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Abstract

The idea of an incremental application of different termination techniques as

processors for solving termination problems has shown to be a powerful and efficient

way to prove termination of rewriting. Nowadays, the dependency pair framework

(which develop this idea) is the most succesful approach for proving termination of

rewriting. The DP-framework relies on the notion of dependency pair to decompose

a termination problem into a set of dependency pair termination problems (DP-

termination problems). These problems can be treated independently by appplying

different dependency pair processors (DP-processors). If we prove (disprove) the

termination of all (some) of the DP-problems, we can ensure that the system is

terminating (nonterminating).

Context-sensitive rewriting (CSR [Luc98, Luc02]) is a restriction of rewriting

that forbids reductions on some subexpressions and that has been proved useful

to model and analyze programming language features at different levels. Advances

in dependency pair techniques related with context-sensitive rewriting (CSR) are

growing fast in the last years. The definition of a context-sensitive dependency pair

(CSDP) framework for CSR becomes necessary to benefit from these new techniques

and approaches in the realm of CSR termination techniques.

In this thesis, we show how to develop a dependency pair framework for proving

termination of CSR.



IV Abstract



1
Introduction

Term rewriting is a branch of theoretical computer science which combines el-

ements of logic, universal algebra, automated theorem proving and functional pro-

gramming. Its foundation is equational logic. The difference between the term

rewriting and the equational logic is that equations are used only in one way, i.e.

the left-hand side can be replaced by the right-hand side, but not vice versa. This

constitutes a Turing-complete computational model which is very close to functional

programming [BN98].

Term rewriting techniques are applicable in various fields of computer science:

in software engineering (e.g., equationally specified abstract data types), in pro-

gramming languages (e.g., functional-logic programming), in computer algebra (e.g.,

symbolic computations, Gröbner bases), in program verification (e.g., automatically

proving termination of programs), in automated theorem proving (e.g., equational

unification), in algebra (e.g., Boolean algebra, group theory and ring theory) and

in recursion theory (what is and is not computable with certain sets of rewrite

rules). In other words, term rewriting has applications in practical computer science,

theoretical computer science, and mathematics. Roughly speaking, term rewriting

techniques can successfully be applied in areas that demand efficient methods for

reasoning with equations [Ohl02].

One of the major problems one encounters in the theory of term rewriting is

the characterization of classes of rewrite systems that have a desirable property

like confluence or termination. A terminating rewrite system does not permit in-

finite computations, that is, every computation starting from a term must end in

a normal form [BN98]. In many cases, the termination behavior depends on the

rewriting strategy. A rewriting strategy (roughly speaking, a rule for appropiately

choosing rewriting steps to be issued in a computation) is a restriction of the rewrit-

ing relation [TeR03]. Eventually, this can rise problems, as each kind of strategy
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only behaves properly (i.e., it is normalizing, optimal, etc.) for particular classes of

programs. For this reason, the designers of programming languages have developed

some features and language constructs aimed at giving the user more flexible control

of the program execution. For instance, syntactic annotations (which are associated

to arguments of symbols) have been used in programming languages such as Clean

[NSEP91], Haskell [HPJW92], Lisp [McC60], Maude [CDE+07], OBJ2 [FGJM85],

OBJ3 [GWM+00], CafeOBJ [FN97], etc., to improve the termination and efficiency

of computations. Lazy languages (e.g., Haskell, Clean) interpret them as strictness

annotations in order to become ‘more eager’ and efficient. Eager languages (e.g.,

Lisp, Maude, OBJ2, OBJ3, CafeOBJ) use them as replacement restrictions to become

‘more lazy’ thus (hopefully) avoiding nontermination.

Context-sensitive rewriting (CSR [Luc98, Luc02]) is a restriction of rewriting that

forbids reductions on some subexpressions and that has proved useful to model and

analyze such programming language features at different levels, see, e.g., [BM06,

DLM+04, DLM+08, GM04, Luc01, LM08]. Such a restriction of the rewriting com-

putations is formalized at a very simple syntactic level: that of the arguments of

function symbols f in the signature F . As usual, by a signature we mean a set of

function symbols f1, . . . , fn, . . . together with an arity function ar : F → N which

establishes the number of ‘arguments’ associated to each symbol. A replacement

map is a mapping µ : F → ℘(N) satisfying µ(f) ⊆ {1, . . . , k}, for each k-ary symbol

f in the signature F [Luc98]. We use them to discriminate the argument positions

on which the rewriting steps are allowed. In CSR we only rewrite µ-replacing sub-

terms: every term t (as a whole) is µ-replacing by definition; and ti (as well as all

its µ-replacing subterms) is a µ-replacing subterm of f(t1, . . . , tk) if i ∈ µ(f).

Example 1

The following nonterminating TRS R can be used to compute the list of prime

numbers by using the well-known Erathostenes sieve1 [GM99]:

primes → sieve(from(s(s(0))))

from(x) → cons(x, from(s(x)))

head(cons(x, y)) → x

if(true, x, y) → x

1Without appropriate rules for defining symbol div, the TRS has no complete computational
meaning. However, we took it here as given in [GM99] for the purpose of comparing different
techniques for proving termination of CSR by transformation.
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if(false, x, y) → y

tail(cons(x, y)) → y

sieve(cons(x, y)) → cons(x, filt(x, sieve(y)))

filt(s(s(x)), cons(y, z)) → if(div(s(s(x)), y), filt(s(s(x)), z), cons(y, filt(s(s(x)), z)))

Consider the replacement map µ for the signature F given by:

µ(cons) = µ(if) = {1} and µ(f) = {1, . . . , ar(f)} for all f ∈ F − {cons, if}.

This replacement map exemplifies two of the most typical applications of context-

sensitive rewriting as a computational mechanism:

1. The declaration µ(if) = {1} allows us to forbid reductions on the two alterna-

tives s and t of if-then-else expressions if(b, s, t) whereas it is still possible to

perform reductions on the boolean part b, as required to implement the usual

semantics of the operator.

2. The declaration µ(cons) = {1} disallows reductions on the list part of the

list constructor cons, thus making possible a kind of lazy evaluation of lists.

We can still use projection operators as tail to continue the evaluation when

needed.

1.1. Termination of context-sensitive rewriting

Termination is one of the most interesting practical problems in computation and

software engineering. Ensuring termination is often a prerequisite for essential pro-

gram properties like soundness. Messages reporting (a neverending) “processing”,

“waiting for an answer”, or even “abnormal termination” (which are often raised

during the execution of software applications) usually correspond to nonterminating

computations arising from bugs in the program. Thus, being able to automatically

prove termination of programs is a key issue in modern software development.

Termination is also one of the most interesting problems when dealing with

CSR. With CSR we can achieve a terminating behavior with nonterminating TRSs

by pruning (all) infinite rewrite sequences. For instance, as we prove below, all

context-sensitive computations for the TRS R in Example 1 are terminating when

the replacement map µ in the example is considered.
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Recently, proving termination of CSR has been recognized as an interesting prob-

lem with several applications in the fields of term rewriting and programming lan-

guages [DLM+04, DLM+08, GM04, Luc02, Luc06]. Several methods have been de-

veloped for proving termination of CSR under a replacement map µ for a given TRS

R (i.e., for proving the µ-termination of R). A number of transformations which

permit to treat termination of CSR as a standard termination problem have been

described (see [GM04, Luc06] for recent surveys). Polynomial orderings and the

context-sensitive version of the recursive path ordering have also been investigated

[BLR02, GL02, Luc04b, Luc05].

1.2. Dependency pairs for context-sensitive rewriting

The dependency pairs method [AG00, GAO02, GTSK04, GTSKF06, HM04, HM05]

is one of the most powerful techniques for proving termination of rewriting. Roughly

speaking, given a TRS R, the dependency pairs associated to R conform a new TRS

DP(R) which (together with R) determines the so-called dependency chains whose

finiteness or infiniteness characterize termination or nontermination of R.

Given a rewrite rule l→ r, we get dependency pairs l] → s] for all subterms s of

r which are rooted by a defined symbol2; the notation t] for a given term t means

that the root symbol f of t is marked thus becoming f ] (often just capitalized: F , as

done in our examples). Intuitively, a dependency pair captures a transition between

function calls in our system. If we ensure that all possible function call paths are

finite, then our system is terminating; otherwise, the system is nonterminating.

Example 2

Consider the TRS R in Example 1. According to [AG00], the set DP(R) of

dependency pairs in R consists of the following pairs:

PRIMES → SIEVE(from(s(s(0)))) (1.1)

PRIMES → FROM(s(s(0))) (1.2)

FROM(x) → FROM(s(x)) (1.3)

SIEVE(cons(x, y)) → SIEVE(y) (1.4)

SIEVE(cons(x, y)) → FILT(x, sieve(y)) (1.5)

FILT(s(s(x)), cons(y, z)) → FILT(s(s(x)), z) (1.6)

FILT(s(s(x)), cons(y, z)) → FILT(x, sieve(y)) (1.7)
2A symbol f is said to be defined in a TRS R if R contains a rule f(l1, . . . , lk) → r.
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Figure 1.1: Dependency Graph for the TRS R in Example 1

FILT(s(s(x)), cons(y, z)) → SIEVE(y) (1.8)

FILT(s(s(x)), cons(y, z)) → IF(div(s(s(x)), y), filt(s(s(x)), z),

cons(y, filt(s(s(x)), z))) (1.9)

A chain of dependency pairs is a sequence ui → vi of dependency pairs together with

a substitution σ such that σ(vi) rewrites to σ(ui+1) for all i ≥ 1. The dependency

pairs can be presented as a dependency graph, where the absence of infinite chains can

be analyzed by considering the cycles C in the graph. For instance, the dependency

graph which corresponds to the TRS R in Example 1 is depicted in Figure 1.1. The

cycle consisting of the node (1.3) together with the arc going from this node to itself

witnesses the nontermination of R (viewed as an ordinary rewrite system, without

any restriction on its rewriting relation).

In general, these intuitions are valid for CSR: the subterms s of the right-hand

sides r of the rules l→ r which are considered to build the context-sensitive depen-

dency pairs l] → s] must be µ-replacing terms now.
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However, this is not sufficient to obtain a correct approach. The following ex-

ample shows the need of a new kind of dependency pairs.

Example 3

Consider the following TRS R:

a → c(f(a)) f(c(x)) → x (1.10)

together with µ(c) = ∅ and µ(f) = {1} where subterms at frozen positions have

been underlined in the left- and right-hand sides of the rewrite rule. No µ-replacing

subterm s in the right-hand sides of the rules is rooted by a defined symbol. Thus,

there is no ‘regular’ dependency pair. If no other dependency pair is considered,

we could wrongly conclude that R is µ-terminating. Roughly speaking: without

dependency pairs no chain of function calls is possible and the system is trivially

µ-terminating, which is not true (redexes to be reduced are underlined):

f(a) ↪→µ f(c(f(a))) ↪→µ f(a) ↪→µ · · ·

Indeed, we must add the following collapsing dependency pair:

F(c(x))→ x

which would not be allowed in Arts and Giesl’s approach [AG00] because the right-

hand side is a variable.

1.3. Plan of the Thesis

After some preliminaries in Chapter 2, we develop the material in the thesis in

three main parts:

1. We investigate the structure of infinite context-sensitive rewrite sequences.

This analysis is essential to provide an appropriate definition of context-sensitive

dependency pair, and the related notions of chains, graph, etc. Section 3.1 pro-

vides appropriate notions of minimal non-µ-terminating terms and introduces

the main properties of such terms. Section 3.2 introduces the notion of hidden

term and hiding context in a CS-TRS. This notion turns to be essential for

the appropriate treatment of collapsing dependency pairs. Section 3.3 investi-

gates the structure of infinite context-sensitive rewrite sequences starting from

minimal non-µ-terminating terms.
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2. We define the notions of context-sensitive dependency pair and context-sensitive

chain of pairs and show how to use them to characterize termination of

CSR. Chapter 4 introduce the general framework to compute and use context-

sensitive dependency pairs for proving termination of CSR. The introduction of

collapsing dependency pairs leads to a notion of context-sensitive dependency

chain, which is quite differente from the standard one. In Section 4.2 we

prove that our context-sensitive dependency pairs approach fully characterize

termination of CSR.

3. We describe a suitable framework for dealing with proofs of termination of CSR

by using the previous results. Chapter 5 provides an adaptation of the depen-

dency pair framework [GTSK04, GTSKF06] to CSR by defining appropriate

notions of CS-termination problem and CS-processor which rely in the notions

and results investigated in the second part of the thesis. Chapter 6 introduces

some CS-processors for removing or transforming collapsing pairs from CS-

termination problems as the use of µ-reduction pair ordering to achieve proofs

of termination of CSR.

We end with an experimental evaluation of our techniques in Chapter 7 and Chap-

ter 8 concludes.



8 1. Introduction



2
Preliminaries

This section collects a number of definitions and notations about term rewriting.

More details and missing notions can be found in [BN98, Ohl02, TeR03].

2.1. Abstract Reduction Systems

Let A be a set and R ⊆ A× A be a binary relation on A. An abstract reduction

system is a pair (A,R). In the literature [BN98, Ohl02, TeR03], the binary relation,

called reduction, is usually represented by an arrow (→). If a, b ∈ A, we write

a R b, a reduces to b in one step, instead of (a, b) ∈ R. A reduction sequence with

respect to R is a finite or infinite sequence a0 R a1 R a2 R a3 R · · · . We denote the

transitive closure of R by R+ and its reflexive and transitive closure by R∗. We say

that R is terminating (strongly normalizing) if there is no infinite reduction sequence

a1 R a2 R a3 · · · . A reflexive and transitive relation R is a quasi-ordering.

2.2. Signatures, Terms, and Positions

Throughout the thesis, X denotes a countable set of variables and F denotes

a signature, i.e., a set of function symbols {f, g, from, primes, sel . . .}, each having a

fixed arity given by a mapping ar : F → N. The set of terms built from F and X is

T (F ,X ). A term is ground (primes, for example) if it contains no variable. A term

is said to be linear if it has no multiple occurrences of a single variable.

Terms are viewed as labelled trees in the usual way. Positions p, q, . . . are rep-

resented by chains of positive natural numbers used to address subterms of t. The

empty chain id denoted by Λ. Given positions p, q, their concatenation is denoted

as p.q. Positions are ordered by the standard prefix ordering: p ≤ q if ∃q′ such that

q = p.q′ If p is a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}. The set

of positions of a term t is Pos(t). Positions of nonvariable symbols in t are denoted
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as PosF (t), and PosX (t) are the positions of variables. The subterm at position p

of t is denoted as t|p and t[s]p is the term t with the subterm at position p replaced

by s.

tD s is written, read s is a subterm of t, if s = t|p for some p ∈ Pos(t) and tB s

if t D s and t 6= s. t 4 s and t 7 s is written for the negation of the corresponding

properties. The symbol labeling the root of t is denoted as root(t). A context is a

term C[ ] ∈ T (F ∪ {�},X ) with a ‘hole’ � (a fresh constant symbol). C[ ]p is written

to denote that there is a (usually single) hole � at position p of C[ ]. Generally, C[ ]

is written to denote an arbitrary context and make explicit the position of the hole

only if necessary. C[ ] = � is called the empty context.

2.3. Substitutions

A substitution is a mapping σ : X → T (F ,X ). Denote as ε the ‘identity’

substitution: ε(x) = x for all x ∈ X . The set Dom(σ) = {x ∈ X | σ(x) 6= x} is

called the domain of σ.

Remark 4 In this thesis, it is not impose that the domain of the substitutions is

finite. This is usual practice in the dependency pairs approach, where a single sub-

stitution is used to instantiate an infinite number of variables coming from renamed

versions of the dependency pairs (see below).

Whenever Dom(σ) ∩ Dom(σ′) = ∅, for substitutions σ, σ′, σ ∪ σ′ is denoted, a

substitution such that (σ ∪ σ′)(x) = σ(x) if x ∈ Dom(σ) and (σ ∪ σ′)(x) = σ′(x) if

x ∈ Dom(σ′).

2.4. Renamings and unifiers

A renaming is an injective substitution ρ such that ρ(x) ∈ X for all x ∈ X . For

renamings, it is assumed that Var(ρ) is finite (which is the usual practice) and also

idempotency, i.e., ρ(ρ(x)) = ρ(x) for all x ∈ X .

The quasi-ordering of subsumption ≤ over T (F ,X ) is t ≤ t′ ⇔ ∃σ. t′ = σ(t).

The fact that σ(x) ≤ σ′(x) is denoted as σ ≤ σ′ for all x ∈ X , thus extending the

quasi-ordering to substitutions.

A substitution σ such that σ(s) = σ(t) for two terms s, t ∈ T (F ,X ) is called a

unifier of s and t; it is also said that s and t unify (with substitution σ). If two

terms s and t unify, then there is a unique (up to renaming of variables) most general
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unifier (mgu) θ which is minimal (w.r.t. the subsumption quasi-ordering ≤) among

all other unifiers of s and t.

A relation R ⊆ T (F ,X ) × T (F ,X ) on terms is stable if for all terms s, t ∈
T (F ,X ), and substitutions σ, we have σ(s) R σ(t) whenever s R t.

2.5. Rewrite Systems and Term Rewriting

A rewrite rule is an ordered pair (l, r), written l→ r, with l, r ∈ T (F ,X ), l 6∈ X
and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the right-hand

side (rhs). A rewrite rule l→ r is said to be collapsing if r ∈ X . A Term Rewriting

System (TRS) is a pair R = (F , R), where R is a set of rewrite rules. Given TRSs

R = (F , R) and R′ = (F ′, R′), we let R ∪ R′ be the TRS (F ∪ F ′, R ∪ R′). An

instance σ(l) of a lhs l of a rule is called a redex. Given R = (F , R), we consider F
as the disjoint union F = C ] D of symbols c ∈ C, called constructors and symbols

f ∈ D, called defined functions, where D = {root(l) | l→ r ∈ R} and C = F \ D.

Example 5

Consider again the TRS in Example 1. The symbols primes, sieve, from, head,

tail, if and filt are defined, and s, 0, cons, true, false and div are constructors.

For simplicity, we often write l → r ∈ R instead of l → r ∈ R to express that the

rule l→ r is a rule of R.

A term t ∈ T (F ,X ) rewrites to s (at position p), written t
p→R s (or just t→ s,

or t →R s), if t|p = σ(l) and s = t[σ(r)]p, for some rule l → r ∈ R, p ∈ Pos(t) and

substitution σ. We write t
>p→R s if t

q→R s for some q > p. → is written intead of

→R if R is clear for the context. A TRS R is terminating if its one step rewrite

relation →R is terminating.

2.6. Narrowing

Narrowing combines rewriting with unification. Narrowing a term means to

apply to it the minimum substitution such that the resulting term is not in normal

form and then reducing it one step [Hul80].

Given a TRS R = (F , R). A term t narrows to a term s (written t  R,θ s), if

there exists a nonvariable position p ∈ Pos(t), θ is the most general unifier of t|p
and l for some rewrite rule l→ r ∈ R (sharing no variables with t), and s = θ(t[r]p).
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2.7. Context-Sensitive Rewriting

A mapping µ : F → ℘(N) is a replacement map (or F-map) if ∀f ∈ F , µ(f) ⊆
{1, . . . , ar(f)} [Luc98]. Let MF be the set of all F-maps (or MR for the F-maps of

a TRS (F , R)). Let µ> be the replacement map given by µ>(f) = {1, . . . , ar(f)} for

all f ∈ F (i.e., no replacement restrictions are specified).

A binary relation R on terms is µ-monotonic if whenever t R s means that

f(t1, . . . , ti−1, t, . . . , tk) R f(t1, . . . , ti−1, s, . . . , tk) for all f ∈ F , i ∈ µ(f), and

t, s, t1, . . . , tk ∈ T (F ,X ). If R is µ>-monotonic, then R is monotonic.

The set of µ-replacing positions Posµ(t) of t ∈ T (F ,X ) is: Posµ(t) = {Λ}, if

t ∈ X and Posµ(t) = {Λ} ∪
⋃
i∈µ(root(t)) i.Pos

µ(t|i), if t 6∈ X . When no replacement

map is made explicit, the µ-replacing positions are often called active; and the non-

µ-replacing ones are often called frozen. The following result about CSR is often

used without any explicit mention.

Proposition 6 [Luc98] Let t ∈ T (F ,X ) and p = q.q′ ∈ Pos(t). Then p ∈ Posµ(t)

iff q ∈ Posµ(t) ∧ q′ ∈ Posµ(t|q)

The µ-replacing subterm relation Dµ is given by tDµs if there is p ∈ Posµ(t) such

that s = t|p. tBµs is written if tDµs and t 6= s. tB
�µ
s is written to denote that s is a

non-µ-replacing (hence strict) subterm of t: tB
�µ
s if there is p ∈ Pos(t)\Posµ(t) such

that s = t|p. The set of µ-replacing variables of a term t, i.e., variables occurring

at some µ-replacing position in t, is Varµ(t) = {x ∈ Var(t) | t Dµ x}. The set

of non-µ-replacing variables of t, i.e., variables occurring at some non-µ-replacing

position in t, is Var�µ(t) = {x ∈ Var(t) | tB
�µ
x}. Note that Varµ(t) and Var�µ(t) do

not need to be disjoint.

A pair (R, µ) where R is a TRS and µ ∈ MR is often called a CS-TRS. In

context-sensitive rewriting, (only) µ-replacing redexes are contracted: t µ-rewrites

to s, written t ↪→µ s (or t ↪→R,µ s and even t ↪→ s), if t
p→R s and p ∈ Posµ(t).

Example 7

Consider R and µ as in Example 1. Then, we have:

from(0) ↪→µ cons(0, from(s(0)) 6↪→µ cons(0, cons(s(0), from(s(s(0)))

Since in the given system the second argument of cons is not µ-replacing, then

2 6∈ Posµ(cons(0, from(s(0))), and the redex from(s(0)) cannot be µ-rewritten.
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A term t is µ-terminating (or (R, µ)-terminating, if we want an explicit reference

to the involved TRS R) if there is no infinite µ-rewrite sequence t = t1 ↪→µ t2 ↪→µ

· · · ↪→µ tn ↪→µ · · · starting from t. A TRS R is µ-terminating if ↪→µ is terminating.

