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ABSTRACT
This paper presents a novel approach to model pressure and flow regulating devices in the

context of the Newton-Raphson loop method for water distribution network simulation. The
proposed approach uses a symmetric matrix for the underlying linear systems, which enables
simpler implementation and faster solution, while producing iterations very close to the global
gradient algorithm of Epanet. The structure of the matrix is kept unchanged regardless of the
operational status of the valves. The paper presents results that validate its formulation, accuracy
and speed in various case studies.

INTRODUCTION
Simulating the behavior of water distribution systems (WDS) by means of hydraulic models

is nowadays a necessary task for decision making, both in the context of planning and daily
operation of the system. Tackling issues such as leaks, water quality, asset management or resilience
requires modeling the networks with an increasing level of detail. Geographic Information Systems,
commonly present in most utilities in order to store all the information about the assets that make
up a network, help building those models (Bartolín et al. 2008). However, manipulating and
running the models, especially in the context of optimization tasks where the simulation is the
computational kernel, requires the availability of increasingly faster and more efficient simulation
algorithms (Guidolin et al. 2013; Mair et al. 2014; Burger et al. 2016).

Epanet (Rossman 2000) is a very efficient software package for the simulation of WDS, and
can be regarded as an important benchmark to measure the results and performance of any WDS
simulation software. Recently, a community effort has emerged seeking to update and extend the

1

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000982


open-source code independently from the USEPA. This has led to the release of EPANET 2.1 in
July 2016, with a number of bug fixes and API additions.

The hydraulic algorithm used by Epanet, known as the Global Gradient Algorithm (GGA)
(Todini and Pilati 1988; Todini and Rossman 2013), is one of the most popular methods for the
simulation of WDS. An alternative algorithm is the looped Newton-Raphson method, initially
presented by Epp and Fowler (1970), which considers a set of independent loops with an associated
flow for each of them. The loop method has gained some attention lately, with different papers
(Abraham and Stoianov 2016; Alvarruiz et al. 2017a; Abraham and Stoianov 2015; Alvarruiz et al.
2015; Creaco and Franchini 2014; Elhay et al. 2014) showing that it can be a competitive alternative
to GGA.

A key aspect of the loop method is that the choice of the set of independent loops greatly affects
the matrix sparsity of the underlying linear systems, and thus the time needed for the simulation.
Maximum sparsity is obtained by selecting loops with minimum overlap among them, and methods
to do so have been proposed recently (Creaco and Franchini 2015; Abraham and Stoianov 2016;
Alvarruiz et al. 2015). This paper uses the loop selection algorithmm4 from (Alvarruiz et al. 2015).

Alvarruiz et al. (2015) also considermodeling flow- and pressure-regulating valves in the context
of the loop method. The work takes into account devices such as temporarily closed pipes, Check
Valves (CVs) preventing reverse flow, Flow Control Valves (FCVs), that limit the maximum flow
through the valve, Pressure Reducing Valves (PRVs), that reduce the pressure of the valve outlet to
a given set value, and Pressure Sustaining Valves (PSVs), that keep the pressure of the valve inlet at
a given value. Modeling of those devices is done without redefining the set of independent loops,
using a formulation in which the linear system is expanded with additional equations/unknowns for
the devices. Themain part of the system is symmetric, although the expanded part is non-symmetric
in the case of PRVs/PSVs. The system is solved by blocks, taking advantage of the symmetry of
the main block.

This paper revisits the modelization of FCVs, PRVs and PSVs in the loop method. Unlike the
formulation in (Alvarruiz et al. 2015) for PRVs/PSVs, the proposal presented here does not involve
a non-symmetric expansion of the linear system, and it does not require to solve the system by
blocks, either. Instead, the complete system is solved using Cholesky decomposition. This leads to
a simpler implementation with faster solution of the linear systems, while also producing iterations
closer to those obtained with Epanet. We also present a simpler way to treat FCVs which does not
require expanding the linear system.

THE LOOP METHOD FOR WDS SIMULATION
In demand-driven simulation, the values of nodal heads h and link flows q (where a link can

be either a pipe, a pump or a valve), are governed by two sets of equations, expressing the head
loss through links and the mass conservation at nodes, see e.g. (Alvarruiz et al. 2017b; Todini and
Rossman 2013). In particular, for each link k:

hi − h j = φk (qk) (1)

where hi and h j are the head values at the end nodes of link k, and φk(qk) is the head loss due to
friction at link k as a function of its flow. Typically, the head loss is expressed as:

φk (qk) = rk |qk |
β−1qk (2)
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for pipe links, where rk is a coefficient that depends on the pipe characteristics such as length,
diameter and roughness, and possibly also on the flow, while β is a constant exponent with the
same value for all the network pipes. Different formulae apply for pumps and valves.

Additionally to eq. (1), a second set of equations holds, since at each unknown-head node i the
sum of inflows and outflows must equal zero:∑

k

δk qk − ci = 0 (3)

where k iterates over the set of links connected to node i, δk accounts for the sign of the flow (+1
if node i is the final node of link k and −1 if it is the initial node), and ci is the demand at node i.

