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Handwriting recognition by using deep
learning to extract meaningful features
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Recent improvements in deep learning techniques show that deep models can extract more meaningful data directly from raw
signals than conventional parametrization techniques, making it possible to avoid specific feature extraction in the area of pattern
recognition, especially for Computer Vision or Speech tasks. In this work, we directly use raw text line images by feeding them
to Convolutional Neural Networks and deep Multilayer Perceptrons for feature extraction in a Handwriting Recognition system.
The proposed recognition system, based on Hidden Markov Models that are hybridized with Neural Networks, has been tested
with the IAM Database, achieving a considerable improvement.
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1. Introduction

The field of Handwriting Recognition (HWR) has
been a topic of intensive research for a long time (see
some surveys in [13,43,64,14,28]). However, recog-
nizing unconstrained handwritten text remains a chal-
lenging task. HWR has two main modalities: the on-
line case, where the trajectories of strokes are recorded
while the user is writing, and the offline modality,
where only the text image is available (e.g. scanned
document). The offline case is more challenging due to
the lack of temporal relations between strokes.

Connectionist methods and, especially, deep neural
networks [3,52,4] are able to extract meaningful fea-
tures from raw values (in offline HWR, the scanned
text image) as in [25,17,8,10].

Along these lines, this work proposes the use of deep
neural networks (and, more specifically, deep Mul-
tilayer Perceptrons (MLPs) and Convolutional Neu-
ral Networks (CNNs)) to extract meaningful features
for unconstrained offline HWR. CNNs have already
been used in our research group for several related ap-
plications [39,41]. In previous works, we also devel-
oped a HWR engine based on Hidden Markov Mod-
els (HMMs) that was hybridized with Artificial Neural
Networks (ANNs) which gave the best results in a fair
comparison at that time [19]. Thus, the idea of using
raw pixels from the text line images emerged naturally.
The performance of the HWR engine using deep MLPs

and CNNs to extract meaningful features has been very
advantageous, as the experiments will show.

The remainder of this paper is organized as follows:
Section 2 provides a short introduction to the state
of the art. Our new proposals are presented in detail
in Section 3. The experimental setup and results are
described and analyzed in Sections 4 and 5, and we
present our conclusions in Section 6.

2. State of the Art

Offline HWR involves several stages from the image
acquisition of the documents (e.g. scanning an ancient
book) to the final result which can be in the form of a
text transcription, a graph of words (in order to model
recognition ambiguities) or even an index for keyword
spotting applications.

In this work, we will center our attention on the
transcription of text line images, hence skipping some
steps such as image cleaning/enhancing, text detection
or text line segmentation.

A HWR system receives a text line image which is
generally converted to a sequence X = (x1 . . .xm) of
feature vectors or frames. Although text line images
are inherently bidimensional, this can be done because
writing in a particular order makes it possible to con-
sider the image as a sequence. The main goal is to find
the likeliest word sequence W ? = (w1 . . .wn) that max-
imizes the posterior probability:



W ? = argmax
W∈Ω+

P(W |X) (1)

The sequence with the maximum probability, given
the input X , is searched in every possible sequence of
words of a given vocabulary Ω.

From this point of view, the recognition of hand-
written text lines images shares many characteristics
with Large Vocabulary Continuous Speech Recogni-
tion (LVCSR): a joint segmentation and classification
task is required in both cases for decoding since we
cannot split the image or the audio into words or even
graphemes/phonemes in order to classify them after-
wards. To overcome this cyclic dependency (known
as Sayre’s paradox [50]), HMMs have been used for
decades for these and for many other sequence labeling
problems [47]. For HMMs, the previous Formula (1) is
decomposed, by using Bayes’ theorem, as the product
of the optical model P(X |W ) and the statistical Lan-
guage Model (LM), P(W ), which can be simplified as
follows:

W ? = argmax
W∈Ω+

P(X |W )P(W ) (2)

The optical modeling P(X |W ) of the baseline sys-
tem is estimated by a HMM over the sequence of fea-
tures. HMMs have two kinds of parameters: the emis-
sion probabilities p(xn|qi) for the frame xn and the
state qi, and the transition probabilities p(q j|qi) from
state qi to q j.