A term t µ-narrows to a term s (written t  R,µ,θ s), if there is a nonvariable

µ-replacing position p ∈ PosµF (t) and a rule l→ r in R (sharing no variable with t)

such that t|p and l unify with most general unifier θ and s = θ(t[r]p).
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3
Structure of Infinite µ-Rewrite

Sequences

In term rewriting, every term in an infinite rewrite sequence has a subterm which

is a minimal nonterminating term [HM04, HM07]. By minimal nonterminating we

mean that all its proper subterms are terminating. Hence, this term can be thought

as an appropiate representative of the infinite computation (the infinite sequence).

If we are able to capture these terms, then studying the terminating behavior of a

system becomes easier. In this chapter, we study in depth the structure of minimal

nonterminating terms and infinite µ-rewrite sequences starting from these terms.

3.1. Minimal non-µ-terminating terms

Given a TRS R = (C]D, R), the minimal nonterminating terms associated to R
are nonterminating terms t whose proper subterms u (i.e., tBu) are terminating; T∞
is the set of minimal nonterminating terms associated toR. Minimal nonterminating

terms have two important properties:

1. Every nonterminating term s contains a minimal nonterminating term t ∈ T∞
(i.e., sD t), and

2. minimal nonterminating terms t are always rooted by a defined symbol f ∈ D:

∀t ∈ T∞, root(t) ∈ D.

Considering the structure of the infinite rewrite sequences starting from a minimal

nonterminating term t = f(t1, . . . , tk) ∈ T∞ is helpful to come to the notion of

dependency pair. Such sequences proceed as follows (see, e.g., [HM04]):

1. a finite number of reductions can be performed below the root of t, thus rewrit-

ing t into t′; then
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2. a rule f(l1, . . . , lk) → r applies at the root of t′ (i.e., t′ = σ(f(l1, . . . , lk)) for

some substitution σ); and

3. there is a minimal nonterminating term u ∈ T∞ (hence root(u) ∈ D) at some

position p of σ(r) satisfying that p ∈ PosF (r), (i.e., p is a nonvariable position

of r) which ‘continues’ the infinite sequence initiated by t in a similar way.

This means that considering the occurrences of defined symbols in the right-hand

sides of the rewrite rules suffices to ‘catch’ every possible infinite rewrite sequence

starting from σ(r). In particular, no infinite sequence can be issued below the vari-

ables of r (more precisely: all bindings σ(x) are terminating terms). This is sum-

marized as follows:

Proposition 8 [HM04, Lemma 1] Let R = (C ] D, R) be a TRS. For all t ∈ T∞,

there exist l → r ∈ R, a substitution σ and a term u ∈ T∞ such that root(u) ∈ D,

t
>Λ−→∗ σ(l) Λ→ σ(r)D u and there is a nonvariable subterm v of r, rD v, such that

u = σ(v).

The standard definition of dependency pair relies on (2) and (3) above: after

marking t = f(t1, . . . , tk) as t] = f ](t1, . . . , tk), only reductions below the root

of t are possible; then, such rewritings transform t] into σ(f ](l1, . . . , lk)) for some

substitution σ and rule f(l1, . . . , lk) → r of the TRS. The set of dependency pairs

f ](l1, . . . , lk)→ v]i for 1 ≤ i ≤ n associated to such a rule represent all possible ways

to continue the infinite sequence initiated by t with a minimal nonterminating term

σ(vi).

3.1.1. Minimal non-µ-terminating terms

Before starting our discussion about (minimal) non-µ-terminating terms, we pro-

vide an obvious auxiliary result about µ-terminating terms.

Lemma 9 Let R = (F , R) be a TRS, µ ∈ MF , and s, t ∈ T (F ,X ). If t is µ-

terminating, then:

1. If tDµ s, then s is µ-terminating.

2. If t ↪→∗R,µ s, then s is µ-terminating.

Proof. In both cases, we proceed by contradiction.
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1. If s is not µ-terminating, then there is an infinite µ-rewrite sequence starting

from s and, since t Dµ s there exists an infinite µ-rewrite sequence starting

from t. This leads to a contradiction.

2. If s is not µ-terminating, then there is an infinite µ-rewrite sequence starting

from s. Since t ↪→∗R,µ s, there exists an infinite µ-rewrite sequence starting

from t, leading to a contradiction.

Given a TRS R = (F , R) and a replacement map µ ∈MF , maybe the most straight-

forward definition of minimal non-µ-terminating terms is the following: let T∞,µ be

a set of minimal non-µ-terminating terms in the following sense: t belongs to T∞,µ
if t is non-µ-terminating and every strict subterm u (i.e., t B u) is µ-terminating.

It is obvious that root(t) ∈ D for all t ∈ T∞,µ. We also have:

Lemma 10 ([AGL08]) Let R = (F , R) be a TRS, µ ∈ MF , and s ∈ T (F ,X ). If

s is not µ-terminating, then there is a subterm t of s (sD t) such that t ∈ T∞,µ.

Then, if there is an infinite µ-rewrite sequence t1 ↪→R,µ t2 ↪→R,µ t3 ↪→R,µ · · ·
we can extract a sequence of the form t1 D t′1 ↪→R,µ s′2 D t′2 ↪→R,µ s′3 D t′3 ↪→R,µ · · ·
where all terms t′i are minimal non-µ-terminating, i.e., t′i ∈ T∞,µ.

Example 11

Consider the TRS R in Example 3. If we have the infinite µ-rewrite sequence

(redexes are underlined):

f(a) ↪→µ f(c(f(a))) ↪→µ f(a) ↪→µ · · ·

we can extract the following sequence:

f(a) ↪→µ f(c(f(a)))D f(a) ↪→µ f(c(f(a)))D f(a) ↪→µ · · ·

where f(a) ∈ T∞,µ. Unfortunately, to obtain this sequence we have to pick subterms

from some frozen positions.

This approximation to the context-sensitive case doesn’t seem an appropiate

generalization to the rewriting case. We just show another example.
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Example 12

Consider the following TRS R:

a → c(f(a), b)
b → b

f(c(x), y) → x

together with µ(c) = µ(b) = ∅ and µ(f) = {1}. This system is non-µ-terminating

and an infinite µ-rewriting is (redexes are underlined):

f(a, a) ↪→µ f(c(f(a, b)), a) ↪→µ f(a, b) ↪→µ · · ·

We can extract the following infinite minimal sequence:

f(a, a) ↪→µ f(c(f(a, b)), a)D b ↪→µ bD b ↪→µ · · ·

where b is a minimal non-µ-terminating term that has no incidence in the infinite

µ-rewrite sequence.

Therefore, this kind of minimal non-µ-terminating terms are not the most natu-

ral ones because they could occur at non-µ-replacing positions, where no µ-rewriting

step is possible. So, this simple notion would not lead to an appropriate general-

ization of Proposition 8 to CSR. Still, we use them advantageously below; for this

reason we pay them some attention here.

There is a suitable generalization of Proposition 8 to CSR (see Proposition 26

below) based on the following notion.

Definition 13 (Minimal non-µ-terminating term) Let M∞,µ be a set of min-

imal non-µ-terminating terms in the following sense: t belongs to M∞,µ if t is

non-µ-terminating and every strict µ-replacing subterm s of t (i.e., t Bµ s) is µ-

terminating.

Note that T∞,µ ⊆M∞,µ. Obviously, if t ∈M∞,µ, then root(t) is a defined symbol.

In the following we often say that terms in T∞,µ are strongly minimal non-µ-

terminating terms. Now we have the following.

Lemma 14 ([AGL08]) Let R = (F , R) be a TRS, µ ∈MF , and s ∈ T (F ,X ). If s

is not µ-terminating, then there is a µ-replacing subterm t of s such that t ∈M∞,µ.

Using the new definition, if there is an infinite µ-rewrite sequence starting from a

term t1, we can now extract a sequence of the form t1 Dµ t′1 ↪→R,µ s′2 Dµ t′2 ↪→R,µ
s′3 Dµ t

′
3 ↪→R,µ · · · where all terms t′i are minimal, t′i ∈M∞,µ.
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Example 15

Now, continuing Example 12, from the non-µ-terminating infinite µ-rewrite se-

quence:

f(a, a) ↪→µ f(c(f(a, b)), a) ↪→µ f(a, b) ↪→µ · · ·

We can extract the following infinite minimal sequence:

f(a, a) ↪→µ f(c(f(a, b)), a)Dµ f(c(f(a, b)), a) ↪→µ f(a, b)Dµ f(a, b) ↪→µ

f(c(f(a, b)), b)Dµ f(c(f(a, b)), b) ↪→µ f(a, b)Dµ f(a, b) ↪→µ · · ·

where all subterm steps now can be only given over active positions (in this case all

are at the root positions).

Since µ-terminating terms are preserved under µ-rewriting (Lemma 9), it follows

that M∞,µ is preserved under inner µ-rewritings in the following sense.

Lemma 16 ([AGL08]) Let R = (F , R) be a TRS, µ ∈ MF , and t ∈ M∞,µ. If

t >Λ↪−→∗R,µ u and u is non-µ-terminating, then u ∈M∞,µ.

Lemma 16 does not hold for T∞,µ: consider the CS-TRS (R, µ) in Example 3. We

have that f(a) ∈ T∞,µ. Now, f(a) ↪→µ f(c(f(a))) and f(c(f(a))) is not µ-terminating.

However, f(c(f(a))) 6∈ T∞,µ as shown in Example 11.

3.2. Hidden terms and hiding contexts in minimal µ-
rewrite sequences

To go ahead with the study of infinite minimal µ-rewrite sequences we need

the definitions of hidden term and hiding context. As we show in the next section,

they play an important role in infinite minimal µ-rewrite sequences associated to R.

Given a CS-TRS (R, µ) the hidden terms are nonvariable terms occurring on some

frozen position in the right-hand side of some rule of R.

Definition 17 (Hidden symbols and terms) Let R = (F , R) be a TRS and µ ∈
MF . We say that t ∈ T (F ,X ) \ X is a hidden term if there is a rule l → r ∈ R
such that r B

�µ
t. Let HT (R, µ) (or just HT , if R and µ are clear for the context)

be the set of all hidden terms in (R, µ). We say that f ∈ F is a hidden symbol if

it occurs in a hidden term. Let H(R, µ) (or just H) be the set of all hidden symbols

in (R, µ).
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In the following, we also use DHT = {t ∈ HT | root(t) ∈ D} for the set of hidden

terms which are rooted by a defined symbol. The hiding contexts are formed by

symbols occurring in the right hand side of a rule at frozen positions where one of

its arguments in an active position is a variable or a define symbol.

Definition 18 (Hiding context [AEF+08]) Let R = (F , R) be a TRS and µ ∈
MF . We say that the function symbol f hides position i if f(r1, . . . , ri, . . . , rn) ∈
HT (R, µ), i ∈ µ(f), and ri contains a defined symbol or a variable at an active

position (i.e., PosµD(ri) ∪ PosµX (ri) 6= ∅). A context C[�] is hiding if C[�] = �

or C[�] = f(t1, . . . , ti−1, C
′[�], ti+1, . . . , tn), where f hides position i and C ′[�] is a

hiding context.

Example 19

For R and µ as in Example 1, the maximal hidden terms of the CS-TRS are

enclosed in boxes:

primes → sieve(from(s(s(0))))

from(x) → cons(x, from(s(x)) )

head(cons(x, y)) → x

if(true, x, y) → x

if(false, x, y) → y

tail(cons(x, y)) → y

sieve(cons(x, y)) → cons(x, filt(x, sieve(y)) )

filt(s(s(x)), cons(y, z)) → if(div(s(s(x)), y), filt(s(s(x)), z), cons(y, filt(s(s(x)), z)) )

The hidden symbols are from, filt, sieve, cons and s. Symbol from hides position

1; symbol s hides position 1; symbol filt hides positions 1 and 2; symbol sieve hides

position 1, and symbol cons hides position 1.

Example 20

Consider the following nonterminating TRS R which computes the zip of two

lists by applying the quotient of its components [Bor03]; the auxiliary functions tail

and head are also available through their usual definition by means of rewrite rules.

from(x) → cons(x, from(s(x)))

sel(0, cons(x, xs)) → x
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sel(s(n), cons(x, xs)) → sel(n, xs)

minus(x, 0) → 0

minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

zWquot(xs, nil) → nil

zWquot(nil, xs) → nil

zWquot(cons(x, xs), cons(y, ys)) → cons(quot(x, y), zWquot(xs, ys))

head(cons(x, xs)) → x

tail(cons(x, xs)) → xs

Consider the replacement map µ given by µ(cons) = {1} and µ(f) = {1, . . . , ar(f)}
for all f ∈ (F \ {cons}) where subterms at frozen positions have been underlined

in the left- and right-hand sides of the rewrite rule. The maximal hidden terms of

the CS-TRS are from(s(x)) and zWquot(xs, ys). The hidden symbols are from, s

and zWquot. Symbol from hides position 1, symbol s hides position 1 and symbol

zWquot hides positions 1 and 2.

The following lemma says that frozen subterms t rooted by a defined symbol in

the contractum σ(r) of a redex σ(l) which do not contain t, are (at least partly)

‘introduced’ by a hidden term with a hiding context in the right-hand side r of the

involved rule l→ r.

Lemma 21 Let R = (F , R) be a TRS and µ ∈ MF . Let t ∈ T (F ,X ) be such that

root(t) ∈ D, C[�] be a (possibly empty) context with a µ-replacing hole, and σ be a

substitution. If there is a rule l → r ∈ R such that σ(l) 7 t and σ(r) B
�µ
C[t], then

there is no x ∈ Var(r) such that σ(x)D t. Furthermore, there is a term t′ ∈ DHT ,

a hiding context C ′[�] such that r B
�µ
C ′[t′], C[�] = σ(C ′)[�] and t = σ(t′).

Proof. By contradiction. If there is x ∈ Var(r) such that σ(x) D t, then since

variables in l are always below some function symbol we have σ(l)B t, leading to a

contradiction.

Since there is no x ∈ Var(r) such that σ(x) D t but we have that σ(r) B
�µ
C[t],

then there are nonvariable positions p, q where p ∈ PosF (r) \ PosµF (r) and q ∈
PosµF (r|p), such that C[t] = C[t]q = σ(r|p) Dµ σ(r|pq) = t. Then, we let t′ = r|pq
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and C ′[�] = r|p[�]q. Note that t′ ∈ DHT and C ′[�] is formed by hidden symbols.

Furthermore, we have C[�]q = σ(r|p)[�]q = σ(r|p[�]q) = σ(C ′)[�]q = σ(C ′)[�] and

σ(r|pq) = t = σ(t′) as desired. To prove that C ′[�] is a hiding context we proceed

by induction on C ′[�]:

If C ′[�] = �, then C ′[�] is a hiding context, by definition.

If C ′[�] = f(t1, . . . , ti−1, C
′′[�], ti+1, . . . , tn) then we have σ(r)B

�µ
σ(C ′′)[σ(t′)] =

C ′′′[t] where C ′′′[�] = σ(C ′′)[�]. By the induction hypothesis, C ′′[�] is a hid-

ing context. Since C ′[t′]q = r|p ∈ HT , i ∈ µ(f), q = i.q′ ∈ PosµD(r|p) and

C ′[�] is a context with a µ-replacing hole, we have that f hides position i, and

hence C ′[�] is a hiding context.

Now, we show how the rules construct the hiding context.

Lemma 22 Let R = (F , R) = (C ]D, R) be a TRS and µ ∈MF . Let t ∈ T (F ,X ),

C[�] be a context with a µ-replacing hole and σ be a substitution. If there is a rule

l → r ∈ R such that l B
�µ
x, r B

�µ
r|p = C ′[x] for a position p ∈ Pos(r) \ Posµ(r),

and σ(r|p) = C[t], then C ′[�] is a hiding context, C[�] = σ(C ′)[�] and t = σ(x).

Proof. By induction on C ′[�]:

If C ′[�] = �, then C ′[�] is a hiding context, by definition.

If C ′[�] = f(t1, . . . , ti−1, C
′′[�], ti+1, . . . , tn) then we have σ(r)B

�µ
σ(C ′′)[σ(x)] =

C ′′′[t] where C ′′′[�] = σ(C ′′)[�]. By the induction hypothesis, C ′′[�] is a hiding

context and t = σ(x). Since C ′[x]q = r|p ∈ HT , i ∈ µ(f), q = i.q′ ∈ PosµX (r|p)
and C ′[�] is a context with a µ-replacing hole, we have that f hides position

i, and hence C ′[�] is a hiding context.

Then, if we have a minimal non-µ-terminating term t in an infinite minimal µ-rewrite

sequence with a minimal non-µ-terminating term σ(t′) at a frozen position, there is

a hiding context C ′[�] such that tB
�µ
σ(C ′)[σ(t′)].

Example 23

Consider the following example:

f(x) → g(c(f(x)))
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g(c(x)) → g(d(x))

g(x) → x

g(x) → h(e(x))

h(x) → x

with µ(f) = µ(g) = µ(h) = µ(d) = ∅ and µ(c) = µ(e) = {1}. If we consider the

sequence starting from f(x), we have that:

f(x) ↪→µ g(c(f(x)))

Since c appears in the right hand side of a rule in a frozen position above a defined

symbol, then, c hides position 1. Notice that f(x) ∈M∞,µ and Lemma 21 fits.

If we apply the second rule, then, we notice that d is not a hiding context:

g(c(f(x))) ↪→µ g(d(f(x)))

but, we don’t have to care because the first position of d freeze its argument and

then, if we apply the third rule then:

g(d(f(x))) ↪→µ d(f(x))

and no infinite chain can happened.

If instead of applying the second rule, we apply the fourth rule, then e is a hiding

context and Lemma 22 fits:

g(c(f(x))) ↪→µ h(e(c(f(x))))

If we apply the fifth rule, then the minimal term f(x) appear in an active position

and only a hiding context is above this term.

h(e(c(f(x)))) ↪→µ e(c(f(x)))

The following lemma establishes that minimal non-µ-terminating and non-µ-replacing

subterms occurring in a µ-rewrite sequence involving only minimal terms directly

come from the first term in the sequence or are instances of a hidden term with a

hiding context.
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Lemma 24 Let R = (F , R) be a TRS and µ ∈MF . Let A be a µ-rewrite sequence

t1 ↪→ t2 ↪→ · · · ↪→ tn with ti ∈ M∞,µ for all i, 1 ≤ i ≤ n and n ≥ 1. If there is

a term t ∈ M∞,µ such that t1 7 t and tn B�µ
C[t] where C[�] is a context with a

µ-replacing hole, then C[t] = σ(C ′)[σ(s)] for some s ∈ DHT , hiding context C ′[�]

and substitution σ.

We use the previous results to investigate infinite sequences that combine µ-

rewriting steps on minimal non-µ-terminating terms and the extraction of such sub-

terms as µ-replacing subterms of (instances of) right-hand sides of the rules.

Proposition 25 Let R = (F , R) be a TRS and µ ∈ MF . Let A be a finite or

infinite sequence of the form t1
Λ
↪→ s1 Dµ t′2

>Λ↪−→∗R,µ t2
Λ
↪→ s2 Dµ t′3

>Λ↪−→∗R,µ t3 · · ·
with ti, t′i ∈ M∞,µ for all i ≥ 1. If there is a term t ∈ M∞,µ such that t1 7 t

and ti B�µ
C[t] for some context C[�] with a µ-replacing hole, and some i ≥ 1, then

C[t] = σ(C ′)[σ(s)] for some s ∈ DHT , some hiding context C ′[�] and substitution

σ.

3.3. Infinite µ-rewrite sequences starting from minimal
terms

The following proposition establishes that, given a minimal non-µ-terminating

term t ∈M∞,µ, there are only two ways for an infinite µ-rewrite sequence to proceed.

The first one is by using ‘visible’ parts of the rules which correspond to µ-replacing

nonvariable subterms in the right-hand sides which are rooted by a defined symbol.

The second one is by showing up ‘hidden’ non-µ-terminating subterms with a hiding

context which are activated by migrating variables in a rule l → r, i.e., variables

x ∈ Varµ(r) \ Varµ(l) which are not µ-replacing in the left-hand side l but become

µ-replacing in the right-hand side r.

Proposition 26 ([AGL08]) Let R = (F , R) = (C ] D, R) be a TRS and µ ∈MF .

Then for all t ∈M∞,µ, there exist l→ r ∈ R, a substitution σ and a term u ∈M∞,µ
such that t >Λ↪−→∗R,µ σ(l)

Λ
↪→ σ(r) Dµ u and either

1. there is a µ-replacing subterm s of r, r Dµ s, such that u = σ(s), or

2. there is x ∈ Varµ(r) \ Varµ(l) such that σ(x) = C[u] for a possible empty

context C[�] with a µ-replacing hole.
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Proposition 26 entails the following result, which establishes some properties of

infinite sequences starting from minimal non-µ-terminating terms.

Corollary 27 Let R = (F , R) be a TRS and µ ∈ MF . For all t ∈ M∞,µ, there is

an infinite sequence

t
>Λ
↪−→∗R,µ σ1(l1)

Λ
↪→ σ1(r1) Dµ t1

>Λ
↪−→∗R,µ σ2(l2)

Λ
↪→ σ2(r2) Dµ t2

>Λ
↪−→∗R,µ · · ·

where, for all i ≥ 1, li → ri ∈ R are rewrite rules, σi are substitutions, and terms

ti ∈M∞,µ are minimal non-µ-terminating terms such that either

1. ti = σi(si) for some si such that ri Dµ si, or

2. σi(xi) = Ci[ti] for some xi ∈ Varµ(ri) \ Varµ(li) and some possible empty

context Ci[�] with a µ-replacing hole.

Since every minimal non-µ-terminating term contains a strongly minimal non-µ-

terminating subterm (see Lemma 10), in the following we investigate infinite minimal

non-µ-terminating sequences starting by one of these terms. In this way, we ensure

the absence of non-µ-terminating terms in frozen positions in the initial term.

