraseT case described above and are thus
omitted.



140 Chapter 7. Analyzing Erasure with or without Non–Interference of Java Programs

--- First obtain and keep the variable location and obtain its value

eq k((eraseT < Var’>) -> K) obj(o(OA)) env([Var’, Loc’] E’)

= k(#(Loc’) ->(eraseT(Var’,Loc’) ->K)) obj(o(OA)) env([Var’,Loc’] E’) .

--- Then upgrade label and store at var location

eq k(Val -> ( eraseT(Var,Loc) -> K)) = k([eraseT(Val) -> Loc] -> K) .

op eraseT : Value -> Value .

eq eraseT(< Val, L1, EL >) = < Val , Top, L1 -> Top > .

eq eraseT(< Val, L1 >> L2, EL>) = < Val , Top, L1 -> Top > .

Figure 7.12: Java and Maude eraseT operator equations.

7.3.1 Proving erasure as a safety property
Erasure is also considered a security property, i.e., a property defined on sets
of sets of traces. For instance, sets of traces whose initial and final states
are indistinguishable at a given confidentiality level (Definition 7). Erasure
is therefore defined as a hyperproperty [Clarkson and Schneider, 2008]. In
order to simplify the verification of the erasure policies we approximate in-
formation erasure to a safety property, i.e a property based on set of traces.

Let us introduce our notion of erasure that is stated as a safety property.

Definition 8 (Strong Erasure). For a given labeling function, a Java pro-
gram PJava strongly complies with the erasure policy vari: Li ↗ L′i , for
i = 1 . . . n, if for every extended initial state S tE

1 and for its correspond-
ing final program state S tE

2 given by 〈PJava, S tE
1 〉 7→

∗

JavaE 〈S tE
2 〉, we have

that for all var ∈ Vars(PJava), either S tE
2 [var] = 〈Val, Lab,∅〉 or S tE

2 [var] =

〈Val, High, Low↗ High〉, for a value Val and a label Lab.

If a public variable has a non-empty erasure label, this means that the
variable must be erased. However, if a secret variable has a non-empty era-
sure label, this does not necessarily means that the variable must be erased.
A secret variable with the erasure label “Low↗High” must not be erased,
because it has the confidentiality label “High” that corresponds to its High-
confidentiality.

For a program that does not comply with a strong erasure policy, this
means that in the final state of, at least, one extended execution there is one
variable that, either, i) it is a public variable that has a non-empty erasure label,
or ii) it is a secret variable that has a non-empty erasure label that indicates
complete erasure (i.e. L�> for L ∈ {Low, High}).

Note that the erasure policies are satisfied by programs with final states
such that the program variables have all empty erasure labels, whenever or
not they have confidentiality level changes that indicate transitions from the
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Low confidentiality level to the High level (“Low � High”). In other words
erasure policies (Definition 8) do not mean non–interference policies (Defini-
tion 5).

Theorem 8. Consider a Java program PJava together with the erasure pol-
icy vari: Li ↗ L′i , for i = 1 . . . n, and two initial states S t1 and S t2 such
that S t1 =V S t2, where V = {var1, . . . , varn}. Consider the two correspond-
ing final program states S t′1 and S t′2 given by 〈PJava, S t1〉 7→

∗
Java 〈S t′1〉 and

〈PJava, S t2〉 7→∗Java 〈S t′2〉. If there exists var ∈ Vars(PJava), such that
Labeling(var) < dLe, where dLe = tL′i for i = 1 . . . n, and S t′1[var] ,
S t′2[var], then the extended state S t′E1 satisfies 〈PJava, S tE

1 〉 7→
∗

JavaE 〈S t′E1 〉 and
it holds that for a value Val, either, S t′E1 [var] = 〈Val, Low � High, Low ↗
High〉 or S t′E1 [var] = 〈Val, L1 � >, L2 ↗ >〉, with L1, L2 ∈ {Low, High}.

Proof. The proof is similar to the proof of Theorem 3 in Section 6.3.1, by
considering eventual flows from variables that have to be erased (V), to any
program variable (Vars(PJava)). Additionally, we have to consider the case
when the variables directly affected by the erasure policy are not erased as
they should be.

Consider the two tracesD1 : 〈PJava, S t1〉 7→
∗
Java 〈S t′1〉 andD2 : 〈PJava, S t2〉

7→∗Java 〈S t′2〉. Let {var1, . . . , vark} ⊆ Vars(PJava) be those variables such that
Labeling(var j) < dLe, where dLe = tL′i for i = 1 . . . n, and S t′1[var j] ,
S t′2[var j] for all 1 ≤ j ≤ k. These k variables can be or not variables directly
affected by the erasure policy. We assume k > 0, then there is at least one of
those variables (say var1).

Let n be the total number of assignments inD1 to variables {var1, . . . , vark},
after their corresponding erase annotations (if any). Note that n is finite since
execution traces are finite because of the termination assumption. Since each
variable var j could have or not an erasure policy, this number of assignments
could be equal to zero, i.e. 0 ≤ n.

The result is reformulated as Proposition 2, where PE(n, k) is a predicate
that relates n with k.

Proposition 2. PE(n, k):
D1 has n assignments to the k variables {var1, . . . , vark}

1, and it holds
that for all var j in {var1, . . . , vark} and a value Val j, either, S t′E1 [var j] =

1These k variables {var1, . . . , vark} satisfy the non-erasure condition, i.e. S t′1[var j] ,
S t′2[var j] for all 1 ≤ j ≤ k.
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〈Val j, Low � High, Low ↗ High〉, or S t′E1 [var j] = 〈Val j, L1 � >, L2 ↗ >〉,
for L1, L2 ∈ {Low, High}.

Now, we prove the result by induction on n.

1. (n = 0) This case means that all k variables var j are directly affected by
the erasure policy (i.e. ∀var j : L j ↗ L′j), and it also means that they
have not been erased after executing the erasure annotations. Thus, the
final values of all variables var j in the corresponding extended execu-
tion are the values assigned by the erase operator (See Figure 7.12),
i.e. S t′E1 [var j] = 〈Val, L j � L′j, L j ↗ L′j〉 and the conclusion PE(0, k)
follows.

2. (n = 1) Let us consider the execution step in D1 where the assign-
ment var1 = E1 is executed. Then, it may happen that the assignment
var1 = E1 is also executed in D2, or not. We consider these two cases
separately.

(a) If var1 = E1 is also executed in D2, then S t′1[var1] , S t′2[var1]
implies that the values for E1 are different in the two traces. Thus,
expression E1 must contain at least one variable vare such that
the actual values of vare are different in the two traces when the
considered assignments to var1 are executed. Since n = 1 and
S t′1[vare] , S t′2[vare], then vare < Vars(PJava) − V , i.e. vare ∈ V .
Therefore vare is variable with an erasure policy, e.g. vare : Le ↗

L′e, but, it is not erased. Regarding the confidentiality level label
of variables var1 and vare we have four possible cases that we
analyse as follows, using the erasure confidentiality label changes
of Figure 7.1. First, we consider the case Labeling(var1) = Low,
and Labeling(vare) = Low. This means that the erasure policy
over vare is vare : Low ↗ L′e, with L′e ∈ {High,>}. In this
case, the confidentality label Low � L′e and the erasure label
Low ↗ L′e are assigned to variable var1. Next, we consider the
case Labeling(var1) = Low, and Labeling(vare) = High. This
means that the erasure policy over vare is vare : High ↗ >. In
this case, the confidentality label Low � > and the erasure label
Low ↗ > are assigned to variable var1. Then, we consider the
case where Labeling(var1) = High, and Labeling(vare) = Low.
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This means that the erasure policy over vare is vare : Low↗ >. In
this case, the confidentality label High � > and the erasure label
Low ↗ > are assigned to variable var1. Finally, we consider the
case where Labeling(var1) = High, and Labeling(vare) = High.
This means that the erasure policy over vare is vare : High ↗ >.
In this case, the confidentality label High � > and the erasure
label High ↗ > are assigned to variable var1. In the four cases,
the variable var1 is such that, its final confidentiality label is a la-
bel change, and its final erasure label is a non-empty erasure label.
Thus, the conclusion PE(1, k) follows.

(b) If var1 = E1 is not executed inD2, then S t′1[var1] , S t′2[var1] im-
plies that the execution of this last assignment statement var1 = E1

in D1 is conditioned to the result of a boolean expression con-
taining non erased variables with erasure policies over them, that
guards a conditional (or while loop) statement so that the assign-
ment is executed inD1 and not inD2. Then, the assignment state-
ment var1 = E1 in D1 was executed either (i) within the then
or else branch of an if-then-else Java statement (recall that while
loops are expressed as if-then-else statements), (ii) within the
then branch of an if-then Java statement, or (iii) after evaluat-
ing a conditional expression within a while loop that includes a
break expression. Note that no other case can generate a non era-
sure condition. In all three cases, our extended semantics assigns
a confidentiality label change and a non-empty erasure label to
the boolean guard expression of such a conditional expression as
shown in Figures 7.3 and 7.2, and the context confidentiality and
erasure labels are set (according to Figure 7.11) before the expres-
sion E1 is evaluated in the statement var1 = E1. Note that in case
(iii), the conditional expression propagates the context confiden-
tiality and erasure labels outside itself (according to Figure 7.11),
i.e. the conditional does not restore the previous context confiden-
tiality and erasure labels precisely to record that even if sequence
D1 does not execute the break statement, another possible trace
(e.g. D2) can do it. Finally, in all three cases, the expression E1

is evaluated within a context labeled with a confidentiality label
change and a non-empty erasure label, and then, a confidentiality
label change L′′ � L′ and a non-empty erasure label L ↗ L′ are
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assigned to variable var1, independently of whether expression E1

manipulates erased confidential data or not. Then, the conclusion
PE(1, k) follows.

3. (n > 1) Let us consider the last execution step in D1 where the assign-
ment vari = Ei is executed, with 1 ≤ i ≤ k. We split into two cases.