Emission probabilities p(xn|qi) have been classi-
cally estimated by using Gaussian Mixture Models
(GMMs) [47]. The use of connectionist techniques
(and, particularly, deep learning techniques) in this
context usually comes in two flavours: in tandem sys-
tems the output of the connectionist system is fed to
GMMs, whereas in hybrid HMM/ANNs the output of
the connectionist system is directly used to estimate
emission probabilities.

Scaled emission probabilities can be estimated with
discriminative models (e.g., Neural Networks (NNs))
that approximate the posterior probabilities of each
state P(x |q) ∝ P(q|x)/P(q). The classifier receives as
input the information of the frame x along with the
values of neighboring frames. The output corresponds
to the number of possible states in the HMM (unless
some of them were tied). Thus, for a repertoire of n dif-
ferent characters, each of which being modeled with s
states, the network has n ·s softmax output units, which
approximate posterior probabilities [12,7].

Several ANNs types have been used for this pur-
pose: MLPs in [54], CNNs in [8], Recurrent Neural

Networks (RNNs) in [37], and combinations of them.
Additionally, we can find other related models: Ra-
dial Basis Functions in [56], Support Vector Machines
(SVMs) in [57], or time-delay networks in [15,29,51].

On the other hand, tandem systems can make use
of ANNs similar to hybrid HMM/ANN but posteriors
are fed to GMMs. Other tandem approaches are pos-
sible and, for example, in [26], an MLP bottleneck is
used to extract features for the tandem. This approach
was later improved by Deep Belief Networks (DBN)
as seen in [49].

Other connectionist approaches get rid off the de-
composition of P(W |X) into optical model and LM
and try to directly predict a sequence of labels. This
is the case of the well-known Connectionist Tem-
poral Classification (CTC) loss function, which was
introduced in [21]. CTC aggregates the contribu-
tion of every alignment and assumes a new blank
grapheme/phoneme output in the net to allow the
model not to emit a label at each time step. This
technique, meant for RNNs, has generated many suc-
cessful works, particularly in HWR and LVCSR,
among others [35,23,22]. In particular, when used with
Long Short-Term Memories (LSTMS) [27], which
have shown to successfully tackle the vanishing gra-
dient problem derived from long time recurrences.
In addition, Bidirectional Long Short-Term Memories
(BLSTM) [53,1,24] allow the sequence to be scanned
by two RNNs, one from left-to-right and another from
right-to-left.

LSTMs have been extended to the multidimensional
case [25] and 2D-LSTMs has lead to impressive results
in HWR [65] tasks at the expense of a high compu-
tational cost. In this regard, [46] proposes the use of
CNNs combined with LSTMs as a cost-efficient alter-
native to Multidimensional Recurrent Layers.

3. Proposed approaches

Our baseline system [19,41] is based on Hidden
Markov Models that are hybridized with Neural Net-
works where emission probabilities are estimated by
an MLP. The input is a sequence of feature vectors
extracted following the approach presented in [60].
An illustration of the baseline system is depicted in
Figure 1a.

In the proposed approaches, instead of relying on a
previous feature extraction process, we rely on the raw
image input, by using a deep neural network to directly
extract meaningful features (see Figure 1b) or by using
CNNs (see Figure 1c).
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(a) Baseline HMM/ANN recognition system using a se-
quence of feature vectors as input.
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Fig. 1. Handwriting Recognition systems.

3.1. Deep MLPs

The primary goal of this work is to extract meaning-
ful features for HWR using deep learning techniques.
When using the baseline system, the input of the MLP
is a set of feature frames that are centered at the current
frame (see Figure 1a). However, in the first proposed
approach, the sliding window receives a patch of raw
pixels that are directly fed to the NN as illustrated in
Figure 1b. The choice of a squared window has given
good results in preliminary experiments [41,40], lead-
ing to a window of 42× 42 pixels (this size being the
median of the height of input line images from training
data). The window also advances two pixels at a time
as in [41,40].