3.3.1. Infinite µ-rewrite sequences starting from strongly minimal
terms

In the following, we consider a function Renµ which independently renames all

occurrences of µ-replacing variables within a term t by using new fresh variables

which are not in Var(t):

Renµ(x) = y if x is a variable, where y is intended to be a fresh new variable

which has not yet been used (we could think of y as the ‘next’ variable in an

infinite list of variables); and

Renµ(f(t1, . . . , tk)) = f([t1]f1 , . . . , [tk]
f
k) for evey k-ary symbol f , where given

a term s ∈ T (F ,X ), [s]fi = Renµ(s) if i ∈ µ(f) and [s]fi = s if i 6∈ µ(f).

Note that Renµ(t) renames all µ-replacing positions of variables in t by new fresh

variables y but keeps variables at non-µ-replacing positions untouched. Note that, in

contrast to a renaming substitution (often denoted by ρ), Renµ is not a substitution:

it will replace different µ-replacing occurrences of the same variable by different

variables.
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Proposition 28 ([AGL08]) Let R = (F , R) be a TRS and µ ∈ MF . Let t ∈
T (F ,X ) \ X be a nonvariable term and σ be a substitution such that σ(t) ∈M∞,µ.

Then, Renµ(t) is µ-narrowable.

In the following, we write Narrµ(t) to indicate that t is µ-narrowable (w.r.t. the

intended TRS R). We also let

NHT (R, µ) = {t ∈ DHT | Narrµ(Renµ(t))}

be the set of hidden terms which are rooted by a defined symbol, and that, after

applying Renµ, become µ-narrowable. As a consequence of the previous results, we

have the following main result which we will use later.

Theorem 29 Let R = (F , R) be a TRS and µ ∈MF . For all t ∈ T∞,µ, there is an

infinite sequence

t = t0
>Λ
↪−→∗R,µ σ1(l1)

Λ
↪→ σ1(r1) Dµ t1

>Λ
↪−→∗R,µ σ2(l2)

Λ
↪→ σ2(r2) Dµ t2

>Λ
↪−→∗R,µ · · ·

where, for all i ≥ 1, li → ri ∈ R are rewrite rules, σi are substitutions, and terms

ti ∈M∞,µ are minimal non-µ-terminating terms such that either

1. ti = σi(si) for some si such that ri Dµ si, or

2. σi(xi) = Ci[ti] for some xi ∈ Varµ(ri) \ Varµ(li) and Ci[ti] = θi(C ′i[t
′
i]) for

some t′i ∈ NHT , some hidding context C ′i[�] and substitution θi.

Proof. Since T∞,µ ⊆M∞,µ, by Corollary 27, we have a sequence

t = t0
>Λ
↪−→∗R,µ σ1(l1)

Λ
↪→ σ1(r1) Dµ t1

>Λ
↪−→∗R,µ σ2(l2)

Λ
↪→ σ2(r2) Dµ t2

>Λ
↪−→∗R,µ · · ·

where, for all i ≥ 1, li → ri ∈ R, σi are substitutions, ti ∈ M∞,µ, and either

(1) ti = σi(si) for some si such that ri Dµ si or (2) σi(xi) = Ci[ti] for some xi ∈
Varµ(ri) \ Varµ(li) (and hence σ(li)B�µ

ti and σ(ri)Dµ ti as well) and some context

Ci[�] with a µ-replacing hole. We only need to prove that for the terms Ci[ti], terms

ti are instances of hidden terms in NHT and contexts Ci[�] are instances of hiding

contexts whenever the second condition holds. By Proposition 25, for all such terms

ti, we have that either (A) σ1(l1)B
�µ
ti or (B) C[ti] = θi(C ′[t′i]) for some t′i ∈ DHT ,

hiding context C ′i[�] and substitution θi. In the second case (B), we are done by

just considering Proposition 28, which ensures that t′i ∈ NHT . In the first one (A),
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since t >Λ↪−→∗R,µ σ1(l1) and σ1(l1) is not µ-terminating, by Lemma 16 all terms uj in

the µ-rewrite sequence

t = u1
>Λ
↪−→ u2

>Λ
↪−→ · · · >Λ

↪−→ um = σ1(l1)

for m ≥ 1, belong to M∞,µ: uj ∈ M∞,µ for all j, 1 ≤ j ≤ m. Since t ∈ T∞,µ,

all its strict subterms (disregarding their µ-replacing character) are µ-terminating.

Therefore, t 7 ti (because ti is not µ-terminating) and by Lemma 24, C[ti] =

θi(C ′[t′i]) for some t′i ∈ DHT , hiding context C ′i[�] and substitution θi. Again, by

Proposition 28 we have t′i ∈ NHT .
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4
Context-Sensitive Dependency

Pairs

Lemma 10 and Theorem 29 are the basis for our definition of Context-Sensitive

Dependency Pairs (and the corresponding chains). Together, they show that every

non-µ-terminating term s has an associated infinite µ-rewrite sequence starting from

a strongly minimal subterm t ∈ T∞,µ (i.e., s D t). Such a sequence proceeds by

first performing some µ-rewriting steps below the root of t to obtain a term t′ (i.e.,

t >Λ↪−→∗R,µ t′) and then applying a rule l→ r at the topmost position of t′ (i.e., t′ = σ(l)

for some matching substitution σ). According to Proposition 26, the application of

such a rule either

1. introduces a new minimal non-µ-terminating subterm u having a prefix s which

is a µ-replacing subterm of r (i.e., r Dµ s and u = σ(s)). Furthermore, by

Proposition 28, Renµ(s) must be µ-narrowable; or else

2. takes a minimal non-µ-terminating and non-µ-replacing subterm u of t′ (i.e.,

t′ B
�µ
u) and

a) brings it up to an active position by means of the binding σ(x) for some

migrating variable x in l→ r, σ(x) = C[u] for some x ∈ Varµ(r)\Varµ(l)

and a context C[�] with a µ-replacing hole.

b) At this point, we know that u, which is rooted by a defined symbol due

to u ∈ M∞,µ, is an instance of a hidden term u′ ∈ NHT and C[�]

is an instance of a hiding context C ′[�]: C[u] = θ(C ′)[θ(u′)] for some

substitution θ.

c) Afterwards, further inner µ-rewritings on u lead to match the left-hand-

side l′ of a new rule l′ → r′ and everything starts again.
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This process is abstracted in the following definition of context-sensitive dependency

pairs and in the definition of chain below.

Given a signature F and f ∈ F , we let f ] be a new fresh symbol (often called

tuple symbol or DP-symbol) associated to a symbol f [AG00]. Let F ] be the set of

tuple symbols associated to symbols in F . As usual, for t = f(t1, . . . , tk) ∈ T (F ,X ),

we write t] to denote the marked term f ](t1, . . . , tk). Conversely, given a marked

term t = f ](t1, . . . , tk), where t1, . . . , tk ∈ T (F ,X ), we write t\ to denote the term

f(t1, . . . , tk) ∈ T (F ,X ). Let T ](F ,X ) = {t] | t ∈ T (F ,X )\X} be the set of marked

terms.

Definition 30 (Context-Sensitive Dependency Pairs) Let R = (F , R) = (C]
D, R) be a TRS and µ ∈MF . We define DP(R, µ) = DPF (R, µ) ∪DPX (R, µ) to be

the set of context-sensitive dependency pairs (CSDPs) where:

DPF (R, µ) = {l] → s] | l→ r ∈ R, r Dµ s, root(s) ∈ D, l 6Bµ s,Narrµ(Renµ(s))}

DPX (R, µ) =
{

∅ if NHT = ∅
{l] → x | l→ r ∈ R, x ∈ Varµ(r) \ Varµ(l)} if NHT 6= ∅

We extend µ ∈ MF into µ] ∈ MF∪D] by µ](f) = µ(f) if f ∈ F , and µ](f ]) = µ(f)

if f ∈ D.

The CSDPs u→ v ∈ DPX (R, µ) in Definition 30, consisting of collapsing rules only,

are called the collapsing CSDPs.

If we apply in an infinite minimal µ-rewrite sequence a rule l → r ∈ R with a

migrating variable x instantiated to an infinite minimal term with a substitution

σ, we know that this instantiated variable has the form σ(x) = C[t], where t is

an instance of a hidden term t′ and C[�] is an instance of a hiding context C ′[�].

Hence, if there is no any narrowable hidden term, then it is impossible to have an

infinite minimal µ-rewrite sequence where a rule with a migrating variable is applied

and the migrating variable is instantiated to a minimal non-µ-terminating term.

A rule l → r of a TRS R is µ-conservative if Varµ(r) ⊆ Varµ(l), i.e., it does

not contain migrating variables; R is µ-conservative if all its rules are (see [Luc96,

Luc06]). The following fact is obvious from Definition 30.

Proposition 31 ([AGL06]) Let R be a TRS and µ ∈MR. If (R, µ) is µ-conservative,

then DP(R, µ) = DPF (R, µ).

Therefore, in order to deal with µ-conservative TRSs R we only need to consider

the ‘classical’ dependency pairs in DPF (R, µ).
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Example 32

Consider the following TRS R:

g(x) → h(x)
c → d

h(d) → g(c)

together with µ(g) = µ(h) = ∅ [Zan97, Example 1]. Note that R is µ-conservative.

DP(R, µ) consists of the following (noncollapsing) CSDPs:

G(x) → H(x) H(d) → G(c)

with µ](G) = µ](H) = ∅.

If the TRS R contains non-µ-conservative rules, then we also need to consider de-

pendency pairs with variables in the right-hand side.

Example 33

For the CS-TRS (R, µ) in Example 1, we have six CSDPs: (1.1), (1.2), and (1.9)

as in Example 2 plus the following three collapsing CSDPs:

TAIL(cons(x, y)) → y (4.1)

IF(true, x, y) → x (4.2)

IF(false, x, y) → y (4.3)

Example 34

For the CS-TRS (R, µ) in Example 20, we have six CSDPs:

SEL(s(n), cons(x, xs)) → SEL(n, xs) (4.4)

MINUS(s(x), s(y)) → MINUS(x, y) (4.5)

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y)) (4.6)

QUOT(s(x), s(y)) → MINUS(x, y) (4.7)

ZwQUOT(cons(x, xs), cons(y, ys)) → QUOT(x, y) (4.8)

TAIL(cons(x, y)) → y (4.9)
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4.1. Chains of CSDPs

An essential property of the dependency pairs method is that it provides a char-

acterization of termination of TRSs R as the absence of infinite (minimal) chains

of dependency pairs [AG00, GTSKF06]. As we prove in Section 4.2, this is also

true for CSR when CSDPs are considered. First, we have to introduce a suit-

able notion of chain which can be used with CSDPs. As in the DP-framework

[GTSK04, GTSKF06], where the procedence of pairs does not matter, we rather

think of another TRS P which is used together with R to build the chains. Once

this more abstract notion of chain is introduced, it can be particularized to be used

with CSDPs, by just taking P = DP(R, µ).

Definition 35 (Chain of pairs - Minimal chain) Let R = (F , R) and P = (G, P )

be TRSs and µ ∈ MF∪G. A (P,R, µ)-chain is a finite or infinite sequence of pairs

ui → vi ∈ P, together with a substitution σ satisfying that, for all i ≥ 1:

1. if vi 6∈ Var(ui) \ Varµ(ui), then σ(vi) ↪→∗R,µ σ(ui+1), and

2. if vi ∈ Var(ui)\Varµ(ui), then there is si ∈ T (F ,X ) and a context Ci[�] with

a µ-replacing hole such that σ(vi) = Ci[si] and s]i ↪→∗R,µ σ(ui+1).

As usual, we assume that different occurrences of dependency pairs do not share any

variable (renaming substitutions are used if necessary).

A (P,R, µ)-chain is called minimal if for all i ≥ 1,

1. if vi 6∈ Var(ui) \ Varµ(ui), then σ(vi) is (R, µ)-terminating, and

2. if vi ∈ Var(ui) \ Varµ(ui), then s]i is (R, µ)-terminating, ∃s̄i ∈ NHT (R, µ)

and a hiding context C̄i[�] such that Ci[si] = σ(C̄i[s̄i]).

Note that the condition vi ∈ Var(ui) \ Varµ(ui) in Definition 35 implies that vi is

a variable. Furthermore, since each ui → vi ∈ P is a rewrite rule (i.e., Var(vi) ⊆
Var(ui)), vi is a migrating variable in the rule ui → vi. In the following, the pairs

in a CS-TRS (P, µ), where P = (G, P ), are partitioned according to its role in

Definition 35 as follows:

PX = {u→ v ∈ P | v ∈ Var(u) \ Varµ(u)} and PG = P \ PX

Remark 36 (Notation for chains) In general, a (P,R, µ)-chain can be written

as follows:

σ(u1) ↪→P,µ ◦D]µ t1 ↪→∗R,µ σ(u2) ↪→P,µ ◦D]µ t2 ↪→∗R,µ · · ·
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where, for all i ≥ 1 and ui → vi ∈ P,

1. if ui → vi 6∈ PX , then ti = σ(vi),

2. if ui → vi ∈ PX , then ti = s]i for some term si such that σ(vi)Dµ si.

The relation D]µ is defined as follows:

sD]µ t is equivalent to sDµ t\ if s ∈ T (F ,X ) and t ∈ T ](F ,X ), and

sD]µ t is equivalent to s = t for s, t ∈ T ](F ,X ).

In the following, we let NHT P(R, µ) ⊆ NHT (R, µ) (or just NHT P if R and µ

are clear from the context) be as follows:

NHT P(R, µ) = {t ∈ NHT (R, µ) | ∃u→ v ∈ P, ∃θ, θ′, θ(t]) ↪→∗R,µ θ′(u)}

This set contains the narrowable hidden terms which ‘connect’ with some pair in P.

The following proposition establishes some important ‘basic’ cases of (absence

of) infinite context-sensitive chains of pairs which are used later.

4.2. Characterizing termination of CSR using chains of
CSDPs

The following result establishes the soundness of the context-sensitive depen-

dency pairs approach. As usual, in order to fit the requirement of variable-disjointness

among two arbitrary pairs in a chain of pairs, we assume that appropriately renamed

CSDPs are available when necessary.

Theorem 37 (Soundness) Let R be a TRS and µ ∈ MR. If there is no infinite

minimal (DP(R, µ),R, µ])-chain, then R is µ-terminating.

Proof. By contradiction. If R is not µ-terminating, then by Lemma 10 there is

t ∈ T∞,µ. By Theorem 29, there are rules li → ri ∈ R, matching substitutions σi,

and terms ti ∈M∞,µ, for i ≥ 1 such that

t = t0
>Λ
↪−→∗R,µ σ1(l1)

Λ
↪→ σ1(r1) Dµ t1

>Λ
↪−→∗R,µ σ2(l2)

Λ
↪→ σ2(r2) Dµ t2

>Λ
↪−→∗R,µ · · ·

where either (D1) ti = σi(si) for some si such that ri Dµ si or (D2) σi(xi) = Ci[ti]

for some xi ∈ Varµ(ri) \ Varµ(li), Ci[ti] = θi(C ′i[t
′
i]) for some t′i ∈ NHT and some
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hiding context C ′i[�]. Furthermore, since ti−1
>Λ↪−→∗R,µ σi(li) and ti−1 ∈ M∞,µ (in

particular, t0 = t ∈ T∞,µ ⊆M∞,µ), by Lemma 16, σi(li) ∈M∞,µ for all i ≥ 1. Note

that, since ti ∈M∞,µ, we have that t]i is µ-terminating (with respect to R), because

all µ-replacing subterms of ti (hence of t]i as well) are µ-terminating and root(t]) is

not a defined symbol of R.

First, note that DP(R, µ) is a TRS P over the signature G = F ∪ D] and µ] ∈
MF∪G as required by Definition 35. Furthermore, PG = DPF (R, µ) and PX =

DPX (R, µ). We can define an infinite minimal (DP(R, µ),R, µ])-chain using CSDPs

ui → vi for i ≥ 1, where ui = l]i and

1. vi = s]i if (D1) holds. Since ti ∈M∞,µ, we have that root(si) ∈ D and, because

ti = σi(si), by Proposition 28 Renµ(si) is µ-narrowable. Furthermore, if we

assume that si is a µ-replacing subterm of li (i.e., liBµ si), then σi(li)Bµσi(si)

which (since σi(si) = ti ∈ M∞,µ) contradicts that σi(li) ∈ M∞,µ. Thus,

li 7µ si. Hence, ui → vi ∈ DPF (R, µ). Furthermore, t]i = σi(vi) is µ-

terminating. Finally, since ti = σi(si)
>Λ↪−→∗R,µ σi+1(li+1) and µ] extends µ to

F ∪D] by µ](f ]) = µ(f) for all f ∈ D, we also have that σi(vi) = σi(s
]
i) ↪→∗R,µ]

σi+1(ui+1).

2. vi = xi if (D2) holds. Since NHT 6= ∅ (by asumption), we have that ui →
vi ∈ DPX (R, µ). As discussed above, t]i is µ-terminating. Since σi(xi) =

Ci[ti], we have that σi(vi) = Ci[ti] for a context Ci[�] with a µ-replacing hole.

Finally, since ti
>Λ↪−→∗R,µ σi+1(li+1), again we have that u]i ↪→∗R,µ] σi+1(ui+1).

Furthermore, Ci[ti] = θi(C ′i[t
′
i]) for some t′i ∈ NHT and some hiding context

C ′i[�].

Regarding σ, w.l.o.g. we can assume that Var(li) ∩ Var(lj) = ∅ for all i 6= j,

and therefore Var(ui) ∩ Var(uj) = ∅ as well. Then, σ is given by σ(x) = σi(x)

whenever x ∈ Var(ui) for i ≥ 1. From the discussion in points (1) and (2) above,

we conclude that the CSDPs ui → vi for i ≥ 1 together with σ define an infinite

minimal (DP(R, µ),R, µ])-chain which contradicts our initial assumption.

Now we prove that the previous CS-dependency pairs approach is not only correct

but also complete for proving termination of CSR.

Theorem 38 (Completeness) Let R be a TRS and µ ∈MR. If R is µ-terminating,

then there is no infinite (DP(R, µ),R, µ])-chain.
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Proof. By contradiction. If there is an infinite (DP(R, µ),R, µ])-chain, then there

is a substitution σ and dependency pairs ui → vi ∈ DP(R, µ) such that

1. If ui → vi ∈ DPF (R, µ), then σ(vi) ↪→∗R,µ] σ(ui+1), and

2. if ui → vi = ui → xi ∈ DPX (R, µ), then there is si ∈ T (F ,X ) and a context

Ci[�] with a µ-replacing hole such that σ(xi) = Ci[si] and s]i ↪→∗R,µ] σ(ui+1).

for i ≥ 1. Now, consider the first dependency pair u1 → v1 in the sequence:

1. If u1 → v1 ∈ DPF (R, µ), then v\1 is a µ-replacing subterm of the right-hand-

side r1 of a rule l1 → r1 in R. Therefore, r1 = D1[v\1]p1 for some p1 ∈
Posµ(r1) and we can perform the µ-rewriting step t1 = σ(u1) ↪→R,µ σ(r1) =

σ(D1)[σ(v\1)]p1 = s1, where σ(v\1)] = σ(v1) ↪→∗R,µ] σ(u2) and σ(u2) initiates an

infinite (DP(R, µ),R, µ])-chain. Note that p1 ∈ Posµ(s1).

2. If u1 → x ∈ DPX (R, µ), then there is a rule l1 → r1 in R such that u1 =

l]1, and x ∈ Varµ(r1) \ Varµ(l1), i.e., r1 = D1[x]q1 for some q1 ∈ Posµ(r1).

Furthermore, since there is a subterm s and a context C1[�] with a µ-replacing

hole such that σ(x) = C1[s] and s] ↪→∗R,µ] σ(u2). Therefore, we can perform the

µ-rewriting step t1 = σ(l1) ↪→R,µ σ(r1) = σ(D1)[C1[s]] = s1 where s] ↪→∗R,µ]
σ(u2) (hence s >Λ↪−→∗R,µ u\2) and σ(u2) initiates an infinite (DP(R, µ),R, µ])-
chain.

Since µ](f ]) = µ(f), and C1 is a context with a µ-replacing hole, we have that

s1 ↪→∗R,µ t2[σ(u2)]p1 = t2 and p1 ∈ Posµ(t2). Therefore, we can build in that way an

infinite µ-rewrite sequence

t1 ↪→R,µ s1 ↪→∗R,µ t2 ↪→R,µ · · ·

which contradicts the µ-termination of R.

Corollary 39 (Characterization of µ-termination) Let R be a TRS and µ ∈
MR. Then, we have that R is µ-terminating if and only if there is no infinite

minimal (DP(R, µ),R, µ])-chain.
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5
Mechanizing proofs of

µ-termination using CSDPs

During the last ten years, the dependency pairs method has evolved to a pow-

erful technique for proving termination of TRSs in practice. From the already clas-

sical Arts and Giesl’s article [AG00] to the last developments corresponding to the

so-called dependency pair framework [GTSK04, GTSKF06, Thi07] many new im-

provements have been introduced.

In the DP-approach [AG00], the starting point is a TRS R from which a set of

dependency pairs DP(R) is obtained. Then, such dependency pairs are organized

in a dependency graph DG(R) and the cycles of the graph are analyzed to show

that no infinite chains of DPs can be obtained from them. The dependency pairs

approach emphasizes (at least theoretically) a ‘linear’ (although somehow modular,

see [GAO02]) procedure for proving termination. In this sense, the treatment of

strongly connected components of the graph (SCCs) instead of cycles, as suggested

by Hirokawa and Middeldorp [HM04, HM05], brought an important improvement

in its practical use because it provides a way to make the proofs more incremental

without running out of the basic DP-approach. In the DP-approach, dependency

pairs are considered as components of the chains (or cycles). Since they only make

sense when an underlying TRS is given as the source of the dependency pairs,

transforming DPs is possible (the narrowing transformation is already described in

[AG00]) but only as a final step because, afterwards, they are not dependency pairs

of the original TRS anymore.