In a network with m links, n unknown-head nodes and ns known-head nodes, the equations
given by (1) and (3) can be expressed in matrix form as:

Φ (q) + A12h̃ + A10ĥ = 0
AT

12q − c = 0 (4)

where h̃∈Rn and ĥ∈Rns are vectors of heads corresponding to the unknown-head and known-
head nodes, respectively, while A12∈Rm×n and A10∈Rm×ns are topology matrices describing the
connections between links and nodes. Namely, A12 indicates the connections for unknown-head
nodes, with A12(i, j) = 0 if node j is not connected to link i, +1 if it is the final node of the link
and −1 if it is the initial node, while A10 does the same for known-head nodes.

The non-linear system of equations (4), in the unknowns h̃ and q, can be solved by means of the
Newton-Raphson method, which leads to the following system of linear equations in each iteration:[

D A12
AT

12 0

] [
∆q
∆h̃

]
= −

[
Φk + A12h̃k+A10ĥ

AT
12qk−c

]
(5)

or, since ∆h̃ = h̃k+1 − h̃k : [
D A12

AT
12 0

] [
∆q

h̃k+1

]
= −

[
Φk + A10ĥ
AT

12qk−c

]
(6)

where ∆q = qk+1 − qk , Φk = Φ(qk) and D is a diagonal matrix with elements D (i, i) = φ′i
(
qk

i

)
=

dφ
dqi
(qk

i ).

Assuming that D is invertible, the system of equations (6) can be solved by isolating ∆q in the
first block row of the system and substituting in the second block row, which yields the formulation
of the Global Gradient Algorithm (GGA) (Todini and Rossman 2013).

In the method known as Looped Newton-Raphson, however, the dimension of the linear system
is further reduced by taking into consideration the network loops. In this context, a loop is any
sequence of pipes in the network defining either a path from a node to itself, or a path between
two known-head nodes. Given a network, its loops can be represented by a subset of l = m − n
independent loops (considering a network as a graph with m links and n + ns nodes, the number of
independent loops would be m− n− ns + 1, but ns − 1 additional loops connecting the known-head
nodes must be taken into account). The set of independent loops can be described by means of a
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matrix M31∈Rl×m, such that M31 (i, j) = 0 if if link j < loop i, +1 if link j ∈ loop i and follows the
direction of the loop, and −1 if link j ∈ loop i and its direction is opposed to that of the loop.

A set of loops are independent if the corresponding rows of M31 are linearly independent.
Because the l loops have been chosen to be independent, M31 has full row rank. It is also easy
to see that M31A12 = 0, which comes from the fact that if a loop has a link that goes into an
unknown-head node (assuming an arbitrary direction for the loop), then it also has a corresponding
link that goes out of that node. It follows that MT

31 is a base of the kernel space of matrix AT
12

(Abraham and Stoianov 2015).
Premultiplying the first block row of eq. (6) by M31 yields:

M31D∆q = −M31

(
Φk + A10ĥ

)
(7)

where each row of the equality corresponds to the energy conservation in a loop.
On the other hand, given an arbitrary flow vector q∗ satisfying the mass conservation equation,

i.e. AT
12q∗ − c = 0, it can be shown that vector qk+1 can be expressed as qk+1 = q∗ +MT

31q̂, for
some vector q̂∈Rl (Abraham and Stoianov 2015). In particular, from eq. (6), AT

12∆q = −AT
12qk + c,

thus AT
12qk+1 = c. It follows that AT

12(q
k+1 − q∗) = c − c = 0, which means that vector qk+1 − q∗ is

in the kernel space of matrix AT
12, and because MT

31 is a base of that space, qk+1 − q∗ =MT
31q̂, or

qk+1 = q∗ +MT
31q̂ (8)

for some vector q̂∈Rl .
Substituting for qk+1 in (7) yields:

M31DMT
31q̂ = −M31

(
Φk + A10ĥ + D

(
q∗ − qk

))
(9)

which is a linear system with a symmetric positive definite l × l matrix.
It should be noted that vector q̂ in eq. (8) corresponds to loop flow corrections with respect to

the balanced vector q∗, and not with respect to the current estimate qk . The formulation of the
loop method can also be done without making use of the auxiliary balanced flow vector q∗. In that
case, the flow corrections q̂ are applied to qk in eq. (8) and the term D

(
q∗ − qk ) is removed from

eq. (9). However, introducing the balanced flow vector q∗ eliminates the need that q0 verifies the
mass conservation equation (3), which makes it possible to use a more suitable starting point for
the Newton-Raphson method. Successive flow vectors q1, q2 . . . verify mass conservation eq. (3).
However, the formulation presented in this paper for pressure-regulating devices may lead to a an
unbalanced flow vector qk at any given iteration k, and this can also be accommodated using the
above formulation of the loop method.

