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Abstract 

Chemiluminescence emissions measurements of OH* and CH* are used to characterize 

the combustion of blends of methane and hydrogen in air in a constant volume 

combustion bomb, with two sets of initial conditions. The combined results of 

combustion development cover from 0.1 to 2.5 MPa. Burning velocity, heat release and 

unburned/burned gas temperatures are obtained from the pressure by using a two-zone 

thermodynamic combustion diagnostic model. Intensity of OH* and CH* increases with 

the initial temperature and the percentage of hydrogen, in parallel with the usual 

increase in burning velocity. The timings of the peaks of OH* and CH* 

chemiluminescence emissions are found to correlate respectively with the maximum 

rate of heat release and flame temperature. These results show that both 
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chemiluminescence signals can be used to monitorize the burning process in 

combustion devices operating in the pressure range studied. 

 

Keywords: Combustion characterization, hydrogen, methane, chemiluminescence 

emissions, combustion bomb. 
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1. Introduction

Due to the energy demand and concern of environmental protection, much attention is 

paid to the use of alternative and non-conventional fuels. Methane and hydrogen have 

been chosen for this study because methane is the main component of the natural gas 

(NG), which is considered to be a possible alternative fuel due to its properties and high 

octane number [1] and its combustion causes less pollutant emissions than conventional 

fuels [2]. However, methane has a slow laminar burning velocity, compared to other 

liquid fuels. Laminar burning velocity is an important property of the combustion 

process because fuels with high burning velocities can improve engine combustion [3]. 

To increase the burning velocity, it is possible to blend methane with hydrogen [4], 

which is an attractive fuel since it can be produced by a variety of methods and can be 

used to generate energy in different devices (such as Reciprocating ICE, gas turbines 

and fuel cells). 

Burning velocities of methane-hydrogen mixtures varying from 0 to 100% in 

hydrogen content have been obtained and studied at different conditions of temperature 

and pressure by several groups for years. Huang et al. [5] studied the flame 

characteristics of NG-hydrogen mixtures at standard temperature and pressure, showing 

that laminar burning velocities increase substantially with the increment of the 

percentage of hydrogen in the blend. Hu et al. [6] developed an experimental and 

numerical study of lean mixtures of NG-hydrogen at elevated temperatures and 

pressures over a wide range of hydrogen percentages in the mixture, showing an 

increment in the un-stretched laminar burning velocity with the hydrogen content. 

Reyes et al. [7] characterized mixtures of natural gas and hydrogen in a single-cylinder 

spark ignition engine by means of a zero dimensional thermodynamic model. In the 
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work developed by Tinaut et al. [8] different mixtures of NG and hydrogen were used as 

fuels to analyze the effect of the addition of hydrogen on the CO and NO emissions, the 

optimal ignition timing and performance of an ICE. 

For the study of combustion of these and other types of hydrocarbon fuels, the 

analysis of chemiluminescence emissions is a powerful tool. Multiple research works 

have confirmed that chemiluminescence emitted by excited chemical radicals in flames 

can be used as a diagnostic combustion tool [9-11], such as in internal combustion 

engines (ICE), combustion bombs, burners, turbines and other facilities. 

This work is focused on the interpretation of OH* and CH* chemiluminescence data 

obtained in combustions of methane/hydrogen and air, because they have been widely 

employed as a flame marker [12] to study the combustion process by spectral 

combustion diagnostics. Chemiluminescence emissions can be defined as the natural 

visible and near-spontaneous emission of hydrocarbon flames caused by excited 

molecules when they decay back to equilibrium energy levels by emitting a photon. The 

molecules responsible for the chemiluminescence emissions for different combustion 

regimes can give information about the nature of the combustion reactions and the 

fuel/air mixture [13].   Some authors use chemiluminescence emissions to study the 

combustion process by spectral combustion diagnostics [14-21]. Ballester et al. [21] 

monitorize CH*, OH* and C2* emissions in premixed flames (at near atmospheric 

pressures) of natural gas/hydrogen as a function of the fuel/air equivalence ratio and 

fuel composition, to identify the states of the combustion depending on the operation 

conditions. Tinaut et al [20] characterized OH* and CH* chemiluminescent emissions 

in n-heptane, iso-octane and n-heptane/toluene flames inside a constant volume 

combustion bomb, thus allowing to raise the combustion pressure. They found that the 

ratio OH*/CH* was proportional to the equivalence ratio. In the early work of Clark et 
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al. [22, 23], they studied the chemiluminescence emitted during the combustion in a 

spark ignition (SI) internal  combustion engine and established that the intensity of each 

component depended on the fuel and on the initial equivalence ratio. The detection of 

OH* chemiluminescence has been used as a diagnostic tool by Lee et al. [24]. Lawn 

[25] developed some tests in swirl burners studying the relationship between the OH* 

chemiluminescence at 306.4 nm and the rate of heat release during the combustion of 

two fuels: methane and propane. In both cases they found that the OH* 

chemiluminescence was proportional to the rate of heat release during the combustion. 