The dependency pair framework solves these problems in a clean way, leading to

a more powerful mechanization of termination proofs.
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5.1. Mechanizing termination proofs with the depen-
dency pair framework

An appealing aspect of the DP-framework [GTSK04, GTSKF06] is that the

procedence of pairs does not matter; they can be independent from the considered

TRS. The notion of chain is parametric on both a TRS R and a set of pairs P
(a TRS, actually) which are connected by using R-rewrite sequences. Regarding

termination proofs, the central notion now is that of DP-termination problem: given

a TRS R and a set of pairs P, the goal is checking the absence (or presence) of

infinite (minimal) chains. Termination of a TRS R is addressed as a DP-termination

problem where P = DP(R). The most important notion regarding mechanization

of the proofs is that of processor. A (correct) processor basically transforms DP-

termination problems into (hopefully) simpler ones, in such a way that the existence

of an infinite chain in the original DP-termination problem implies the existence of

an infinite chain in the transformed one. Here ‘simpler’ usually means that fewer

pairs are involved. Often, processors are not only correct but also complete, i.e., there

is an infinite minimal chain in the original DP-termination problem if and only if

there is an infinite minimal chain in the transformed problem. This is essential if

we are interested in disproving termination.

Processors are used in a pipe (more precissely, a tree) to incrementally simplify

the original DP-termination problem as much as possible, possibly decomposing it

into smaller pieces which are then independently treated in the very same way. The

trivial case of this iterative process comes when the set of pairs P becomes empty.

Then, no infinite chain is possible and we can provide a positive answer yes to

the DP-termination problem which is propagated upwards to the original problem

in the root of the tree. In some cases it is also possible to witness the existence

of infinite chains for a given DP-termination problem; then a negative answer no

can be provided and propagated upwards. Of course, DP-termination problems are

undecidable (in general), thus don’t know answers can also be generated (for instance

by a time-out system which interrupts the usually complex search processes which

are involved in the proofs). When all answers are collected, a final conclusion about

the whole DP-termination problem can be given:

1. if we have positive answers (yes) for all problems in the leaves of the tree, then

we conclude yes as well;

2. if a negative answer (no) was raised somewhere and the DP-processors which
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were used in the path from the root to the node producing the negative answer

were complete, then we conclude no as well;

3. Otherwise, the conclusion is don’t know.

The notions of graph, cycles, SCCs, etc., are also part of the framework but (1)

they are incorporated as processors now, and (2) they do not refer to dependency

pairs anymore, but rather to the pairs in the (different) sets of pairs which are

obtained through the process sketched above. In this way, we obtain a much more

flexible framework to mechanize termination proofs and also to benefit from new

future developments which could lead to the introduction of new processors.

In the following, we adapt these ideas to CSR to provide a suitable framework

for mechanizing proofs of termination of CSR using CSDPs.

5.2. CS-termination problems and processors

The following definition adapts the notion of (DP-)termination problem defined

in [GTSKF06] to CSR. In our definition, we prefer to avoid ‘DP ’ because, as dis-

cussed above, dependency pairs (as such) are relevant in the theoretical framework

only for investigating a particular problem (termination of TRSs), whereas some

transformations can yield sets of pairs which are not dependency pairs of the under-

lying TRS anymore.

Definition 40 (CS-termination problems) A CS-termination problem τ is a

tuple τ = (P,R, µ), where R = (F , R) and P = (G, P ) are TRSs and µ ∈MF∪G. A

CS-termination problem is finite if there is no infinite minimal (P,R, µ)-chain.

Finite CS-termination problems correspond to those generating a positive answer

yes in the full proof process sketched above. Accordingly, CS-termination problems

which are not finite correspond to a negative answer no.

Remark 41 According to Corollary 39, we can say now that a TRS R is µ-

terminating if and only if the CS-termination problem (DP(R, µ),R, µ]) is finite.

The following definition adapts the notion of processor [GTSKF06] to CSR.

Definition 42 (CS-processor) A CS-processor Proc is a mapping from CS-ter-

mination problems into sets of CS-termination problems. A CS-processor Proc is
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sound if for all CS-termination problems τ , τ is finite whenever τ ′ is finite for

all τ ′ ∈ Proc(τ).

complete if for all CS-termination problems τ , whenever τ is finite, then τ ′ is

finite for all τ ′ ∈ Proc(τ).

In the following sections we describe a number of sound and (most of them) complete

CS-processors.



6
CS-Termination Processors

In this chapter, we develop different processors that allow us to solve CS-ter-

mination problems. As explained in the previous chapter, these processors can be

combined to treat CS-termination problems in such a way that after a finite number

of processing steps we (hopefully) get a final response (finite or infinite).

6.1. Context-Sensitive Dependency Graph

CS-termination problems focus our attention on the analysis of infinite minimal

(P,R, µ)-chains. In general, an infinite sequence S = a1, a2, . . . , an, . . . of objects ai
belonging to a set A can be represented as a path in a graph G whose nodes are the

objects in A, and whose arcs among them are appropriately established to represent

S (in particular, an arc from ai to ai+1 should be established if we want to be able

to capture the sequence above). Actually, if A is finite, then the infinite sequence

S defines at least one cycle in G: since there is a finite number of different objects

ai ∈ A in S, there is an infinite tail S′ = am, am+1, . . . of S where all objects ai occur

infinitely many times for all i ≥ m. This clearly corresponds to a cycle in G.

In the dependency pairs approach [AG00], a dependency graph DG(R) is associ-

ated to the TRS R. The nodes of the dependency graph are the dependency pairs in

DP(R); there is an arc from a dependency pair u→ v to a dependency pair u′ → v′

if there are substitutions θ and θ′ such that θ(v)→∗R θ′(u′).

In more recent approaches, the analysis of infinite chains of dependency pairs as

such is just a starting point. Many often, chains of dependency pairs are transformed

into chains of more general pairs which cannot be considered dependency pairs

anymore. This is the case for the narrowing or instantiation transformations, among

others, see [GTSKF06] for instance. Still, the analysis of the cycles in the graph

build out from such pairs is useful to investigate the existence of infinite (minimal)
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chains of pairs. Thus, a more general notion of graph of pairs DG(P,R) associated to

a set of pairs P and a TRS R is considered; the pairs in P are used now as the nodes

of the graph but they are connected by R-rewriting in the same way [GTSKF06,

Definition 7].

In the following section we take into account these points to provide an appro-

priate definition of context-sensitive (dependency) graph.

6.1.1. Definition of the context-sensitive dependency graph

According to the discussion above, our starting point are two TRSs R = (F , R)

and P = (G, P ) togheter with a replacement map µ ∈MF∪G . Our aim is obtaining

a notion of graph which is able to represent all infinite minimal chains of pairs as

given in Definition 35.

When considering pairs u→ v ∈ PG , we can proceed as in the standard case to

define appropriate connections to other pairs u′ → v′ ∈ P: there is an arc from u→ v

to u′ → v′ if θ(v) ↪→∗R,µ θ′(u′) for some substitutions θ and θ′. When considering

collapsing pairs u → v ∈ PX , we know that such pairs can only be followed by a

pair u′ → v′ ∈ P such that θ(t]) ↪→∗R,µ θ′(u′) for some t ∈ NHT and substitutions

θ and θ′ (see Definition 35).

Definition 43 (Context-Sensitive Graph of Pairs) Let R = (F , R) and P =

(G, P ) be TRSs and µ ∈ MF∪G. The context-sensitive (CS-)graph associated to R
and P (denoted G(P,R, µ)) has P as the set of nodes and arcs which connect them

as follows:

1. There is an arc from u → v ∈ PG to u′ → v′ ∈ P if there are substitutions θ

and θ′ such that θ(v) ↪→∗R,µ θ′(u′).

2. There is an arc from u → v ∈ PX to u′ → v′ ∈ P if there is t ∈ NHT (R, µ)

and substitutions θ and θ′ such that θ(t]) ↪→∗R,µ θ′(u′).

In termination proofs, we are concerned with the so-called strongly connected com-

ponents (SCCs) of the dependency graph, rather than with the cycles themselves

(which are exponentially many) [HM05]. A strongly connected component in a

graph is a maximal cycle, i.e., a cycle which is not contained in any other cycle. The

following result justifies the use of SCCs for proving the absence of infinite minimal

(P,R, µ)-chains.
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Theorem 44 (SCC processor [AGL08]) Let R = (F , R) and P = (G, P ) be

TRSs and µ ∈MF∪G. Then, the processor ProcSCC given by

ProcSCC (P,R, µ) = {(Q,R, µ) | Q contains the pairs of an SCC in G(P,R, µ)}

is sound and complete.

As a consequence of this theorem, we can separately work with the strongly con-

nected components of G(P,R, µ), disregarding other parts of the graph.

Now we can use these notions to introduce the context-sensitive dependency

graph.

Definition 45 (Context-Sensitive Dependency Graph) Let R = (F , R) be a

TRS and µ ∈ MF . The Context-Sensitive Dependency Graph associated to R and

µ is DG(R, µ) = G(DP(R, µ),R, µ]).

6.1.2. Estimating the CS-dependency graph

In general, the (context-sensitive) dependency graph of a TRS is not computable:

it involves reachability of θ′(u′) from θ(v) (for u → v ∈ PG) or θ(t]) (for t ∈
NHT P) using CSR; as in the unrestricted case, the reachability problem for CSR is

undecidable. So, we need to use some approximation of it. Following [AG00], we

describe how to approximate the CS-dependency graph of a CS-TRS.

Given a set ∆ of ‘defined’ symbols, we let Capµ∆ be as follows:

Capµ∆(x) = x if x is a variable

Capµ∆(f(t1, . . . , tk)) =
{
y if f ∈ ∆
f([t1]f1 , . . . , [tk]

f
1) otherwise

where y is intended to be a new, fresh variable which has not yet been used and

given a term s, [s]fi = Capµ∆(s) if i ∈ µ(f) and [s]fi = s if i 6∈ µ(f).

Function Capµ∆ is intended to provide a suitable approximation of reachability

problems θ(s) ↪→∗R,µ θ′(t) by means of unification. The idea is obtaining the maximal

prefix context C[�] of s (i.e., s = C[s1, . . . , sn] for some terms s1, . . . , sn) which we

know (without any ‘look-ahead’ for applicable rules) that cannot be changed by

any reduction starting from s. Furthermore, terms s1, . . . , sn above must be rooted

by defined symbols (i.e., root(si) ∈ ∆ for i ∈ {1, . . . , n}). Now, we replace those

subterms si which are at µ-replacing positions (i.e., si = s|pi for some pi ∈ Posµ(s))

by some variable x, and we leave untouched the non-µ-replacing ones.
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The following result whose proof is similar to that of [AG00, Theorem 21] (we

only need to take into account the replacement restrictions indicated by the replace-

ment map µ) formalizes the soundness of this approach.

Proposition 46 ([AGL08]) Let R = (F , R) = (C ]D, R) be a TRS and µ ∈MR.

Let s, t ∈ T (F ,X ) be such that Var(s) ∩ Var(t) = ∅ and θ, θ′ be substitutions. If

θ(s) ↪→∗R,µ θ′(t), then Renµ(CapµD(s)) and t unify.

Example 47

Consider the well-known Toyama’s example [Toy87]. Note that Renµ is neces-

sary to simulate reachability. Otherwise:

f(a, b, x) → f(x, x, x)

c → a

c → b

The only dependeny pair for this system is:

F(a, b, x) → F(x, x, x)

Without considering Renµ, F(x, x, x) does not unify with F(a, b, y), but it is possible

to rewrite F(c, c, c) into F(a, b, c).

According to Proposition 46, given terms s, t ∈ T (F ,X ) and substitutions θ, θ′, the

reachability of θ′(t) from θ(s) by µ-rewriting can be approximated as unification of

Renµ(CapµD(s)) and t. So, we have the following.

Definition 48 (Estimated Context-Sensitive Graph of Pairs) Let R = (F , R)

and P = (G, P ) be TRSs and µ ∈ MF∪G. The estimated CS-graph associated to R
and P (denoted EG(P,R, µ)) has P as the set of nodes and arcs which connect them

as follows:

1. There is an arc from u → v ∈ PG to u′ → v′ ∈ P if Renµ(CapµD(v)) and u′

unify.

2. There is an arc from u → v ∈ PX to u′ → v′ ∈ P if there is t ∈ NHT (R, µ)

such that Renµ(CapµD(t])) and u′ unify.

According to Definition 43, we would have the corresponding one for the estimated

CSDG: EDG(R, µ) = EG(DP(R, µ),R, µ]).
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6.3

6.26.1

Figure 6.1: Estimated CSDG for the CS-TRS (R, µ) in Example 49

Example 49

Consider the following TRS R [Zan97, Example 4]:

f(x) → cons(x, f(g(x)))
g(0) → s(0)

g(s(x)) → s(s(g(x)))

sel(0, cons(x, y)) → x

sel(s(x), cons(y, z)) → sel(x, z)

with µ(0) = ∅, µ(f) = µ(g) = µ(s) = µ(cons) = {1}, and µ(sel) = {1, 2}. Then,

DP(R, µ) is:

G(s(x)) → G(x) (6.1)
SEL(s(x), cons(y, z)) → SEL(x, z) (6.2)

SEL(s(x), cons(y, z)) → z (6.3)

and NHT = {f(g(x)), g(x)}. Regarding pairs (6.1) and (6.2) in DPF (R, µ),

there is an arc from (6.1) to itself and another one from (6.2) to itself. Regard-

ing the only collapsing pair (6.3), we have that Renµ(CapµD(F(g(x)))) = F(y) and

Renµ(CapµD(G(x))) = G(y). Since F(y) does not unify with the left-hand side of

any pair, and G(y) unifies with the left-hand side G(s(x)) of (6.1), there is an arc

from (6.3) to (6.1), see Figure 6.1. Thus, there are two cycles: {(6.1)} and {(6.2)}.

Note that Proposition 46 also provides a way to estimate the set NHT P : if t ∈
NHT P , then Renµ(CapµD(t])) and u unifiy for some u → v ∈ P. In the following,

our presentations of NHT P in the examples are computed in this way.

Example 50

Consider again the CS-TRS (R, µ) in Example 1. Note that

NHT DP(R,µ)(R, µ]) = {filt(x, sieve(y)), filt(s(s(x)), z)}
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The CSDG is shown in Figure 6.2 and has no cycle. By Theorem 44 we transform

the CS-problem (DP(R, µ),R, µ]) into a singleton {(∅,R, µ])} containing a finite

CS-termination problem. Thus, we conclude that R is µ-terminating.

4.3

1.9

1.1 1.2

4.1

4.2

Figure 6.2: Context-Sensitive Dependency Graph for the CS-TRS (R, µ) in Exam-
ple 1

Example 51

Consider again the CS-TRS (R, µ) in Example 20. Note that

NHT DP(R,µ)(R, µ]) = {zWquot(xs, ys)}

The CSDG is shown in Figure 6.3 and has three cycles. By Theorem 44 we transform

the CS-problem (DP(R, µ),R, µ]) into a set {(P1,R, µ]), (P2,R, µ]), (P3,R, µ])} of

three CS-termination problems where:

P1 = {{SEL(s(n), cons(x, xs))→ SEL(n, xs)}

P2 = {MINUS(s(x), s(y))→ MINUS(x, y)}

P3 = {QUOT(s(x), s(y))→ QUOT(minus(x, y), s(y))}}
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4.7 4.5

4.4 4.6 4.8 4.9

Figure 6.3: Context-Sensitive Dependency Graph for the CS-TRS (R, µ) in Exam-
ple 20

6.2. Treating collapsing pairs

The following result introduces a sound and complete CS-processor to transform

collapsing pairs into noncollapsing ones. In order to appropiatelly formulate it,

we first define the notion of hiding replacement map. Given a CS-TRS (R, µ), it

collects the arguments which are hidden by each symbol in the signature F of R
(see Definition 18).

Definition 52 (Hiding replacement map) Let R = (F , R) be a TRS and µ ∈
MF . We define the hiding context map µH,R,µ as a mapping µH,R,µ : F → ℘(N)

such that:

µH,R,µ(f) = {i | i ∈ µ(f) and f hides position i in (R, µ)}

.

Note that µH,R,µ ⊆ µ.

Theorem 53 (Collapsing pairs transformation processor) Let R = (F , R)

and P = (G, P ) be TRSs and µ ∈MF∪G.

Let u→ x ∈ PX and

Pu = {u→ U(x)} ∪ {U(f(x1, . . . , xk))→ U(xi) | f ∈ F , i ∈ µH,R,µ(f)}
∪ {U(t)→ t] | t ∈ NHT P}

where U is a new fresh symbol. Let P ′ = (G∪{U}, P ′) where P ′ = (P \{u→ x})∪Pu,

and µ′ which extends µ by µ′(U) = ∅.
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Then, the processor ProceColl given by

ProceColl (P,R, µ) = {(P ′,R, µ′)}

is sound and complete.

Proof. Soundness. We prove first that the existence of an infinite minimal (P,R, µ)-

chain implies the existence of an infinite minimal (P ′,R, µ′)-chain.

First, note that P ′ is well-defined as a TRS. Consider an infinite minimal (P,R, µ)-

chain A:

σ(u1) ↪→P,µ ◦D]µ t1 ↪→∗R,µ σ(u2) ↪→P,µ ◦D]µ t2 ↪→∗R,µ σ(u3) ↪→P,µ ◦D]µ · · ·

for some substitution σ, where, for all i ≥ 1, ti is µ-terminating and, (1) if ui →
vi ∈ PG , then ti = σ(vi) and (2) if ui → vi = ui → xi ∈ PX , then ti = s]i for

some si such that σ(xi) = C[si] and C[si] = θi(C̄[s̄i]) for some s̄i ∈ NHT , some

hiding context C̄[�] and substitution θi; actually, since ti = s]i = θi(s̄i)] = θi(s̄
]
i)

and ti ↪→∗R,µ σ(ui+1), we can further say that s̄i ∈ NHT P . Hence, we obtain:

σ(ui)
Λ
↪→P ′,µ′ U(σ(xi)) a collapsing pair is applied
= U(C[si]) C[�] is an instance of a hiding context
Λ
↪→
∗

P ′,µ′ U(si) we remove the hiding context with the U rules
Λ
↪→P ′,µ′ s]i si is an instance of a term in NHT

Thus, we obtain an infinite minimal (P ′,R, µ′)-chain, as desired. In particular, we

note that all steps with Pu are performed at the root, we do not require any reduction

below symbol U, hence µ′(U) = ∅ is enough to perform them.

Completeness. By contradiction. If there is an infinite (P ′,R, µ′)-chain, then

there is a substitution σ and pairs ui → vi ∈ P ′ such that

1. If ui → vi ∈ P ′\Pu and σ(vi) ↪→∗R,µ σ(ui+1), then ui → vi ∈ P and σ(vi) ↪→∗R,µ
σ(ui+1),

2. if ui → vi = ui → U(xi) ∈ P ′ and σ(ui) ↪→∗R,µ σ(vi+1) where σ(vi+1) =

U(v′i+1), then there is a pair ui → xi ∈ P such that σ(xi) = v′i+1,

3. if ui → vi = U(f(x1, . . . , xn)) → U(xi) ∈ P ′ and σ(vi) ↪→∗R,µ σ(vi+1) where

σ(vi) = U(v′i) and σ(vi+1) = U(v′i+1), then i ∈ µH,R,µ(f) and v′i = Ci[v′i+1]

where C ′i[�] is an instance of a hiding context, and
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4. if ui → vi = U(t) → t] ∈ P ′ and σ(vi) ↪→∗R,µ σ(ui+1), then there is t ∈ NHT
such that σ(t)] ↪→∗R,µ σ(ui+1).

Hence, we can build in that way an infinite minimal (P,R, µ)-chain which contradicts

the µ-termination of R.

Example 54

Consider the following TRS [AEF+08]:

gt(0, y) → false p(0) → 0
gt(s(x), 0) → true p(s(x)) → x

gt(s(x), s(y)) → gt(x, y) minus(x, y) → if(gt(y, 0),minus(p(x), p(y)), x)
if(true, x, y) → x div(0, s(y)) → 0
if(false, x, y) → y div(s(x), s(y)) → s(div(minus(x, y), s(y)))

with µ(if) = {1} and µ(f) = {1, . . . , ar(f)} for all other symbols f .

We obtain the following CS-DPs.

GT(s(x), s(y)) → GT(x, y) (6.4)

DIV(s(x), s(y)) → MINUS(x, y) (6.5)

DIV(s(x), s(y)) → DIV(minus(x, y), s(y)) (6.6)

IF(true, x, y) → x (6.7)

IF(false, x, y) → y (6.8)

MINUS(x, y) → GT(y, 0) (6.9)

MINUS(x, y) → IF(gt(y, 0),minus(p(x), p(y)), x) (6.10)

Applying the SCCs processor to the CS-problem (DP(R, µ),R, µ]), we obtain

the graph shown in Figure 6.4. And the resulting problems is a set of CS-problems

{(P1,R, µ]), (P2,R, µ]), (P3,R, µ])} where set P1 = {(6.4)}, set P2 = {(6.6)}, and

set P3 = {(6.7), (6.8), (6.10)}. If we apply the collapsing pairs transformation pro-

cessor to the CS-termination problem (P3,R, µ]), we obtain the CS-termination

problem ({(6.10)} ∪ Pu,R, µ′) where Pu is formed by the following pairs:

IF(true, x, y) → U(x) (6.11)

IF(false, x, y) → U(y) (6.12)

MINUS(x, y) → GT(y, 0) (6.13)

MINUS(x, y) → IF(gt(y, 0),minus(p(x), p(y)), x) (6.14)

U(p(x)) → U(x) (6.15)
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6.6 6.8

6.9 6.4

6.10

6.76.5

Figure 6.4: Dependency Graph for the CS-DPs in Example 54

U(p(y)) → U(y) (6.16)

U(minus(x, y)) → U(x) (6.17)

U(minus(p(x), p(y))) → MINUS(p(x), p(y)) (6.18)

U(minus(x, y)) → U(y) (6.19)

U(p(x)) → P(x) (6.20)

where µ′ extends µ] with µ′(U) = ∅.