(a) If vari = Ei is also the last assignment of variables {var1, . . . , vark}

executed in D2, then S t′1[vari] , S t′2[vari] implies that the val-
ues for Ei are different in the two traces. Thus, expression Ei

must contain at least one variable vare such that the actual val-
ues of vare are different in the two traces when the considered
assignments to vari are executed. Then, let us consider whether
vare ∈ {var1, . . . , vark} or not. If it does, then by induction hy-
pothesis, we can assume that variable vare is labeled with a con-
fidentiality label change (L′′ � L′) and a non empty erasure label
(L ↗ L′). This means that, variable vare is either a non-erased
variable with an erasure policy over it, or it is a variable that,
directly or indirectly, depends on variables with erasure policies
over them. In both cases, a confidentiality label change and a
non-empty erasure label are assigned to variable vari and the con-
clusion follows. Since vari = Ei is the last assignment of variables
{var1, . . . , vark} in both traces, and vare has different values in both
traces, then the case vare < {var1, . . . , vark} cannot happen.

(b) If vari = Ei is not the last assignment of variables {var1, . . . , vark}

executed in D2, then either there is no such an assignment in D2

to variables {var1, . . . , vark}, or the last assignment in D2 has the
form vari = E′, with E′ different from Ei, or it affects a variable
var′′ that is different from vari. All three cases imply that the ex-
ecution of the last assignment statement vari = Ei in D1 is condi-
tioned to the result of a boolean expression containing either, non
erased variables with erasure policies over them, or variables that
depend on variables with erasure policies over them. This boolean
expression guards a conditional (or while loop) statement so that
such assignment is executed in D1 and not in D2. Then this case
is perfectly similar to case (2)(b) above, and the result follows.

�
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We conclude that strong erasure implies erasure as given by the following
result.

Theorem 9 (Strong Erasure Soundness). Given a Java program PJava with the
erasure policy vari: Li↗L′i , if PJava strongly complies with this erasure policy
(Definition 8), then PJava complies with this erasure policy (Definition 7).

Proof. (By contradiction) Assume that program PJava complies with the strong
erasure policy and also that PJava does not comply with the erasure policy.
Since PJava complies with the strong erasure policy, for every extended ini-
tial state S tE and for its corresponding final program state S tE′ given by
〈PJava, S tE〉 7→∗JavaE 〈S tE′〉, we have that, for all var ∈ Vars(PJava), either
S tE′[var] = 〈Val, Lab,∅〉, or S tE′[var] = 〈Val, High, Low ↗ High〉, for a
value Val and Lab ∈ {Low, High, Low � High, High � Low}. By Lemma 8
and the assumption that PJava does not comply with the erasure policy we have
that either, S tE′[var] = 〈Val, Low � High, Low ↗ High〉, or S tE′[var] =

〈Val, Low � >, Low ↗ >〉, or S tE′[var] = 〈Val, Low � >, High ↗ >〉, or
S tE′[var] = 〈Val, High � >, High ↗ >〉 for a value Val, hence PJava does
not comply with the strong erasure policy, contradicting the hypothesis.

�

In other words, the above result allows us to transform erasure into a
stronger, safety property in the extended semantics. Obviously, we are not
able to certify the security of all of the programs that are secure with erasure.
For instance, the code of method secure in Example 22 cannot be verified
by our technique neither by the type system of [Hunt and Sands, 2008].

Example 22. Consider the following Java program adapted from [Hunt and
Sands, 2008] and semantically equivalent to Example 20, but with only one
High–labeled variable.

class Testclass {

int xh; int yl; int zl;

//@ setLabel(xh, High);

public void secure(){//@ erase(zl,Low,High);

xh=xh+yl+zl;

yl=yl+2+zl;

yl=yl-zl;

zl=0;}

}

Apparently, there is a direct flow from variable zl to variable yl in two
assignment statements of the method secure. However for any execution,
when method secure ends, the value of variable yl coincides with its own
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value before the execution of method plus 2 so that the variable yl does not
depend on the variable zl. According to Definition 7, the program satisfies
the erasure policy. However, we cannot prove it by using our notion of strong
erasure since the assignments and “yl = yl + 2 + zl;” and “yl = yl − zl;”
assigns the label 〈Low � High, Low↗ High〉 to the variable yl.

Note that this is not a limitation of our method but a simple consequence
of the undecidability of erasure, and affects any erasure analysis technique
including those based on type inference [Hunt and Sands, 2008].

If we want to analyse non–interference with erasure, we have to use our
stronger notion of non–interference as a safety property of Section 6.3.1.

In our methodology, a program PJava complies with both, non–interference
and erasure policies if it complies with the two policies separately. The fol-
lowing result is inmediate.

Corollary 1 (Strong Erasure with Non–interference Soundness). A program
PJava is non–interferent (Definition 4) and secure with end-to-end erasure
(Definition 7), if it satisfies conditions of Definitions 5 and 8.

7.4 The extended abstract Rewriting Logic seman-
tics of Java for erasure

Finally, we develop an abstract version of the extended rewriting logic seman-
tics of Java developed in Section 7.3, which we describe by the rewrite theory
RJava# = (ΣJava# , EJava# , RJava#), EJava# = ∆Java# ] BJava# and its corresponding
→Java# rewriting relation. As in Section 6.4, our approach for the abstract Java
semantics consists in modifying the original theory RJavaE (taking advantage
of its modularity) by abstracting the domain (Labels ∪ Con f LabChange) ×
EraLabels, and introducing approximate versions of the Java constructions
and operators tailored to this domain. Intuitively, this means that we simply
get rid of the values in the abstract semantics, and use only their confiden-
tiality and erasure labels as the abstract values instead [Alba-Castro et al.,
2010b]. The abstract values are pairs of labels, the confidentiality level label
and the erasure label, while in the abstract semantics for non–interference the
abstract values are single labels: the confidentiality level labels.

The abstract semantics is mainly a straightforward extension of the ex-
tended semantics. The only difference is that any set of equations that be-
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rl k( (LabVal, EraVal) -> (if(S,S’) -> K)) lenv(CL,CEraLab)

=> k(S -> K) lenv(CL join LabVal, CEraL join EraVal) .

rl k( (LabVal, EraVal) -> (if(S,S’) -> K)) lenv(CL,CEraL)

=> k(S’ -> K) lenv(CL join LabVal, CEraL join EraVal) .

Figure 7.13: Abstract rules for the if-then-else statement.

come non confluent (because they have the same left-hand side in the abstract
semantics) is transformed into rules, as we did in Section 6.4 for abstractly
analyse non–interference. The abstract rules associated to the equations of the
extended semantics of the if-then-else statement are shown in Figure 7.13.
Note that these rules are very similar to the rules of the if-then-else state-
ment for abstractly analyse non–interference, shown in Figure 6.22 in Section
6.4. However, here the rules set both, the confidentiality level and the erasure
label of the context.

By abuse, we denote the abstraction of a rule α({l}) → α({r}) by α({l} →
{r}). PJava denotes the sort of Java programs PJava (i.e. PJava ∈ PJava).

Definition 9 (Abstract rewriting). We define the abstract rewriting relation
for erasure→Java#⊆ (PJava × ℘(StateE))× (PJava × ℘(StateE)) by 〈PJava1 , S S t1〉

→Java# 〈PJava2 , S S t2〉 if ∃u ∈ S S t1,∃v ∈ S S t2 s.t. 〈PJava1 , u〉 →JavaE 〈PJava2 , v〉.

Note that this applies to S S t1 = α({u}) and S S t2 = α({v}), given u ∈ α({u})
and u ∈ α({u}). We denote by→∗Java# the extension of→Java# to multiple rewrite
steps.

Our abstraction consists of transforming equations into rules and getting
rid of the value component of states as we did in Section 6.4. In order to guar-
antee that the abstract semantics correctly (over-)approximates the extended
semantics, we need to prove that:

1. The abstraction is correct regarding the relation between the concrete
and abstract domains of program states, based on the abstraction func-
tion α. This is done by proving that this abstraction function α and the
corresponding concretization function γ constitute a Galois insertion
[Cousot and Cousot, 1979; Cousot and Cousot, 2002; Cousot, 2004].
This result is formalized in Theorem 10 below.

2. All extended program traces have corresponding abstract program traces,
such that no extended program trace is disregarded. The transforma-
tion of a set of equations (which are confluent and terminating modulo
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axioms) into rules preserves the execution traces. The removal of the
value component of the states does not eliminate execution traces either.
This result is formalized in Theorem 11 [Alba-Castro et al., 2010b] (on
page 149). This theorem (and its proof) are very similar to Theorem 6
in Chapter 6.

The abstraction function α : ℘(StateE) → ℘(StateE) is a simple homo-
morphic extension to sets of states of the function α : Value × S ecLabels ×
EraLabels→ Value×S ecLabels×EraLabels, α({〈Val, SecLab, EraLab〉}) =

〈Value, SecLab, EraLab〉, where S ecLabels denotes the sort Labels∪
LabelChange. Given S ValueE ∈ ℘(Value × S ecLabels × EraLabels), i.e.
S ValueE = {〈Value, SecLab, EraLab〉} with SecLab ∈ {Low, High, Low �
High, High � Low}, EraLab ∈ {∅, Low ↗ High, Low ↗ >, High ↗ >},
α(S ValueE) = Value×{SecLab}×{EraLab}; note that all tuples of set S ValueE

have the same and unique confidentiality level, and erasure policy label w.r.t.
the confidentiality level and erasure policy label of the corresponding vari-
able; we denote the set Value×{SecLab}×{EraLab} ∈ ℘(Value×S ecLabels×
EraLabels) by #〈SecLab, EraLab〉, such that α({〈Val, SecLab, EraLab〉}) =

#〈SecLab, EraLab〉; this means, for instance, that #〈High, Low↗ High〉 de-
notes α({〈Val, High, Low↗ High〉}).

The corresponding concretization function γ : ℘(StateE) → ℘(StateE),
is the homomorphic extension to sets of states of the function γ : ℘(Value ×
S ecLabels × EraLabels) → ℘(Value × S ecLabels × EraLabels), given
S S ecLabel ∈ ℘(Value × S ecLabels × EraLabels) such that S S ecLabel =

Value×{SecLab}× {EraLab}, γ(S S ecLabel) = S S ecLabel; γ(S S ecLabel) =

Value×{SecLab}×{EraLab}, e.g. γ(#〈SecLab, EraLab〉) = #〈SecLab, EraLab〉,
for instance, γ(#〈High, Low↗ High〉) = Value × {High} × {Low↗ High}.