Additionally, De Leo et al. [26] studied the chemiluminescence emitted by OH* and 

CH* radicals in a burner fuelled with methane, and concluded that both radicals were 

the most numerous in hydrocarbon flames. They also found a correlation between the 

rate OH*/CH* and the rate of heat release during the combustion. Some authors also 

use the rate of heat release (RoHR) as an estimator of the combustion intensity. The 

works by Clark et al. [22] and Price et al. [10] can be considered as the first evidence of 

the relationship between the RoHR. Since then, several studies have been developed in 

different experimental facilities, confirming the correlation between the RoHR and the 

chemiluminescence emitted by chemical radicals, which are important during the 

combustion process, Tinaut et al. [20], Nori et al. [27], Lauer M. [28], between others. 

All these references are included in the methodology text. 

This paper is focused on the study of the premixed combustion process of different 

mixtures of methane and hydrogen (in different proportions) under different conditions 

of pressure and temperature. The study includes not only the analysis of pressure trace, 

but also the OH* and CH* chemiluminescence radiation emitted during the combustion 

process. Pressure curves are experimentally obtained during each combustion event in a 

constant volume combustion bomb. The burning velocity and unburned temperature are 
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obtained from the pressure by making use of a diagnosis model. Burning velocities are 

obtained under the consideration of a smooth spherical flame front. In some conditions 

the flame front is strictly laminar, while in other some cellularity may appear [29]. The 

obtained burning velocities are compared with results obtained by other authors. 

OH* and CH* chemiluminescence emissions are acquired with different 

photomultipliers positioned in an optical access. The morphology of the OH* and CH* 

chemiluminescence curves obtained in the constant volume combustion bomb are 

described and investigated. Finally these plots are used in order to establish some 

relationships between these emissions and the flame temperature and rate of heat 

release. Other authors have studied the combustion of hydrogen and methane mixtures 

through the pressure and burning velocity, however the present research adds new 

results obtained with OH* and CH* chemiluminescence signals in a constant volume 

combustion bomb, i.e., with a pressure range extended up to 2.5 MPa. 



 7 

2. Methodology 

 

2.1 Experimental setup and procedure 

 

The main component of the experimental facility is a constant volume combustion 

bomb (CVCB), a stainless steel spherical cavity of 0.2 meters of diameter, which has 

been designed to withstand pressures up to 40 MPa and temperatures up to 1073 K 

during the combustion development. The ignition of the mixture is originated at the 

centre of the sphere by a spark between two electrodes. This facility is designed for the 

study and characterization of liquid and gaseous fuel combustion processes under 

different conditions. In Figure 1i is shown a sketch of the experimental setup  

In each test, the initial conditions of pressure, temperature can be set at the 

beginning of each combustion. A piezoelectric pressure transducer (Kistler type 7063) 

registers the pressure in the chamber during combustion. 

In order to detect the chemiluminescence emitted by the excited chemical radicals 

during the combustion, the CVCB has two small orifices for optical accesses, one radial 

pointing at the centre of the CVCB and a second one horizontal, see Figure 1ii. In this 

work only the horizontal access has been used. A beam splitter is used with two 

photomultipliers to simultaneously register the OH* and CH* emissions along the same 

optical way.  

Two Hammamatsu 9536 photomultipliers are used for the OH* and CH* 

chemiluminescence detection at 306 nm and 430 nm, respectively. More details of the 

experimental installation and methodology can be seen in Tinaut et. al. [20] 
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The registered values of pressure-time are treated by means of an analysis model of 

the combustion based on the energy, volume, mass conservation and ideal gas equations 

[30]. The model is based on dividing the combustion chamber in two different zones: 

burned and unburned, and the application of the conservation and ideal gas equations in 

each zone. During combustion, the unburned zone converts into burned zone, which 

starts at the geometric centre of the sphere from the ignition caused by a spark plug. 

Thus the burned zone grows spherically in a concentric way with the vessel wall. The 

main inputs of the analysis model are the temporal evolution of the registered pressure 

during the combustion, the fuel composition and the mass of the gaseous mixture. 