6.3. Use of µ-reduction pairs

A reduction pair (&,A) consists of a stable and monotonic quasi-ordering &,

and a stable and well-founded ordering A satisfying either & ◦ A⊆A or A ◦ &⊆A
[KNT99].

The absence of infinite chains of (dependency) pairs can be ensured by finding a

reduction pair (&,A) which is compatible with the rules and the dependency pairs

[AG00]: l & r for all rewrite rules l → r and u & v or u A v for all dependency

pairs u → v. In the dependency pair framework [GTSK04, GTSKF06] (but also

in [GAO02, HM04, HM05, HM07]), they are used to obtain smaller sets of pairs

P ′ ⊆ P by removing the strict pairs, i.e., those pairs u→ v ∈ P such that u A v.

Stability is required both for & and A because, although we only check the left-

and right-hand sides of the rewrite rules l→ r (with &) and pairs u→ v (with & or

A), the chains of pairs involve instances σ(l), σ(r), σ(u), and σ(v) of rules and pairs

and we aim at concluding σ(l) & σ(r), and σ(u) & σ(v) or σ(u) A σ(v), respectively.
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Monotonicity is required for & to deal with the application of rules l → r to an

arbitrary depth in terms. Since the pairs are ‘applied’ only at the root level, no

monotonicity is required for A (but, for this reason, we cannot compare the rules

in R using A). Recently, Endrullis et al. noticed that transitivity is not necessary

for the strict component A because it is somehow ‘simulated’ by the compatibility

requirement above [EWZ08].

In our setting, since we are interested in µ-rewriting steps only, we can relax the

monotonicity requirements as follows.

Definition 55 (µ-reduction pair) Let F be a signature and µ ∈ MF . A µ-

reduction pair (&,A) consists of a stable and µ-monotonic quasi-ordering & and

a well-founded stable relation A on terms in T (F ,X ) which are compatible, i.e.,

& ◦ A⊆A or A ◦ &⊆A.

We say that (&,A) is µ-monotonic if A is µ-monotonic.

Reduction pairs are often used in combination with argument filterings, which dis-

card subexpressions from constraints s & t or s A t in such a way that π(s) & π(t)

(resp. π(s) A π(t)) is often simpler to prove [AG00, GTSKF06].

6.3.1. Argument filterings for CSR

An argument filtering π for a signature F is a mapping that assigns to every

k-ary function symbol f ∈ F an argument position i ∈ {1, . . . , k} or a (possibly

empty) list [i1, . . . , im] of argument positions with 1 ≤ i1 < · · · < im ≤ k [KNT99].

In the following, by the trivial argument filtering π> for F , we mean the one given

by π>(f) = [1, . . . , k] for each k-ary symbol f ∈ F . It corresponds to the argument

filtering which does nothing.

We can use an argument filtering π to ‘filter’ either the signature F or any

replacement map µ ∈MF . In the following, we assume that:

1. The signature Fπ consists of all function symbols f such that π(f) is some

list [i1, . . . , im], where, in Fπ, the arity of f is m. As usual, we give the same

name to the version of f ∈ F which belongs to Fπ.

2. The replacement map µπ ∈ MFπ is given as follows: for all f ∈ F such that

f ∈ Fπ and π(f) = [i1, . . . , im]:

µπ(f) = {j ∈ {1, . . . ,m} | ij ∈ µ(f)}
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An argument filtering induces a mapping from T (F ,X ) to T (Fπ,X ), also denoted

by π:

π(t) =


t if t is a variable

π(ti) if t = f(t1, . . . , tk) and π(f) = i
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tk) and π(f) = [i1, . . . , im]

Note that, for the top filtering π>, we have that Fπ> = F , µπ> = µ for all µ ∈MF ,

and π>(t) = t for all t ∈ T (F ,X ).

In the following, given a substitution σ and an argument filtering π, we let σπ be

the substitution defined by σπ(x) = π(σ(x)) for all x ∈ X . The following auxiliary

results are used later.

Lemma 56 ([AGL08]) Let F be a signature, π be an argument filtering for F and

σ be a substitution. If t ∈ T (F ,X ), then, π(σ(t)) = σπ(π(t)).

Proposition 57 ([AGL08]) Let R = (F , R) be a TRS, µ ∈ MF , and π be an

argument filtering for F . Let (&,A) be a µπ-reduction pair such that π(l) & π(r)

for all l→ r ∈ R, and let s, t ∈ T (F ,X ). If s ↪→∗R,µ t, then π(s) & π(t).

6.3.2. Removing pairs using µ-reduction orderings

For a given TRS R = (F , R), set of pairs P = (G, P ), and replacement map

µ ∈ MF∪G , checking the absence of infinite minimal (P,R, µ)-chains can often be

‘simplified’ to checking the absence of infinite minimal (P ′,R, µ)-chains for a proper

subset P ′ ⊂ P by finding appropriate µ-reduction pairs (&,A). The presence of

collapsing pairs u→ v = u→ x ∈ PX imposes some additional requirements on the

µ-reduction pairs. Basically,

1. We need to ensure that the quasi-ordering & is able to ‘look’ for a µ-replacing

subterm s ∈ T (F ,X ) inside the instantiation σ(x) ∈ T (F ,X ) of a migrating

variable x: we know that σ(x) = C[s] where C[�] is an instance of a hiding

context. Hence we require that for all f ∈ F and for all position i ∈ µH,R,µ(f)

we have that f(x1, . . . , xi, . . . , xn) & xi, where ar(f) = n.

2. We need to connect the marked version s] of s (which is known to be an

instance of a hidden term t ∈ NHT P , i.e., s = θ(t) for some substitution θ)

with an instance σ(u) of the left-hand side u of a pair; hence the requirement

t & t] or t A t] for all t ∈ NHT P which, by stability, becomes s & s] or s A s].
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The following theorem formalizes a generic processor to remove pairs from P by

using argument filterings and µ-reduction pairs.

Theorem 58 (µ-reduction pair processor) Let R = (F , R) and P = (G, P ) be

TRSs, µ ∈ MF∪G. Let π be an argument filtering for F ∪ G and (&,A) be a µπ-

reduction pair such that

1. π(R) ⊆&, π(P) ⊆& ∪ A, and

2. whenever NHT P 6= ∅ and PX 6= ∅, we have that

a) for all f ∈ F , either π(f) = [i1, . . . , im] and µH,R,µ(f) ⊆ π(f), or π(f) =

i and µ(f) = {i},

b) π(f(x1, . . . , xi, . . . , xn)) & xi for all f ∈ F and for all position i ∈
µH,R,µ(f), and

c) π(t) (& ∪ A) π(t]) for all t ∈ NHT P ,

Let PA = {u→ v ∈ P | π(u) A π(v)}. Then, the processor ProcRP given by

ProcRP (P,R, µ) =
{
{(P \ PA,R, µ)} if (1) and (2) hold
{(P,R, µ)} otherwise

is sound and complete.

Proof. We have to prove that there is an infinite minimal (P,R, µ)-chain if and

only if there is an infinite minimal (P \ PA,R, µ)-chain. The if part is obvious.

For the only if part, we proceed by contradiction. Assume that there is an infinite

minimal (P,R, µ)-chain A, but that there is no infinite minimal (P\PA,R, µ)-chain.

Due to the finiteness of P, we can assume that there is Q ⊆ P such that A has a

tail B

σ(u1) ↪→Q,µ ◦D]µ t1 ↪→∗R,µ σ(u2) ↪→Q,µ ◦D]µ t2 ↪→∗R,µ σ(u3) ↪→Q,µ ◦D]µ · · ·

for some substitution σ, where all pairs in Q are infinitely often used, and, for all

i ≥ 1, (1) if ui → vi ∈ QG , then ti = σ(vi) and (2) if ui → vi = ui → xi ∈ QX ,

then ti = s]i for some si and some context C[�] with a µ-replacing hole such that

σ(xi) = C[si], and C[si] = θi(C̄[s̄i]) for some s̄i ∈ NHT , some hiding context C̄[�]

and substitution θi; actually, since ti = s]i = θi(s̄i)] = θi(s̄
]
i) and ti ↪→∗R,µ σ(ui+1),

we can further say that s̄i ∈ NHT Q.

Since π(ui) (& ∪ A) π(vi) for all ui → vi ∈ Q ⊆ P, by stability of & and A, we

have σπ(π(ui)) (& ∪ A) σπ(π(vi)) for all i ≥ 1.
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No pair u→ v ∈ Q satisfies that π(u) A π(v). Otherwise, we get a contradiction

by considering the following two cases:

1. If ui → vi ∈ QG , then ti = σ(vi) ↪→∗R,µ σ(ui+1) and by Proposition 57, π(ti) &

π(σ(ui+1)). By Lemma 56, π(ti) & σπ(π(ui+1)). Since we have σπ(π(ui)) (&

∪ A) σπ(π(vi)) = π(σ(vi)) = π(ti) (using Lemma 56), by using transitivity of

& and compatibility between & and A, we conclude that σπ(π(ui)) (& ∪ A
) σπ(π(ui+1)).

2. If ui → vi = ui → xi ∈ QX , then σ(vi) = σ(xi) = C[si] for some context

C[�] with a µ-replacing hole. Since C[�] is an instance of a hiding context

C̄[�] and i ∈ µH,R,µ(f) implies that i ∈ π(f), we can say that π(σ(x)) =

σπ(x) = Cπ[π(si)]. Since π(f(x1, . . . , xi, . . . , xn)) & π(xi) for all f ∈ F and

all position i ∈ µH,R,µ(f) we have by stability σπ(π(ui)) (& ∪ A) σπ(π(vi)) =

σπ(xi) & π(si). Furthermore, we are assuming that π(t) (& ∪ A) π(t]) for all

t ∈ NHT Q ⊆ NHT P . Since si = θi(s̄i), we have that π(si) = π(θi(s̄i)) =

θi,π(π(s̄i)) (using Lemma 56 again) and, similarly, π(s]i) = θi,π(π(s̄]i)). By

stability we have that π(si) (& ∪ A) π(s]i). Hence, by transitivity of & (and

compatibility of & and A), we have σπ(π(vi)) = σπ(xi) (& ∪ A)π(s]i). Finally,

since π(s]i) = π(ti) and ti ↪→∗R,µ σ(ui+1) for all i ≥ 1, by Proposition 57 and

Lemma 56, π(ti) & σπ(π(ui+1)). Therefore, again by transitivity of & and

compatibility of & and A, we conclude that σπ(π(ui)) (& ∪ A) σπ(π(ui+1)).

Since u → v occurs infinitely often in B, there is an infinite set I ⊆ N such that

σπ(π(ui)) A σπ(π(ui+1)) for all i ∈ I. And we have σπ(π(ui)) (& ∪ A) σπ(π(ui+1))

for all other ui → vi ∈ Q. Thus, by using the compatibility conditions of the

µπ-reduction pair, we obtain an infinite decreasing A-sequence which contradicts

well-foundedness of A.

Therefore, Q ⊆ (P \ PA), which means that B is an infinite minimal (P \
PA,R, µ)-chain, thus leading to a contradiction.

The following example shows that the ‘compatibility’ between µH,R,µ and the argu-

ment filtering π which is required when collapsing pairs are present is necessary in

Theorem 58.

Example 59

Consider the following TRS:

a → c(h(f(a), b))
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f(c(x)) → x

together with the replacement map µ given by µ(f) = µ(h) = {1} and µ(c) = ∅.

Then, DP(R, µ) consists of a single (collapsing) CSDP:

F(c(x)) → x

and NHT DP(R,µ) = {f(a), a}. Note that R is not µ-terminating:

f(a) ↪→ f(c(h(f(a), b)) ↪→ h(f(a), b) ↪→ · · ·

However, by using the argument filtering π given by π(h) = [], π(F) = π(f) = [1]

and π(c) = 1, we would get the constraints:

π(a) = a & h = π(c(h(f(a), b)))
π(f(c(x))) = f(x) & x = π(x)
π(F(c(x))) = F(x) A x = π(x)

which are easily satisfiable (by an RPO with precedence a � h, for instance). Thus,

we would wrongly conclude µ-termination of R. Note that π(c) = 1 but µ(c) = ∅
and that π(h) = [] but µ(h) = {1}. Note also that µπ(f) = µπ(F) = {1} and

µπ(a) = µπ(h) = ∅.

Example 60

Consider the TRS R [Zan97, Example 5]:

if(true, x, y) → x

if(false, x, y) → y

f(x) → if(x, c, f(true))

with µ(if) = {1, 2}. Then, DP(R, µ) consists of a CSDP in DPF (R, µ) and another

one in DPX (R, µ):

F(x) → IF(x, c, f(true)) IF(false, x, y) → y

with µ](F) = {1} and µ(IF) = {1, 2}. The µ-reduction pair (≥, >) induced by the

polynomial interpretation

[c] = [true] = 0 [f](x) = x [F](x) = x
[false] = 1 [if](x, y, z) = x+ y + z [IF](x, y, z) = x+ z

can be used to prove the µ-termination of R. Consider P = DP(R, µ). We have

NHT P = {f(true)}. Since no symbol f hides any position i, we don’t have to
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impose that the quasi-ordering fullfills any subterm condition. Now we can see that

the condition on the only hidden term in NHT P is also fulfilled:

[f(true)] = 0 ≥ 0 = [F(true)]

Finally, for the three rules in R and the two pairs in P, we have:

[f(x)] = x ≥ x = [if(x, c, f(true))]
[if(true, x, y)] = x+ y ≥ x = [x]
[if(false, x, y)] = x+ y ≥ y = [y]

[F(x)] = x ≥ x = [IF(x, c, f(true))]
[IF(false, x, y)] = y + 1 > y = [y]

So, we remove the pair IF(false, x, y)→ y from P. With the remaining pair F(x)→
IF(x, c, f(true)) no infinite chain is possible. Thus, the µ-termination of R is proved.

Our last result establishes that if we are able to provide a strict comparison between

unmarked and marked versions of the (filtered) hidden terms in NHT P , then we

can remove all collapsing pairs at the same time.

Theorem 61 (µ-reduction pair processor for collapsing pairs) Let R = (F , R)

and P = (G, P ) be TRSs, µ ∈MF∪G. Let π be an argument filtering for F ∪ G and

(&,A) be a µπ-reduction pair such that

1. π(R) ⊆&, π(P) ⊆& ∪ A, and

2. π(t) A π(t]) for all t ∈ NHT P and

a) for all f ∈ F , either π(f) = [i1, . . . , im] and µH,R,µ(f) ⊆ π(f), or π(f) =

i and µ(f) = {i},

b) π(f(x1, . . . , xi, . . . , xn)) & xi for all f ∈ F and for all position i ∈
µH,R,µ(f).

Then, the processor ProcRPc given by

ProcRPc(P,R, µ) =
{
{(PG ,R, µ)} if (1) and (2) hold
{(P,R, µ)} otherwise

is sound and complete.

Proof. As in the proof of Theorem 58, we proceed by contradiction. We assume

that there is an infinite minimal (P,R, µ)-chain A, but that there is no infinite
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minimal (PG ,R, µ)-chain. Thus, there is Q ⊆ P such that Q ∩ PX 6= ∅ and A has

a tail B as in the proof of Theorem 58. Now, we assume the notation as in the first

paragraph of such a proof.

We have σπ(π(ui)) (& ∪ A) π(ti) and π(ti) & σπ(π(ui+1)) for all pairs ui →
vi ∈ PG . If ui → vi = ui → xi ∈ QX , then by applying the considerations in

the corresponding item of the proof of Theorem 58 and taking into account that

π(t) A π(t]) for all t ∈ NHT P , we have now that σπ(π(ui)) (& ∪ A) σπ(xi) A

π(ti) & σπ(π(ui+1)). Since pairs ui → vi ∈ QX occur infinitely often in B, by

using the compatibility conditions of the µπ-reduction pair, we obtain an infinite

decreasing A-sequence which contradicts well-foundedness of A.

6.3.3. Usable Rules for CSR

Until now, we are imposing that all the rules of the CS-termination problem must

be included in & to apply a µ-reduction pair processor, but it is desirable to consider

only the necessary rules to capture all possible infinite sequence instead of all the

rules in the CS-termination problem. Usable rules [AG00, HM04, TGSK04] allow

us to obtain this ’minimal’ set. To prove that this set of rules is enough to prove the

absence of minimal (P,R, µ)-chains, we are going to develop one interpretation that

allows us to simmulate every infinite minimal (P,R, µ)-chain as a chain over the set

of the usable rules. As in rewriting [HM04, TGSK04], we need Cε-compatibility to

this task, i.e. g(x, y) & x and g(x, y) & y for a fresh symbol g.

Usable rules were introduced by Arts and Giesl in [AG00] in connection with in-

nermost termination. Hirokawa and Middeldorp [HM04] and (independently) Thie-

mann et al. [TGSK04] showed how to use them to prove termination. The difference

between usable rules in rewriting and in context-sensitive rewriting are related di-

rectly with the associated replacement map. The replacement map function changes

the normal path, forbidding certain reductions (on non-replacing positions). For that

reason, the set of usable rules is different.

Definition 62 (Direct dependency [HM04]) Given a TRS R = (F , R), we say

that f ∈ F directly depends on g ∈ F , written f Bd g, if there is a rule l → r ∈ R
with

f = root(l) and

g occurs in r.
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The set of defined function symbols in a term t is DFun(t) = {f | ∃p ∈ Pos(t), f =

root(t|p) ∈ D}. Let B∗d be the transitive and reflexive closure of Bd . Then, we have:

Definition 63 (Usable rules [HM04]) For a set ∆ of symbols we denote by R |
∆ the set of rewriting rules l → r ∈ R with root(l) ∈ ∆. The set U(R, t) of usable

rules of a term t is defined as R | {g | f B∗d g for some f ∈ DFun(t)}. If P is a set

of pairs then

U(R,P) =
⋃

l→r∈P
U(R, r)

The set U(R,P) can be used instead of R when looking for a reduction pair that

proves termination of R [HM04, TGSK04].

Unfortunately, this does not work with CSR.

Example 64

Consider the CS-TRS R in Example 3. We have only one CS-termination prob-

lem:

({F(c(x))→ x},R, µ)

where U(R, {F(c(x)) → x}) = ∅ according to Definition 63. It is very easy to

find a polynomial interpretation inducing a µ-reduction pair which is compatible

with the pair of the CS-termination problem and thus, wrongly suggesting that the

CS-termination problem is finite:

F(a) ↪→R,µ F(c(f(a))) ↪→{F(c(x))→x},µ f(a)D]µ F(a) ↪→R,µ · · ·

In the following, we discuss suitable notions of usable rules for CSR.

Basic usable rules for CSR

A first attempt to give a notion of usable rules in proofs of termination of (inner-

most) context-sensitive rewriting has been given in [AL07]. Although the results in

[AL07] are not completely general, they show that the straightforward adaptation

to CSR of the standard notion of usable rules (see Definition 66 below) applies to

prove termination of conservative CS-termination problems.
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The application of these rules are related with the appearance of new symbols.

These symbols only appear in the right hand side of the DPs in the infinite chain.

Rules headed by those symbols are usable.

With conservative CS-termination problems we can relax the previous depen-

dency relation for some symbols thanks to the replacement map.

Then, the µ-dependency relation is:

Definition 65 (Basic µ-dependency) Given a TRS R = (F , R) and a replace-

ment map µ ∈MF , we say that f ∈ F has a basic µ-dependency on g ∈ F , written

f Id,µ g, if there is l→ r ∈ R with

f = root(l) and

g occurs in r at a µ-replacing position.

This leads to a straightforward extension of Definition 63. The set of µ-replacing de-

fined function symbols in a term t is DFunµ(t) = {f | ∃p ∈ Posµ(t), f = root(t|p) ∈
D}. Then, we have

Definition 66 (Basic context-sensitive usable rules) Let R = (F , R) and P =

(G, P ) be TRSs and µ ∈MF∪G. The set UB(R, µ, t) of basic context-sensitive usable

rules of a term t is defined as R | {g | f I∗d,µ g for some f ∈ DFunµ(t)}, where

I∗d,µ is the transitive and reflexive closure of Id,µ. If (P,R, µ) is a CS-termination

problem then:

UB(R, µ,P) =
⋃

l→r∈P
UB(R, µ, r)

Example 67

Consider the following CS-TRS R:

f(a, x, x) → f(x, b, b) (6.21) b → a (6.22)

together with µ(f) = ∅. We have the following CS-termination problem:

({F(a, x, x)→ F(x, b, b)},R, µ)

Since b is at frozen positions in the right-hand side of the pair, there is no usable

rule following Definition 66.
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However, in sharp contrast with [AL07], Definition 65 does not lead to a correct

approach for proving termination of CSR, even for conservative TRSs.

Example 68

Consider the following TRS R [AL07]:

f(c(x), x) → f(x, x) (6.23) b → c(b) (6.24)

together with µ(f) = {1, 2} and µ(c) = ∅. Note that R is µ-conservative. We have

the following CS-termination problem:

({F(c(x), x)→ F(x, x)},R, µ)

where U(R, µ, {F(c(x), x) → F(x, x)}) = ∅ according to Definition 66. We can

find a polynomial interpretation inducing a µ-reduction pair which is compatible

with the pair of the CS-termination problem and thus, wrongly suggesting that the

CS-termination problem is finite:

F(c(b), b) ↪→{F(c(x),x)→F(x,x)},µ F(b, b) ↪→R,µ F(c(b), b) ↪→{F(c(x),x)→F(x,x)},µ · · ·

Termination with basic usable rules

According to the discussion in the previous subsection, the notion of basic usable

rule is not correct even for conservative systems. Still, since UB(R, µ,P) is contained

(and is usually smaller than) U(R,P), it is interesting to identify a class of CS-TRSs

where basic usable rules can be safely used. Then, we consider a more restrictive

kind of conservative CS-TRSs: the strongly conservative CS-TRSs, in which the

problem illustrated by Example 68 is not possible.

