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ABSTRACT 

This study aims to investigate the dry sliding wear behaviour of Al2O3–5vol.% NbC 

nanocomposites sintered by two different consolidation techniques: conventional 

sintering (CS) and spark plasma sintering (SPS) at temperatures ranging from 1450 to 

1600 ºC. The dry sliding wear tests were performed on a tribometer with a ball-on-disc 

configuration using an Al2O3 ball as a counterpart material, with a normal contact load 

of 15 and 30 N, a sliding distance of 2000 m and a sliding speed of 0.1 m/s at room 

temperature and ambient environment. The sintering methods, mechanical properties 

and applied load acted directly on the wear mechanism of the nanocomposites. The 

samples sintered by SPS exhibited higher densification and hardness, in addition to a 

mailto:aborrell@upv.es


 2 

lower friction coefficient and wear rate. Based on the wear rate, these nanocomposites 

exhibited a moderate regime with 15 N of load, and several regimes when 30 N of 

applied load was used. The main wear mechanisms observed were plastic 

deformation, abrasion and grain pull-out. The excellent results show that Al2O3-NbC 

nanocomposites are ideal for the manufacture of new products such as cutting tools. 

 

Keywords: Ceramic-matrix composite; Alumina-niobium carbide; Spark plasma 

sintering; Sliding wear; Cutting tools 

 

1. Introduction 

Cermet materials, best known for their superior wear resistance, have a range of 

industrial uses more diverse than that of any other powder metallurgy product. 

Common uses include metalworking tools, mining tools, and wear-resistant 

components. All of these applications have one physical property requirement in 

common: the ability to resist wear. The variety of wear mechanisms encountered in 

service requires the use of a number of carbide grades with different chemical and 

metallurgical properties. 

High-performance ceramic materials exhibit superior properties compared to metals 

and have prompted studies that seek to develop new chemically inert materials with 

high hardness, toughness, elastic modulus, and wear resistance including at high 

velocities and temperatures [1-3]. Al2O3 ceramic exhibits specific properties with the 

inclusion of a second phase particle such as SiC, WC, TiC and NbC, due to the 

chemical bonds established between the interfaces of the particles [4-6]. Niobium 

carbide (NbC) is a transition metal carbide that is thermomechanically compatible with 

Al2O3, which reduces the residual stresses produced during the heating and cooling 
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processes, preventing the formation of cracks. This NbC has a high melting point, 

hardness and toughness and low chemical reactivity that make it a suitable reinforcing 

material for modern industrial equipment, such as cutting tools [7-10]. 

The wear of the material can be improved by minimising residual stress in the sintering 

procedure, lowering the wear rate through microstructural refinement and by 

increasing toughness at the grain boundary. Spark plasma sintering (SPS) is a suitable 

sintering technique to obtain materials with ultrafine microstructure and high 

densification, which improve mechanical and tribological properties. This method has 

attracted considerable attention in comparison with other sintering processes due to 

advantages such as higher heating and cooling speed, high applied pressure and short 

dwell time that maintain the grain size and save energy [3,11-14]. 

This investigation aims to study the tribological behaviour of Al2O3–5vol.% NbC 

nanocomposites without additional sintering additives and obtained by conventional 

sintering, and non-conventional spark plasma sintering. The influence of the final 

properties and tribological parameters, together with the sintering techniques, were 

tested and compared. This article discusses in detail the friction coefficient and dry 

sliding wear behaviour of the nanocomposites studied. 

 

2. Experimental procedure 

 

2.1. Material and sintering conditions 

In this study, nanometric powders of α-alumina (AKP-53, Sumitomo, 99.95% purity) 

and niobium carbide were obtained by reactive high-energy milling as described in a 

previous study [15,16]. The final compositions of the samples, with 5 vol.% NbC, were 

obtained by adding alumina to the reactive milling products. The composite mixtures 
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were obtained in a conventional ball mill in alcohol suspension with 0.2 wt% PABA, 

100 ppm magnesium chloride hexahydrate (MgCl2.6H2O), and 0.5 wt% oleic acid. 