Finally, the vector of heads h̃k+1 can be obtained by updating the link head losses as Φk +D∆q,
and traversing the network using the known-head nodes as starting points. Equivalently, h̃k+1 can
be computed through the following linear system, which is obtained by premultiplying the first
block row of system (6) by AT

12:

AT
12A12h̃k+1 = −AT

12

(
Φk + D∆q + A10ĥ

)
(10)

Compared to the GGA, the loop method presents the advantage that the linear system (9)
solved in each iteration has a matrix of size l × l, which is in most cases much smaller than the
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corresponding matrix for the GGA, of size n × n. Computation of heads, e.g. by traversing the
network, is inexpensive, because the order to follow to traverse it can be precomputed. Furthermore,
computation of heads can be avoided at the first iterations, and in some cases it can even be carried
out only at the end of the iterative process.
Example

Considering the simple network shown in Fig 1, the Newton-Raphson iteration of eq. (6) takes
the form: 

d1 0 0 0 0 1 0 0
0 d2 0 0 0 0 1 0
0 0 d3 0 0 1 −1 0
0 0 0 d4 0 −1 0 1
0 0 0 0 d5 0 −1 1
1 0 1 −1 0 0 0 0
0 1 −1 0 −1 0 0 0
0 0 0 1 1 0 0 0





∆q1
∆q2
∆q3
∆q4
∆q5
h̃k+1

1
h̃k+1

2
h̃k+1

3


=



−φk
1 + ĥ1

−φk
2 + ĥ2
−φk

3
−φk

4
−φk

5
−qk

1 − qk
3 + qk

4 + c1
−qk

2 + qk
3 + qk

5 + c2
−qk

4 − qk
5 + c3


(11)

In order to use the loop method, a set of independent loops must be chosen. Choosing the loops
L1 and L2 shown in Fig. 1 produces the following loop matrix:

M31 =

[
0 0 −1 −1 1
1 −1 0 1 −1

]
Accordingly, the linear system (9) is then:[

d3 + d4 + d5 −d4 − d5
−d4 − d5 d1 + d2 + d4 + d5

] [
q̂1
q̂2

]
=

[
φ̂k

3 + φ̂
k
4 − φ̂

k
5

−φ̂k
1 + φ̂

k
2 − φ̂

k
4 + φ̂

k
5 + ĥ1 − ĥ2

]
(12)

where φ̂k
i = φk

i + di(q∗i − qk
i ). As explained above, q∗ is any arbitrary flow vector satisfying the

mass conservation equation (3), and it is not updated during the Newton-Raphson steps.
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INCLUDING CONTROL ELEMENTS IN THE SIMULATION
The inclusion in the simulation of control elements such as CVs, FCVs, PRVs and PSVs presents

an important challenge. Those elements affect the hydraulic conditions of the network (pressures
and flows), which in turn affect the operating conditions and behavior of those same elements, e.g.
causing a valve to be closed or fully opened.

Approaches to deal with that can be divided in two groups. Firstly, (Deuerlein et al. 2009a;
Deuerlein et al. 2005; Deuerlein et al. 2009b; Piller and van Zyl 2014) propose approaches in which
the problem is formulated as the minimization of the content or co-content functions subject to
inequality constraints. The resulting constrained optimization problem must be solved by methods
that are more demanding, from a computational point of view, than the Newton-Raphson approach
used for the the basic simulation problem. As an alternative, a more heuristic approach can be
used, as is done in Epanet (Rossman 1999), where an initial status of the valves is assumed at
the beginning of the iterative process, checked between the iterations and, if necessary, adjusted
by specific heuristics (e.g. changing the status of a CV from "open" to "closed" if, at the current
iteration, the head at the inlet is lower than at the outlet, or if the flow is negative). Although there is
no guarantee that this approachwill find the correct valve status in all cases, see e.g. (Simpson 1999),
it works well in practice and is a widely accepted method in the hydraulic modeling community.

The work described in this paper uses the second approach, adopting the same heuristics as
Epanet to update the status of valves in each iteration. In that context, the presence of control
valves affects the formulation of the loop method given by eqs. (8) and (9). If, e.g. a valve closes,
the network topology changes, rendering the initially chosen set of independent loops inconsistent
with it. Arsene et al. (2012) propose a partial redefinition of the set of loops based on the update
of a spanning tree. However, redefining the set of loops implies modifying the sparsity pattern of
the system matrix in eq. (9). If that system is solved by means of a direct method, as is normally
the case, a change in the sparsity pattern makes it necessary to repeat the process of symbolic
factorization of the matrix, increasing the computing time.

Alvarruiz et al. (2015) present a method to deal with closed valves and FCV which avoids the
need to redefine the set of independent loops. This is done by expanding the linear system (9) in a
symmetric way and solving the expanded system by blocks, where the main block corresponds to
the solution of the basic unexpanded system (9).

This paper uses a simpler approach to deal with closed valves and FCV, showing its relationship
with the formulation of (Alvarruiz et al. 2015), and validating the approach by simulation results.

In the case of PRVs/PSVs, the linear system (9) has to be modified to account for the fact that
the head at the control node of the valve is known (assuming the valve is active, i.e. not fully open
or closed), while the head loss function φi(qi) and its derivative di are unknown.