When dealing with raw images, there are several is-
sues to keep in mind to improve the performance and
generalization. Several standard regularization meth-
ods such as weight decay or max weight penalty
have been employed. Regularization techniques such
as dropout have helped to improve results. We have
also used a layer-wise pretraining with Stacked De-
noising Autoencoders (SDAE) [63] in order to train
deeper nets.

3.2. CNNs with 2D convolutions

In the classical HMM/ANN architecture, the use of
a sliding window (where the same NN is applied to
classify each frame) can be seen as a 1D convolution
on the X axis. Now, we would like to explore the use
of 2D convolutions combined with pooling layers and
higher level convolutions that will hopefully be able to
extract more useful features.

Figure 1c illustrates the CNN for feature extraction
and conditional probability computation in our setup.
In the proposed settings, several parameters must be
chosen for the CNN, such as the number of convolu-
tions, pooling layers, activation functions, number, and
size of the convolutional kernels as well as the classi-
fier, which is usually an MLP.

It is quite important, in practice, and a challeng-
ing task to obtain an architecture with a good cost-
efficiency trade-off. Thus, the computational restric-
tions that are essential for finding an appropriate but ef-
ficient architecture must not be forgotten. We have ex-
plored three alternatives with all of those limitations in
mind, namely: 1) using well known CNN architectures,
2) using a specific network for the mentioned task, and
3) using a model inspired by a well established feature
extraction technique.



3.2.1. Using well known architectures

Our first attempt using CNNs for feature extraction
imitates some of the previous architectures that have
achieved good results in similar tasks. This is the case
of the convolutional net LeNet CNN [33], which ob-
tained good results on the MNIST database [34]. In ad-
dition, the increase in computational resources (espe-
cially advances in GPU computing and distributed sys-
tems) has allowed the use of deeper and more complex
models. In recent years, these issues, combined with an
appropriate parameter tuning, have led to remarkable
improvements in performance, especially in image vi-
sion tasks. This is the case of nets like AlexNet [32],
GoogleNet [59], and Very Deep Convolutional Net-
works [55], which have reported excellent results in
other tasks such as the ImageNet Large Scale Visual
Recognition Challenge contest [48].

3.2.2. Adhoc networks dealing with HWR

Most of the bibliography architectures are designed
for tasks like MNIST, which consists of 28× 28 pixel
images corresponding to the 10 digits, or, for instance,
the ImageNet database, which has larger inputs and
more than a thousand classes. However, in our case
study, the net input consists of 42×42 pixels, and there
is an output for each different HMM state, which cor-
responds to 553 neurons (7 states × 79 graphemes).

When tuning a NN model we would have to explore,
in an ideal case, every possible parameter and hyper-
parameter in order to obtain the most successful con-
figuration. The use of CNNs and deeper nets makes
this tuning process worse since more parameters are
added, most of which are related to the new topology
and layer configurations. Thus, in order to guide our
exploration, we should be concerned about the kernel
sizes to extract useful features, the number of kernels
to cover the variability of the text, and deeper layers of
the model to properly represent the characteristics of
the problem.

In the feature extraction process proposed in [60],
the frames are computed using 5×5 cells. Coinciden-
tally, LeNet-5 uses 5×5 convolutional kernels in both
convolution layers. We will, therefore, explore kernel
sizes between 5 and 8 pixels per side allowing the
model to consider slightly bigger window sizes.

When analyzing the kernels trained in some prelim-
inary experiments, we could conclude that there is a
tendency to extract redundant information from 16 ker-
nels in the first convolution. Some of the learned ker-
nels detect edges in several orientations, others esti-
mate the ink text zones, and some of them model the

background. It turns out that all of these features can
be extracted with no more than 5 to 10 kernels. Due
to the above-mentioned computational constraints, we
will avoid large number of kernels, at least, in the first
convolutions.

3.2.3. Cell feature extraction by kernels
Our baseline HWR system used the parametrization

described in [60]. In this work, we will design CNNs
that are powerful enough to mimic this feature extrac-
tion process. However, it is important to note that the
convolution kernels are not limited to extract these fea-
tures, since they will learn on their own.

The original feature extraction divides the input into
cell regions. For each region, three values are ex-
tracted: one value with the proportion of gray level and
two values for the vertical and horizontal derivatives.
A linear regression model is performed to find the op-
timal derivative directions.