Among other variables, the outputs of this model are the temperatures of the unburned 

mixture and burned zone, the burned mass fraction (BMF), the flame front surface and 

the burning velocity [30], [31]. The burning velocity is calculated from the mass 

burning rate, the unburned mixture density and the flame front surface Af, according to 

the following expression: 

    
   

     
                     (1)

 

In general, many authors use the rate of heat release (RoHR) as an estimator of the 

combustion intensity [10, 22, 23, 27, 28, 32]. In the present work, a two-zone 

diagnostics model is used to determine the burned mass fraction rate, BMFR (burned 

mass rate normalized with the total mass). Additionally, the RoHR is also calculated 

from the apparent heat release during combustion, normalised with the maximum 

possible heat release (fuel mass times its heating value) as:  

     
  

   

    
                (2)

 

 

The apparent heat release is computed on the basis of the First Law of 
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Thermodynamics applied to a single zone, for a quasi-static system, i.e., with uniform 

pressure and mean temperature at any instant in time (see eq. 3), where γ is the mean 

adiabatic coefficient: 

  

  
 

 

   
 
  

  
                     (3) 

 

It is possible to explore relationships between the values of the variables representative 

of the combustion process, both experimentally registered (as the pressure or the 

chemiluminescence emissions) and analytically obtained (as the temperatures and 

ROHR). These relationships can be used to develop diagnosis tools of combustion 

devices.  

 

 

2. 2. Chemiluminescence study 

 

Hydroxyl radical chemiluminescence arises from the emission of light of the 

electronically excited OH A
2
Σ

+
 (denoted as OH* in flame chemiluminescence literature) 

which is observed in the ultraviolet zone of the electromagnetic spectrum. The main 

OH*emissions are at the wavelengths: 281 nm, 306–320 nm and 340–348 nm, with the 

most intense peaks at 306 nm and 281 nm. The knowledge of the chemical reactions 

that cause the chemiluminescence signal detected in the experiments is important to 

interpret results. First, it must be recalled that the three main mechanisms of OH* 

production [13, 33] are the following: 

1. Excitation in the flame front of hydrocarbons combustion which leads to high 

temperatures, as proposed by Krishnamachari et al. [34] in 1961 and used by 
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Dandy et al [35]in 1992. This is one of the most likely mechanisms for the 

production of   )(* 2OH in the flame, where OH* radicals are produced by 

the oxidation of CH [14, 20, 36]: 

  )(* 2

2 OHCOOCH     (4) 

2. Some chemi-excitation of OH by the recombination of radicals in the low

temperature reaction zone of hydrocarbon flames: 

*2 OHOHOHOHH  (5) 

3. Anomalous excitation of the vibration energy levels of hydrogen atom in

hydrogen flames due to an inverse predissociation: 

   )(*)(* 24 OHOHHO (6) 

Hydroxyl radicals exist in both the flame front and the hot postcombustion gases. The 

best techniques for detection are absorption, chemiluminescence and laser-induced 

fluorescence [37]. 

CH* chemiluminescence emissions appear in three emission bands: 417-447 nm, 472-

491 nm and 362-371 nm. The more intense emission is detected at 431 nm, due to the 

transition (A
2
ΔX

2
Π), mainly generated by two reactions, eqs, 7 and 8.

1. The reaction of C2H with atomic oxygen:

)A(*)( 23

2  CHCOPOHC (7) 

2. The recombination of different radicals:

    OHCHHCOCH 2*           (8) 

CH* chemiluminescence near 431 nm arises from the excited state CH*[CH(A
2
Δ)]

produced primarily through the reaction of C2H with molecular oxygen, [14, 38], which 

is the most representative for low-pressure flames, eq. 7. However, for rich flames it is 
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necessary to take into account the decomposition of the HCO* and the peroxide 

formation (eq. 8) [1, 13]. 

The resulting OH* and CH* radicals in an electronically excited state lose their energy 

through either spontaneous fluorescence (chemiluminescence) or by physical collisions 

(quenching). 

In this work, OH* chemiluminescence is measured with a photo-multiplier tube (PMT) 

with a band-pass interference filter centred at 307.1 nm, with a 25 nm full-width half-

height, FWHM. In order to measure CH* chemiluminescence, a second PMT is used in 

combination with a band-pass interference filter centred at 430.0 nm with a FWHM of 

10 nm.  

The intensity of chemiluminescence is measured in lumens (lm or better nlm [10
-9

 lm] 

or plm [10
-12

 lm]). The conversion factor is obtained with the correlation curve of the 

PMTs as a function of the input voltage. 

The results of the OH* chemiluminescence emissions obtained in this work present a 

relatively high level of noise; for that reason, the curves are presented with a high 

resolution smoothing, as can be seen in Figure 2. 