Jeppson (1976) first introduced an approach to deal with PRVs in the loop method, in which a
loop (or path) is formed that goes from the control node of the valve to a known-head node. That
loop replaces one of the original loops containing the PRV, and the rest of the loops where the
PRV is present are redefined to avoid the valve. The modified set of loops is used for the energy
conservation equation (7), while the original set of loops is used for the correction flows of eq. (8),
which implies that eq. (9) is transformed into a system with a non-symmetric matrix.

Ateş (2017) tackles PRVmodeling in the loop method by considering three different topological
positions of the valve in the network, and using a different approach for each case. The set of
independent loops, and thus the structure of the linear system matrix, changes depending on the
operational status of the valve.
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Alvarruiz et al. (2015) present a different approach for PRVs which avoids redefining the
set of loops. Similarly to the method for closed valves and FCVs of the same authors, this is
done by expanding the linear system (9), in this case in a non-symmetric way, and solving the
resulting system by blocks. Advantage is taken of the fact that the main block, corresponding to the
basic unexpanded system, is symmetric, although other blocks require solution of non-symmetric
systems.

This paper presents an alternative way to model PRVs/PSVs in the context of the loop method,
which avoids redefining the set of loops, as in (Alvarruiz et al. 2015), but also uses a completely
symmetric matrix, which enables the use of more efficient methods for the solution of the system,
and also simplifies the solution process. The method does not need to use different formulations
depending on the topological position of the PRV, and the matrix structure is unchanged regardless
of the operational status of the valves.

MODELING FLOW REGULATING DEVICES
In (Alvarruiz et al. 2015), the authors present a formulation to cope with flow regulating devices

in the context of the loop method. A FCV behaves as a resistive element when open, but if it is
active, the head loss between its two ends is not related to the flow through it. Thus, that head loss
is introduced as an unknown, and a new equation is added to express the fact that the flow through
the device is known.

This can be illustrated by means of the network in Fig. 2, where line P4 is a FCV with a flow
setting of sq. In that case, system (12) is transformed into:

d3 + d5 −d5 −1
−d5 d1 + d2 + d5 1
−1 1 0




q̂1
q̂2
φk+1

4

 =


φ̂k
3 − φ̂

k
5

−φ̂k
1 + φ̂

k
2 + φ̂

k
5 + ĥ1 − ĥ2

sq − q∗4

 (13)

As pointed out in (Alvarruiz et al. 2015), a simpler way to model a closed pipe, or a flow
regulating device in general, would be to use a pipe that opposes a great resistance to any deviation of
its flowwith respect to the setting, i.e. a pipewith a head-loss given by the expression φk

i = α(q
k
i −sq),

where α is a large scalar (α = 108 in the simulations of this paper). In the example, system (11)
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becomes: 

d1 0 0 0 0 1 0 0
0 d2 0 0 0 0 1 0
0 0 d3 0 0 1 −1 0
0 0 0 α 0 −1 0 1
0 0 0 0 d5 0 −1 1
1 0 1 −1 0 0 0 0
0 1 −1 0 −1 0 0 0
0 0 0 1 1 0 0 0





∆q1
∆q2
∆q3
∆q4
∆q5
h̃k+1

1
h̃k+1

2
h̃k+1

3


=



−φk
1 + ĥ1

−φk
2 + ĥ2
−φk

3
−α(qk

4 − sq)

−φk
5

−qk
1 − qk

3 + qk
4 + c1

−qk
2 + qk

3 + qk
5 + c2

−qk
4 − qk

5 + c3


(14)

and accordingly, the linear system for the loop method would be given by eq. (12), with d4 = α and
φ̂k

4 = φ
k
4 + α(q

∗
4 − qk

4 ) = α(q
∗
4 − sq).

It can be argued that this formulation introduces large numbers in the linear system matrix,
which could lead to a poorly conditioned system, producing large round-off errors. However, this
paper shows, by means of simulation results, that the approach works well in practice. Moreover,
the problem of large numbers in the linear system matrix is also encountered in Epanet’s GGA
method, when dealing with pipes with a very small resistance and/or flow (and consequently, a very
small value of di).

It is worth noting that there is a relationship between the two formulations for flow-regulating
devices, in such a way that the second formulation can be obtained by introducing a perturbation
on the linear system corresponding to the first formulation. In particular, introducing a small value
in the element at (3, 3) of the matrix in system (13) yields:

d3 + d5 −d5 −1
−d5 d1 + d2 + d5 1
−1 1 −1/α




q̂1
q̂2
φk+1

4

 =


φ̂k
3 − φ̂

k
5

−φ̂k
1 + φ̂

k
2 + φ̂

k
5 + ĥ1 − ĥ2

sq − q∗4

 (15)

From the last row:

φk+1
4 = α(−q̂1 + q̂2 − sq + q∗4) = −αq̂1 + αq̂2 + α(q∗4 − sq) (16)

and substituting in the first row results in eq. (12) with d4 = α and φ̂k
4 = α(q

∗
4 − sq).

MODELING PRESSURE REGULATING DEVICES
This section considers the inclusion of PRVs and PSVs in the loop method. Given the analogy

between both types of valves, it focuses on PRVs, briefly commenting later the difference in the
case of PSVs.