Definition 69 (Strongly conservative [GLU08]) Let R = (F , R) be a TRS and

µ ∈ MF . A rule l → r ∈ R is strongly conservative if it is conservative and

Varµ(l) ∩ Var�µ(l) = Varµ(r) ∩ Var�µ(r) = ∅.

Linear CS-TRSs trivially satisfy Varµ(l)∩Var�µ(l) = Varµ(r)∩Var�µ(r) = ∅. Hence,

linear conservative CS-TRSs are strongly conservative. For instance, Example 67 is

strongly conservative, but Example 68 is not.

Theorem 79 below shows that basic usable rules in Definition 66 can be used

to improve proofs of termination of CSR for strongly conservative CS-TRSs. In
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[GTSK04, HM04], an interpretation of terms as sequences of their possible reducts is

used1. The definition of the transformation requires adding new fresh (list construc-

tor) symbols ⊥, g /∈ F and the (projection) rules Cε = {g(x, y)→ x, g(x, y)→ y}. In

this way, infinite minimal (P,R)-chains can be represented as infinite (P,U(R,P)∪
Cε)-chains. We recall here the interpretation definition.

Definition 70 (Interpretation [GTSK04, HM04]) Let R = (F , R) be a TRS

and ∆ ⊆ F . Let > be an arbitrary total ordering over T (F ∪ {⊥, g},X ) where ⊥
is a new constant symbol and g is a new binary symbol. The interpretation I∆ is a

mapping from terminating terms in T (F ,X ) to terms in T (F ∪ {⊥, g},X ) defined

as follows:

I∆(t) =


t if t ∈ X
f(I∆(t1), . . . , I∆(tn)) if t = f(t1 . . . tn) and f /∈ ∆
g(f(I∆(t1), . . . , I∆(tn)), t′) if t = f(t1 . . . tn) and f ∈ ∆

where t′ = order ({I∆(u) | t→R u})

order(T ) =
{
⊥, if T = ∅
g(t, order(T \ {t})) if t is minimal in T w.r.t. >

The set of symbols ∆ ⊆ F in Definition 70 is intended to represent the set of ‘non-

usable symbols’, i.e., symbols which do not occur in the usable rules of the considered

set of pairs P.

We provide an interpretation of terms akin to Hirokawa and Middeldorp’s [HM04]

with the difference that we treat M∞,µ. Hence, we pay special attention to non-µ-

replacing positions where possibly infinite µ-rewrite sequence might occur.

Definition 71 (Basic µ-interpretation) Let R = (F , R) be a TRS, µ ∈MF and

∆ ⊆ F . Let > be an arbitrary total ordering over T (F ∪ {⊥, g},X ) where ⊥ is

a new constant symbol and g is a new binary symbol. The interpretation I′∆,µ is

a mapping from µ-terminating terms in T (F ,X ) into T (F ∪ {⊥, g},X ) defined as

follows:

I′∆,µ(t) =


t if t ∈ X
f(I′∆,µ,f,1(t1), . . . , I′∆,µ,f,n(tn)) if t = f(t1 . . . tn) and f /∈ ∆
g(f(I′∆,µ,f,1(t1), . . . , I′∆,µ,f,n(tn)), t′) if t = f(t1 . . . tn) and f ∈ ∆

1This method goes back to [Gra94].
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where I′∆,µ,f,i(t) =
{

I′∆,µ(t) if i ∈ µ(f)
t if i /∈ µ(f)

t′ = order
(
{I′∆,µ(u) | t ↪→R,µ u}

)
order(T ) =

{
⊥, if T = ∅
g(t, order(T \ {t})) if t is minimal in T w.r.t. >

In contrast to [Gra94, HM04, Urb04], we do not interpret non-µ-replacing positions

since we deal only with strongly conservative CS-TRSs.

The interpretation of a term t = f(t1, . . . , tn), where f ∈ ∆, is a sequence of

its interpreted one-step-µ-reducts. It is possible to reach any of them by using a

suitable ↪→∗C2
ε ,µ
◦ ↪→C1

ε ,µ
-sequence where C1

ε = {g(x, y)→ x} and C2
ε = {g(x, y)→ y}.

It is easy to prove that the basic µ-interpretation is well-defined (finite) for all µ-

terminating terms.

Lemma 72 (Well-definition of I′∆,µ) For each µ-terminating term t, I′∆,µ(t) is

finite.

Proof. By well-founded induction based on the fact that µ-replacing subterms are

µ-terminating. The interpretation of frozen positions is always finite (they are not

developed). Interpretation of active positions is always finite because there is no

infinite µ-reduction for these subterms. Hence I′∆,µ(t) is finite.

For the proof of our next theorem, we need some auxiliary definitions and results.

Definition 73 Let R = (F , R) be a TRS, µ ∈MF , σ be a substitution and ∆ ∈ F .

We denote by σI′∆,µ
: T (F ,X ) → T (F ,X ) a function that, given a term t replaces

occurrences of x ∈ Var(t) at position p in t by either I′∆,µ(σ(x)) if p ∈ Posµ(t), or

σ(x) if p 6∈ Posµ(t).

The following technical proposition is obvious from Definition 73.

Proposition 74 Let R = (F , R) be a TRS, µ ∈ MF , σ be a substitution and

∆ ⊆ F . Let t be a term such that Varµ(t)∩Var�µ(t) = ∅. Let σI′∆,µ,t
be a substitution

given by

σI′∆,µ,t
(x) =

{
I′∆,µ(σ(x)) if x ∈ Varµ(t)
σ(x) otherwise

Then, σI′∆,µ,t
(t) = σI∆,µ(t).
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Lemma 75 Let R = (F , R) be a TRS, µ ∈ MF and ∆ ⊆ F . Let t be a term and

σ be a substitution. If σ(t) is terminating, then I′∆,µ(σ(t)) ↪→∗Cε,µ σI′∆,µ
(t). If t does

not contain ∆-symbols, then I′∆,µ(σ(t)) = σI′∆,µ
(t).

Proof. By structural induction on t:

If t is a variable then I′∆,µ(σ(t)) = σI′∆,µ
(t).

If t = f(t1, . . . , tn) then

• If f /∈ ∆ then I′∆,µ(σ(t)) = f(I′∆,µ,f,1(σ(t1)), . . . , I′∆,µ,f,n(σ(tn))). Terms

σ(ti) are µ-terminating for i ∈ µ(f). By induction hypothesis, for all

terms ti s.t. i ∈ µ(f), we have I′∆,µ,f,i(σ(ti)) = I′∆,µ(σ(ti)) ↪→∗Cε,µ σI′∆,µ
(ti).

And for all ti s.t. i /∈ µ(f), we have I′∆,µ,f,i(σ(ti)) = σ(ti). By definition

of σI′∆,µ
we have σI′∆,µ

(f(t1, . . . , tn)) = f(t′1, . . . , t
′
n), where t′i = I′∆,µ(ti) if

i ∈ µ(f) and t′i = σ(ti) if i 6∈ µ(f). Hence, I′∆,µ(σ(t)) ↪→∗Cε,µ σI′∆,µ
(t).

• If f ∈ ∆, I′∆,µ(σ(t)) = g(f(I′∆,µ,f,1(σ(t1)), . . . , I′∆,µ,f,n(σ( tn))), t′)) for

some t′. Using one step of Cε (↪→Cε,µ f(I′∆,µ,f,1(σ(t1)), . . . , I′∆,µ,f,n(σ(tn))))

and the preceding result we get I′∆,µ(σ(t)) ↪→∗Cε,µ σI′∆,µ
(t).

Then we conclude I′∆,µ(σ(t)) ↪→∗Cε,µ σI′∆,µ
(t). The second part of the lemma is

easily proved by structural induction and using Definition 71.

Lemma 76 Let R = (F , R) be a TRS, µ ∈ MF , ∆ ⊆ F and C[ ] a context with n

µ-replacing holes. If t = C[t1, . . . , tn] is µ-terminating and the context C[ ] contains

no ∆-symbols then I′∆,µ(C[t1, . . . , tn]) = C[I′∆,µ(t1), . . . , I′∆,µ(tn)].

Proof. By structural induction on t:

If C[ ] has no holes then I′∆,µ(C[ ]) = C[ ].

If the context C[ ] = f(s1, . . . , sk) then f /∈ ∆, where 1 ≤ k ≤ ar(f). We have

that C[ ] = C ′[sj ] for a position 1 ≤ j ≤ k and sj = C ′′[t1, . . . , tn]:

• If j /∈ µ(f) then the holes are non-µ-replacing, contradicting the hypoth-

esis.

• If j ∈ µ(f) then by Definition 71 we have that I′∆,µ(C ′[sj ]) = C ′[I′∆,µ(sj)].

Now, applying the induction hypothesis, I′∆,µ(sj) = I′∆,µ(C ′′[t1, . . . , tn]) =

C ′′[I′∆,µ(t1), . . . , I′∆,µ(tn)].
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And we can conclude that I′∆,µ(C[t1, . . . , tn]) = C[I′∆,µ(t1), . . . , I′∆,µ(tn)].

The interpretation of a term t = f(t1, . . . , tn), where f ∈ ∆, is a sequence of

its interpreted one-step-µ-reducts. It is possible to reach any of them by using a

suitable ↪→µ-sequence. In particular, we have the following result which is easily

proved by structural induction:

Proposition 77 Let R = (F , R) be a TRS, µ ∈ MF∪G and ∆ ⊆ F . For all terms

t ∈ T (F ,X ), I′∆,µ(t) ↪→∗Cε,µ t.

Proof. By structural induction.

Lemma 78 Let R = (F , R) be a TRS, µ ∈ MF and l → r ∈ R is strongly con-

servative. Let ∆ ⊆ F such that if root(l) /∈ ∆ then DFunµ(r) /∈ ∆. If terms

s, t ∈ T (F ,X ) are µ-terminating with respect to (R, µ) and s ↪→{l→r},µ t, then

I′∆,µ(s) ↪→+
{l→r}∪Cε,µ I′∆,µ(t) if root(l) /∈ ∆ or I′∆,µ(s) ↪→+

Cε,µ I′∆,µ(t) otherwise.

Proof. Let p ∈ Posµ(s) be the position of the rewrite step s ↪→R,µ t. There are

two cases:

If there is a function symbol from ∆ at a position above or in p, we can

write s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn], with si ↪→R,µ ti,
where si and ti are at a µ-replacing hole, root(si) ∈ ∆ and the context con-

tains no ∆-symbol. We have I′∆,µ(si) ↪→Cε,µ order(
⋃
si↪→R,µu I′∆,µ(u)). Since

si ↪→R,µ ti, applying appropriate Cε-steps we extract I′∆,µ(ti) from the term

order(
⋃
si↪→R,µu I′∆,µ(u)), so I′∆,µ(si) ↪→+

Cε,µ I′∆,µ(ti). By Lemma 76 we get

I′∆,µ(s) ↪→+
Cε,µ I′∆,µ(t).

Otherwise, we can write s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn]

with si
Λ
↪→R,µ ti, where root(si) /∈ ∆ and the context C[ ] contains no ∆-

symbols. Since root(si) /∈ ∆ let σ be the substitution with Dom(σ) ⊆ Var(l)
s.t. si = σ(l) and ti = σ(r). By lemma 75 we have I′∆,µ(si) = I′∆,µ(σ(l)) ↪→∗Cε,µ
σI′∆,µ

(l). Since right-hand side of r do not contain ∆-symbols in µ-replacing

positions, the same lemma yields I′∆,µ(ti) = σI′∆,µ
(r). By strong conservative-

ness of l → r (in particular since Varµ(r) ∩ Var�µ(r) = ∅), by Proposition 74,

σI′∆,µ,r
is well-defined and σI′∆,µ,r

(r) = σI′∆,µ
(r). Let x ∈ Var(l), we have two

cases:
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1. If x ∈ Varµ(r), then σI′∆,µ,r
(x) = σI′∆,µ

(x), and by conservativeness of

l→ r (in particular because Varµ(r) ⊆ Varµ(l)), we get x ∈ Varµ(l).

2. If x /∈ Varµ(r), then σI′∆,µ,r
(x) = σ(x).

By Proposition 77, σI′∆,µ
(x) = I′∆,µ(σ(x)) ↪→∗Cε,µ σ(x). According to 1 and 2

above, by structural induction on l we easily get σI′∆,µ
(l) ↪→∗Cε,µ σI′∆,µ,r

(l). Here,

the fact that Varµ(l) ∩ Var�µ(l) = ∅ (which is part of the definition of strong

conservativeness) ensures that a non-µ-replacing variable x (at position q) in

l is not instantiated to σI′∆,µ
(x) by σI′∆,µ,r

, in which case we could not rewrite

σI′∆,µ
(l)|q = σ(x) into σI′∆,µ,r

(l)|q = I′∆,µ(σ(x)). Since σI′∆,µ,r
(l) ↪→{l→r},µ

σI′∆,µ,r
(r) = σI′∆,µ

(r), we obtain I′∆,µ(si) ↪→+
{l→r}∪Cε,µ I′∆,µ(ti). By Lemma 76

we conclude that I′∆,µ(s) ↪→+
{l→r}∪Cε,µ I′∆,µ(t).

Theorem 79 (Basic usable rules processor) Let R = (F , R) and P = (G, P )

be TRSs and µ ∈MF∪G. If P ∪UB(R, µ,P) is strongly conservative and there exists

a µ-reduction pair (&,A) such that

(1) UB(R, µ,P) ∪ Cε ⊆& and P ⊆& ∪ A.

Let PA = {u→ v ∈ P | u A v}. Then, the processor ProcRPbur given by

ProcRPbur (P,R, µ) =
{
{(P \ PA,R, µ)} if (1) holds
{(P,R, µ)} otherwise

is sound and complete.

Proof. We have to prove that there is an infinite minimal (P,R, µ)-chain if there

is an infinite minimal (P \ PA,R, µ)-chain. The if part is obvious. For the only

if part, we proceed by contradiction. Assume that there is an infinite minimal

(P,R, µ)-chain A, but that there is no infinite minimal (P \ PA,R, µ)-chain. Due

to the finiteness of P, we can assume that there is Q ⊆ P such that A has a tail B

σ(u1) ↪→Q,µ σ(v1) ↪→∗R,µ σ(u2) ↪→Q,µ σ(v2) ↪→∗R,µ σ(u3) ↪→Q,µ · · ·

for some substitution σ, where all pairs in Q are infinitely often used. No pair

u→ v ∈ Q satisfies that u A v. Otherwise, we get a contradiction.

Let ∆ be the set of defined symbols of R \ UB(R, µ,P). We show that after

applying the basic µ-interpretation I′∆,µ we obtain an infinite (Q,UB(R, µ,P)∪Cε, µ)-

chain. All terms in the infinite (Q,R, µ)-chain are µ-terminating with respect to

(R, µ) and hence we can indeed apply the basic µ-interpretation I′∆,µ. Let i ≥ 1.
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First consider the dependency pair step. There is a context-sensitive depen-

dency pair ui → vi ∈ Q and a substitution σ such that σ(ui) →Q σ(vi). We

may assume that Dom(σ) ⊆ Var(ui). σ(x) is µ-terminating for every variable

x ∈ Varµ(ui). Using Lemma 75 we have I′∆,µ(σ(ui)) ↪→∗Cε,µ σI′∆,µ
(ui). Since

right-hand sides of dependency pairs in Q lack ∆-symbols, the same lemma

also yields I′∆,µ(σ(vi)) = σI′∆,µ
(vi). By strong conservativeness of the rule

ui → vi (in particular by using the fact that Varµ(vi) ∩ Var�µ(vi) = ∅) and

by Proposition 74 we know that σI′∆,µ,vi
is a well-defined substitution and that

σI′∆,µ,vi
(vi) = σI′∆,µ

(vi). As in the proof of Lemma 78, according to Item 1 and

Item 2, by structural induction on ui we easily get σI′∆,µ
(ui) ↪→∗Cε,µ σI′∆,µ,vi

(ui).

Here, we need to use the fact that Varµ(ui)∩Var�µ(ui) = ∅ (which is also part

of the definition of strong conservativeness) to ensure that a non-µ-replacing

variable x (at position q) in ui is not instantiated to σI′∆,µ
(x) by the substitu-

tion σI′∆,µ,vi
, in which case we would not be able to rewrite σI′∆,µ

(ui)|q = σ(x)

into σI′∆,µ,vi
(ui)|q = I′∆,µ(σ(x)). Since σI′∆,µ,vi

(ui) ↪→UB(R,µ,P),µ σI′∆,µ,vi
(vi) =

σI′∆,µ
(vi), we conclude:

I′∆,µ(σ(ui)) ↪→∗Cε,µ σI′∆,µ
(ui) ↪→∗Cε,µ σI′∆,µ,vi

(ui)
→Q
σI′∆,µ,vi

(vi) = σI′∆,µ
(vi) = I′∆,µ(σ(vi))

Next consider the rewrite sequence σ(vi) ↪→∗R,µ σ(ui+1). All terms in it are

µ-terminating, then we get I′∆,µ(σ(vi)) ↪→∗UB(R,µ,P)∪Cε,µ I′∆,µ(σ(ui+1)) by re-

peatedly applying Lemma 78.

So we obtain the infinite µ-rewrite sequence:

σ(u1) ↪→Q,µ σ(v1) ↪→∗UB(R,µ,P)∪Cε,µ σ(u2) ↪→Q,µ σ(v2) ↪→∗UB(R,µ,P)∪Cε,µ · · ·

Using the premise of the theorem, it is transformed into an infinite sequence consist-

ing of & and infinitely many A steps. Using the stability condition, this contradicts

the well-foundedness of A. Therefore, Q ⊆ (P \ PA), which means that B is an

infinite (P \ PA,R, µ)-chain, thus leading a contradiction.

Example 80

Consider the CS-TRS in Example 20. The CS-termination problems after ap-

plying the SCC processor are:

({SEL(s(n), cons(x, y))→ SEL(n, y)},R, µ) (6.25)
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({MINUS(s(x), s(y))→ MINUS(x, y)},R, µ) (6.26)

({QUOT(s(x), s(y))→ QUOT(minus(x, y), s(y))},R, µ) (6.27)

Whereas the CS-termination problems (6.25) and (6.26) are easily shown harmless

by using the subterm criterion (see 6.4), this is not possible with the CS-termination

problem (6.27). Since this pair is conservative and left-linear, it is strongly conserva-

tive. Furthermore, the set UB(R, µ, {QUOT(s(x), s(y))→ QUOT(minus(x, y), s(y))})
of basic usable rules for CS-termination problem (6.27) contains the following rules

{minus(x, 0) → 0,minus(s(x), s(y)) → minus(x, y)} which are strongly conserva-

tive as well. The following polynomial interpretation proves the absence of infinite

(C3,R, µ)-chains, and hence CS-termination problem (6.27) is finite:

[0] = 0
[s(x)] = 1

[minus](x, y) = 0
[QUOT](x, y) = x

Basic usable rules with collapsing pairs

Collapsing dependency pairs are strongly conservative by definition, but in an

infinite minimal chain they are treated in a different way. Then, we can use an

extended notion of basic usable rule if these pairs fullfill some properties.

The idea behind is that if all the terms in the set of t ∈ NHT P , Varµ(t) = ∅,

then there is no migrating variable in the application of the collapsing pair and

hence, we can maintain as usable only those rules of symbols appeared in µ-replacing

positions in the chain. Then, to capture the usable rules of a collapsing pairs is

equivalent to capture the usable rules of the following set.

Definition 81 (marking rules set) Let R = (F , R) and P = (G, P ) be TRSs and

µ ∈MF∪G. We define the set PNHT as:

PNHT = {t→ t] | t ∈ NHT P}

Definition 82 (Extended basic CS-usable rules) Let R = (F , R) and P =

(G, P ) be TRSs and µ ∈ MF∪G. The set UeB(R, µ, t) of extended basic context-

sensitive usable rules of a term t is defined as R | {g | f I∗d,µ g for some f ∈
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DFunµ(t)}, where I∗d,µ is the transitive and reflexive closure of Id,µ. If (P,R, µ)

is a CS-termination problem and PX 6= ∅ then:

UeB(R, µ,P) =
⋃

l→r∈PG∪PNHT

UeB(R, µ, r)

Our processor is extended in the same way:

Theorem 83 (Extended basic usable rules processor) Let R = (F , R) and

P = (G, P ) be TRSs and µ ∈ MF∪G. If PG ∪ PNHT ∪ UeB(R, µ,P) is strongly

conservative and there exists a µ-reduction pair (&,A) such that

(1) UeB(R, µ,P) ∪ Cε ⊆& and P ⊆& ∪ A,

(2) whenever NHT P 6= ∅ and PX 6= ∅, we have that

(a) f(x1, . . . , xi, . . . , xn) & xi for all f ∈ F and for all position i ∈ µH,R,µ(f),

and

(b) t (& ∪ A) t] for all t ∈ NHT P .

Let PA = {u→ v ∈ P | u A v}. Then, the processor ProcRPebur given by

ProcRPebur (P,R, µ) =
{
{(P \ PA,R, µ)} if (1) and (2) hold
{(P,R, µ)} otherwise

is sound and complete.

Proof. We have to prove that there is an infinite minimal (P,R, µ)-chain if and

only if there is an infinite minimal (P \ PA,R, µ)-chain. The if part is obvious.

For the only if part, we proceed by contradiction. Assume that there is an infinite

minimal (P,R, µ)-chain A, but that there is no infinite minimal (P\PA,R, µ)-chain.