The chemiluminescence emitted during a combustion process has two contributions: the 

flame front contribution, basically formed by discrete emissions from OH*, CH* and 

C2* radicals, and the continuous emission originated by the hot gases during the 

postcombustion period, usually called afterglow emissions, [11]. Figure 3 shows an 

example of the pressure, OH* and CH* chemiluminescence emissions registered during 

a combustion of 50% hydrogen and 50% natural gas, at 0.45 MPa, 458 K initial 

conditions and 0.8 equivalence ratio. In the figure, the combustion and postcombustion 

periods are delimited by the vertical dashed line. During the combustion process, the 

flame front grows from the bomb centre, as the burned mass and pressure increase. The 
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pressure reaches its maximum value at the end of combustion, as the flame front arrives 

to the inner part of the bomb wall. When that happens, heat transfer increases and the 

burned gases temperature and pressure reduce in the afterglow region. OH* and CH* 

emissions (detected by the horizontal optical orifice, Figure 1) increase as the 

combustion progresses in the CVCB. It must be noticed that, due to the horizontal 

orientation of the photomultipliers, chemiluminescence signals only can be detected 

once the flame front has a radius bigger than the vertical distance between the 

photomultiplier and the bomb centre. The OH* chemiluminescence emission reaches its 

maximum value near the point of maximum pressure, while the CH* 

chemiluminescence has a small delay with respect to the OH* curve. The absolute scale 

of CH* are almost two orders of magnitude bigger than that of OH*. For both radicals, 

afterglow emissions are strong and keep a relatively long time after the end of 

combustion.  

 

3. Results and discussion 

 

In this section, the effect of hydrogen addition on the flame propagation process of 

methane premixed combustion in the CVCB is analysed. The initial conditions of the 

experiments with mixtures of hydrogen/methane are detailed in Table 1. Experiments 

with different percentages of hydrogen in the fuel mixture (0, 3, 6, 15, 30, 50, 75 and 

100%) were carried out at atmospheric initial conditions (T = 300 K, p = 0.10 MPa and 

fuel/air equivalence ratio of 0.8, denominated A.1 to A.8 in Table 1) to examine the 

influence of hydrogen addition on the burning velocity of methane. Then, additional 

tests were made with initial conditions at higher pressure and temperature, denominated 

as intermediate conditions (about 0.46 MPa and 458 K, called I.1 to I.8 in Table 1). 
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For each experiment, initial pressure and temperature are set at the specific values of 

Table 1. Once, the combustion starts by the spark plug, pressure increases and also 

temperature in the unburned zone due to quasi-adiabatic compression in the CVCB, as 

can be seen in Figure 4. The plots of the evolution of the unburned zone temperature 

versus the pressure for each individual experiment, computed with the two-zone 

combustion model, are shown in this Figure. In fact, this Figure represents the range of 

experimental conditions covered in the study, both the initial conditions of Table 1 and 

the conditions reached due to combustion development from these initial conditions (0.1 

to 2.5 MPa, with unburned temperature 300-700 K). 

It can be observed that the  thermodynamic conditions (pressure and temperature) of the 

tests with more elevated initial conditions of pressure and temperature (I.1 to I.8) show 

continuity and overlap with the thermodynamic conditions of tests performed at 

atmospheric initial conditions (A.1 to A.8). The fact of this overlapping is a proof of the 

repetitiveness of the whole experimental procedure. For each of the conditions 

considered in Table 1, a set of three experiments was made to confirm and verify the 

repetitiveness of the experimental procedure. 

In the following sections, results corresponding to pressure and burning velocity are 

first presented. Then, the burning velocities of hydrogen/methane mixtures are 

compared with results published in the bibliography. Finally, the morphology of OH* 

and CH* chemiluminescence curves is described and studied in detail. 

3.1. Influence of the hydrogen content on the combustion development 

An investigation of the influence of hydrogen content on the methane/air blend is made 
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through the characterization of the combustion pressure curve, burning velocity and 

chemiluminescence emissions. 

First, in Figure 5 the temporal evolution of the pressure curve during the combustion 

process is represented for each test with different initial pressure and temperature 

conditions and the percentages of hydrogen in the blend (conditions of Table 1). The 

shape of the pressure curve has two different parts, initially a growing part 

corresponding to the development of the flame front during the combustion until the 

maximum pressure is reached, and followed by a decreasing zone corresponding to a 

cooling zone when the combustion has finished.  

As can be seen in Figure 5, as the percentage of hydrogen increases in the mixture, 

pressure increases faster, according to a higher burning velocity. For initial ambient  

conditions (Figure 5i, for conditions A.1 to A.8), the pressure peak tends to increase as 

the percentage of hydrogen increases in the mixture. However, for medium pressure and 

temperature conditions (Figure 5ii, and conditions I.1 to I.) the tendency is the contrary, 

with the curve of 100% of hydrogen presenting the lower pressure peak. This can be 

explained as a result of the complex interaction among the pressure, the temperature and 

the specific heat of the reacting mixture. When the hydrogen fraction changes, the lower 

heating value, stoichiometric fuel/air ratio, molar weight and specific heat of the fuel 

mixture change, with the resulting combined effect shown in Figure 5. 