A disadvantage of the formulation presented in (Alvarruiz et al. 2015) for PRVs/PSVs is the
introduction of non-symmetry in the linear system matrix, even though the main matrix block
preserves its symmetry. This non-symmetry, however, is avoided in Epanet’s formulation for that
type of devices. This section shows a formulation for PRVs/PSVs which can be considered the
translation to the loop method of Epanet’s formulation for those devices.

The price to pay in order to preserve the symmetry of the linear system matrix, either in GGA
or the loop method, is the introduction of an approximation in the linear system (6), which could
increase the number of Newton-Raphson iterations. However, the use of a symmetric matrix
reduces the time needed to solve the system in each iteration, and also the memory requirements.
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Fig. 3 shows a modification of the network of Fig. 1, in which the link P4 is a PRV. If the valve
is active, the value of d4 in the corresponding linear system (11) is unknown, while h3 is known,
so that the system would be modified in the following way (elements that change are shown in
brackets): 

d1 0 0 0 0 1 0 0
0 d2 0 0 0 0 1 0
0 0 d3 0 0 1 −1 0
0 0 0 [0] 0 [0] 0 1
0 0 0 0 d5 0 −1 1
1 0 1 −1 0 0 0 0
0 1 −1 0 −1 0 0 0
0 0 0 1 1 0 0 0





∆q1
∆q2
∆q3
∆q4
∆q5
h̃k+1

1
h̃k+1

2
h̃k+1

3


=



−φk
1 + ĥ1

−φk
2 + ĥ2
−φk

3
[sh]

−φk
5

−qk
1 − qk

3 + qk
4 + c1

−qk
2 + qk

3 + qk
5 + c2

−qk
4 − qk

5 + c3


(17)

where sh is the head fixed by the PRV for its downstream node N3 (i.e. the sum of the node elevation
plus the valve pressure setting). Thus, the fourth equation of the above system merely states the
fact that the head in that node is determined by the valve setting.

Note that the system is no longer symmetric. In order to keep the symmetry, the formulation
used by Epanet introduces an approximation in the equation corresponding to the mass balance of
the upstream node of the PRV, whereby the flow increment of the PRV itself is neglected, i.e.

d1 0 0 0 0 1 0 0
0 d2 0 0 0 0 1 0
0 0 d3 0 0 1 −1 0
0 0 0 [0] 0 [0] 0 1
0 0 0 0 d5 0 −1 1
1 0 1 [0] 0 0 0 0
0 1 −1 0 −1 0 0 0
0 0 0 1 1 0 0 0





∆q1
∆q2
∆q3
∆q4
∆q5
hk+1

1
hk+1

2
hk+1

3


=



−φk
1 + ĥ1

−φk
2 + ĥ2
−φk

3
[sh]

−φk
5

−qk
1 − qk

3 + qk
4 + c1

−qk
2 + qk

3 + qk
5 + c2

−qk
4 − qk

5 + c3


(18)

Additionally, the GGA method needs to compute D−1 to solve eq. (18), which is not possible
now since the matrix element (4,4) is zero. For that reason, Epanet replaces that element with a
small value (1/α).
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Fig. 5. Alternative modelling of the PRV in the sample network

System (18) can be interpreted as corresponding to the network of Fig. 4, where a fictitious
tank (T3) has been added, and the PRV has turned into a zero-resistance pipe linking the valve’s
downstream node with the fictitious tank. Additionally, the demand of the valve’s upstream node
(N1) is modified in each iteration k to get mass balance if the flow trough the PRV is not negative,
i.e. ck

1 = c1 +max(qk
4, 0).

The system of eqs. (18) could be transformed to the corresponding loop-based system, but in
doing so two difficulties are encountered. Firstly, the initial set of loops (L1 and L2) is no longer
valid, as is clear from Fig. 4. Secondly, the balanced vector q∗ should be recomputed at each
iteration, since the fictitious demand for node N1 changes.

Those difficulties can be avoided by considering an equivalent of the network in Fig. 4, as shown
in Fig. 5, where the fictitious tank T3 and the node N3 have been merged, and the PRV has been
replaced by a FCV. The setting of the FCV is fixed in each iteration, analogously to the adjustment
of the demand of N1 in Fig. 4. In particular, the flow though the FCV is fixed to get mass balance
at node N3, provided that the flow is not negative, i.e. sq = max(0, c3 − qk

5 ).
Using the formulation described previously for flow-regulating devices, the Newton-Raphson

iteration for the network in Fig. 5 can be obtained by modifying eq. (14), converting N3 into a tank
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with head equal to sh:

d1 0 0 0 0 1 0
0 d2 0 0 0 0 1
0 0 d3 0 0 1 −1
0 0 0 α 0 −1 0
0 0 0 0 d5 0 −1
1 0 1 −1 0 0 0
0 1 −1 0 −1 0 0





∆q1
∆q2
∆q3
∆q4
∆q5
h̃k+1

1
h̃k+1

2


=



−φk
1 + ĥ1

−φk
2 + ĥ2
−φk

3
−α(qk

4 − sq) − sh
−φk

5 − sh

−qk
1 − qk

3 + qk
4 + c1

−qk
2 + qk

3 + qk
5 + c2


(19)