Due to the finiteness of P, we can assume that there is Q ⊆ P such that A has a

tail B

σ(u1) ↪→Q,µ ◦D]µ t1 ↪→∗R,µ σ(u2) ↪→Q,µ ◦D]µ t2 ↪→∗R,µ σ(u3) ↪→Q,µ ◦D]µ · · ·

for some substitution σ, where all pairs in Q are infinitely often used, and, for all

i ≥ 1, (1) if ui → vi ∈ QG , then ti = σ(vi) and (2) if ui → vi = ui → xi ∈ QX ,

then ti = s]i for some si and some context Ci with a µ-replacing hole such that

σ(xi) = Ci[si] and Ci[si] = θi(C̄i[s̄i]) for some s̄i ∈ NHT , hiding context C̄i[�] and

substitution θi; actually, since ti = s]i = θi(s̄i)] = θi(s̄
]
i) and ti ↪→∗R,µ σ(ui+1), we

can further say that s̄i ∈ NHT Q.
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Since ui (& ∪ A) vi for all ui → vi ∈ Q ⊆ P, by stability of & and A, we have

σ(ui) (& ∪ A) σ(vi) for all i ≥ 1.

No pair u→ v ∈ Q satisfies that u A v. Otherwise, we get a contradiction.

Let ∆ be the set of defined symbols of R \ UeB(R, µ,P). We show that after

applying the µ-interpretation I′∆,µ we obtain an infinite (Q,UeB(R, µ,P) ∪ Cε, µ)-

chain. All terms in the infinite (Q,R, µ)-chain are µ-terminating with respect to

(R, µ) and hence we can indeed apply the µ-interpretation I′∆,µ. Let i ≥ 1.

First consider the step ui →Q ◦D]µ ti. We have two possibilities:

1. If there is ui → vi ∈ QF , we follow the proof in Theorem 79.

2. If there is an ui → vi = ui → x ∈ QX and a substitution σ such

that σ(x) = Ci[t
\
i]. As in the proof of Lemma 78, according to Item 1

and Item 2, by structural induction on ui we easily get σI′∆,µ
(ui) =

σI′∆,µ,ui
(ui). Since x is a migrating variable, σI′∆,µ,ui

(x) = σ(x). We have

that σI′∆,µ,ui
(x) = Ci[t

\
i]. We know that Ci[�] is an instance of a hiding

context C̄i[�], t\i is an instance of a hidden term s̄i ∈ NHT Q, V arµ(s̄i) =

∅, and DFunµ(s̄]i) /∈ ∆, then σ(s̄]i) = σI′∆,µ,ui
(s̄]i) = σI′

∆,µ,s̄
]
i

(s̄]i) =

σI′∆,µ
(s̄]i) = I′∆,µ(ti). We obtain:

I′∆,µ(ui) = σI′∆,µ,ui
(ui)→QX σI′∆,µ,ui

(x) = σ(x) = Ci[t
\
i]

and
ti = σ(s̄]i) = σI′

∆,µ,s̄
]
i

(s̄]i) = σI′∆,µ
(s̄]i) = I′∆,µ(σ(s̄]i)) = I′∆,µ(ti)

Next consider the rewrite sequence ti ↪→∗R,µ σ(ui+1), we follow the proof in

Theorem 79.

So we obtain the infinite rewrite sequence:

I′∆,µ(σ(u1)) ↪→Q,µ ◦D]µ I′∆,µ(t1) ↪→∗UeB(R,µ,P)∪Cε,µ I′∆,µ(σ(u2)) ↪→Q,µ ◦D]µ · · ·

Using the premises of the theorem, by monotonicity and stability of &, we would

have that I′∆,µ(ti) & I′∆,µ(σ(ui+1)) for all i ≥ 1. By stability of A (and of &), we

have that I′∆,µ(σ(ui))(& ∪ A)I′∆,µ(ti) for all i ≥ 1 and I′∆,µ(σ(ui)) A I′∆,µ(ti) for all

j ∈ J for an infinite set J = {j1, . . . , jn, . . .} of natural numbers j1 < j2 < · · · < jn <

· · · . We would obtain an infinite sequence consisting of infinitely many A-steps, a

contradiction to the well-foundedness of A. Therefore, Q ⊆ (P \ PA), thus leading

a contradiction.
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Usable rules for arbitrary CS-termination problems

In this section, we consider arbitrary CS-termination problems. In rewriting

and in the previous subsection, when considering infinite minimal (P,R)-chains or

(P,R, µ)-chains, we only deal with terminating terms over R or (R, µ). The inter-

pretations in Definition 70 and 71 is defined only for µ-terminating terms because

non-µ-terminating terms would yield an infinite term which, actually, does not be-

long to T (F ∪ {⊥, g},X ).

Similarly, we aim at defining a µ-interpretation I∆,µ that allows us to associate

an infinite (P,U(R, µ,P) ∪ Cε, µ)-chain to each infinite minimal (P,R, µ)-chain.

Actually, the main problems are:

(P,R, µ)-chains contain non-µ-terminating terms in frozen positions which are

potentially able to reach µ-replacing positions: subterms at an active position

are µ-terminating, but we do not know anything about subterms at frozen

positions.

The interpretation of nonterminating terms (independently if they are µ-

terminating or not) generates infinte terms.

Hence, we have to define our µ-interpretation I∆,µ both on µ-terminating and non-

µ-terminating terms and avoid to interpret these nonterminating terms.

Intuitively, terms at frozen positions in the right-hand side of the rules are essen-

tial to track infinite minimal (P,R, µ)-chains involving collapsing CS-DPs. These

terms, by definition, are formed by hidden symbols. This observation gives us the

key to properly generalize Definition 70. Following Definition 70, a µ-terminating

but nonterminating term generates an infinite list. For this reason, I∆ and I′∆,µ (as

a mapping from finite into finite terms) are not defined for nonterminating terms.

Regarding our µ-interpretation, if we consider the rules headed by hidden sym-

bols (and those captured by the dependy relation) as usable and non-µ-terminating

term t (at a frozen position) is treated as if its root symbol does not belong to ∆,

because if it occurs in the (P,R, µ)-chain at a µ-replacing position, then tDµ s and

s] becomes the next term in the chain. Our new µ-interpretation is:

Definition 84 (µ-interpretation) Let R = (F , R) be a TRS, µ ∈ MF and ∆ ⊆
F be such that ∆ ∩ H(R, µ) = ∅. Let > be an arbitrary total ordering over

T (F ∪ {⊥, g},X ) where ⊥ is a new constant symbol and g is a new binary sym-

bol (with µ(g) = {1, 2}). The µ-interpretation I∆,µ is a mapping from arbitrary
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terms in T (F ,X ) to terms in T (F ∪ {⊥, g},X ) defined as follows:

I∆,µ(t) =


t if t ∈ X
f(I∆,µ(t1), . . . , I∆,µ(tn)) if t = f(t1 . . . tn) and f /∈ ∆

or t is non-µ-terminating
g(f(I∆,µ(t1), . . . , I∆,µ(tn)), t′) if t = f(t1 . . . tn) and f ∈ ∆

and t is µ-terminating

where t′ = order
(
{I∆,µ(u) | t ↪→(R,µ) u}

)
order(T ) =

{
⊥, if T = ∅
g(t, order(T \ {t})) if t is minimal in T w.r.t. >

Now, we prove that I∆,µ is well-defined. The most important difference (and es-

sential in our proof) among our µ-interpretation and all previous ones [Gra94,

GTSK04, HM04, Urb04] is that I∆,µ is well-defined both for µ-terminating and

non-µ-terminating terms.

Lemma 85 (Well-definition of I∆,µ) Let R = (F , R) be a TRS, µ ∈MF and let

∆ ⊆ F \ H. Then, I∆,µ is well-defined.

Proof. According to Definition 84, the only way to get an infinite term as the

output of I∆,µ(t) for a given term t is performing an infinite number of applications

of the third item of the definition of I∆,µ as part of the recursive calls to I∆,µ when

computing I∆,µ(t). This means that, without loosing generality, we can assume

that t is µ-terminating and that there exists an infinite sequence of the form t =

u1 D t1 ↪→R,µ u2 D t2 ↪→R,µ u3 · · · where root(ti) ∈ ∆ and ti is µ-terminating for all

i ≥ 1. We can assume minimality of this sequence without loss of generality, that

is, for all i ≥ 1 there is no si such that ti B si and si generates an infinite sequence

leading to an infinite definition of I∆,µ. Since ti+1 is not a subterm of ti then there is

a rule l → r and a position p, such that ti = C[σ(l)]p ↪→R,µ C[σ(r)]p = ui+1 D ti+1.

We have only two possibilities:

ti+1 D σ(r). Then ui+1 Dµ ti+1 because σ(r) is at an active position.

σ(r) B σ(s) = ti+1 for some s such that s /∈ X and r D s. Since root(s) ∈ ∆

and ∆ ∩H = ∅ we have that root(s) /∈ H and r Dµ s, hence ui+1 Dµ ti+1.

Then, the resulting sequence is: t = u1 Dµ t1 ↪→R,µ u2 Dµ t2 ↪→R,µ u3 · · · , which

can be considered as an infinite µ-rewrite sequence starting from t, thus contradicting

the µ-termination of t.
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Now, we define an appropriate notion of direct µ-dependency. This is not straight-

forward as shown in the next example.

Example 86

Consider the following conservative TRS R:

a(x, y) → b(x, x) (6.28)
b(x, c) → d(x, x) (6.29)

d(x, e) → a(x, x) (6.30)
c → e (6.31)

with µ(a) = µ(d) = {1, 2}, µ(b) = {1} and µ(c) = µ(e) = ∅. We have the following

CS-termination problem:

(P = {A(x, y) → B(x, x),

B(x, c) → D(x, x),

D(x, e) → A(x, x)},R, µ)

According to Definition 66, we have no usable rules because the right-hand sides of

the dependency pairs have no defined symbols.

Without considering the rule c → e we may conclude on termination of this

CS-termination problem, but there is the following infinite (P,R, µ)-chain:

A(c, c) ↪→P,µ B(c, c) ↪→P,µ D(c, c) ↪→{c→e},µ D(c, e) ↪→P,µ A(c, c) ↪→P,µ · · ·

Hence, a first extension is to handle this problem in the dependency definition:

Definition 87 Given a TRS R = (F , R) and µ ∈ MF , we say that f ∈ F directly

µ-depends on g ∈ F , written f Bd,µ g, if there is a rule l→ r ∈ R with

1. f = root(l) and

2. g occurs in r at a µ-replacing position or

3. g occurs in l at a non-µ-replacing position.

Remarkably, condition (3) in Definition 87 is not very problematic in practice be-

cause most programs are constructor systems, which menas that no definied symbols

occur below the root in the left-hand side of the rules.

Now, we are ready to define our notion of usable rules. To have a well-founded

interpretation, the necessity of adding the rules related with hidden symbols as
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usable is mandatory, as we see in Proposition 85. The set of non-replacing defined

function symbols in a term t is DFun�µ(t) = {f | ∃p ∈ Pos(t) and p /∈ Posµ(t), f =

root(t|p) ∈ D}.

Definition 88 (Context-sensitive usable rules) Let R = (F , R), P = (G, P )

be TRSs, µ ∈ MF∪G. The set U(R, µ,P) of context-sensitive usable rules for the

CS-termination problem (P,R, µ) is given by

U(R, µ,P) =
⋃

l→r∈P
U(R, µ, l→ r) ∪ UH(R, µ)

where U(R, µ, l→ r) = R | {g | f B∗d,µ g for some f ∈ DFun(r) ∪ DFun�µ(l)}
UH(R, µ) = R | {g | f B∗d,µ g for some f ∈ H(R, µ)}

Note that U(R, µ, l → r) extends the notion of usable rules in Definition 66, by

taking into account not only dependencies with symbols on the right-hand side of the

rules, but also with some symbols in proper subterms of the left-hand sides. On the

other hand, UH(R, µ) is the set of usable rules corresponding to the hidden symbols.

Now, we are ready to formulate and prove our main result in this subsection, using

auxiliary results first:

Lemma 89 Let R = (F , R) be a TRS, µ ∈ MF and let ∆ ⊆ F \ H. If t does not

contain any ∆-symbol in a frozen position then I∆,µ(σ(t)) ↪→∗Cε,µ σI∆,µ(t) and if t

does not contain ∆-symbols then I∆,µ(σ(t)) = σI∆,µ(t).

Proof. By induction on t. If t is a variable then I∆,µ(σ(t)) = σI∆,µ(t). Let

t = f(t1, . . . , tn). By induction hypothesis I∆,µ(σ(ti)) ↪→∗Cε,µ σI∆,µ(ti) for 1 ≤ i ≤
n. Moreover, by hypothesis: whenever i /∈ µ(f) then ti contains no ∆-symbol.

Then I∆,µ(σ(ti)) = σI∆,µ(ti) for all i /∈ µ(f) by induction hypothesis, and hence

f(I∆,µ(σ(t1)), . . . , I∆,µ(σ(tn))) ↪→∗Cε,µ f(σI∆,µ(t1), . . . , σI∆,µ(tn)) = σI∆,µ(t).

If f /∈ ∆ or t is non-µ-terminating, I∆,µ(σ(t)) = f(I∆,µ(σ(t1)), . . . , I∆,µ(σ(tn)))

then I∆,µ(σ(t)) ↪→∗Cε,µ f(σI∆,µ(t1), . . . , σI∆,µ(tn)) = σI∆,µ(t).

And, if there are no ∆-symbols in t, then, I∆,µ(σ(ti)) = σI∆,µ(ti) for all i,

1 ≤ i ≤ n, hence I∆,µ(σ(t)) = σI∆,µ(t).

If f ∈ ∆ and t is µ-terminating, then I∆,µ(σ(t)) = g(t′, t′′) ↪→Cε,µ t′ for

some term t′′, with t′ = f(I∆,µ(σ(t1)), . . . , I∆,µ(σ(tn))). Hence, I∆,µ(t) ↪→∗Cε,µ
σI∆,µ(t).
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Lemma 90 Let R = (F , R) be a TRS, µ ∈MF , ∆ ⊆ F \H and C[ ] a context with

n µ-replacing holes. If t = C[t1, . . . , tn] and the context C[ ] contains no ∆-symbols

then I∆,µ(C[t1, . . . , tn]) = C[I∆,µ(t1), . . . , I∆,µ(tn)].

Proof. By structural induction. Similar to the proof of Lemma 76.

Lemma 91 Let R = (F , R) be a TRS, µ ∈MF , and l→ r ∈ R. Let ∆ ⊆ F\H such

that if root(l) /∈ ∆ then DFun�µ(l) /∈ ∆ and DFun(r) /∈ ∆. If terms s, t ∈ T (F ,X )

are µ-terminating with respect to (R, µ) and s ↪→{l→r},µ t then I∆,µ(s) ↪→+
{l→r}∪Cε,µ

I∆,µ(t) if root(l) /∈ ∆ or I∆,µ(s) ↪→+
Cε,µ I∆,µ(t) otherwise.

Proof. Let s ↪→R,µ t occur at p ∈ Posµ(s). There are two cases:

If there is a function symbol from ∆ at a position above or in p, we can write

s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn], with si ↪→R,µ ti, where

si and ti are at a µ-replacing hole, root(si) ∈ ∆ and the context contains no

∆-symbol. We have I∆,µ(si) ↪→Cε,µ order(
⋃
si↪→R,µu I∆,µ(u)). Since si ↪→R,µ ti,

appropriate Cε-steps extract I∆,µ(ti) from the term order(
⋃
si↪→R,µu I∆,µ(u)),

so I∆,µ(si) ↪→+
Cε,µ I∆,µ(ti). By Lemma 90 we get I∆,µ(s) ↪→+

Cε,µ I∆,µ(t).

Otherwise, we may write s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn]

with si ↪→R,µ ti, where the context C[ ] only contains non-∆-symbols. Then,

root(si) /∈ ∆. Let σ be a substitution with Dom(σ) ⊆ Var(l) s.t. si = σ(l) and

ti = σ(r). By definition, symbols in l at frozen positions are not in ∆. Then

by Lemma 89: I∆,µ(si) = I∆,µ(σ(l)) ↪→∗Cε,µ σI∆,µ(l). Since right-hand side

of rule do not contain ∆-symbols, Lemma 89 yields I∆,µ(ti) = I∆,µ(σ(r)) =

σI∆,µ(r), σI∆,µ(l) ↪→{l→r},µ σI∆,µ(r), thus I∆,µ(si) ↪→∗{l→r}∪Cε,µ I∆,µ(ti). Then,

I∆,µ(s) ↪→∗{l→r}∪Cε,µ I∆,µ(t) using Lemma 90.

Example 92

Consider the following non-conservative CS-TRS R:

f(c(x), y) → h(x, y) (6.32)
h(c(x), y) → f(c(y), y) (6.33)

d → c(b) (6.34)
a → d (6.35)
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together with µ(f) = µ(h) = {1, 2} and µ(c) = µ(b) = µ(d) = µ(a) = ∅. We

have the following CS-termination problem after applying the SCC processor:

({F(c(x), y)→ H(x, y),H(c(x), y)→ F(c(y), y)},R, µ)

If we want to capture the chain:

H(a, a)→ H(d, a)→ H(d, d)→ H(c(b), d)→ F(c(d), d)→ H(d, d)→ · · ·

Our interpretation will be:

I∆,µ(H(a, a)) = H(g(a, g(d, g(c(b),⊥))), g(a, g(d, g(c(b),⊥))))

and the infinite chain:

H(g(a, g(d, g(c(b),⊥))), g(a, g(d, g(c(b),⊥))))
↪→Cε,µ H(g(d, g(c(b),⊥)), Fg(a, g(d, g(c(b),⊥))))
↪→Cε,µ H(g(d, g(c(b),⊥)), g(d, g(c(b),⊥)))
↪→∗Cε,µ H(c(b), g(d, g(c(b),⊥)))
↪→P,µ F(c(g(d, g(c(b),⊥))), g(d, g(c(b),⊥)))
↪→P,µ H(g(d, g(c(b),⊥)), g(a, g(d, g(c(b),⊥))))
↪→Cε,µ · · ·

Theorem 93 (Usable rules processor) Let R = (F , R) and P = (G, P ) be TRSs,

µ ∈MF∪G. If there exists a µ-reduction pair (&,A) such that

(1) U(R, µ,P) ∪ Cε ⊆&, P ⊆& ∪ A, and

(2) whenever NHT P 6= ∅ and PX 6= ∅, we have that

(a) f(x1, . . . , xi, . . . , xn) & xi for all f ∈ F and all position i ∈ µH,R,µ(f),

and

(b) t (& ∪ A) t] for all t ∈ NHT P ,

Let PA = {u→ v ∈ P | u A v}. Then, the processor ProcRPur given by

ProcRPur (P,R, µ) =
{
{(P \ PA,R, µ)} if (1) and (2) hold
{(P,R, µ)} otherwise

is sound and complete.
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Proof. We have to prove that there is an infinite minimal (P,R, µ)-chain if and

only if there is an infinite minimal (P \ PA,R, µ)-chain. The if part is obvious.

For the only if part, we proceed by contradiction. Assume that there is an infinite

minimal (P,R, µ)-chain A, but that there is no infinite minimal (P\PA,R, µ)-chain.

Due to the finiteness of P, we can assume that there is Q ⊆ P such that A has a

tail B

σ(u1) ↪→Q,µ ◦D]µ t1 ↪→∗R,µ σ(u2) ↪→Q,µ ◦D]µ t2 ↪→∗R,µ σ(u3) ↪→Q,µ ◦D]µ · · ·

for some substitution σ, where all pairs in Q are infinitely often used, and, for all

i ≥ 1, (1) if ui → vi ∈ QG , then ti = σ(vi) and (2) if ui → vi = ui → xi ∈ QX ,

then ti = s]i for some si and some context Ci with a µ-replacing hole such that

σ(xi) = Ci[si] and Ci[si] = θi(C̄i[s̄i]) for some s̄i ∈ NHT , hiding context C̄i[�] and

substitution θi; actually, since ti = s]i = θi(s̄i)] = θi(s̄
]
i) and ti ↪→∗R,µ σ(ui+1), we

can further say that s̄i ∈ NHT Q.

Since ui (& ∪ A) vi for all ui → vi ∈ Q ⊆ P, by stability of & and A, we have

σ(ui) (& ∪ A) σ(vi) for all i ≥ 1.

No pair u→ v ∈ Q satisfies that u A v. Otherwise, we get a contradiction.

Let ∆ be the set of defined symbols of R \ U(R, µ,P). We show that after

applying the µ-interpretation I∆,µ we obtain an infinite (Q,U(R, µ,P)∪Cε, µ)-chain.

All terms in the infinite (Q,R, µ)-chain are µ-terminating with respect to (R, µ) and

hence we can indeed apply the µ-interpretation I∆,µ. Let i ≥ 1.

First consider the step ui →Q ◦D]µ ti. We have two possibilities:

1. There is ui → vi ∈ QF and a substitution σ such that ti = σ(r). By

definition of minimality, σ(x) is µ-terminating for every x ∈ Varµ(ui).

The right-hand sides of of dependency pairs in QF have no ∆-symbols.

Thus, we have I∆,µ(σ(vi)) = σI∆,µ(vi) by Lemma 89. The same Lemma

yields I∆,µ(σ(ui)) = σI∆,µ(ui) because the definition of U implies that all

symbol at a frozen position in ui are usable. Hence:

I∆,µ(σ(ui)) ↪→∗Cε,µ σI∆,µ(ui)→QF σI∆,µ(vi) = I∆,µ(σ(vi)) = I∆,µ(ti)

2. There is an ui → vi = ui → x ∈ QX and a substitution σ such that σ(x) =

Ci[t
\
i]p. All terms σ(x)|q for a position Λ ≤ q ≤ p are non-µ-terminating,

and by Definition 84, we have σI∆,µ(x) = I∆,µ(σ(x)). Hence, σI∆,µ(x) =

I∆,µ(σ(x)) = Ci[I∆,µ(t\i)]p. We know that root(t\i) ∈ H. Lemma 89 also
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yields I∆,µ(σ(ui)) = σI∆,µ(ui) because the definition of U implies that all

symbol at a frozen position in ui is usable. Hence:

I∆,µ(σ(ui)) ↪→∗Cε,µ σI∆,µ(ui)→QX σI∆,µ(x) = σI∆,µ(C̄i[s̄i])
and

σI∆,µ(s̄]i) = I∆,µ(σ(s̄]i)) = I∆,µ(ti)

Next consider the rewrite sequence ti ↪→∗R,µ σ(ui+1). By repeated applications

of Lemma 91 we obtain I∆,µ(ti) ↪→∗U(R,µ,P)∪Cε,µ σI∆,µ(ui+1) = I∆,µ(σ(ui+1)).