It is worth mentioning that near the end of the combustion process, and in the proximity 

of the pressure peak, pressure curves of pure hydrogen show high frequency 

oscillations. Von Elbe  and Lewis [39] and Garforth and Rallis [40] observed these 

oscillations in some explosions in closed vessels due to gaseous vibrations due to 

excitation delays. This is a typical process at low temperature explosions which appear 

when temperature increases suddenly in internal parts of the burned kernel. Dahoe [41] 
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explains the oscillations in the hydrogen pressure curve through the inversion of the 

particles movement near the vessel walls. Iijima and Takeno [42] detected oscillations in 

the hydrogen pressure curve when the pressure reaches five or seven times the initial 

pressure of the experiment, caused by detonation waves. Bradley et al. [43] explain 

these oscillations as acoustic interactions. Gabano et al. [44] described this oscillations 

caused by acoustic waves pressure as a result of the hydrodynamic instabilities of the 

flame front with the vessel walls.  

The corresponding burning velocities have been calculated from the pressure curves 

presented in Figure 5 with the two-zone diagnosis model. Thus, velocities are obtained 

as functions of time. A more convenient way of representing the burning velocities is 

plotting them as functions of unburned zone temperature, as is made in Figure 6. The 

results corresponding to ambient initial conditions of pressure and temperature are 

plotted in figure 6i (left: A.1 to A.8; right: zoom of conditions A.1 to A.5) and those for 

higher conditions of pressure and temperature are represented in figure 6ii (left: I.1 to 

I.8; right: zoom of conditions I.1 to I.5). In general, it can be seen in Figure 6 that 

burning velocities increase as the percentage of hydrogen in the fuel blend grows, as it 

could be expected from the increasingly steeper pressure plots of Figure 5.  

 

It has been questioned whether a hydrogen/methane flame has a laminar or cellular 

character, since the effect of the hydrogen on the combustion velocity enhances the 

apparition of instabilities (Serrano et al. [45], Mandilas et al. [46] and Marley and 

Roberts [47]). In the right upper part of Figure 6 (conditions A.1 to A.5), corresponding 

to ambient initial conditions, it can be seen a characteristic bump in the last part of the 

burning velocity plot, for high values of unburned temperature. This bump is associated 

to the transition from laminar to cellular conditions, shown as an increment of the 
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apparent burning velocity.  It can be observed that the position of this characteristic 

bump is displaced towards smaller unburned temperatures as the hydrogen content 

increases (from blue to red line). For higher percentages of hydrogen (left upper part of 

Figure 6, conditions A.6 to A.8), this trend cannot be identified, since the hydrogen 

effect probably causes a cellular flame from the beginning of the combustion. Similar 

effect appears when the initial conditions are higher, although for all hydrogen contents 

(I.1 to I.8, lower part of Figure 6). A more detailed discussion of this effect can be found 

in Reyes et al. [48]. 

3.2. Comparison of burning velocities with other authors’ results 

In this section, burning velocity results of hydrogen/methane mixtures are compared 

with other results published in the literature. Burning velocity takes a different value for 

each pair of pressure and temperature, as can be seen in Figure 6. It is then possible to 

adjust the burning velocity values by means of  a correlation as a function of pressure 

and temperature, similar to the correlation proposed by Metghalchi-Keck [49]. The 

adjusted correlation provides a value for the burning velocity at any condition of 

pressure and temperature, in its range of validity. In particular, the values can be 

computed for a 0.10 MPa pressure and 300 K temperature. These values are plotted in 

Figure 7 for different percentages of hydrogen, with the fixed equivalence ratio of 0.8. 

They are compared with the values published by Coppens et al.[50], Huang et al. [5], 

Tanoue et al. [51] and Bougrine et al. [52]. It is possible to see that the authors’ results 

are in an agreement with the rest of data. 

3.3. Study of the OH* and CH* chemiluminescence emitted by hydrogen/methane 
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flames 

In this section the OH* and CH* chemiluminescence curves are presented and their 

morphology is investigated as a function of the hydrogen content in the blend. 