Theorem 10. The abstraction function α : ℘(State) → ℘(State) (or α :
℘(State)→State#) and the corresponding concretization function γ : ℘(State)
→ ℘(State) (or γ : State# → ℘(State)) satisfy that, for all S ∈ ℘(State) and
S # ∈ State#, it holds α(S ) v S # if and only if S ⊆ γ(S #),

Proof. In order to prove that the functions α and γ are such that 〈α, γ〉 is a
Galois insertion, we can prove that the α and its corresponding γ functions
satisfy the monotonicity, deflationary, and non-information loss properties
[Cousot and Cousot, 1979; Cousot and Cousot, 2002; Cousot, 2004], at the
variable level.
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The proof is perfectly analogous to the proof of Theorem 5. That proof is
extended here in order to consider the new erasure policy labels.

�

This result can be extended homomorphically to α : ℘(StateE) →
℘(StateE), so that the pair of functions 〈α, γ〉 constitutes a Galois insertion.

Theorem 11. If 〈PJava, S tE
1 〉 →

∗

JavaE 〈S tE
2 〉, then there exists S S t3 ∈ ℘(StateE)

s.t. 〈PJava, α({S tE
1 })〉 →

∗

Java# 〈S S t3〉 and S tE
2 ∈ S S t3.

Proof. The proof is done by induction on the length n of the extended program
trace or rewriting sequence denoted by→∗JavaE , and is very similar to the proofs
of Theorems 2 and 6.

�

Given that the abstract semantics correctly (over-)approximates the ex-
tended semantics, we have to prove that our abstract erasure certification tech-
nique is sound, i.e. that abstract erasure implies extended concrete erasure.
This is proven in Theorem 12, as follows [Alba-Castro et al., 2010b].

Theorem 12 (Abstract Strong Erasure Soundness). Given a Java program
PJava, PJava complies with the erasure policy (Definition 7) if for all S S t1 ∈

℘(StateE) s.t. 〈PJava, S S t1〉 7→
∗

Java# 〈S S t2〉, for all S t ∈ S S t2, and for all
variables var ∈ Vars(PJava), either S t[var] = 〈Val, Lab,∅〉, or S t[var] =

〈Val, High, Low↗ High〉, for a value Val and a label Lab ∈ {Low, High, Low �
High, High � Low}.

Proof. By contradiction. Let us assume that PJava does not comply with
the erasure policy i.e., there exists S tE

1 with 〈PJava, S tE
1 〉 7→

∗

JavaE 〈S tE
2 〉 and

var ∈ Vars(PJava) s.t. either S tE
2 [var] = 〈Val, Low � High, Low ↗ High〉,

or S tE
2 [var] = 〈Val, Low � >, Low ↗ >〉, or S tE

2 [var] = 〈Val, Low �
>, High ↗ >〉, or S tE

2 [var] = 〈Val, High � >, High ↗ >〉 for a value
Val. Since 〈PJava, S tE

1 〉 7→
∗

JavaE 〈S tE
2 〉, by Theorem 11, there exists S S t3 ∈

℘(StateE) s.t. 〈PJava, α({S tE
1 })〉 →

∗

Java# 〈S S t3〉 and S tE
2 ∈ S S t3. This con-

tradicts the assumption that for all S t ∈ S S t3, and for all variables var ∈
Vars(PJava), either S t[var] = 〈Val, Low,∅〉, or S t[var] = 〈Val, Low � High,∅〉,
or S t[var] = 〈Val, High,∅〉, or S t[var] = 〈Val, High � Low,∅〉, or S t[var] =

〈Val, High, Low↗ High〉 for a value Val .
�
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Given that the abstract semantics correctly (over-)approximates the ex-
tended semantics, we have to demonstrate that the abstract erasure with non–
interference certification approach is sound, i.e. that abstract erasure with
non–interference implies extended concrete erasure with non–interference.
This statement is proven in Theorem 13, as follows [Alba-Castro et al.,
2010b].

Theorem 13 (Abstract Strong Erasure with Non–Interference Soundness).
Given a Java program PJava, PJava in non–interferent (Definition 4) and com-
plies with the erasure policy (Definition 7) if for all S S t1 ∈ ℘(StateE) s.t.
〈PJava, S S t1〉 7→

∗

Java# 〈S S t2〉, for all S t ∈ S S t2, and for all variables var ∈
Vars(PJava), either S t[var] = 〈Val, Lab,∅〉, or S t[var] = 〈Val, High, Low ↗
High〉 for a value Val and a label Lab ∈ {Low, High,
High � Low}.

Proof. By contradiction. Let us assume that PJava does not comply with non–
interference with the erasure policy i.e., there exists S tE

1 with 〈PJava, S tE
1 〉 7→

∗

JavaE

〈S tE
2 〉 and var ∈ Vars(PJava) s.t. either S tE

2 [var] = 〈Val, Low � High,∅〉, or
S tE

2 [var] = 〈Val, Low � High, Low ↗ High〉, or S tE
2 [var] = 〈Val, Low �

>, Low ↗ >〉, or S tE
2 [var] = 〈Val, Low � >, High ↗ >〉, or S tE

2 [var] =

〈Val, High � >, High ↗ >〉 for a value Val. Since 〈PJava, S tE
1 〉 7→

∗

JavaE

〈S tE
2 〉, by Theorem 11, there exists S S t3 ∈ ℘(StateE) s.t. 〈PJava, α({S tE

1 })〉 →
∗

Java#

〈S S t3〉 and S tE
2 ∈ S S t3. This contradicts the assumption that for all S t ∈ S S t3,

and for all variables var ∈ Vars(PJava), either S t[var] = 〈Val, Low,∅〉, or
S t[var] = 〈Val, High,∅〉, or S t[var] = 〈Val, High � Low,∅〉, or S t[var] =

〈Val, High, Low↗ High〉 for a value Val .
�

The following example illustrates the mechanization of the Java erasure
with or without non–interference abstract analysis [Alba-Castro et al., 2010b].

Example 23. Consider Example 20 together with the constructor method:
public Eraserclass(int xp,int yp,int zp) {

/*@ setLabel(xp,High); setLabel(yp,High);@*/

xh =xp; yh =yp; zl =zp; }

and the main class:
class Erasure3 {

static Eraserclass t = new Eraserclass(3, -3, 0);

public static void main(String[] args) {

t.setzl( 6);

t.mE3(); } }
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In the search command below, we ask for all possible abstract final pro-
gram states.
search in PGM-SEMANTICS-ABSTR :

java((preprocess(EX5-MAUDE) noType . ’main <new string [i(0)]> noVal)) =>! JS:JavaState .

Solution 1 (state 0)

store(...[l(2),o(f([t(t(’Eraserclass)),f([’xh,l(6)] [’yh,l(7)]

[’zl,l(8)])])...),0]..[l(6),High,0] [l(7),High,0] [l(8),Low,0])..)

No more solutions.

After the execution of the program “Erasure3. java”, the search command
returns that only one extended final state of the Java program is possible,
which has the values High, High, and Low, in the memory locations l(6),
l(7), and l(8) which correspond to the variables xh, yh, and zl, respectively.
These final variable values show that the erasure policy is fulfilled.

The first work that addressed information erasure from an information
flow perspective was [Chong and Myers, 2005], where erasure is combined
with downgrading (declassification) policies. Erasure policies were defined
in [Chong and Myers, 2005; Chong and Myers, 2008] with conditions (i.e.
and var: L1

c↗ L2), and are enforced only when condition c is satisfied during
program execution. In [Chong and Myers, 2008], the Jif programming lan-
guage that extends Java source was further extended in order to handle erasure
and declassification. In this thesis, we provide a less precise but simpler and
convenient alternative to explicit conditions. Both papers [Chong and My-
ers, 2005; Chong and Myers, 2008] analyzed erasure with non–interference
whereas we can analyze erasure with or without non–interference. Another
advantage of our proposal is that it can be applied to real Java programs by just
inserting the code annotations that express the required policies. Moreover,
we do not need runtime policy enforcement since our hybrid policy verifica-
tion methodology is based on static as well as dynamic mechanisms. Finally,
we provide an effective implementation that supports program certification.

A static analysis approach to enforce erasure was proposed in [Hunt
and Sands, 2008], which extends the flow sensitive type system for non–
interference of [Hunt and Sands, 2006] to enforce erasure with non–interfe-
rence. This work introduces erasure with and without non–interference for
terminating deterministic programs with input and output channels. It also
introduces a block structured input command “input x: a ↗ b in C”,
where x is a variable, a is an input channel with confidentiality level a, b is a
higher confidentiality level, and C is a command. This local end-to-end era-
sure condition means that command C should erase the input x obtained from
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channel a to the level b. Local erasure with non–interference is formulated
as a reclassified non–interference condition for deterministic and terminat-
ing programs without input and output channels Then, this local condition is
extended to achieve global erasure with non–interference. However, this pro-
posal does not enforce erasure without non–interference, nor includes proce-
dure neither function invocations, and it does not consider high guarded loops,
and for the best of our knowledge, it has not been implemented yet.

In [Hansen and Probst, 2006], the notion of non–interference was ex-
tended to consider a simple erasure policy to be applied to the Carmel Core
language, an abstract version of the Java Card bytecode (a subset of the Java
bytecode). The simple erasure policy Low↗High indicates that the erasure
of a whole level, instead of some program variables, should be done before
the program ends its execution. They analyse erasure as an extension of non–
interference but do not consider the erasure of High–labeled variables. More-
over, they do not consider how to verify nor enforce this erasure policy.

The work [L. Jiang and Pan, 2007] studied erasure in multi-threaded pro-
grams written in the prototypical MWL language. The considered erasure
policies state the erasure of program variables as an upgrading of low–labeled
variables into high–labeled ones. Erasure is observed as an extension of non–
interference, namely as a reclassification of some low-labeled variables but
the erasure of High–labeled variables is not considered. As far as we know,
this proposal is not yet implemented.

As suggested in Chapter 6 in case of non–interference policies, equational
abstractions [Meseguer et al., 2003] can be used to specify the abstract ex-
tended Java semantics for erasure policies with the same advantages and dis-
advantages mentioned there.

7.5 Experimental evaluation

The certification methodology presented here has been implemented in Maude:
the certification system JavaPCC (8) can verify non–interference alone and
erasure with or without non–interference. The system is a new, totally re-
designed implementation of the technique of Chapter 6 in order to (i) deal
with erasure, (ii) improve both functionality and performance, and (iii) make
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it easier to use and extend. Recall that JavaPCC is publicly available on-line2.
The prototype system offers a rewriting-based program certification service,
which is able to analyze confidentiality global program properties related to
non–interference and erasure.