The minimal requirements for a CNN to model these
features are that one convolution could compute the
vertical derivatives from the differences between the
upper and lower cell values. Similarly, another convo-
lution can compute the horizontal derivatives, whereas
a third convolution would be enough to estimate the
smoothed gray level. This leads to a CNN with only
one convolution layer of three maps of 5×5.

3.3. CNNs with 1D convolutions

We have also explored a CNN that convolves the text
line images in only one direction. The convolutional
kernels would have the height of the image, and they
would advance from left to right. Therefore, each ker-
nel extracts only one feature per column. We explored
two different approaches:

– Applying the vertical kernels directly into the raw
image (Figure 2).

– Applying the vertical kernels after a 2D con-
volved map (Figure 3). In this case, the first set of
2D convolutions is obtained followed by the ap-
plication of 1D kernels to these previous maps.

In the first case, the vertical kernels are applied to
the input window, and we have a set of K×F features
(with K being the number of kernels, and F =C−w+1
where C is the number of columns of the sliding win-
dow and w is the width of the kernel since padding is
not applied). In the second example, a 2D convolution
is performed using the same parameters as in previ-
ous models. The vertical kernels are applied to the ex-
tracted maps afterward. A larger number of kernels is
used to overcome the restriction of having one feature
per kernel and column.
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Fig. 2. Vertical model (I). The kernels run over the input window and
only in the horizontal direction.

4. Experimental setup

4.1. Evaluation corpus: IAM database

The IAM offline dataset [36] is composed of forms
containing handwritten English sentences that are ex-
tracted from the LOB corpus [30]. The version 3.0
of the IAM Dataset was used.1 This version collects
5685 sentences from 657 different writers, with a to-
tal of 115000 word instances comprising 78 different
graphemes. The forms are divided into lines, which
are the input for the experimentation of this work. The
standard partitions of this version were used: 6,161
training lines (from 283 writers), 920 validation lines
(56 writers), and 2,781 test lines (161 writers).

4.2. The baseline recognition engine

The recognition engine is based on a hybridized
HMM with an MLP to model graphemes, which was
presented in [19,68,39,41]. Each grapheme is modeled
with a 7-state left-to-right HMM topology with loops
and without skips. The connectionist model used to es-
timate the emission probabilities of the HMM states
was an MLP with 2 hidden layers of 512 and 256 units,
respectively, using the softmax activation at the output
layer. The HMM/ANN system is trained by means of
an Expectation-Maximization procedure with a forced

1http://www.iam.unibe.ch/fki/databases/
iam-handwriting-database
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Fig. 3. Vertical models (II). Vertical kernels run over the maps gen-
erated by the first 2D convolutions.

Viterbi alignment by using the April-ANN toolkit [67].
This toolkit has also been used to perform the experi-
ments based on deep MLPs and CNNs described in the
following sections.

The images received by the recognition engine were
preprocessed following the skew and slant correction
presented in [19] and following the height normaliza-
tion proposed in [39]. The emissions computed for
each HMM state were calculated taking into account
the current frame and the surrounding ones, for a total
of 11 frames. Each frame was extracted from a window
of 28 × 42 pixels following the approach presented
in [60].

For the LM, a 4-gram with a Witten-Bell smoothing
that was trained with the SRILM toolkit [58] was used.
The text corpora used to train the n-gram LM were: the
LOB corpus [30] (excluding those sentences that con-
tain lines from the test set or the validation set of the
IAM task), the Brown corpus [20], and the Wellington



Table 1
Deep MLPs fed directly with a raw image input from a window size
of 42×42 (1764 pixels).

Hidden Layers Dropout

2 hidden layers (2048, 512) 0, 0.2, 0.5
3×512 + SDAE 0, 0.2
5×512 + SDAE 0, 0.2
7×512 + SDAE 0, 0.2

corpus [2]. The lexicon of the LM had approximately
103K different words. This LM is the same as the one
in [68], whose larger vocabulary differs from the previ-
ous work of [19]. Word insertion penalty and grammar
scale factor parameters were optimized on the valida-
tion set by means of the Minimum Error Rate Training
procedure [38].