The time evolutions of pressure, OH* and CH* chemiluminescence emissions in 

combustions of hydrogen/methane at initial ambient conditions of pressure and 

temperature are represented in Figure 8.  In the upper part of Figure 8 the plots are 

represented for ambient initial conditions (A.1 to A.8), while in the lower part the ones 

for intermediate initial conditions (I.1 to I.8) are shown. On the left side the plots shown 

are for high percentages of hydrogen (100, 75, 50%), while on the right side, the plots 

correspond to the cases of low hydrogen content (0, 3, 6, 15, 30%). 

From these figures, it is possible to see that the maximum value of the OH* 

chemiluminescence is reached near the maximum value of the pressure, i.e., during the 

combustion process. Vertical lines in Figure 8 mark the end of the combustion process; 

they establish a separation between the combustion and the afterglow emissions. It is 

possible to see that once the maximum value of OH* is reached, this 

chemiluminescence also appears in the post-combustion process, but with decreasing 

intensity until extinction. 

In Figure 8 it is also possible to see that the OH* chemiluminescence emissions increase 

as the percentage of hydrogen increases in the mixture. This increment is more 

noticeable when the percentage of hydrogen exceeds of 50%. Nilsson et al. [53] also 

observe the increment in the OH concentration as the flame is enriched with hydrogen. 

A comparison of plots for low H2 percentages (right side) and high H2 content (left side) 

shows that OH* chemiluminescence increases by a factor of about five. 
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In all cases, the chemiluminescence curves in Figures 8 confirm that OH* radicals that 

are present in the flame front keep emitting from hot post-combustion gases, during a 

time period of about 100 ms. This time associated to the after-glow emissions is 

relatively independent of the actual combustion time, which in turn is strongly 

dependent on the hydrogen content. When hydrogen is added to a methane flame some 

fast reactions are activated [54] which can enhance the local production of OH* 

chemiluminescence, mainly in the reaction zone through the first and second 

mechanisms of OH* production (equations (3) and (4)). This effect becomes apparent in 

this work, since chemiluminescence is detected through a horizontal optical access 

placed at 8 cm above the centre of the combustion chamber, and then the radiation 

signal comes mainly from the reaction zone. 

Similarly to the case of OH*, CH* chemiluminescence intensity increases strongly (by a 

factor of 5 to 10) as the hydrogen content increases in the blends. Again the shape of the 

plots shows that CH* radiation exists both during combustion and in the afterglow 

region during the post-combustion process of the CO in CO2. In fact, the positions of 

CH* peaks are delayed from combustion pressure peaks, a fact that is more noticeable 

in the experiments with the intermediate initial conditions (lower part of Fig. 8). The 

afterglow emission has been detected by numerous authors, firstly by Withrow and 

Rassweiler in the 1931 [11] and confirmed by other works [55-57]. 

In the CH* emissions for the experiments at ambient initial conditions (A.1 to A.8), an 

increment in CH* chemiluminescence emissions is detected when the percentage of 

hydrogen increases from 0 to 100%. It could be expected that when the percentage of 

hydrogen increases in the mixture, CH* chemiluminescence emissions should reduce 

because CH  and HC2 radicals concentration decrease and even they should become 
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null for 100% H2. In literature, some authors have studied CH* chemiluminescence in 

continuous burners, for example, Schefer et al. [58]. They also obtain an increment in 

CH* emissions at the measured frequency (430 nm) by the radiation due to two 

alternative sources. According to their argument, radiation detected with the PMT 

sensor at 430 nm is not only due to CH* chemiluminescence, but it also includes 

radiation coming from other reactions of molecular and atomic hydrogen.The first 

alternative source of emission is due to molecular hydrogen in the region of 410-477 

nm, while the second is due to the emission of atomic hydrogen at 434.05 nm (2p-5d 

transition). In another study, also for continuous combustion, Ballester et al. [21] and 

[59] detected a background radiation in the band 190-1100 nm which increases as the 

percentage of hydrogen increases in the fuel mixture. Both explanations justify the 

increment of the CH* chemiluminescence emission presently detected for all blends as 

the hydrogen contents is higher, but especially when the percentage of hydrogen in the 

mixture is higher than 50%. 

The value of the peak CH* emissions are represented in Figure 9 versus the percentage 

of hydrogen in the fuel blend, for different initial conditions to study in detail the effect 

of hydrogen content on the CH* chemiluminescence emissions. In this Figure it can be 

seen that as the percentage of hydrogen in the mixture increases, the maximum values 

of CH* emission  slightly grow, but when the percentage of hydrogen exceeds of 75% 

for ambient initial conditions and from 50% for the intermediate initial conditions, their 

value increase strongly. It should be noticed that the trend of CH* emission maxima is 

similar to that of burning velocities (Fig. 7). 