The Java operational semantics in rewriting logic that we have used is
modular and has 2635 lines of code in 4 files [Farzan et al., 2007]. We have
modified less than 25 of the 1527 lines of code in the main file of the original
Java semantics. The abstract operational Java semantics was developed as a
source–to–source transformation in rewriting logic and consists of 419 lines
of extra code with 123 equations and 8 rules.

ProgramsSourceSourceFull Cert.Red. Cert.Size Rel. Full Cert. Red. Cert.
Size Cicl. Size Size (Red. / Gen. TimeGen. Time
LOC Comp. (Kb) (Kb) Source) (ms) (ms)

19 90 3 2991.911 14.371 0.006 1765 88
11 34 2 1377.158 6.253 0.04 1156 313
20 51 1 1017.592 6,253 0.004 407 22
30 46 2 1127.606 10.373 0.007 581 53
31 88 3 2820,719 18,86 0.008 1680 97
32 47 1 1020.961 6,253 0.004 437 35
29 117 192 20009.28 389.62 0.111 30409 1778

Table 7.1: Certificate sizes and certification times.

We have benchmarked our implementation including the examples used
in this Chapter. In Table 7.1, we study three key points for the practicality of
our approach: the size of the reduced certificate versus the Java source code,
the size of the reduced certificate versus the size of the full certificate and
the relative efficiency of producing certificates. The experiments have been
performed on a MacBook with 2 Gb RAM.

The columns “Source Size LOC”, and “Source Cicl. Comp.”, show two
source metrics, namely the lines of source code and the cyclomatic complexity
(number of paths), respectively. The two columns for “Full Cert.” show
the size in Kbytes (similarly for the two columns of “Red. Cert.”) and the
generation time, respectively, for the full certificates. Running times are given
in milliseconds and were averaged over a sufficient number of iterations.

Programs 19 and 20 are respectively the ones of Examples 19 and 20 pre-
viously introduced in this Chapter. Program 11 is the interferent Example 11

2 The JavaPCC system is publicly available on-line at http://zenon.dsic.upv.es:
8080/certificateX/.

http://zenon.dsic.upv.es:8080/certificateX/
http://zenon.dsic.upv.es:8080/certificateX/
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of Chapter 6. Program 30 (given in the Appendix) is adapted from [Hunt and
Sands, 2008] and does not comply with the required erasure policy. Program
31 (given in the Appendix) is a version of Example 19 that does not erase the
required variables either. Program 32 (given in the Appendix) is adapted from
[Hunt and Sands, 2008] and it does comply with its erasure policy. Program
29 (given in the Appendix) includes three methods that invoke nine simple
example methods (seven interferent methods and two non-interferent ones)
taken from [Sabelfeld and Sands, 2009; Warnier, 2005]. Since Programs 30
and 31 are counterexamples, the figures correspond to the generation time and
size of the abstract traces. The certificates of Programs 29 and 19 correspond
to the full annotated versions.

Note the correlation between both the source size and the cyclomatic com-
plexity, with the size and generation time of the certificates. The experiments
are very encouraging since the reduction in size of the certificate is very sig-
nificant (at least two orders of magnitude in all cases), the quotient “Red.
Cert. Size/Full Cert. Size” ranging from 1.94% in Example 29 to 0.45% for
Example 11. When the time employed to generate the full and reduced cer-
tificates is compared, the reduced certificate generation time takes only 5.8%
of the full certificate generation time for the biggest source size of the full
annotated version of Example 29.



Chapter 8

The JavaPCC Certification
Environment

This chapter presents the proof of concept derived from the methodology
introduced in this thesis. The proof of concept consists of two Web tools.
The tools allow one to certificate properties of Java source code by providing
appropriate abstract domains for different safety properties while hiding the
technical details of the method to the user. The tools has been devised to be
easily extendable to other properties and domains. Both tools can generate the
three different certificates described in Chapter 4. The full certificate includes
all Maude equations and rules (together with the corresponding matching sub-
stitutions) used in the rewriting proof. According to the different treatment of
rules and equations in Maude, an extremely reduced rules certificate can be
delivered by just recording the rewrite steps given with the rules, while the
rewritings with the equations are omitted. This is justified by the fact that,
in Maude, reducing with equations is deterministic (under the assumptions of
confluence and termination) and also because Maude is very efficient at doing
it. Finally, the reduced labels certificate only records the labels of the applied
rules.

The Web tool introduced in [Alba-Castro et al., 2009b] implements the
abstract certification technique of Chapter 5 that considers user defined inte-
ger arithmetic type safety properties of Java integer functions. This tool can
also certify Java methods that obey input–output data non–interference user
defined policies [Alba-Castro et al., 2009a]. The tool is publicly available at
http://zenon.dsic.upv.es:8080/rewritingLogic/control The tool
automatically generates the Maude encoding of the abstraction, as well as the
search command containing the initial state that includes the wrapped, sup-
plemented Java program, together with the final state, which depends on the
expected method outcome.

A snapshot of this Web tool is shown in Figure 8.1. The snapshot shows a
non–interference example and its corresponding reduced labels certificate.

http://zenon.dsic.upv.es:8080/rewritingLogic/control
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Figure 8.1: Web interface snapshot.

A completely redesigned, easy to use Web tool was developed in [Alba-
Castro et al., 2010c] that implements the abstract certification technique for
confidentiality of complete Java classes introduced in Chapters 6 and 7, and
applies to certify non–interference and erasure policies in sequential, deter-
ministic Java programs. The certification system JavaPCC can verify non–
interference alone and erasure with or without non–interference. The system
is a new, totally redesigned implementation of the technique of Chapter 6 in-
troduced in [Alba-Castro et al., 2010a] in order to (i) deal with erasure, (ii)
improve both functionality and performance, and (iii) make it easier to use and
extend. The system is publicly available at http://zenon.dsic.upv.es:
8080/certificateX/.

Figure 8.2 shows the JavaPCC main page, with an example code that com-
plies with the JML-like annotated non–interference policy. The Java code can
be loaded from a file containing the Java program and the JML-like anno-
tations, or by selection of one of several predefined examples. The security
certificate (either full or reduced) is automatically generated by the tool, by
clicking on the Certify! button. Figure 8.3 shows a full certificate snapshot
and the corresponding reduced rules certificate snapshot.

The main features of the JavaPCC Web tool are:

http://zenon.dsic.upv.es:8080/certificateX/
http://zenon.dsic.upv.es:8080/certificateX/
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Figure 8.2: JavaPCC main page snapshot.

• It is implemented in the Maude programming language, which imple-
ments rewriting logic, and provides a formal analysis infrastructure
(such as state-space breadth-first search) with competitive performance
(see [Farzan et al., 2004a]). Note that Maude could also be used as the
infrastructure required for the proof validation process at the consumer
side. Actually, it suffices to check that each abstract rewriting step in
the certificate is valid and no other valid rewritings have been disre-
garded, which essentially amounts to using the matching infrastructure
within the rewriting engine. This is simple, trustworthy, and based on
well-understood engineering and mathematical principles.

• The Java operational semantics has 2635 lines of Maude code
[Şerbănuţă et al., 2009]. The abstract operational Java semantics was
developed as a source–to–source transformation and consists of 419
lines. If the code consumer has to assume that our Java abstract seman-
tics is trusted, but not the original Java semantics, neither the standard
reduction engine, then, in our current system, the trusted computing
base (TCB)1 is less than a sixth of the size of the original Java semantics

1Recall that the TCB is the part of the code that is used to check if other code can be
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Figure 8.3: Full and reduced rules certificate snapshots.

and even much smaller than other verification and certification systems
-see PCC Section 1.1.1, numeral 3 on page 6 and FPCC Subsection on
page 10).

• In order to automate the processing of JML-like clauses, the tool uses
the Javacc compiler construction tool together with a subset of the JML
grammar. Then it generates the encoded Maude abstraction and the
Maude search command that contains the Java program that includes
the Java operators corresponding to the erase annotations if any. It
also uses the Java wrapper program that is available at [Farzan et al.,
2007] to transform the supplemented Java program into a Maude term
to build the initial state.

• The Web interface allow us to both make the abstract certificate tech-
nique publicly available on-line and to hide the technical details to every
possible user.

safely run, and that is assumed it can be trusted.
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If the code consumer does not trust the original Java semantics, neither
the standard reduction engine (or the Maude interpreter), we have to include
them into the TCB. Then, the size of the TCB of our framework for source
level certificate validation is increased, including: i) the size of the Maude
core interpreter (the Maude prelude has 2384 lines of code and the Maude
core 102.271 lines of code); ii) the size of the original Java semantics (2635
lines of code); and the size of our abstract Java semantics (419 lines of code).
Then, the TCB total size (at source level) is 107.709 lines of code.

In order to safely run the executable code that corresponds to the certi-
fied source code, the code consumer has to use a reliable Java infrastructure,
i.e. a compiler that translates Java source code to executable bytecode, and
the JVM that corresponds to her computing platform. This means that the
code consumer needs, either to trust the corresponding available compiler,
i.e. to include this compiler into the TCB, or to use a verified compiler (i.e.
a compiler that produces executable code that is semantically equivalent to
the source program). In the case of the C language, there are some verified
and certified compilers for subsets of the C language that could be used (for
instance the Compcert compiler [Leroy, 2009]). However, as far as we know
there is no certified compiler for the full Java language. Moreover, since there
exists no certified Java Virtual Machine for any platform, we need to include
into the TCB the JVM itself as in [Appel and Wang, 2002; Franz et al., 2003;
Pirzadeh and Dubé, 2008b]. This is also the case of the PCC frameworks that
certify bytecode of [Wildmoser et al., 2005; Beringer et al., 2003; Gilmore
and Prowse, 2005; Chander et al., 2005b; Besson et al., 2005] (see Sections
1.1.1, and 1.1.2).

Let’s talk about including the Java compiler and the JVM into the TCB.
The Java SDK compiler consists of 32.000 lines of code [Appel and Wang,
2002]. The size of the JVM, which was measured by Appel and Wang [Appel
and Wang, 2002], ranges from 54.200 to 229.000 lines of code. The standard
classic JVM version for Java 2 version 1.3.0 with the non-optimizing compiler
has 54.200 lines of code 2 and it does not include the security API. If we
include the standard security API, this standard security JVM infrastructure
has 87.200 lines of code [Appel and Wang, 2002]. The standard JVM version
for Java 2 version 1.3.0 with the optimizing compiler (HotSpot) has 229.100
lines of code, and the corresponding secure JVM has 257.600 lines of code

2The safe JVM includes the just-in-time compiler, the byte-code verifier, the linker, the
garbage collector, and the core run-time system
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[Appel and Wang, 2002]. Therefore, when we include the Java infrastructure
into the TCB, the size of our TCB increases in 32.000 lines of code because of
the compiler, and an additional 87.000 (or 257.600) lines of code increment
because of the JVM. Then, the total size of the TCB at the bytecode level is
226.909 (or 397.309) lines of code. The source level component (the Maude
interpreter, the standard Java semantics and our abstract semantics) of this
TCB, amounts for 47% (or 27%) of the TCB total size.