The Al2O3–5vol.% NbC powders were sintered by conventional (CS) and spark plasma 

sintering (SPS). In the first procedure, the powders were isostatically pressed at 200 

MPa, and fired in a furnace with a silicon carbide heating element (Thermal Technology 

Inc – Astro Division) at 1550 and 1600 ºC, under vacuum, with heating and cooling 

rates of 10 ºC/min and 120 min of dwell time at the maximum temperature. In the 

second procedure, cylindrical samples of 20 mm in diameter and 2–4 mm height were 

prepared. The samples were heated from room temperature to 600 ºC at a rate of 200 

ºC/min at a pressure of 10 MPa, and then heated from 600 ºC to the final temperature 

at a heating rate of 100 ºC/min and a pressure of 80 MPa. The final temperatures were 

set at 1450, 1500, 1550, and 1600 ºC; these temperatures were maintained for 5 

minutes under a pressure of 80 MPa. Sintering cycles were performed under vacuum 

conditions. 

 

2.2. Characterisation 

The densities of the consolidated materials (relative density) were measured using the 

Archimedes’ method with distilled water immersion, according to ASTM C373-88. 

Relative densities were estimated in accordance with the real density of the powder 

measured by helium pycnometry (4.10 g/cm3). The surface of the consolidated 

materials was polished to 0.25 µm using SiC paper and diamond suspension, and the 

Vickers hardness value (HV) was determined applying a 10 kgf load for 10 s with a 

conventional diamond pyramid indenter (Buehler, model Micromet 5103), according to 

ASTM E92-72 [17]. The fractured surface of the materials was observed by field 

emission scanning electron microscopy (FESEM, Zeiss Ultra55, Japan). 
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2.3. Sliding wear test 

The sample surfaces were polished and cleaned, achieving a surface roughness of 0.5 

µm for the conventionally sintered (CS) samples and 0.1 µm for the SPS samples 

(Perthometer M2 – Mahr). The wear tests were carried out under dry sliding conditions 

using a tribometer (Microtest MT2/60/SCM/T) with a ball-on-disc configuration, 

following ASTM wear testing standard G99-03 [18]. An Al2O3 ball (FRITSCH - 

Germany) with a hardness of 1970 HV30 and 5 mm radius was used as the counterpart 

material. The tests were performed using a contact load of 15 and 30 N, a sliding speed 

of 0.1 m/s, a sliding distance of 2000 m and a wear track radius of 3 mm, approximately. 

A series of three tests was conducted in controlled conditions (23 ± 2 ºC room 

temperature and 60 ± 2% relative humidity) to obtain a representative value for each 

response parameter. 

The wear mass lost was obtained by calculating the difference in mass and the wear 

rate. The wear rate was calculated using equation 1 [19,20]: 

 

𝑊𝑊 = 𝑉𝑉
𝐿𝐿·𝑃𝑃

                 (1) 

 

where V is the volume loss in mm3 (determined from sample’s mass loss divided by 

the density of each sample), L is the sliding distance in m and P is the applied load in 

N.  

 

3. Results and discussion 

3.1. Mechanical and microstructural characterisation  
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Table 1 shows the values of relative density, Vickers hardness and average grain size 

of NbC, which are important properties for the tribological characterisation of Al2O3-

5vol.% NbC nanocomposites. The spark plasma sintering (SPS) process, with its high 

heating rates and short sintering cycle, together with a pressure applied at the same 

time as the temperature increases, causes better densification and improvement in 

mechanical properties. Therefore, as expected, the pressureless sintered samples 

exhibited lower densification and hardness than the samples sintered by SPS, even at 

the lowest temperature and shortest dwell time. The average grain size of NbC 

increase with sintering temperature and the NbC nanoparticles are smaller in samples 

sintered by SPS, as well as, the Al2O3 particles. 

Figure 1 shows the fracture surface of two nanocomposites obtained with high density 

by CS and SPS. The best material obtained by CS was at 1600 ºC with a relative 

density of ∼ 94% (Figure 1a). By SPS (Figure 1b), at low temperature - 1450 ºC - the 

nanocomposite exhibited a high relative density (near theoretical density) 99.8%. 

Figure 1a shows a microstructure with the average grain size of Al2O3 less than 5 µm. 