4.3. Using raw input and deep MLPs

Our first goal is to compare the baseline system
with a new one, avoiding an explicit handcrafted fea-
ture extraction. Table 1 shows the configuration used
for the deep MLP-based systems with a receptive field
(42× 42 pixels). We also trained deeper MLPs up to
7 hidden layers of 512 Rectified Linear Unit (ReLU)
neurons that were pretrained with SDAE in order to
obtain faster convergence. The use of dropout helped
significantly in these configurations.

4.4. Using CNNs for preprocessing

Table 2 summarizes the explored CNN topologies
by enumerating, for each one, the sequence of kernels,
pooling layers, flatten procedures and fully connected
layers applied in each case along with their parameters
and the size (number of maps and their dimensions)
of the corresponding outputs. First, a topology based
on LeNet (LeNet-5) was tested. For the second alterna-
tive, after several trials, we could highlight one special
configuration, called Adhoc CNN, which led us to the
best results. We also decided to apply max pooling lay-
ers to not only speed up the computations but also to
make our model more robust to translations. We tried
increasing max-pooling layers of 3×3 and 4×4. Since
the suitability of the max-pooling is very task depen-
dent, we also performed experiments removing them.

The models with the minimal configuration able
to imitate the cell feature extraction were tagged as
Cell/Kernel 1 and 2 Conv. As can be observed, the size
of the kernels increased up to 6×6 and a stride of 3 was
applied in each direction. Finally, two different topolo-
gies with one and two convolution-activation-pooling
layers were tried (Vertical 1 and 2).

Table 2
CNN topologies for the recognition system.

Operation Type Parameters (Output) Size

L
eN

et
-5

input 1×42×42
convolution 16 kernels 5×5 16×38×38
Max-pool (ReLU) 2×2 16×19×19
convolution 32 kernels 5×5 32×15×15
Max-pool (ReLU) 2×2 32×8×8
flatten 2048
fully-conn. (ReLU) 500
fully-conn. (softmax) 553

A
dh

oc
C

N
N

input 1×42×42
convolution 8 kernels 7×7 8×36×36
max-pool (ReLU) 3×3 8×12×12
convolution 16 kernels 3×3 16×10×10
max-pool (ReLU) 2×2 16×5×5
flatten 400
fully-conn. (ReLU) 128
fully-conn. (softmax) 553

C
el

l/K
er

ne
l1

C
on

v.

input 1×42×42
convolution 8 kernels 6×13×13

6×6+3+3
flatten 1014
fully-conn. 512
fully-conn. 128
fully-conn. (softmax) 553

C
el

l/K
er

ne
l2

C
on

v.

input 1×42×42
convolution 8 kernels 6×13×13

6×6+3+3
convolution 16 kernels 16×6×6

4×4+2+2
flatten 576
fully-conn. (ReLU) 256
fully-conn. (ReLU) 64
fully-conn. (softmax) 553

V
er

tic
al

1

input 1×42×42
convolution 16 kernels 16×1×13

42×6+1+3
flatten 208
fully-conn. (ReLU) 256
fully-conn. (ReLU) 64
fully-conn. (softmax) 553

V
er

tic
al

2

input 1×42×42
convolution 8 kernels 6×13×13

6×6+3+3
convolution 16 kernels 16×1×5

13×4+1+2
flatten 80
fully-conn. (ReLU) 256
fully-conn. (ReLU) 64
fully-conn. (softmax) 553



Table 3
Overall performance of the proposed systems on the Development
set (configurations with the § mark make use of SDAE, the con-
figuration with the † mark is the Approach 1 of Table 4, while the
configuration with the ‡ mark is the Approach 2 of the same table).

Dev.