We benchmarked the system by using several program examples available
within the package distribution (most of them have been documented in this
thesis). As we showed in Sections 5.3, 6.5 and 7.5, the experiments are very
encouraging, since they show that the reduction in size and generation time
of the certificates is very significant in all cases.



Chapter 9

Conclusions

As far as we know, this thesis develops the first sound and fully automatic cer-
tification technique that applies to the verification of sequential deterministic
source Java code, regarding safety and confidentiality (security) properties.
Our methodology relies on an abstract extended semantics for Java written
in rewriting logic that can be model checked in Maude by using Maude’s
breadth-first search space exploration. This technique can certify some sim-
ple integer arithmetic properties and non–interference of Java function meth-
ods. It can also certify non–interference and erasure with and without non–
interference of complete Java programs.

The proposed methodology features quality attributes (notably reliability
and security, but also good performance) through rigorous mechanisms which
integrate a wide range of well-established programming language techniques
(abstract interpretation, program semantics, meta-programming, etc). Our ap-
proach is based on the rewriting logic semantics specification of the full Java
1.4 language given in [Farzan et al., 2007; Şerbănuţă et al., 2009]. Since
we inherit from Maude and the Java rewriting semantics its competitive per-
formance (see [Farzan et al., 2004a]), we have a scalable technique that can
be further refined to certifying industrial complex Java programs with excep-
tions and threads. Besides, different safety policies can be defined by using
different (abstract) terms denoting the states that should not be reached. Nev-
ertheless, that semantics does not support most Java API classes, and thus, the
analysis and verification of real Java programs that use the Java API is not yet
possible.

The thesis provides a program-level extended semantic definition of Java
arithmetic properties, as well as non–interference, and erasure with and with-
out non–interference, together with a corresponding abstract notion of the
considered properties, and a rigorous connection between the approximated
abstract properties and the model that we consider. In the extended seman-
tics, the considered properties (e.g. confidentiality) become safety properties,
and we formally demonstrate that the safety property in the extended seman-
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tics entails the corresponding semantic confidentiality (security) property in
the standard Java semantics, i.e. the confidentiality analysis is proved sound.
The abstract over-approximated semantics is also proved sound, as well as the
considered abstract confidentiality properties.

For both kinds of properties considered in this thesis (simple integer arith-
metic and confidentiality), the technique is only an approximation (i.e. in-
complete), as shown by some of the examples considered before. However,
this is not a limitation of our approach but a natural consequence of the un-
decidability of the considered properties. In the case of integer arithmetic,
the incompleteness can be sometimes reduced by refining the abstraction at
the program state level, for instance by considering relational abstraction of
program variables as shown in Section 5.2.2. On the other hand, regarding
confidentiality properties, the incompleteness could be reduced by refining
the abstraction at the program trace level, i.e. by recording not only the initial
and final variable confidentiality labels but also the intermediate ones.

Currently, the abstract rewriting logic Java computations are recorded in
order to construct the certificate that ensures that the program satisfies the
desired property. The certificates are abstract rewriting sequences that con-
tain the rewriting steps, together with the applied equations and rules of the
abstract Java semantics. The JavaPCC system can generate full certificates
that include all rewrite steps, or reduced certificates that omit the matching
substitution and applied rules. The system was benchmarked by using several
program examples. The experiments are very encouraging, and show that the
reduction in certificate size and generation time is very significant in all cases.

Certificates are encoded as rewriting sequences which can be checked in
the abstract Java semantics written in Maude at the consumer side by stan-
dard reduction, thus providing support for Proof-Carrying Code, at the source
code level. By turning a potentially infinite state space of a Java program into
a finite abstract space, the abstract semantics not only makes the approach fea-
sible, but also greatly reduces the size of the certificates that must be checked
at the consumer’s end.

While most PCC proposals deliver certificates for assembler code or byte-
code, i.e. executable code, our certificates are produced at the source level
code, similarly to the ACC proposal of [Albert et al., 2005a] that certifi-
cates Ciao programs at the source code level too (see Section 1.1.2). Also the
Tinman framework of [Mok and Yu, 2002a; Mok and Yu, 2002b] delivers
resource consumption certificates at the source level for C programs (see Sec-
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tion 1.1.1), and the code synthesis proposals [Whalen et al., 2002; Schumann,
2003; Denney and Trac, 2008; Vargun, 2006; Alpuente et al., 2010a] gener-
ate certificates at source code level as well, for the high-level programming
languages C, C++, Oz and Maude (see Section 1.1.5).

Since the Maude interpreter (or an standard rewriting logic engine) and
the original Java semantics both are not certified, they have to be included into
the TCB that the code consumer has to use in order to check our source level
delivered certificate. The inclusion of the Maude interpreter in the TCB is
comparable to other proposals that include the interpreter or compiler of some
high-level language. For instance, the certified program analysis in [Chang
et al., 2006; Chlipala, 2007] includes the Ocaml compiler (see Section 1.1.3)
and the code synthesis of [Alpuente et al., 2010a; Alpuente et al., 2010b]
includes the Maude interpreter (see Section 1.1.5). In order to avoid the use
of the full Core Maude interpreter (or an standard rewriting logic engine) a
simple standard reduction engine could be developed by the code consumer.
This simpler reduction engine will reduce the TCB.

We would like to emphasize that this certification methodology can also
be extended to other programming languages by simply replacing the concrete
semantics by a semantics for the programming language at hand. In particu-
lar, the developed technique can be extended to analyze bytecode programs in
order to deliver certificates at bytecode level. This way, we could avoid trust-
ing the available Java compilers, or to develop a verified and certified Java
compiler (i.e. a compiler that produces executable code that is semantically
equivalent to the source program).

Currently, our approach cannot deal with interferent programs that have
object pointer aliasing (see Section 6.5). As future work, we plan to extend the
confidentiality analysis in this thesis in order to consider non–interference of
programs with pointer aliasing, exceptions and threads. Also, it could be fur-
ther extended for more relaxed non–interference policies in order to support
the release or downgrading of some secret data, i.e. declassification [Sabelfeld
and Sands, 2009]. The analysis can also be improved by considering more so-
phisticated confidentiality attackers which would observe not only part of the
initial and final program states, but also intermediate states, i.e. object states
immediately before and after any invocation of its public methods [Zanardini,
2007].

To the best of our knowledge, this is the first sound implemented frame-
work that effectively supports verification and certification of non–interference
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and erasure policies of sequential non-deterministic Java programs.
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Why/Krakatoa/Caduceus platform for deductive program verification, in
19th International Conference on Computer Aided Verification, Vol. 4590
of Lecture Notes in Computer Science, pp 173–177, Springer, Berlin, Ger-
many

[Flanagan et al., 2002] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson,
G., Saxe, J. B., and Stata, R.: 2002, Extended static checking for Java,
in Proceedings of the ACM SIG- PLAN 2002 Conference on Programming
language design and implementation, PLDI 2002, pp 234–245, ACM, New
York, NY USA

[Focardi et al., 1994] Focardi, R., Gorrieri, R., Focardi, R., and Gorrieri, R.:
1994, A classification of security properties for process algebras, Journal
of Computer Security 3, 5

[Francesco and Martini, 2007] Francesco, N. D. and Martini, L.: 2007,
Instruction-level security typing by abstract interpretation, International
Journal of Information Security 6(2-3), 85

[Franz et al., 2003] Franz, M., Chandra, D., Gal, A., Haldar, V., Reig, F., and
Wang, N.: 2003, A portable virtual machine target for Proof-Carrying
Code, in Proceedings of the 2003 workshop on Interpreters, virtual ma-
chines and emulators, IVME ’03, pp 24–31, ACM, New York, NY, USA

http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java


Bibliography 177

[Giacobazzi and Mastroeni, 2004] Giacobazzi, R. and Mastroeni, I.: 2004, Ab-
stract non-interference: Parameterizing non-interference by abstract inter-
pretation, in Proc. of the 31st ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages, POPL’04, pp 186–197, ACM, New
York, NY, USA

[Gilmore and Prowse, 2005] Gilmore, S. and Prowse, M.: 2005, Proof carrying
bytecode, Electronic Notes in Theoretical Computer Science 141(1), 3

[Goguen and Meseguer, 1982] Goguen, J. A. and Meseguer, J.: 1982, Security
policies and security models, in IEEE Symposium on Research in Security
and Privacy, pp 11–20, IEEE Computer Society, Los Alamitos, CA USA

[Grandy et al., 2008] Grandy, H., Bischof, M., Stenzel, K., Schellhorn, G., and
Reif, W.: 2008, Verification of Mondex Electronic Purses with KIV: From
a security protocol to verified code, in FM 2008: Formal Methods, Vol.
5014 of Lecture Notes in Computer Science, pp 165–180, Springer Berlin
/ Heidelberg, Germany

[Grossman and Morrisett, 2001] Grossman, D. and Morrisett, G.: 2001, Scal-
able certification for typed assembly language, in Third International
Workshop on Types in Compilation, TIC 2000, Montreal, Canada, Septem-
ber 21, 2000, Selected Papers, Vol. 2071 of Lecture Notes in Computer
Science, pp 117–146, Springer-Verlag, Berlin Heidelberg, Germany

[Hamid, 2005] Hamid, N.: 2005, A Syntactic Approach to Foundational
Proof-Carrying Code, Ph.D. thesis, Yale University

[Hamid et al., 2002] Hamid, N., Shao, Z., Trifonov, V., Monnier, S., and Ni, Z.:
2002, A syntactic approach to foundational proof-carrying code, in Logic
in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium
on, pp 89–100, IEEE Computer Society, Los Alamitos,CA USA

[Hamid et al., 2003] Hamid, N., Shao, Z., Trifonov, V., Monnier, S., and Ni, Z.:
2003, A syntactic approach to foundational proof-carrying code, Journal
of Automated Reasoning 31(3-4), 191