Figure 1b shows the finest microstructure with small nanoparticles of NbC embedded 

in the microstructure of the Al2O3 matrix. It is important to note that the nanometric 

particles of niobium carbide (light particle) are homogeneously dispersed in the Al2O3 

matrix, being distributed, most of them, on intergranular positioning. 

 

3.2. Friction coefficient 

The friction coefficient (µ) is the ratio between friction force and the imposed normal 

force. Figure 2 shows the average of the friction coefficient values, continuously 

measured during the test of the Al2O3–5vol.% NbC nanocomposites against the Al2O3 
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ball in a tribometer with a ball-on-disc configuration in which 15 and 30 N of load was 

applied. The standard deviation for all tests was less than 5%.  

In general, the initial observation showed that the behaviour of the friction coefficient 

was strongly influenced by the load applied and the consolidation technique used. The 

samples consolidated by the SPS technique exhibited lower friction coefficients than 

the conventionally sintered samples. Also, increasing the contact load creates a 

general increase in the friction coefficient. 

An interesting observation is the difference in friction coefficient of SPS samples. 

Alecrim et al. observed in the FESEM image from the fracture surface of these samples 

sintered by SPS at 1600 ºC that has been revealed local melting of the NbC 

nanoparticles in the edges and corners of the alumina matrix [21]. Some particle 

surfaces contain traces of liquid layers that were solidified while flowing. Additionally, 

material jets formed from liquid are visible between Al2O3 particles (the authors have 

highlighted them with a circle in the figure). This indicates that very high local 

temperatures, above melting point of NbC, must be present during the SPS process, 

despite the final temperature of which was only 1600 ºC. This fact can be provocate 

an increase of friction coefficient. The NbC particles being embedded in the liquid layer 

between Al2O3 particles not act like a third body on the contact surface and may 

contribute to a higher friction coefficients. 

The difference between the conventional and SPS materials could be explained by the 

variance in the mechanical properties shown in Table 1. Al2O3–5vol.% NbC composites 

obtained by CS exhibiting lower relative density and hardness values than the 

nanocomposites obtained by SPS. 

The best friction coefficient was for the material sintered by SPS at 1500 ºC with 15 N 

of applied load (0.16), whereas with 30 N of load the lowest value was 0.37 for the 
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material obtained at 1550 ºC by SPS. Another significant observation is the comparison 

of the samples sintered at 1550 and 1600 ºC with different techniques and loads. In 

the case of the 1550 SPS sample, the friction coefficient value, with both applied loads 

–15 N and 30 N – decreased by ~ 53% compared to the 1550 CS sample: from 0.47 

to 0.22 and 0.78 to 0.37, respectively. Furthermore, the reduction of the friction 

coefficient value of the 1600 SPS nanocomposite in comparison with 1600 CS 

nanocomposite was ~ 17% at 15 N and ~ 31% at 30 N of applied loads. 

An interesting piece of evaluated data was the difference of the friction coefficient 

values between the 1600 CS and 1450 SPS composites. With 15 N and 30 N of applied 

loads, the 1450 SPS material exhibited a decrease in friction coefficient values of ~ 

42% and ~ 15% compared to 1600 CS material, respectively. 

This behaviour is due to the finest microstructure, contiguity and superior mechanical 

properties obtained with the SPS technique, which minimises wear debris due to NbC 

particles that act like a third body on the contact surface and may contribute to the 

lower friction coefficients and wear [20]. 

 

3.3. Wear characteristics 

The test conditions critically influence the wear mechanism and the volumetric wear 

rate. Volumetric wear rates (W) were calculated using equation 1 and do not involve 

the wear of the counterpart.  

The wear rates values are shown in Figure 3 (see that the axis Y is an exponential 

scale and the values increases near axis X); the materials tested in this study exhibited 

excellent wear resistance to dry sliding and behaved similarly for each sintering 

methods and applied load. As expected, the wear rate increased at the higher contact 

load under otherwise equal conditions, and the materials sintered by SPS exhibited 
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better dry sliding wear resistance compared with the conventional sintered 

nanocomposites, which varied according to the hardness and relativity density 

properties [20,22]. 