3.4. Relationships between OH* and CH* chemiluminescence, rate of heat release and 
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flame temperature 

 

Some relationships can be found between OH* and CH* chemiluminescence emissions 

and other variables of interest during the combustion process: flame temperature and 

rate of heat release (RoHR), in particular between the times at which the maxima of 

these three variables appear.  

The maxima of OH* emissions are determined from the original OH* curves taking into 

account only the emissions due to the combustion process but not those of the after-

glow period. In Figure 10 the time at which the maximum rate of heat release during 

each combustion experiment (RoHRmax) is reached is represented versus the time at 

which the maximum OH* chemiluminescence emissions time is achieved, for 

combustions of hydrogen/methane mixtures in different proportions, for both 

atmospheric initial conditions (red squares: A.1 to A. 8) and intermediate pressure and 

temperature initial conditions (black triangles: I.1 to I.8)  It is possible to see that OH* 

chemiluminescence peaks are slightly delayed relative to RoHR peaks, but with a strong 

linear relationship between both variables. That implies that OH* radiation can be 

considered a good tracer of the RoHR. Same results have been found by other authors in 

the literature, for example, Lawn [25] and De Leo et al. [26] confirming this assertion. 

 

A second important relationship can be established between the times at which flame 

temperature and CH* chemiluminescence reach their maxima. In general, in premixed 

flames, CH* chemiluminescence is a good indicator of the flame front position because 

it is at the flame front where the CH* radicals are mainly generated and where the high 

temperature reactions take place [13, 60]. The flame temperature considered in this 

analysis is the burned-zone temperature calculated with the combustion two-zone 
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model. In Figure 11, the time at which the maximum flame temperature is reached, is 

plotted versus the time of the peak CH* chemiluminescence emission in the 

combustions of hydrogen/methane at different initial conditions. Since both maxima 

practically coincide for all experimental conditions, CH* chemiluminescence emissions 

can be considered a good marker of the flame front position in the combustion bomb.  

 

4. Conclusions 

 

The investigation consists of an experimental study of the combustion pressure and the 

OH* and CH* chemiluminescence emitted during premixed combustion of methane/air 

mixtures blended with different percentages of hydrogen (0, 3, 6, 15, 30, 50, 75 and 

100%) at two sets of initial conditions of pressure and temperature (ambient: 0.1 MPa 

and 300 K, and intermediate: 0.46 MPa and 458 K), for a given fuel/air ratio of 0.8. 

Starting from these initial conditions, the results cover a pressure range from 0.1 to 2.5 

MPa, associated to an unburned temperature range from 300 to 700 K. These ranges are 

further the limits of previously published works, usually covering near atmospheric 

pressures. 

The burning velocity, heat release rate and unburned/burned temperatures are calculated 

from the registered pressure by means of a two-zone thermodynamic diagnosis model. 

This model is based on the application of mass and energy conservation to the unburned 

and burned zones of the combustion bomb, by using the experimental combustion 

pressure as input data. 

It can be seen in the OH* and CH* chemiluminescence emissions curves that smaller 

percentages of hydrogen in the mixture (less than 50%) bring a slight increase of 

detected radiation, in agreement with the associated acceleration of the combustion 
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development. However, OH* and CH* chemiluminescence emissions are strongly 

enhanced when the percentage of hydrogen in the methane-air mixture exceeds 

respectively of 50% and 75%.  

The morphology of the OH* and CH* curves investigated shows different patterns for 

OH* and CH* emissions. OH* emissions (registered at 307 nm) reach their maximum 

value near the end of the combustion process (for both low and intermediate conditions 

of pressure and temperature), while CH* emissions (registered at 430 nm) show their 

maximum values after the end of the combustion, in the afterglow period. This pattern 

is more noticeable in the experiments developed at lower conditions of pressure and 

temperature. 

The results show that OH* and CH* chemiluminescence emissions can be used to 

monitorize and diagnose combustion processes of H2/methane-air, since the peak value 

of OH* chemiluminescence correlates well with the point of maximum rate of heat 

release, while the CH* chemiluminescence is a good indicator of the flame front 

position. It must be noticed that even fuel-air mixtures with pure hydrogen present 

chemiluminescence emissions at the frequency associated to CH* (430 nm), due to 

radiation from molecular and atomic hydrogen. 
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Nomenclature 

 

Af   flame front surface (m
2
) 

CVCB   constant volume combustion bomb 

ICE   internal combustion engine 

Fr   fuel/air equivalence ratio (-) 

h   Planck constant 

Hf   lower heating value of the fuel (J/kg) 

m           mass (kg) 

NG   natural gas 

p   pressure (Pa) 

PMT   photomultiplier tube 

Q   heat release (J) 

RoHR   rate of heat release (-) 

T    temperature (K) 

t   time (s) 

u   burning velocity (m/s) 