[Hamid and Shao, 2004] Hamid, N. A. and Shao, Z.: 2004, Interfacing Hoare
logic and type systems for foundational proof-carrying code, in Proc. 17th



178 Bibliography

International Conference on the Applications of Higher Order Logic The-
orem Proving (TPHOLs’04), Vol. 3223 of Lecture Notes in Computer Sci-
ence, pp 118–135, Springer-Verlag, Berlin Heidelberg, Germany

[Hansen and Probst, 2006] Hansen, R. and Probst, C.: 2006, Non-interference
and erasure policies for Java card bytecode, in Proc. 6th International
Workshop on Issues in the Theory of Security, WITS’06

[Harren and Necula, 2005] Harren, M. and Necula, G. C.: 2005, Using de-
pendent types to certify the safety of assembly code, in Static Analysis
Symposium (SAS 2005), No. 3672 in Lecture Notes in Computer Science,
pp 155–170, Springer-Verlag, Berlin Heidelberg, Germany

[Harren, 2007] Harren, M. T.: 2007, Dependent Types for Assembly Code
Safety, Ph.D. thesis, University of California, Berkeley

[Henzinger et al., 2002] Henzinger, T. A., Jhala, R., Majumdar, R., Necula, G.,
Sutre, G., and Weimer, W.: 2002, Temporal-safety proofs for systems code,
in Proceedings of the 14th International Conference on Computer Aided
Verification, CAV 2002, Vol. 2404 of Lecture Notes in Computer Science,
pp 526–538, Springer-Verlag, Berlin , Germany

[Hofmann and Jost, 2003] Hofmann, M. and Jost, S.: 2003, Static prediction of
heap space usage for first order functional programs (extended version), in
Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL’03, pp 185–197, ACM, New York, NY,
USA

[Hunt and Sands, 2006] Hunt, S. and Sands, D.: 2006, On flow-sensitive se-
curity types, in Conf. record of the 33rd symposium on Principles of pro-
gramming languages (POPL’06), pp 79–90, ACM, New York, NY USA

[Hunt and Sands, 2008] Hunt, S. and Sands, D.: 2008, Just forget it, the seman-
tics and enforcement of information erasure, in Proceedings of the Theory
and practice of software, 17th European conference on Programming lan-
guages and systems ESOP’08/ETAPS’08, Vol. 4960 of Lecture Notes in
Computer Science, pp 239–253, Springer-Verlag, Berlin Heidelberg, Ger-
many



Bibliography 179

[Jacobs et al., 2005] Jacobs, B., Pieters, W., and Warnier, M.: 2005, Statically
checking confidentiality via dynamic labels, in Proceedings of the 2005
workshop on Issues in the theory of security (WITS ’05 ), pp 50–56, ACM,
New York, NY, USA

[Janota et al., 2007] Janota, M., Grigore, R., and Moskal, M.: 2007, Reach-
ability analysis for annotated code, in Proceedings of the 2007 confer-
ence on Specification and verification of component-based systems: 6th
Joint Meeting of the European Conference on Software Engineering and
the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, SAVCBS ’07, pp 23–30, ACM, New York, NY, USA

[Jim et al., 2002] Jim, T., Morriset, G., Grossman, D., Hicks, M., Cheney, J.,
and Wang, Y.: 2002, Cyclone: A safe dialect of C, in USENIX Annual
Technical Conference, Monterey, CA, USA, pp 275–288

[Klein and Nipkow, 2006] Klein, G. and Nipkow, T.: 2006, A machine-checked
model for a Java-like language, virtual machine, and compiler, ACM Trans.
Program. Lang. Syst. 28, 619

[L. Jiang and Pan, 2007] L. Jiang, L. P. and Pan, X.: 2007, Handling infor-
mation release and erasure in multi-threaded programs, in Proc. IEEE
Int. Conf. on Computational Intelligence and Security, pp 824–828, IEEE
Computer Society, Los Alamitos, CA USA

[Leavens et al., 2006] Leavens, G., Baker, A., and Ruby, C.: 2006, Prelimi-
nary design of JML: A behavioral interface specification language for Java,
ACM SIGSOFT Software Engineering Notes 31, 1

[Leavens et al., 2008] Leavens, G. T., Poll, E., Clifton, C., Cheon, Y.,
Ruby, C., Cok, D., Müller, P., Kiniry, J., Chalin, P., and Zimmer-
man, D. M.: 2008, JML Reference Manual (DRAFT), Available at :
http://www.eecs.ucf.edu/∼leavens/JML/

[Leroy, 2009] Leroy, X.: 2009, Formal verification of a realistic compiler,
Communications of the ACM 52(7), 107

[Li et al., 2010] Li, Z., Zhuang, Z., Chen, Y., Yang, S., Zhang, Z., and Fan, D.:
2010, A certifying compiler for Clike subset of C language, pp 47–56,
IEEE Computer Society, Los Alamitos, CA, USA



180 Bibliography

[MacKenzie and Wolverson, 2004] MacKenzie, K. and Wolverson, N.: 2004,
Camelot and Grail: Resource-aware functional programming for the JVM,
in TFP 2004 Fifth Symposium on Trends in Functional Programming,
Ludwig-Maximilians University, Munich, Germany, Vol. 4, pp 29–46, In-
tellect

[Manna and Pnueli, 1995] Manna, Z. and Pnueli, A.: 1995, Temporal Verifica-
tion of Reactive Systems: safety, Springer-Verlag, New York, NY, USA
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é,

20
08

a]

A
ss

em
bl

er
x8

6
tr

an
s-

la
te

d
fr

om
C

lik
e

D
yn

am
ic

m
em

or
y

sa
fe

ty
,t

yp
e

sa
fe

ty

N
on

-t
ru

st
ed

:
C

od
e,

co
m

pi
le

r
Tr

us
te

d:
C

oq
pr

oo
fc

he
ck

er

H
oa

re
lo

gi
c,

se
pa

ra
-

tio
n

lo
gi

c,
th

eo
re

m
pr

ov
in

g

C
od

e
an

-
no

ta
tio

ns
(a

ss
er

-
tio

ns
)

C
er

tif
yi

ng
co

m
-

pi
le

r,
C

oq
pr

oo
f

ch
ec

ke
r

[L
ie

ta
l.,

20
10

]



196 Appendix A. Related work: a comparison

Ta
bl

e
A

.2
:I

m
pe

ra
tiv

e
C

an
d

C
+

+
L

an
gu

ag
es

.

L
an

gu
ag

e
Se

cu
ri

ty
po

lic
ie

s
A

ss
um

pt
io

ns
Fo

rm
al

is
m

Pr
oo

f
Te

ch
no

lo
gy

R
ef

er
en

ce
s

C
C

or
re

ct
ne

ss

N
on

-t
ru

st
ed

:
C

od
e

Tr
us

te
d:

M
od

el
ch

ec
ke

r,
th

e-
or

em
pr

ov
er

B
L

A
ST

A
bs

tr
ac

ti
nt

er
pr

e-
ta

tio
n

on
th

e
fly

,
C

FA
gr

ap
hs

A
L

F
ex

pr
es

si
on

M
od

el
ch

ec
ke

r,
B

L
A

ST
.

T
he

va
lid

at
or

is
no

t
in

cl
ud

ed
,

bu
t

it
ca

n
be

us
ed

a
PC

C
ch

ec
ke

r

[H
en

zi
ng

er
et

al
.,

20
02

]

C

R
es

ou
rc

e
co

ns
um

p-
tio

n:
ex

ec
ut

io
n

tim
e,

he
ap

m
em

-
or

y
ex

pl
ic

itl
y

de
m

an
de

d
an

d
ba

nd
w

id
th

N
on

-t
ru

st
ed

:
C

od
e

Tr
us

te
d:

O
n-

lin
e

an
d

off
-l

in
e

ch
ec

ke
rs

,t
ra

f-
fic

an
al

ys
er

E
xt

en
de

d
H

oa
re

lo
gi

c,
A

bs
tr

ac
t

In
te

rp
re

ta
tio

n,
Ta

ct
ic

T
he

or
em

pr
ov

in
g

Pr
oo

f
ta

ct
ic

s
fo

r
PV

S
pr

ov
er

an
d

th
ei

rp
ar

am
et

er
s

Ta
ct

ic
T

he
or

em
pr

ov
er

PV
S,

St
at

ic
A

na
l-

ys
er

,
D

yn
am

ic
A

na
ly

se
r

[M
ok

an
d

Y
u,

20
02

a;
M

ok
an

d
Y

u,
20

02
b;

Y
u

an
d

M
ok

,2
00

4]

C
Te

m
po

ra
l

pr
op

er
-

tie
s:

liv
en

es
s

N
on

-t
ru

st
ed

:
C

od
e

Tr
us

te
d:

Ty
pe

ch
ec

ke
r

A
bs

tr
ac

t
m

od
el

ch
ec

ke
r

In
de

xe
d

ty
pe

sy
st

em
,

A
bs

tr
ac

t
in

te
rp

re
ta

tio
n,

C
on

tr
ol

flo
w

au
to

m
at

a,
M

od
el

ch
ec

ki
ng

,
LT

L
w

ith
ou

t
ne

xt
op

er
at

or

B
oo

le
an

pr
o-

gr
am

co
de

w
ith

in
de

xe
d

ty
pe

s

C
co

m
pi

le
r

to
SD

TA
L

la
ng

ua
ge

,
A

C
-

C
E

PT
/C

,I
nd

ex
ed

ty
pe

ch
ec

ke
r,

A
bs

tr
ac

t
m

od
el

ch
ec

ke
r

[X
ia

an
d

H
oo

k,
20

03
a;

X
ia

an
d

H
oo

k,
20

03
c;

X
ia

an
d

H
oo

k,
20

03
b;

X
ia

an
d

H
oo

k,
20

04
]

G
en

er
at

ed
C

an
d

C
+

+

O
pe

ra
to

r
sa

fe
ty

re
ga

rd
in

g
pa

rt
ia

l
fu

nc
tio

ns
,

bo
un

ds
ar

ra
y

sa
fe

ty
an

d
va

ri
ab

le
in

iti
al

iz
a-

tio
n

sa
fe

ty

N
on

-t
ru

st
ed

:
A

nn
ot

at
io

n
ge

ne
ra

to
r

Tr
us

te
d:

V
C

G
en

,
T

he
or

em
pr

ov
er

Fi
rs

t-
or

de
rl

og
ic

H
oa

re
lo

gi
c

A
ut

oB
ay

es
ge

ne
ra

to
r,

E
-S

E
T

H
E

O
,

T
he

or
em

Pr
ov

er

[W
ha

le
n

et
al

.,
20

03
;

W
ha

le
n

et
al

.,
20

02
;

Sc
hu

m
an

n,
20

03
;

W
ha

le
n

et
al

.,
20

03
]



197

Im
pe

ra
tiv

e
la

ng
ua

ge
s

C
an

d
ob

je
ct

-o
ri

en
te

d
C

+
+

C
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
L

an
gu

ag
e

Se
cu

ri
ty

po
lic

ie
s

A
ss

um
pt

io
ns

Fo
rm

al
is

m
Pr

oo
f

Te
ch

no
lo

gy
R

ef
er

en
ce

s

G
en

er
at

ed
C

In
iti

al
iz

at
io

n
sa

fe
ty

an
d

no
ou

t-
of

-b
ou

nd
s

ar
ra

y
ac

ce
ss

es
.