The previous system can be transformed to the corresponding loop-based system, taking into
account that, since an unknown-head node has been replaced by a tank, a new loop has to be added,
corresponding to a path linking the fictitious tank to any other tank. For example, using the path
through P1 and P4:

M̄31 =


0 0 −1 −1 1
1 −1 0 1 −1
1 0 0 1 0

 (20)

Consequently, the linear system of the loop method is:
d3 + d4 + d5 −d4 − d5 −d4
−d4 − d5 d1 + d2 + d4 + d5 d1 + d4
−d4 d1 + d4 d1 + d4




q̂1
q̂2
q̂3

 =


φ̂k
3 + φ̂

k
4 − φ̂

k
5

−φ̂k
1 + φ̂

k
2 − φ̂

k
4 + φ̂

k
5 + ĥ1 − ĥ2

−φ̂k
1 − φ̂

k
4 + ĥ1 − sh

 (21)

where d4 = α and φ̂k
4 = α(q

∗
4 − sq).

At any iteration, the PRVmay become inactive (closed or fully open), according to the algorithm
used to adjust the status of the device. In that case, the valve behaves as a pipe, and the extra loop
and its associated flow in eq. (21) should not be taken into account. That can be done by simply
zeroing out the corresponding row and column, except for the diagonal element, which can be set
to any non-zero value so that q̂3 = 0.

In general, for a network with multiple PRVs, system (21) can be written as:

M̄31D̄M̄T
31q̂ = −M̄31

(
Φ̄k + Ā10h̄ + D̄

(
q∗ − qk

))
(22)

where D̄, Φ̄k are obtained from D,Φk , with d̄i = α, φ̄k
i = α(q

k
i − sq), for each active PRV i; h̄ and

Ā10 are obtained from ĥ and A10, respectively, by converting PRV control nodes to tanks, and M̄31
is formed by adding to M31 the paths associated to the PRVs, as the example above shows.

For the case of PSVs, the procedure is analogous, taking into account that the fictitious tank
replaces the valve’s upstream node, and that the fictitious FCV is adjusted at each iteration to get
mass balance also at that node.

RESULTS
The objective of this section is to evaluate the proposed formulation for control valves, both

from the point of view of accuracy and simulation time. For that purpose, simulations of different
networks have been carried out with three different solvers: (i) Epanet 2.1, (ii) an implementation
of the loop method incorporating the formulation for control valves proposed here and (iii) an
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TABLE 1. Networks considered

Network n ns m looped PRV PSV FCV CV Time steps
exnet 1891 2 2467 80.2% 1 0 0 3 25
urb1 4236 4 4649 70.0% 5 0 1 0 1153
urb2 7720 67 8801 89.6% 158 0 17 5 24
bwsn2 12523 4 14831 74.2% 0 1 4 2 596
urb3 25813 3 29345 75.4% 10 0 0 0 26

TABLE 2. Residuals and number iterations for the loop solver (and Epanet)

Network εh εq Iters
exnet 1.38 · 10−3 9.29 · 10−5 108
urb1 1.48 · 10−3 9.24 · 10−5 (9.27 · 10−5) 1396
urb2 1.99 · 10−2 (1.98 · 10−2) 4.07 · 10−3 (1.99 · 10−3) 237 (243)
bwsn2 5.86 · 10−2 2.90 · 10−3 812
urb3 6.67 · 10−2 6.77 · 10−3 186 (185)

implementation of the loop method using the non-symmetric formulation for PRVs described in
(Alvarruiz et al. 2015). While in (Alvarruiz et al. 2015) the formulation for control valves was
evaluated using a MATLAB implementation, all the solvers considered here are implemented in
C language. We compare the accuracy of the solvers by computing the residuals of the non-linear
equation systems, and also compare the computing time needed by the solvers.

The set of networks considered in this section is presented in Table 1. For each of them, the
table shows the number of unknown-head and known-head nodes (n, ns), links (m), the percentage
of links belonging to at least one loop (looped, note that this is independent from the particular
choice of loops used), the number of different types of valves and the number of time steps in the
extended period simulation. These networks have been chosen because, among those available to
the authors, they were the largest networks having pressure- and flow-regulating devices.

Two of the networks (exnet and bwsn2) have been taken from the literature in the field. In
particular, exnet is a benchmark water system set up by the Centre for Water Systems of Exeter
University (Farmani et al. 2005), modified in order to consider a 24-hour extended period simulation,
with the head at reservoirs varying according to a pattern. Network bwsn2 corresponds to network
2 proposed in (Ostfeld et al. 2008).

The other three networks correspond to real distribution systems in two cities in Spain. Urb1
supplies water to a small city of around 50,000 inhabitants, and contains a reduced number of
regulating devices. Urb2 and urb3 are different models of the same city, with a population of
1.5 million inhabitants. The former is a strategic calibrated model containing details about the
regulating elements of the network, including a large number of valves, tanks and pumps. Urb3
contains more details about the links and nodes that make up the network, but simplifies the
regulating elements.