V   volume (m
3
) 

 

GREEK: 

Φ   chemiluminescence (lm or plm) 

γ   adiabatic constant 

a
Σ

a
   determined excited state 

ν   frequency (nm) 

ρ   density (kg/m
3
) 
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SUBSCRIPTS: 

a   air 

b   burned 

f   flame front 

i   initial 

max   maximum 

ub    unburned 

*   excited radical 
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Table 1. Initial conditions of the combustion experiments with hydrogen/methane 

blends 

Case CH4 H2 pi (MPa) Ti (K) Fr  

A.1 100% 0% 0.10 300 0.8 

am
b
ie

n
t 

co
n
d
it

io
n
s 

A.2 97% 3% 0.10 300 0.8 

A.3 94% 6% 0.10 300 0.8 

A.4 85% 15% 0.10 300 0.8 

A.5 70% 30% 0.10 300 0.8 

A.6 50% 50% 0.10 300 0.8 

A.7 25% 75% 0.10 300 0.8 

A.8 0% 100% 0.10 300 0.8 

I.1 100% 0% 0.46 458 0.8 

In
te

rm
ed

ia
te

 c
o
n
d
it

io
n
s I.2 97% 3% 0.46 457 0.8 

I.3 94% 6% 0.46 458 0.8 

I.4 85% 15% 0.46 458 0.8 

I.5 70% 30% 0.47 458 0.8 

I.6 50% 50% 0.45 458 0.8 

I.7 25% 75% 0.45 458 0.8 

I.8 0% 100% 0.45 459 0.8 

 

 

Table 1 revised



 

(i) Schematics of the experimental setup 

 

(ii) Layout of the orifices for the optical accesses 

Figure 1. Sketch of the experimental facility 

 

 

 

Figure 1



 

Figure 2. Original and smoothed curves of OH* chemiluminescence  

 

Figure 2



 

 

Figure 3. Example of time evolutions of pressure, OH* and CH* chemiluminescence 

emissions obtained from a combustion of 50% natural gas and 50% hydrogen blend, at 

initial conditions 0.45 MPa, 458 K and 0.8 equivalence ratio 

 

Figure 3



 

Figure 4. Temperature of unburned mixture versus chamber pressure for the 

experiments with hydrogen/methane mixtures. Colour lines identify individual 

experiments with the initial conditions of Table 1. 

 

(0.46 MPa, 458 K) 

(0.10 MPa, 300 K) 

Figure 4



 

 

(i) Ambient initial conditions: Ti = 300 K and pi = 0.1 MPa  

 

(ii) Intermediate initial conditions: Ti = 458 K and pi = 0.46 MPa  

Figure 5. Pressure evolution during the combustion of hydrogen/methane blends at the 

initial conditions of Table 1. 
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A.1 – A.8 A.1 – A.5 

I.1 – I.8 I.1 – I.5 

 

 

  

(i) Ambient initial conditions: Ti = 300 K and pi = 0.1 MPa (A.1 to A.8) 

  
(ii) Intermediate initial conditions: Ti = 458 K and pi = 0.46 MPa (I.1 to I.8) 

Fig 6. Burning velocity versus the unburned temperature during combustion of hydrogen/methane blends at 

the initial conditions of Table 1. 
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Figure 6 revised



  

Coppens et al. [46],    Huang et al. [5],    Tanoue et al. [47] 

Present work,            Bougrine et al. [46] 

Figure 7. Burning velocity of hydrogen/methane blends for a fuel/air equivalence ratio 

of 0.8 at 0.1 MPa and 300 K. 
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(i) Ambient initial conditions: Ti = 300 K and pi = 0.1 MPa 
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Figure 8 revised



(ii) Intermediate initial conditions: Ti = 458 K and pi = 0.46 MPa 

Figure 8. Pressure, OH* and CH* chemiluminescence emissions during the combustion of 

hydrogen/methane blends (vertical dotted lines denote te end of combustion processes).  
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Fig 9. Maximum intensity of CH* chemiluminescence emission versus the percentage 

of hydrogen in the fuel mixture in combustions of hydrogen/methane blends with the 

initial conditions presented in Table 1. 

 

Figure 9 revised



 

Figure 10. Time of RoHRmax versus time of maxima OH* chemiluminescence in 

combustions of hydrogen/methane blends with different proportions of both fuels, for 

a given fuel/air equivalence ratio of 0.8 (all experimental conditions) 
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Figure 11. Flame temperature time vs. the maximum CH* chemiluminescence emission 

time for combustions of hydrogen and methane blends in different proportions, for a 

fuel/air equivalence ratio of 0.8 (all experimental conditions) 
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