The materials sintered by SPS and tested under 15 N of load exhibited a wear rate of 

approximately 10-7 mm3/N·m, while the samples tested under 30 N of load exhibited a 

wear rate of approximately 10-6 mm3/N·m. The best wear rate value at 15 N of load 

was for the sample sintered by SPS at 1550 ºC (1.6 10-7 mm3/N·m), while in the test 

with 30 N the best wear rate was obtained by the 1450 SPS nanocomposite (1.4 10-6 

mm3/N·m). The 1600 SPS nanocomposites exhibited very similar wear behaviour at 

both applied loads. At 15 and 30 N loads, the 1550 SPS and 1600 SPS samples 

exhibited a lower wear rate compared to the CS materials. 

The wear regimes of ceramics can be classified into moderate and severe types. In 

the moderate regime, wear rate values are below 10-6 mm3/N·m, while in the severe 

regime wear rates are greater than this value, although the boundary condition 

between the two systems is not precisely defined [23,24]. Therefore, all composites in 

this research exhibited several regimes, except for the samples sintered at 1450, 1500 

and 1550 ºC by SPS and tested under 15 N load, which exhibited a moderate regime. 

 

3.4. Wear surface analysis 

Figure 4 shows FESEM micrographs of the wear tracks for the CS materials at 15 N 

of contact load. The wear track analysis revealed that the wear process for these 

nanocomposites produces a smooth surface, with fracture and grain pull-out. In the 

sample sintered at 1600 ºC (Figure 4b) there was some furrowing and wear debris 

(bright spots) as a consequence of the fragmentation of NbC grains, which can act as 

third bodies, causing abrasion phenomena, or which may adhere to the contact 
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surface, creating a tribolayer. Therefore, the process is controlled by abrasion, with 

plastic deformation, adhesion and tribofilm formation. 

Figure 5 shows the wear track micrographs for the materials consolidated by CS under 

30 N of contact load. The worn surface of these samples shows that their wear 

behaviour is controlled by plastic deformation, abrasion, adhesion and grain pull-out. 

The sample sintered at 1550 ºC (Figure 5a) exhibited a relatively smooth surface with 

grain fracture, and the material sintered at 1600 ºC (Figure 5b) exhibited evidence of 

binder removal.  

Figure 6 shows the FESEM micrographs of the wear tracks for the SPS nanocomposite 

at 15 N, showing the different levels of surface deterioration; these are consistent with 

the wear rates obtained. They exhibited a wear mechanism controlled by abrasion and 

plastic deformation behaviour, with some scratches. They also exhibited smears and 

relatively smooth surfaces, except for the sample sintered at 1600 ºC (Figure 6d), 

which exhibited evidence of scuffing and wear debris with grain pull-out, adhesion and 

a tribofilm formation process. Furthermore, the materials sintered at 1550 and 1600 ºC 

(Figure 6c and 6d, respectively) exhibited a grain fracture wear mechanism. This 

scuffing may be due to the dimensional change of the continuous cooling-heating 

cycles that occurred during the test, and the cracks are the result of the tensile stress 

at the trailing edge of the contact areas [25,26]. 

Figure 7 shows the FESEM micrographs of the wear tracks generated at 30 N for the 

materials obtained by SPS. The analysis of the worn surface demonstrates wear 

behaviour controlled by abrasion and plastic deformation. The samples sintered at 

1450, 1550 and 1600 ºC (Fig. 7a, 7c and 7d) exhibited relatively smooth surfaces, with 

a wear process controlled by adhesion and grain pull-out. Note that the 1450 and 1500 

SPS materials (Fig. 7a and 7b) exhibited a smeared surface, and some scratches and 
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wear debris can also be observed in Figure 7b and 7c (1500 and 1550 ºC). The wear 

mechanism in the 1550 SPS materials was controlled by a grain fracture, and this also 

produced some scuffing at the Al2O3–5vol.% NbC surface consolidated by SPS at 1600 

ºC. 

Analysis of wear track for materials consolidated by two techniques suggests that wear 

starts through plastic deformation and microabrasion, induced by the removal or 

fracture of the materials grains. The wear debris operates as a third body, causing 

abrasion or tribolayer formation, when adhered to the surface. 