So we obtain the infinite rewrite sequence:

I∆,µ(σ(u1)) ↪→Q,µ ◦D]µ I∆,µ(t1) ↪→∗U(R,µ,P)∪Cε,µ I∆,µ(σ(u2)) ↪→Q,µ ◦D]µ · · ·

Using the premises of the theorem, by monotonicity and stability of &, we would

have that I∆,µ(ti) & I∆,µ(σ(ui+1)) for all i ≥ 1. By stability of A (and of &), we

have that I∆,µ(σ(ui))(& ∪ A)I∆,µ(ti) for all i ≥ 1 and I∆,µ(σ(ui)) A I∆,µ(ti) for all

j ∈ J for an infinite set J = {j1, . . . , jn, . . .} of natural numbers j1 < j2 < · · · < jn <

· · · . We would obtain an infinite sequence consisting of infinitely many A-steps, a

contradiction to the well-foundedness of A. Therefore, Q ⊆ (P \ PA), thus leading

a contradiction.

Theorem 94 (Usable rules processor for collapsing pairs) Let R = (F , R)

and P = (G, P ) be TRSs, µ ∈ MF∪G. If there exists a µ-reduction pair (&,A) such

that

(1) U(R, µ,P) ∪ Cε ⊆&, P ⊆& ∪ A, and

(2) t A t] for all t ∈ NHT P ,

(3) f(x1, . . . , xi, . . . , xn) & xi for all f ∈ F and for all position i ∈ µH,R,µ(f), and

Then, the processor ProcRPcur given by

ProcRPcur (P,R, µ) =
{
{(PG ,R, µ)} if (1), (2) and (3) hold
{(P,R, µ)} otherwise

is sound and complete.

Proof. As in the proof of Theorem 93, the if part is obvious and for the only if

part, we proceed by contradiction. We assume that there is an infinite minimal

(P,R, µ)-chain A, but that there is no infinite minimal (PG ,R, µ)-chain. Thus,
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there is Q ⊆ P such that Q∩PX 6= ∅ and A has a tail B as in the proof of Theorem

93. Now, we assume the notation as in the first paragraph of such a proof.

We have σ(ui) (& ∪ A) ti and ti & σ(ui+1) for all pairs ui → vi ∈ PG . If ui →
vi = ui → xi ∈ QX , then by applying the considerations in the corresponding item

of the proof of Theorem 93 and taking into account that t A t] for all t ∈ NHT P , we

have now that σ(ui) (& ∪ A) σ(xi) A ti & σ(ui+1). Since pairs ui → vi ∈ QX occur

infinitely often in B, by using the compatibility conditions of the µ-reduction pair,

we obtain an infinite decreasing A-sequence which contradicts well-foundedness of

A.

6.4. Subterm criterion

In [HM04, HM07], Hirokawa and Middeldorp introduce a very interesting subterm

criterion which permits to ignore certain cycles of the dependency graph without

paying attention to the rules of the TRS. Hirokawa and Middeldorp’s result applies

to cycles in the dependency graph. Recently, Thiemann has adapted it to the DP-

framework [Thi07, Section 4.6]. The adaptation to CSR is made in [AGL08]. Here,

we improve the two specific subterm processors which only apply to CSR.

Definition 95 (Root symbols of a TRS [AGL08]) Let R = (F , R) be a TRS.

The set of root symbols associated to R is:

Root(R) = {root(l) | l→ r ∈ R} ∪ {root(r) | l→ r ∈ R, r 6∈ X}

Definition 96 (Simple projection [AGL08]) Let R be a TRS. A simple pro-

jection for R is a mapping π that assigns to every k-ary symbol f ∈ Root(R)

an argument position i ∈ {1, . . . , k}. The mapping that assigns to every term

t = f(t1, . . . , tk) with f ∈ Root(R) its subterm π(t) = t|π(f) is also denoted by

π; we also let π(x) = x if x ∈ X .

The following result provides a kind of generalization of the subterm criterion to

simple projections which only take non-µ-replacing arguments.

Theorem 97 (Non-µ-replacing projection processor) Let R = (F , R) = (C ]
D, R) and P = (G, P ) be TRSs such that PG contains no collapsing rule, Root(P)∩
D = ∅, and µ ∈ MF∪G Let & be a stable quasi-ordering on terms whose strict and

stable part > is well-founded and π be a simple projection for P such that

1. for all f ∈ Root(P), π(f) 6∈ µ(f),
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2. π(P) ⊆&, and,

3. whenever NHT P 6= ∅ and PX 6= ∅, we have that

f(x1, . . . , xi, . . . , xn) & xi for all f ∈ F and for all position i ∈ µH,R,µ(f),

and

t & t|π(root(t)]) for all t ∈ NHT P .

Let P> = {u→ v ∈ P | π(u) > π(v)}. Then, the processor ProcNRP given by

ProcNRP (P,R, µ) =
{
{(P \ P>,R, µ)} if (1), (2), and (3) hold
{(P,R, µ)} otherwise

is sound and complete.

Proof. We have to prove that there is an infinite minimal (P,R, µ)-chain if and only

if there is an infinite minimal (P \ P>,R, µ)-chain. The if part is obvious. For the

only if part, we proceed by contradiction. Assume that there is an infinite minimal

(P,R, µ)-chain A but there is no infinite minimal (P \ P>,R, µ)-chain. Since P is

finite, we can assume that there is Q ⊆ P such that A has a tail B

σ(u1)
Λ
↪→Q,µ ◦D]µ t1 ↪→∗R,µ σ(u2)

Λ
↪→Q,µ ◦D]µ t2 ↪→∗R,µ · · ·

for some substitution σ and pairs ui → vi ∈ Q, and

1. if vi 6∈ X , then ti = σ(vi), and

2. if vi = xi ∈ X , then xi 6∈ Varµ(ui) and ti = s]i for some si and some con-

text Ci[�] with a µ-replacing hole such that σ(xi) = Ci[si] and Ci[si] =

θi(C̄i)[θ(s̄i)]) for some s̄i ∈ NHT P , some hiding context C̄i[�] and substi-

tution θi.

Furthermore, all pairs in Q are used infinitely often in B. For all i ≥ 1, root(ti) ∈
Root(P), π(ti) ↪→∗R,µ π(σ(ui+1)) and also root(ti) = root(ui+1) for all i ≥ 1.

No pair u→ v ∈ Q satisfies that π(u) > π(v). Otherwise, by applying the simple

projection π to the sequence B, for all i ≥ 1 we get a contradiction as follows:

1. Since π(f) 6∈ µ(f) for all f ∈ Root(Q), for all i ≥ 1, π(ti) = π(σ(ui+1)) =

σ(π(ui+1)), because no µ-rewritings are possible on the π(root(ti))-th imme-

diate subterm π(ti) of ti, and

2. Due to π(ui) & π(vi) and by stability of &, we have that π(σ(ui)) = σ(π(ui)) &

σ(π(vi)). Now, we distinguish two cases:
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a) If ui → vi ∈ QG , then π(ti) = π(σ(vi)) = σ(π(vi)). Thus, π(σ(ui)) &

π(ti).

b) If ui → vi ∈ QX , then σ(π(vi)) = σ(xi). Since σ(xi) = Ci[si], we have

that σ(xi) & si (because f(x1, . . . , xi, . . . , xn) & xi for all symbols f ∈ F
and position i ∈ µH,R,µ(f) and Ci[�] is an instance of a hiding context

C̄i[�]). Let f = root(ui+1) = root(ti) = root(s̄]i). Since t & t|π(root(t)])

for all t ∈ NHT P , by stability, we have si = θi(s̄i) & θi(s̄i|π(f)) =

θi(s̄i)|π(f) = si|π(f). Since si|π(f]) = ti|π(f]) = π(ti), we have si & π(ti).

Hence, π(σ(ui)) & π(ti).

Thus, we always have π(σ(ui)) & π(ti). Therefore, we obtain an infinite & sequence

π(σ(u1)) & π(t1) = π(σ(u2)) & π(t2) · · ·

Since the dependency pairs in Q occur infinitely many, this sequence contains in-

finitely many > steps starting from π(σ(u1)). This contradicts the well-foundedness

of >.

Therefore, Q ⊆ P\P>, which means that B is an infinite minimal (P\P>,R, µ)-

chain, thus leading to a contradiction with our initial assumption.

Example 98

Consider the CS-TRS (R, µ) in Example 32. DP(R, µ) is:

G(x) → H(x) H(d) → G(c)

where µ](G) = µ](H) = ∅. The dependency graph contains a single cycle including

both of them. The only simple projection is π(G) = π(H) = 1. Since π(G(x)) =

π(H(x)), we only need to guarantee that π(H(d)) = d > c = π(G(c)) holds for a

stable and well-founded ordering >. This is easily fulfilled by, e.g., a polynomial

ordering.

Theorem 99 (Non-µ-replacing projection processor II) Let R = (F , R)

= (C ] D, R) and P = (G, P ) be TRSs such that PG contains no collapsing rule,

Root(P) ∩ D = ∅, and µ ∈ MF∪G Let & be a stable quasi-ordering on terms whose

strict and stable part > is well-founded and π be a simple projection for P such that

1. for all f ∈ Root(P), π(f) 6∈ µ(f),



6.4. Subterm criterion 81

2. π(P) ⊆&, and,

3. whenever NHT P 6= ∅ and PX 6= ∅, we have that

f(x1, . . . , xi, . . . , xn) & xi for all f ∈ F and for all position i ∈ µH,R,µ(f),

and

t > t|π(root(t)]) for all t ∈ NHT P .

Then, the processor ProcNRP2 given by

ProcNRP2 (P,R, µ) =
{
{(P \ PX ,R, µ)} if (1), (2), and (3) hold
{(P,R, µ)} otherwise

is sound and complete.
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7
Experiments

The processors described in the previous sections have been implemented as

part of the tool mu-term [AGIL07, Luc04a]. We have tested the impact of the

CSDP-framework in practice on the 90 examples in the Context-Sensitive Rewriting

subcategory of the 2007 Termination Competition:

http://www.lri.fr/~marche/termination-competition/2007

which are part of the Termination Problem Data Base (TPDB, version 4.0):

http://www.lri.fr/~marche/tpdb

We have addressed this task in three different ways:

1. We have compared CSDPs with previously existing techniques for proving

termination of CSR: transformations, CSRPO, and polynomial orderings.

2. We have compared the improvements introduced by the different CS-processors

which have been defined in this thesis.

3. We have participated in the CSR subcategory of the 2007 International Ter-

mination Competition.

Tool Version Proved Total Time Average Time

CSDPs 68/90 0.43s 0.01s
CSRPO 37/90 0.21s 0.01s

Polynomial Orderings 27/90 0.06s 0.01s
Transformations 56/90 5.59s 0.10s

Table 7.1: Comparison among CSR Termination Techniques
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7.1. CSDPs vs. other techniques for proving termina-
tion of CSR

Several methods have been developed to prove termination of CSR for a given

CS-TRS (R, µ). Two main approaches have been investigated so far:

1. Direct proofs, which are based on using µ-reduction orderings (see [Zan97])

such as the (context-sensitive) recursive path orderings [BLR02] and polyno-

mial orderings [GL02, Luc04b, Luc05]. These are orderings > on terms which

can be used to directly compare the left- and right-hand sides of the rules in

order to conclude the µ-termination of the TRS.

2. Indirect proofs which obtain a proof of the µ-termination of R as a proof of ter-

mination of a transformed TRS RµΘ (where Θ represents the transformation).

If we are able to prove termination of RµΘ (using the standard methods), then

the µ-termination of R is ensured.

We have used mu-term to compare all these techniques with respect to the afore-

mentioned benchmark examples. The results of this comparison are summarized

in Table 7.1. From the benchmarks summarized in Table 7.1, we clearly conclude

that the CSDP-framework is the most powerful and fastest technique for proving

termination of CSR. Actually, all examples which were solved by using CSRPO or

polynomial orderings were also solved using CSDPs. Regarding transformations,

there is only one example (namely, Ex9 Luc06, which can be solved by using trans-

formation GM) that could not be solved with our current implementation of the

CS-processors but, as it is shown in [AEF+08], this CS-problem can be solved us-

ing the instantiation processor (that it is not implemented in the current version of

mu-term).

7.2. Contribution of the different CS-processors

Our implementation of the CSDP-framework implements the CS-processors de-

scribed in this thesis and the processors described in the technical report [AGL08].

We have considered the 32 versions of mu-term which are obtained by susing all

possible combinations (see Table 7.2). This CS-processors are:

The CS-processor that transforms collapsing pairs into noncollapsing pairs:

ProceColl (first column).



7.2. Contribution of the different CS-processors 85

Tool Version U symbols Usable
rules

Narrowing

Non-µ-
replacing
subterm
criterion

Subterm
criterion

CSDPs
1. NO NO NO NO NO
2. NO NO NO NO YES
3. NO NO NO YES NO
4. NO NO NO YES YES
5. NO NO YES NO NO
6. NO NO YES NO YES
7. NO NO YES YES NO
8. NO NO YES YES YES
9. NO YES NO NO NO

10. NO YES NO NO YES
11. NO YES NO YES NO
12. NO YES NO YES YES
13. NO YES YES NO NO
14. NO YES YES NO YES
15. NO YES YES YES NO
16. NO YES YES YES YES
17. YES NO NO NO NO
18. YES NO NO NO YES
19. YES NO NO YES NO
20. YES NO NO YES YES
21. YES NO YES NO NO
22. YES NO YES NO YES
23. YES NO YES YES NO
24. YES NO YES YES YES
25. YES YES NO NO NO
26. YES YES NO NO YES
27. YES YES NO YES NO
28. YES YES NO YES YES
29. YES YES YES NO NO
30. YES YES YES NO YES
31. YES YES YES YES NO
32. YES YES YES YES YES

CSRPO
33.

Transformations
34. NO NO NO
35. NO NO YES
36. NO YES NO
37. NO YES YES

Polynomial Orderings
38.

Table 7.2: Comparison among CSR Termination Techniques and CS-processors (Ver-
sions)

The CS-processors involving µ-reduction pairs with usable rules: ProcRPur ,

ProcRPcur , ProcRPbur and ProcRPebur (second column).

The CS-processor Procnarr that use the narrowing transformation (third col-

umn).

The CS-processors that use the subterm criterion over non-µ-replacing posi-

tions: ProcNRP and ProcNRP2 (fourth column).
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Tool Version Proved Total Time Average Time
CSDPs

1. 54/90 3.00s 0.05s
2. 62/90 0.55s 0.01s
3. 57/90 0.82s 0.01s
4. 65/90 0.49s 0.01s
5. 54/90 4.22s 0.08s
6. 62/90 2.64s 0.04s
7. 57/90 1.27s 0.02s
8. 65/90 0.31s 0.00s
9. 67/90 1.54s 0.02s

10. 67/90 0.80s 0.01s
11. 67/90 0.72s 0.01s
12. 67/90 0.51s 0.01s
13. 67/90 1.06s 0.01s
14. 67/90 0.67s 0.01s
15. 67/90 0.89s 0.01s
16. 67/90 0.53s 0.01s
17. 54/90 0.83s 0.01s
18. 62/90 0.29s 0.00s
19. 57/90 0.70s 0.01s
20. 66/90 0.71s 0.01s
21. 54/90 0.96s 0.02s
22. 62/90 0.27s 0.00s
23. 57/90 0.73s 0.01s
24. 66/90 0.32s 0.00s
25. 67/90 0.77s 0.01s
26. 68/90 0.44s 0.01s
27. 67/90 0.58s 0.01s
28. 68/90 0.59s 0.01s
29. 67/90 1.13s 0.02s
30. 68/90 0.59s 0.01s
31. 67/90 0.69s 0.01s
32. 68/90 0.43s 0.01s

CSRPO
33. 37/90 0.21s 0.01s

Transformations
34. 48/90 3.52s 0.07s
35. 56/90 3.74s 0.04s
36. 48/90 2.82s 0.06s
37. 56/90 5.59s 0.10s

Polynomial Orderings
38. 27/90 0.06s 0.01s

Table 7.3: Comparison among CSR Termination Techniques and CS-processors

The CS-processors that use the classical subterm criterion: ProcsubColl and

ProcsubNColl (fifth column).

The performance of these implementations have been tested and summarized in

Table 7.3. Our benchmarks show that the CS-processors described in this thesis
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Termination Tool Total CSDPs CSRPO Transf. Average time
mu-term 68 67 0 1 2.87s

AProVE 64 0 0 64 6.90s

Table 7.4: Results of the 2007 termination competition

play an important role in our proofs. The subterm processors ProcsubNColl and

ProcsubColl are quite efficient, but the ones which are based on simple projections

for non-µ-replacing arguments (ProcNRP and ProcNRP2 ) also increase the power

and the speed of the CSDPs technique. Furthermore, these two groups of CS-

processors are complementary: the extra problems which are especifically solved

by them are different. Narrowing is useful to simplify the graph, but it doesn’t

play an important role in the benchmarks, because it only applies to solve two

examples (which can be solved without narrowing as well). Furthermore, we have

to carefully use it because recomputing the graph can be expensive in that case.

The implementation of usable rules CS-processors is shown in the experiments as a

very poweful processor, subsumming in these experiments other powerful techniques

as the subterm processors. The CS-processor which transforms collapsing pairs has

been shown very useful in many cases, obtaining simpler problems.

7.3. CSDPs at the 2007 International Termination Com-
petition

Nowadays, AProVE [GSKT06] is the only tool (besides mu-term) which imple-

ments specific methods for proving termination of CSR.

Both AProVE and mu-term participated in the CSR subcategory of the 2007

International Termination Competition. AProVE participated with a termination

expert for CSR which, given a CS-TRS (R, µ), successively tries different transforma-

tions Θ for proving termination of CSR (i.e., Θ ∈ {C,FR,GM,L,sGM,Z}, see [Luc06]

for a complete description of these transformations) and then uses (on the obtained

TRS RµΘ) a huge variety of different and complementary techniques for proving

termination of rewriting (according to the DP-framework). Actually, AProVE is

currently the most powerful tool for proving termination of TRSs and implements

most existing results and techniques regarding DPs and related techniques.

However, mu-term’s implementation of CSDPs was able to beat AProVE in the

CSR category, as shown in Table 7.3, thus witnessing that CSDPs are actually a

very powerful technique for proving termination of CSR.
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Conclusions

We have investigated the structure of infinite context-sensitive rewrite sequences

starting from minimal non-µ-terminating terms (Theorem 29). This knowledge is

used to provide an appropriate definition of context-sensitive dependency pair (Def-

inition 30), and the related notion of chain (Definition 35). In sharp contrast to the

standard dependency pairs approach, where all dependency pairs have tuple symbols

f ] both in the left- and right-hand sides, we have collapsing dependency pairs hav-

ing a single variable in the right-hand side. These variables reflect the effect of the

migrating variables into the termination behavior of CSR. At the level of minimal

chains, though, this contrast is somehow recovered by a nice symmetry arising from

the central notion of hidden term (Definition 17) and hiding context (Definition 18):

a noncollapsing pair u→ v is followed by a pair u′ → v′ if σ(v) µ-rewrites into σ(u′)

for some substitution σ; a collapsing pair u → v is followed by a pair u′ → v′ if

there is a hidden term t with a hiding context C such that σ(v) = σ(C)[σ(t)] and

σ(t]) µ-rewrites into σ(u′) for some substitution σ. We have shown how to use the

context-sensitive dependency pairs in proofs of termination of CSR. As in Arts and

Giesl’s approach, the presence or absence of infinite chains of dependency pairs from

DP(R, µ) characterizes the µ-terminaton of R (Theorems 37 and 38).

We have provided a suitable adaptation of Giesl et al.’s dependency pair frame-

work to CSR by defining appropriate notions of CS-termination problem (Definition

40) and CS-processor (Definition 42). In this setting we have described a number of

sound and (most of them) complete CS-processors which can be used in any practi-

cal implementation of the CSDP-framework. In particular, we have also described

some CS-processors for using µ-reduction pairs (Definition 55) and argument filter-

ings to ensure the absence of infinite chains of pairs (Theorems 58 and 61). We have

introduced a suitable notion of usable rules which is helpful to find µ-reduction pairs

(Theorems 79, 83, 93 and 94). We have defined a CS-processor that transforms col-
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lapsing pairs into noncollapsing ones. We have also introduced two new processors

which work in a similar way to the subterm processor, but use a very basic kind of

orderings instead of the subterm relation (Theorems 97 and 99). We have imple-

mented these ideas as part of the termination tool mu-term [AGIL07, Luc04a]. The

implementation and practical use of the developed techniques yield a novel and pow-

erful framework which improves the current state-of-the-art of methods for proving

termination of CSR. Actually, CSDPs were an essential ingredient for mu-term in

winning the context-sensitive subcategory of the 2007 competition of termination

tools.



Bibliography

[AEF+08] B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas,

P. Schneider-Kamp, and R. Thiemann. Improving Context-Sensitive De-

pendency Pairs. In I. Cervesato, H. Veith, and A. Voronkov, editors, Proc.

of XV International Conference on Logic for Programming, Artificial In-

telligence and Reasoning, LPAR’08, volume to appear of Lecture Notes in

Computer Science, page to appear. Springer-Verlag, 2008.

[AG00] T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency

Pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

[AGIL07] B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving Termination

of Context-Sensitive Rewriting with MU-TERM. Electronic Notes in The-

oretical Computer Science, 188:105–115, 2007.

[AGL06] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-Sensitive Dependency

Pairs. In S. Arun-Kumar and N. Garg, editors, Proc. of XXVI Conference

on Foundations of Software Technology and Theoretical Computer Science,

FST&TCS’06, volume 4337 of Lecture Notes in Computer Science, pages

297–308. Springer-Verlag, 2006.

[AGL08] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency

pairs. Technical report, Universidad Politécnica de Valencia, 2008. Avail-
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