WER CER

Baseline [41] 15.6 ± 1.1 5.6± 0.5

H
M

M
/A

N
N



Dropout

Raw input 2048−512 0 16.1 ± 1.1 5.8 ± 0.5

+ Deep MLPs 0.2 14.6 ± 1.1 5.1 ± 0.5

3×512§ 0 15.4 ± 1.0 4.9 ± 0.4

0.2† 13.7 ± 1 4.7 ± 0.4

5×512§ 0 14.1 ± 1.1 4.6 ± 0.4

0.2 14.2 ± 1.0 4.9 ± 0.5

7×512§ 0 15.2 ± 1.1 4.9 ± 0.5

0.2 14.5 ± 1 .0 5.1 ± 0.4

H
M

M
/C

N
N



LeNet-5 14.6 ± 1.1 4.6 ± 0.4

Adhoc 14.4 ± 1.1 4.8 ± 0.4

Cell-kernel 1 ‡ 13.9 ± 1.1 4.4 ± 0.4

Cell-kernel 2 14.3 ± 1.1 4.9 ± 0.4

Vertical 1 15.5 ± 1.1 5.2 ± 0.4

Vertical 2 15.3 ± 1.1 5.4 ± 0.5

5. Results

Our baseline HWR system, based on hybrid HMMs
with ANNs using handcrafted features was presented
in [19]. With some slight modifications, our best results
were reported in [41], obtaining a 15.6% and 19.0%
Word Error Rate (WER) for validation and test sets,
respectively. Table 3 shows the overall performance
of the proposed systems, with a confidence interval of
95% [62]. First, it can be observed that all the deep
models with more than two layers using raw inputs im-
proved the baseline version. Indeed, when using two
hidden layers in the raw setup, the results were worse
than the baseline, unless dropout was added, where
the results were similar. Dropout significantly helped
in the deep model modality, reaching the best perfor-
mance with three hidden layers and a drop rate equal to
0.2, obtaining a WER of 13.7 for the development set
(this configuration is called Approach 1 in Table 4). We
tried drop rates that were larger than 0.2 but the perfor-
mance did not improve. As a matter of fact, although
some results with deep models were better than others,
there was no statistically significant difference among
them. For Character Error Rate (CER), deep models
statistically improved the baseline system.

The HMM/CNN showed better performances with
respect to the baseline system. When compared with
the deep MLPs using raw inputs, the results were sim-
ilar when dropout was used. When exploring the dif-
ferent nets, good performances in the Adhoc CNN net
or even LeNet-5 could be expected. Even though the
performance in these cases is quite good, the best re-
sult achieved so far has been with a simple net (Cell-
kernel 1, corresponding to Approach 2 in Table 4), us-
ing one convolution with a stride of three in each direc-
tion and only six kernels. We presume that the simplic-
ity of the model eased the training, and with six kernels
the model covers most of the variability of the hand-
written (as illustrated in Figure 4a). In this particular
case, the net extracts 1014 features from the convo-
lution process, which are conveniently combined with
two fully connected layers of 512× 512, respectively.
The same model with two convolutions (Cell-kernel 2)
had a fine performance not far from the best models.

Finally, vertical models showed a more modest per-
formance, which did not improve the traditional 2D
convolution models, but they were still better than the
baseline. As before, CER was significantly better with
the HMM/CNN than with the baseline system.

Regarding the execution time, both the baseline ex-
periments and the proposed architectures have been
trained and evaluated by means of the same April-
ANN toolkit [67]. This toolkit performs all the com-
putation on CPU, but it makes a heavy use of lin-
ear algebra optimized libraries (in particular, the In-
tel MKL library [66]). Experiments have been con-
ducted on computers with different specifications, so
a fair comparison of the execution time is limited
to those that have been performed on the same type
of machine. Most experiments have been performed
on an Intel Core i7-3770 CPU at 3.40GHz with
32Gb of RAM: the “Raw input + Deep MLPs” 2048-
512 0 and 2048-512 0.2 versions of Table 3 have re-
quired an execution time, for decoding, of 5.37 and
5.07 seconds/sentence on average, respectively. On
the same machine, Lenet-5 only required 3.34 sec-
onds/sentence, while Adhoc, Vertical 1 and Vertical 2
required 4.72, 4.17 and 5.19 seconds/sentence, respec-
tively. Although other experiments (Baseline, Cell-
kernels, [3,5,7]×512) have been conducted on dif-
ferent computers, the average execution time per sen-
tence is rougly similar with times between 4 and 6
seconds/sentence. On comparison, the baseline sys-
tem required around 4.8 seconds/sentence on a slightly
slower machine (Intel Core i5-750 at 2.67GHz). Obvi-
ously, for production use the system should make use
of GPU to drastically reduce these times.