In order to evaluate the accuracy of the simulation results, the maximum residuals, over all time
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TABLE 3. Epanet computing time (in seconds)

network reps total open coeffs linsolve new q, h other
exnet 200 0.0860 0.0040 0.0565 0.0148 0.0062 0.0046
urb1 15 1.7945 0.0140 0.9118 0.4117 0.1455 0.3115
urb2 20 0.7012 0.0462 0.3939 0.1808 0.0540 0.0262
bwsn2 10 3.9965 0.1008 2.0090 0.8084 0.4026 0.6757
urb3 15 2.4135 0.4254 1.2015 0.4704 0.2064 0.1097

steps, of the non-linear equation system given by eqs. (1) and (3) have been computed, using the
solutions obtained from the different solvers considered. We differentiate head loss residuals and
flow residuals, as described next.

The head loss residual εh corresponds to the maximum head loss imbalance for any link, where
the head loss imbalance for a link k, going from node i to node j, is derived from eq. (1) as:��hi − h j − φk (qk)

�� (23)

Closed links and active FCVs are not taken into account for the head loss residual, because its
head loss is not directly evaluable, and they will contribute to the flow residual instead, as described
next. As for active PRVs, if sh is the target head of an active PRV going from node i to node j, then
its head loss is φk(qk) = hi − sh, and its head loss imbalance is then

��sh − h j
��. Similarly, the head

loss imbalance of an active PSV is |sh − hi |.
On the other hand, the flow residual εq corresponds to the maximum flow imbalance for any

unknown-head node, closed link or active FCV. According to eq. (3), the flow imbalance of an
unknown-head node i is �����∑

k

δk qk − ci

����� (24)

Flow imbalance for closed links is the deviation from a zero-flow, i.e. |qk | for a link k. As for
active FCVs, their flow imbalance is the deviation from their flow setting sq, i.e.

��qk − sq
��.

The residuals for the loop solver with the proposed formulation for flow- and pressure-regulating
devices are shown in Table 2, together with the total number of Newton-Raphson iterations. In
many cases, the values of residuals and iterations are the same for the loop solver and for Epanet
(version 2.1). In the cases where there is a difference, the value for Epanet is given in brackets.
The results indicate that the loop solver is as accurate as Epanet.

Tables 3 and 4 focus on the computing time. The executions have been performed on a laptop
PC with an Intel Core™ i5 M450 CPU at 2.40 GHz and 4 GB RAM, running Linux Mint 18.2.
All the codes have been compiled with gcc 5.4.0 compiler and the same optimization options in
all cases. The times are given in seconds and correspond to elapsed real time (not CPU time).

The computing times shown in this section are very small, and can thus be affected by uncon-
trolled random factors, making it difficult to obtain reliable measurements. For this reason, each
simulation is repeated several times and the average computing time is obtained. The number of
repetitions is shown in column reps of table 3 and depends on the time of a single simulation, being
larger for networks that take less time. The process is repeated three times, taking the minimum of
those averages as the final measurement.
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TABLE 4. Time reduction, loop solver vs Epanet, in % of total simulation time

network total open coeffs linsolve new q, h blc other
exnet 14.4% -0.8% 11.7% 11.5% -7.0% -1.0% 0.1%
urb1 15.0% 0.4% 7.8% 19.1% -7.1% -5.2% -0.1%
urb2 9.1% 0.0% 6.4% 13.0% -9.3% -1.0% 0.0%
bwsn2 11.0% 1.3% 11.4% 16.3% -9.2% -9.3% 0.5%
urb3 30.1% 11.7% 14.0% 14.3% -8.9% -1.5% 0.5%

Table 3 shows the computing time for Epanet 2.1, with the time for the whole simulation
(column total) and the time for different tasks, namely: creating and initializing the data structures,
including the sparse matrix representation (open), computing the linear system coefficients (coeffs),
solving the linear system (linsolve), computing the new values of q and h (new q, h), and other tasks
(other). The values for coeffs, linsolve and new q, h, correspond to the sum of the time spent in the
task in all Newton-Raphson iterations of all time steps.

Table 4 presents the computing time reduction of the loop solver with respect to Epanet. The
reduction is shown for each of the abovementioned tasks, with an additional task (blc) corresponding
to computing the balanced flow vector q∗ at each time step, which is not needed in Epanet. The
reduction is given in all cases as a percentage expressing the time decrement in the task with respect
to Epanet’s total computing time, with negative values indicating that the task was slower in the
loop solver than in Epanet.

It can be seen that the identification of the independent loops, included in the task open, does
not negatively affect performance and in some cases the task is faster in the loop solver. This is
especially true for urb3, where the gain (11.7%) seems to be strangely high. Further analysis has
revealed that in Epanet this time is dominated by node reordering (and symbolic factorization).
For our networks, reordering consumes between 70% to 95% of the time in open, and presents a
computing time proportional to nm. In the loop solver, the dominating part of open is the selection
of independent loops, which takes from 50% to 75% of its time, with running time roughly
proportional to the number of links belonging to at least one loop. The large size of network urb3
explains the high gain in this task for the network.