U
nt

ru
st

ed
:

an
no

-
ta

tio
n

ge
ne

ra
to

r
T

he
or

em
pr

ov
er

Tr
us

te
d:

D
om

ai
n

th
eo

ry
V

C
G

en
an

d
pr

oo
f

ch
ec

ke
r

Fi
rs

t-
or

de
rl

og
ic

H
oa

re
lo

gi
c

T
he

fo
rm

ul
ae

de
riv

at
io

ns
th

at
ar

e
en

co
de

d
as

ac
yc

lic
di

re
ct

ed
gr

ap
hs

A
nn

ot
at

io
n

in
-

fe
re

nc
e:

Pr
ol

og
,

A
ut

oB
ay

es
ge

n-
er

at
or

,F
ir

st
-o

rd
er

lo
gi

c
th

eo
re

m
Pr

ov
er

s:
E

-S
E

T
H

E
O

[D
en

ne
y

an
d

Fi
sc

he
r,

20
05

;
D

en
ne

y
an

d
Fi

sc
he

r,
20

06
b;

D
en

ne
y

an
d

Fi
sc

he
r,

20
06

a]

G
en

er
at

ed
C

+
+

Fu
nc

tio
na

l
co

r-
re

ct
ne

ss
of

ge
ne

ri
c

ty
pe

s
Ty

pe
sa

fe
ty

an
d

te
rm

in
at

io
n

G
en

er
ic

pr
oo

fs
as

fu
nc

tio
ns

A
th

en
a

th
eo

re
m

pr
ov

er
Fu

nc
tio

na
l

pr
o-

gr
am

m
in

g
[V

ar
gu

n,
20

06
]



198 Appendix A. Related work: a comparison

Ta
bl

e
A

.3
:I

m
pe

ra
tiv

e
ob

je
ct

-o
ri

en
te

d
la

ng
ua

ge
Ja

va
.

L
an

gu
ag

e
Se

cu
ri

ty
Po

lic
ie

s
A

ss
um

pt
io

ns
Fo

rm
al

is
m

Pr
oo

f
Te

ch
no

lo
gy

R
ef

er
en

ce
s

A
nn

ot
at

ed
Ja

va

R
es

ou
rc

e
co

ns
um

p-
tio

n
lim

its
:

C
PU

,m
em

or
y,

di
sk

,
ba

nd
w

id
th

,
fil

es
,

da
ta

ba
se

co
n-

ne
ct

io
ns

,t
hr

ea
ds

N
on

-
tr

us
te

d:
C

od
e,

Pr
ov

er
Tr

us
te

d:
T

he
-

or
em

pr
ov

er
va

lid
a-

to
r

H
oa

re
lo

gi
c,

W
ea

ke
st

pr
ec

on
-

di
tio

n
ca

lc
ul

us
D

ijk
st

ra
,

lin
ea

r
in

eq
ua

tio
ns

,T
he

-
or

em
pr

ov
in

g,
Sa

tis
fia

bi
lit

y

A
sa

tis
-

fia
bi

lit
y

pr
oo

f

E
SC

/J
av

a,
T

he
-

or
em

Pr
ov

er
Si

m
pl

if
y

[C
ha

nd
er

et
al

.,
20

05
a;

C
ha

nd
er

et
al

.,
20

07
]



199

Ta
bl

e
A

.4
:F

un
ct

io
na

lL
an

gu
ag

es
.

L
an

gu
ag

e
Se

cu
ri

ty
Po

li-
ci

es
A

ss
um

pt
io

ns
Fo

rm
al

is
m

Pr
oo

f
Te

ch
no

lo
gy

R
ef

er
en

ce
s

L
ow

-l
ev

el
fu

nc
tio

na
l

G
ra

il;
G

ra
il

co
m

pi
le

d
fr

om
fu

nc
-

tio
na

l
hi

gh
-

le
ve

lC
am

el
ot

Fu
nc

tio
n

H
ea

p
co

ns
um

p-
tio

n:
lin

ea
rl

y
bo

un
de

d
re

la
-

tiv
el

y
to

in
pu

t
si

ze

N
on

-t
ru

st
ed

:
C

od
e

Tr
us

te
d:

B
yt

ec
od

e
Fu

nc
tio

na
ly

se
r,

Is
ab

el
le

T
he

o-
re

m
pr

ov
er

H
oa

re
an

d
H

ig
h-

or
de

r
lo

gi
c,

E
x-

te
nd

ed
ty

pe
sy

st
em

L
FD

L
FD

ty
pi

ng
an

no
ta

-
tio

n

C
er

tif
yi

ng
co

m
-

pi
le

r
C

am
el

ot
,

G
ra

il
co

m
-

pi
le

r,
by

te
co

de
fu

nc
tio

na
liz

er
,

Is
ab

el
le

pr
ov

er

[H
of

m
an

n
an

d
Jo

st
,

20
03

;
B

er
in

ge
r

et
al

.,
20

03
;

M
ac

K
en

zi
e

an
d

W
ol

ve
rs

on
,

20
04

;
A

sp
in

al
l

et
al

.,
20

04
;

G
ilm

or
e

an
d

Pr
ow

se
,2

00
5]

M
L

la
ng

ua
ge

T
he

ev
en

/o
dd

pr
op

er
ty

,
M

L
ty

pe
s

sa
fe

ty

N
on

-t
ru

st
ed

:
C

od
e,

C
od

e
pr

oo
f

Tr
us

te
d:

Pr
oo

f
ch

ec
ke

r,
M

ac
hi

ne
Se

-
m

an
tic

s,
Po

lic
y

H
ig

h-
or

de
r

an
d

H
oa

re
lo

gi
c,

Ty
pe

-
ch

ec
ki

ng
,

U
ni

fic
a-

tio
n

A
L

F
ex

pr
es

-
si

on
(r

ep
re

-
se

nt
s

a
ty

pe
de

ri
-

va
tio

n)

Ty
pe

pr
es

er
vi

ng
M

L
co

m
pi

le
r,

th
e

LT
A

L
la

n-
gu

ag
e,

T
W

E
L

F
an

d
Fl

it
pr

oo
f

ch
ec

ke
r

[W
u,

20
05

;
W

u
et

al
.,

20
03

]



200 Appendix A. Related work: a comparison

Ta
bl

e
A

.5
:L

og
ic

L
an

gu
ag

es
.

L
an

-
gu

ag
e

Se
cu

ri
ty

Po
lic

ie
s

A
ss

um
pt

io
ns

Fo
rm

al
is

m
Pr

oo
f

Te
ch

no
lo

gy
R

ef
er

en
ce

s

C
ia

o
(C

L
P)

A
ny

po
lic

y
sp

ec
ifi

ed
in

C
L

P
as

va
ri

ab
le

or
pr

oc
e-

du
re

pr
op

er
tie

s,
as

de
te

r-
m

in
ac

y,
te

rm
in

at
io

n,
an

d
no

n-
fa

ilu
re

:e
xa

m
pl

e
w

ith
se

cu
re

fil
e

ac
ce

ss
B

ou
nd

ed
m

em
or

y
fo

rd
at

a
an

d
fu

nc
tio

ns
,

fu
nc

tio
n

co
st

bo
un

de
d,

an
d

fu
nc

-
tio

ns
w

ith
ou

ts
id

e-
eff

ec
ts

N
on

-t
ru

st
ed

:
C

od
e,

C
er

tifi
ca

te
(p

ro
of

)
Tr

us
te

d:
V

al
id

at
or

(a
na

ly
si

s
re

su
lt’

s
ch

ec
ke

r)

A
bs

tr
ac

t
In

te
rp

re
-

ta
tio

n,
Fi

x
po

in
t

se
m

an
tic

s,
C

L
P

T
he

re
su

lt
of

th
e

ab
st

ra
ct

in
te

r-
pr

et
a-

tio
n

of
th

e
pr

o-
gr

am

C
ia

o
pr

ep
ro

ce
s-

so
r

C
ia

oP
P

C
ia

o
an

al
is

is
to

ol
s

fo
r

de
te

rm
in

is
m

,
te

rm
in

at
io

n,
an

d
no

fa
ilu

re

[A
lb

er
t

et
al

.,
20

05
a]

C
ia

o
pr

ep
ro

ce
s-

so
rC

ia
oP

P
[A

lb
er

te
ta

l.,
20

04
;

A
lb

er
te

ta
l.,

20
06

]

M
au

de
Fu

nc
tio

na
lc

or
re

ct
ne

ss

N
on

-t
ru

st
ed

:
G

en
er

at
ed

C
od

e
Tr

us
te

d:
Pr

og
ra

m
tr

an
sf

or
m

a-
tio

n
st

ep
s

Fo
ld

/

U
nf

ol
d

Pr
og

ra
m

Tr
an

sf
or

-
m

at
io

n
R

ew
ri

tin
g

L
og

ic

Se
qu

en
-

ce
of

tr
an

s-
fo

rm
a-

tio
n

st
ep

s

M
au

de
na

rr
ow

-
in

g
ex

te
ns

io
n

[A
lp

ue
nt

e
et

al
.,

20
10

a;
A

lp
ue

nt
e

et
al

.,
20

10
b]



Appendix B

Code of Chapter 5 example
programs

In this appendix, we briefly describe the program code of the thesis bench-
marks.