(a) Six maps extracted by the first convolution of the
Cell/Kernel. A free interpretation of the features learned is:
1) lower text contours, 2) upper contours, 3) borders, 4)
strokes 5) right contours, 6) background model (background
pixels got higher activation than text).

(b) Maps extracted by the Adhoc CNN. For instance, one ker-
nel generates lower/right contours (fifth kernel), and another
learns the upper/left edges (fifth from the tail).

(c) Generated maps by LeNet-5.

Fig. 4. Generated maps from several convolution nets.

Table 4
Performance for the IAM database. Approach 1 uses deep MLPs and
raw input (the configuration with the † mark in Table 3), and Ap-
proach 2 uses the HMM/CNN system (the configuration with the
‡ mark in Table 3). The results of the table are divided into isolated
words, line and paragraph recognition.

Test Set

System |V | WER CER

Isolated word recognition

Bianne-Bernard et al. [6] 10K 32.7 -

Bluche et al. [9] 10K 20.5 -

Poznanski and Wolf [45] No-OOV 6.29 3.37

Line recognition

Bertolami and Bunke [5] 20K 32.8 -

Plötz and Fink [44] - 28.9 -

Graves et al. [23] 20K 25.9 18.2

Toselli et al. [61] 9K 25.8 -

Dreuw et al. [18] 50K 28.8 10.1

Pastor et al. [41] (baseline) 103K 19.0 7.5

Approach 1 103K 17.5 6.6

Approach 2 103K 17.2 6.3

Paragraph recognition

Kozielski et al. [31] 50K 13.3 5.1

Doetsch et al. [16] 50K 12.2 4.7

Bluche et al. [10] (ROVER) 50K 11.9 4.9

Pham et al. [42] 50K 13.6 5.1

Bluche [11] - 10.9 4.4

Puigcerver [46] - 12.2 4.4

Table 4 shows the best results of our contributions
together with the results of other works reported in
the literature using the same database. The table is di-
vided among isolated word recognition, line recogni-
tion and paragrah recognition. As mentioned above, we
have used lines for training and evaluation. Although
all the results cannot be directly compared, it can be
observed that the use of CNN models to extract fea-
tures from raw input for HWR consistently improve
recognition rates. This has been proved in our HWR
system (Approach 2 statistically improves the base-
line) and, regarding the results summarized in Table 4,
we can observe that some of them have also relied on
CNNs [11,46].



6. Conclusions

We have presented several improvements to our
HWR engine by removing handcrafted feature extrac-
tion from the text images and using deep learning
techniques directly on the raw input. Deep MLPs and
CNNs have been analyzed for the current HWR task.
The results presented for the IAM Database validate
this approach, consistently with other authors’ works.

Although several CNN topologies are explored, one
of the configurations that led to good results is com-
prised of a single convolution layer without pooling,
achieving a WER of 17.2. If we compare this result
with the baseline (HMM/ANN with features system
which has a WER of 19.0), a considerable step forward
in the recognition performance has been achieved.

Despite the use of CNNs is not novel in HWR, the
value of the experiments reported here lies in the fact
that it provides a fair comparison between handcrafted
and machine learned features by the virtue of using a
baseline whose only difference with the proposed ap-
proaches is the replacement of the feature extraction
stage, hence isolating the effect of this single stage
from the whole HWR pipeline. Besides that, several
different CNN topologies have been compared. We can
also mention that the topologies proposed here only re-
quire a modest computational cost compared with the
alternatives that can be found elsewhere.

There are many lines of future work to be pursued.
First, we propose to apply other normalization tech-
niques to speed up the training in order to improve
results. We also need to do a more exhaustive error
analysis to determine which steps of the whole tran-
scription pipeline we should focus on to assure new
improvements. Many novel CNN architectures are re-
cently appearing in the general field of Computer Vi-
sion and, although many of them are not originally in-
tended for HWR, some of them can also be adapted to
this particular subfield. Finally, we plan to try the use
of CTC decoding and to adopt training procedures for
HMM/ANN in the line of [69].
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