 

4. Conclusions 

The results obtained from tribological characterisation of pressureless sintering and 

spark plasma sintering of Al2O3-5vol.% NbC nanocomposites using a ball-on-disc 

tribometer with Al2O3 balls and 15 and 30 N applied loads revealed that: 

1. The friction coefficient and wear rate are directly influenced by the relative density 

and hardness properties, which are improved by the application of pressure (80 MPa) 

during the spark plasma sintering process. 

2. The material sintered by SPS at 1500 ºC and tested with 15 N of applied load 

exhibited the lowest friction coefficient (0.16), whereas with 30 N, the best value was 

0.37 from the sample sintered by SPS at 1550 ºC. 

3. The applied loads and the sintering techniques affect wear behaviour. The 

nanocomposites sintered by SPS and tested with 15 N of load exhibited better friction 

coefficient values and wear rates (10-7 mm3/N·m) than the samples obtained by CS 

tested under both loads (10-6 mm3/N·m). 
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4. In general, the nanocomposites sintered by SPS and tested under 15 N of load 

exhibited a moderate regime. However, the samples under 30 N of load exhibited 

several regimes. 

5. The damage levels observed on the worn surfaces of the different materials show 

that the wear process is mainly controlled by plastic deformation, abrasion, fracture, 

grain pull-out, adhesion and wear debris with a tribolayer formation. 

This initial work shows a promising result concerning the study of the wear behaviour 

of Al2O3-5vol.% NbC nanocomposites consolidated by CS and SPS and tested using 

a Al2O3 ball on a tribometer with a ball-on-disc configuration. It therefore opens 

possibilities for manufacturing new materials, such as cutting tools. 
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Figure captions 
 
Figure 1. FESEM micrographs of the fracture surface of the consolidated materials: (a) 

conventional sintering at 1600 ºC and (b) spark plasma sintering at 1450 ºC. 

Figure 2. Average friction coefficient of the Al2O3-5vol.% NbC sintered materials by CS 

and SPS with 15 N and 30 N of applied load. 

Figure 3. Wear rate of the Al2O3-5vol.% NbC composites sintered by CS and SPS with 

15 N and 30 N of applied load. 

Figure 4. FESEM micrographs of the wear tracks of Al2O3-5vol.% NbC 

nanocomposites consolidated by CS: (a) 1550 ºC and b) 1600 ºC with 15 N of applied 

load. 

Figure 5. FESEM micrographs of the wear tracks of Al2O3-5vol.% NbC 

nanocomposites consolidated by CS: (a) 1550 ºC and b) 1600 ºC with 30 N of applied 

load. 

Figure 6. FESEM micrographs of the worn surface of Al2O3-5vol.% NbC 

nanocomposites sintered by SPS at: a) 1450 ºC, b) 1500 ºC, c) 1550 ºC and d) 1600 

ºC with 15 N of applied load. 

Figure 7. FESEM micrographs of the worn surface of Al2O3-5vol.% NbC 

nanocomposites sintered by SPS at: a) 1450 ºC, b) 1500 ºC, c) 1550 ºC and d) 1600 

ºC with 30 N of applied load. 
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Table 1. Relative density, hardness and average grain size of NbC of the Al2O3-5vol.% 

NbC nanocomposites sintered by CS and SPS at different conditions. 

 

 

 

Sintering 

technique 

Sintering 

temperature 

(ºC) 

Designation 

Relative  

density 

(%) 

Vickers hardness 

HV10, (Kgf/mm2) 

Average grain 

size NbC (µm) 

Conventional 

Sintering 

1550 1550 CS 92.4 ± 0.1 2172 ± 15 0.70 ± 0.26 

1600 1600 CS 93.8 ± 0.1 2386 ± 18 0.90 ± 0.18 

Spark 

Plasma 

Sintering 

1450 1450 SPS 99.8 ± 0.1 2590 ± 13 0.19 ± 0.03 

1500 1500 SPS 99.8 ± 0.1 2570 ± 14 0.32 ± 0.09 

1550 1550 SPS 99.7 ± 0.1 2559 ± 12 0.50 ± 0.02 

1600 1600 SPS 99.5 ± 0.1 2488 ± 15 0.51 ± 0.08 