Example 24. This example has the same required even result and has no
parameters as Example 2, but it uses pre-increment, pre-decrement, post-
decrement, post-increment, and several assignment operators (*=,+=,-=).

static int even16star() {

/*@ requires true;

@ ensures AbsValue(\result) == #even ; @*/

int x = 4;

int y = x + 8;

y++;

x--;

--y;

++x;

x*=1;

y+=3 - x;

y-=3 - x;

x+=11 + y;

x-=11 + y;

x = x + y - y;

y = y + x - x;

return x+y;

}
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Appendix C

Code of Chapter 6 example
programs

Example 25. The method mExample1 is a Java version of Example 1 bor-
rowed from [Warnier, 2005; Jacobs et al., 2005]:

class Safe1NonInterference2p1 {

static int h = 5, l = 10;

//@ setLabel(h, High);

static Testclass t = new Testclass(h,l);

public static void main(String[] args) {

t.mExample1();

System.out.println(t.getHigh());

System.out.println(t.getLow());

}

}

class Testclass {

//

int high; int low;

//@ setLabel(high, High);

public Testclass(int hp, int lp) {

high= hp;

low= lp;

}

public int getHigh() { return high;}

public int getLow() { return low;}

public void mExample1() {

low = high;

low = 2;

}

}

Example 26. The method mEx2 is the Java method code version of a simple
non–interferent example borrowed from [Hunt and Sands, 2006]:

class Safe1NonInterference39 {

static int h = 10, l= 0;

//@ setLabel(h, High);

static Testclass t = new Testclass(h,l);

public static void main(String[] args) {

System.out.println(t.getHigh());

t.mEx2();
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System.out.println(t.getLow());

}

}

class Testclass {

int high;

//@ setLabel(high, High);

int low;

public Testclass(int hp, int lp) {

high= hp;

low= lp;

}

public int getHigh() { return high;}

public int getLow() { return low;}

public void mEx2() {

low = high;

low = 0;

high = 0;

low = high;

}

}

Example 27. This example includes three simple methods in two classes: the
non–interferent method included in the program of Example 25, an interferent
method borrowed from [Warnier, 2005; Jacobs et al., 2005], and another non–
interferent method borrowed from [Sabelfeld and Sands, 2009]:

class Safe1Noninterference44 {

static int h = 10, l = 0;

//@ setLabel(h, High);

static Testclass t = new Testclass(h,l);

public static void main(String[] args) {

System.out.println(t.getHigh());

System.out.println(t.getLow());

t.mExamples1a2a3(h,l);

System.out.println(t.getHigh());

System.out.println(t.getLow());

}

}

class Testclass {

int high;

//@ setLabel(high, High);

int low;

public Testclass(int hp, int lp) {

high = hp;

low = lp;

}

public int getHigh() { return high;}

public int getLow() { return low;}

public void sethighlow(int hp, int lp) {

high = hp;

low = lp;

}
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public void mExample1() {

if (high > high)

low = 0;

}

public void mExample2() {

low = high;

low = 2;

}

public void mExample3() {

if (high > 2)

low = 0;

}

public void mExamples1a2a3(int hp, int lp) {

sethighlow(hp,lp);

mExample3();

mExample1();

mExample2();

}

}

Example 28. This benchmark includes six simple methods, the three methods
included in the program of Example 27 and three other interferent methods
also borrowed from [Warnier, 2005; Jacobs et al., 2005], including a method
with a while loop and a method that calls another method:

class Safe1Noninterference45 {

static int h = 10, l = 0;

//@ setLabel(h, High);

static Testclass t = new Testclass(h,l);

public static void main(String[] args) {

System.out.println(t.getHigh());

System.out.println(t.getLow());

t.mExample30a32a34(h,l); // I

t.mExamples1a2a3(h,l); // NI

System.out.println(t.getHigh());

System.out.println(t.getLow());

}

}

class Testclass {

int high;

//@ setLabel(high, High);

int low;

public Testclass(int hp, int lp) {

high = hp;

low = lp;

}

public int getHigh() { return high;}

public int getLow() { return low;}

public void sethighlow(int hp, int lp) {

high = hp;

low = lp;

}

public void mExample1() {

if (high > high)
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low = 0;

}

public void mExample2() {

low = high;

low = 2;

}

public void mExample3() {

if (high > 2)

low = 0;

}

public void mExample32() {

while (high > 0) {

high--;

low++;

}

}

int decrementing(int i) {

high = high - 1;

return i ;

}

public void mExample34() {

low = decrementing(high);

}

public void mExample30() {

if (high > 2)

low = 0;

else

low = 1;

}

public void mExamples1a2a3(int hp, int lp) {

sethighlow(hp,lp);

mExample3();

mExample1();

mExample2();

}

public void mExample30a32a34(int hp, int lp) {

sethighlow(hp,lp);

mExample30();

sethighlow(hp,lp);

mExample32();

mExample34();

}

}

Example 29. This program includes nine simple methods, the six examples
included in the program of Example 29 plus three other interferent methods:
two interferent variations of the loop of Example 13 and an interferent method
with a return statement occurring within a conditional statement.

class Safe1Noninterference43 {

static int h = 10, l = 0;

//@ setLabel(h, High);

static Testclass t = new Testclass(h,l);
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public static void main(String[] args) {

System.out.println(t.getHigh());

System.out.println(t.getLow());

t.mExample30a32a34(h,l); // I

t.mExample35a36a37(h,l); // I

t.mExamples1a2a3(h,l); // NI

System.out.println(t.getHigh());

System.out.println(t.getLow());

}

}

class Testclass {

int high;

//@ setLabel(high, High);

int low;

public Testclass(int hp, int lp) {

high = hp;

low = lp;

}

public int getHigh() { return high;}

public int getLow() { return low;}

public void sethighlow(int hp, int lp) {

high = hp;

low = lp;

}

public void mExample1() {

if (high > high)

low = 0;

}

public void mExample2() {

low = high;

low = 2;

}

public void mExample3() {

if (high > 2)

low = 0;

}

public void mExample32() {

while (high > 0) {

high--;

low++;

}

}

int decrementing(int i) {

high = high - 1;

return i ;

}

public void mExample34() {

low = decrementing(high);

}

public void mExample30() {

if (high > 2)

low = 0;

else

low = 1;

}
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public void mExample33call() {

low = mExample33();

}

public int mExample33() {

if (high > 2)

return 0;

else

return 1;

}

public void mExample35() {

while (high > 0) {

high--;

low++;

if (low > high)

break;

}

}

public void mExample36() {

while (true) {

high--;

low++;

if (high == 0)

break;

}

}

public void mExamples1a2a3(int hp, int lp) {

sethighlow(hp,lp);

mExample3();

mExample1();

mExample2();

}

public void mExample30a32a34(int hp, int lp) {

sethighlow(hp,lp);

mExample30();

sethighlow(hp,lp);

mExample32();

mExample34();

}

public void mExample35a36a37(int hp, int lp) {

sethighlow(hp,lp);

mExample33();

sethighlow(hp,lp);

mExample35();

sethighlow(hp,lp);

mExample36();

}

}
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Code of Chapter 7 example
programs

Example 30. This program is adapted from [Hunt and Sands, 2008] and does
not comply with the required erasure policy:

class Safe1Erasure3p2 {

static Testclass t = new Testclass(3, -3, 6);

public static void main(String[] args) {

//System.out.println(t.getX());

//System.out.println(t.getY());

//System.out.println(t.getZ());

t.mE3();

//System.out.println(t.getX());

//System.out.println(t.getY());

//System.out.println(t.getZ());

}

}

class Testclass {

int xh; //@ setLabel(xh, High);

int yl;

int zl;

public Testclass(int xp, int xy, int zp) {

//@ setLabel(xp, High);

xh = xp;

yl = xy;

zl = zp;

}

public int getX() { return xh;}

public int getY() { return yl;}

public int getZ() { return zl;}

public void mE3() {

// erasure specification:

/*@ up(zl, Low, Top); @*/

xh = xh + yl + zl;

if (zl == 0)

yl = yl + 1;

zl = 0;

}

}

Example 31. This program is a version of Example 19 that does not erase the
required variables either:
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class MedWebSite1p2 {

static MedicalDiagnosis t = new MedicalDiagnosis();

public static void main(String[] args) {

t.mainLoop();

//System.out.println(t.getmalaise());

//System.out.println(t.getfever());

//System.out.println(t.getinfluenza());

}

}

class MedicalDiagnosis {

// Symptons:

boolean malaise;

boolean fever;

/* ... */

// Diagnosis:

boolean influenza;

//@ setLabel(malaise, High);

//@ setLabel(fever, High);

//@ setLabel(influenza,High);

/* ... */

boolean userReqExit;

public boolean getmalaise() { return malaise;}

public boolean getfever() { return fever;}

public boolean getinfluenza() { return influenza;}

public MedicalDiagnosis() {

//@ setLabel(f, High);

boolean f = false;

malaise = f;

fever = f;

/* ... */

influenza = f;

/* ...*/

userReqExit = false;

}

public void getSymptons() {

/* ...*/

boolean tr = true;

//@ setLabel(tr, High);

malaise = tr;

fever = tr;

}

public void getUserReq() {

/* ... */

userReqExit = true;

}

public void appEnd() {

// erasure specification:

/*@ erase(malaise, High, Top);

@ erase(fever, High, Top);

@ erase(influenza, High, Top); @*/

/* ... */

}

public void exit() {

/* ... */
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}

public void diagnosis () {

if (malaise && fever )

influenza = true;

/*

else if ....

*/

}

public void mainLoop() {

while (! userReqExit) {

getSymptons();

diagnosis();

getUserReq();

};

if (userReqExit ) {

appEnd();

exit();

};

}

}

Example 32. The code is adapted from [Hunt and Sands, 2008] and it does
comply with its erasure policy.

class Safe1Erasure2p1 {

static Testclass t = new Testclass(3, -3, 6);

public static void main(String[] args) {

//System.out.println(t.getX());

//System.out.println(t.getY());

//System.out.println(t.getZ());

t.mE2();

//System.out.println(t.getX());

//System.out.println(t.getY());

//System.out.println(t.getZ());

}

}

class Testclass {

int xh; //@ setLabel(xh, High);

int yl;

int zl;

public Testclass(int xp, int xy, int zp) {

//@ setLabel(xp, High);

xh = xp;

yl = xy;

zl = zp;

}

public int getX() { return xh;}

public int getY() { return yl;}

public int getZ() { return zl;}

public void mE2() {

// erasure specification:

/*@ erase(zl, Low, High); @*/

xh = xh + yl + zl;
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yl = yl + zl;

zl = 0;

}

}
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