There is an important time reduction for the linear system solution, something to be expected
because the sizes of the systems reduce considerably. The computation of the linear system
coefficients also benefits from the use of the loop solver, due to the fact that some coefficients (those
corresponding to links not included in any loop) only have to be computed once at the beginning
of each time step.

The rest of this section compares the results of the symmetric approach for pressure-regulating
devices presented in this paper with the non-symmetric approach presented in (Alvarruiz et al.
2015), in the context of the loop method. First, table 5 considers the residuals and number of
iterations. The non-symmetric approach produces lower number of iterations for the networks
shown in the table, and it also obtains lower flow residuals. This was to be expected, because it
uses a more exact formulation. However, the non-symmetric solver failed to converge for network
urb2, and it was necessary to use a non-zero value for the parameter "Damplimit" (see Epanet
documentation) in network bwsn2 to achieve convergence with the same solver. The problems
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TABLE 5. Residuals and number iterations of symmetric (s) and non-symmetric (ns) approaches.

Network εh s εh ns εq s εq ns it s it ns
exnet 1.38 · 10−3 2.01 · 10−3 9.29 · 10−5 1.02 · 10−6 108 93
urb1 1.48 · 10−3 9.01 · 10−3 9.24 · 10−5 2.48 · 10−6 1396 1275
bwsn2 5.86 · 10−2 6.82 · 10−2 2.90 · 10−3 2.14 · 10−6 812 772
urb3 6.67 · 10−2 8.10 · 10−2 6.77 · 10−3 1.58 · 10−6 186 139

TABLE 6. Time reduction, symmetric vs non-symmetric approach

network total open coeffs linsolve new q, h blc other
exnet -10.5% 0.1% -9.1% 0.7% -2.3% 0.1% 0.0%
urb1 -0.1% 0.0% -3.2% 4.7% -1.6% 0.0% -0.1%
bwsn2 -0.9% -0.2% -1.2% 0.9% -0.7% 0.2% 0.0%
urb3 -5.0% 0.7% -12.5% 14.1% -6.7% -0.1% -0.5%

seem to be that, due to interactions between the status of different control elements, the heuristic
method to find the correct status of those elements is not working properly, causing some valves
to oscillate constantly between statuses. This is especially an issue for network urb2, because it
contains a large number of valves. It is not clear why the non-symmetric solver is more affected
by this problem. A possible solution for this issue could be to use a relaxation parameter in the
descent direction as shown in (Elhay et al. 2016).

Tables 6 and 7 focus on the computing time. The first table presents the computing time
reduction of the symmetric approach with respect to the non-symmetric approach, considering the
complete simulation, and Table 7 shows the time reduction in each Newton-Raphson iteration. In
both tables, the reduction is expressed as a percentage of the computing time of the non-symmetric
solver (the total computing time in table 6, and the computing time for an iteration in table 7), with
negative values indicating that the symmetric solver was slower. The lower number of iterations of
the non-symmetric approach explains the fact that this solver is faster in terms of total simulation
time, although the difference is below 1% for networks urb1 and bwsn2. However, the symmetric
approach is faster in each iteration, mainly because of the simpler and faster linear system solution.
The gain per iteration depends mainly on the number of PRVs/PSVs in the network, as these

TABLE 7. Time reduction per iteration, symmetric vs non-symmetric approach

network iter coeffs linsolve new q, h other
exnet 2.7% 0.1% 2.2% 0.3% 0.1%
urb1 8.3% 0.2% 8.0% -0.1% 0.2%
bwsn2 3.1% 0.5% 1.8% 0.6% 0.2%
urb3 20.1% 0.9% 19.3% -0.1% 0.0%
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elements add the non-symmetric part to the linear system.

CONCLUSIONS AND FUTURE WORK
This paper shows that the presence of flow- and pressure-controlling valves is compatible with

the loop method, keeping the matrix structure and symmetry, independently of their status. The
formulation presented here for PRVs differs from (Alvarruiz et al. 2015) in that the whole system
matrix is symmetric, which leads to a simpler implementation with faster solution of the linear
systems, while also producing iterations closer to those obtained with Epanet.

The paper presents results for the approach, comparing it in terms of speed and accuracy with
Epanet and with the non-symmetric approach of (Alvarruiz et al. 2015). For that purpose the
non-symmetric formulation, previously written in Matlab, was implemented in C.

The authors show that some tasks such as the initial identification of loops, the computation of
an auxiliary balanced flow and the update of flows and heads at each iteration, do not excessively
penalize the total computing time, which is in fact up to 30% less than that of Epanet in some
cases, due to the time reduction in the update and solution of the linear systems, and in the initial
system reordering. The reduction in computing time depends on the size of the looped portion of
the network, relative to its total size. In terms of accuracy, the symmetric formulation is as accurate
as Epanet.

With respect to the non-symmetric approach of (Alvarruiz et al. 2015), the formulation presented
here is simpler in its implementation and presents a lower computing time for eachNewton-Raphson
iteration. The non-symmetric approach required less iterations, but it also presented convergence
problems for some of the networks tested.

Taking into account the above considerations, the symmetric approach presented here will be the
choice for a new WDS simulation toolkit based on the loop method, currently under development
by the authors.
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