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Motivation

Nowadays, the number of computational devices that are present in our everyday life has

considerably grown. The use of technology looks to help us achieve a better quality of life, to

make our life easier and more comfortable. However, due to the increasing number of devices,

it is necessary that the technology itself adapts to the needs of the user, instead of the human

being the one that adapts to technology. In that sense, Ambient Intelligence (AmI) tries to

cover that necessity: it looks to offer personalized services and provide users with easier and

more efficient ways to communicate and interact with other people and systems [1, 2].

Agent technology has been appointed as a proper technology for the support of AmI

solutions [1, 3, 4]. As a matter of fact, agents show interesting characteristics for AmI

environments since they are reactive, proactive and social [5]. First, reactiveness allows

agents to change their behaviour according to some new conditions in the AmI environment

(new users, new services, etc.). Second, proactiveness makes possible for agents to act

autonomously according to the user’s goals, which results in a smooth and non-intrusive

interaction with the AmI user. Last, agent’s social behaviour allows several heterogeneous

entities to cooperate and offer new complex services to the AmI user.

In the last few years, researchers have shown a growing interest in automated negoti-

ation. Negotiation can be defined as a process in which a joint decision is made by two

or more parties. The parties first verbalize contradictory demands and then move towards

agreement by a process of concession-making or search for new alternatives [6]. Therefore,

automated negotiation consists in that such joint decision is automatically decided by means
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of autonomous entities (e.g., agents representing different users). The participant parties in

a negotiation process have opposing preferences, thus negotiation can be considered as a

conflict resolution mechanism.

Since the decade of the 50’s, automated negotiation has been studied in game theory.

Game theory researchers focused on reaching optimal solutions under the assumption of

unbounded computational resources and complete information of the opponent preferences.

Some of the most important theoretical results come from game theory, like the work of

Nash [7], Rubinstein [8] and Binmore [9]. Although game theory studies obtained interesting

results, most of them can not be applied to negotiations carried out by computer systems

since there are limitations on the information of the opponent preferences, and computational

resources available[10, 11]. However, artificial intelligence (AI) researchers have focused

on working in such environments where there is not perfect knowledge about opponent

preferences, and computational resources are bounded. Consequently, AI goal has been to

reach good solutions instead of optimal solutions. However it must be noted that both fields’

results are not opposed. Game theory results are a powerful tool in order to compare the

results and properties of the negotiation methods devised in AI.

First AI works in automated negotiation are related to the area of Negotiation Support

Systems (NSS) [12, 13, 14]. Basically, they are decision support systems that help humans

in selecting acceptable negotiation strategies in narrow domains. For instance, Vedder et al.

[12] developed a system that suggests negotiation strategies to police negotiatiors in situa-

tions of hostage rescue. Another example of this kind of systems is PERSUADER [13, 14],

which uses CBR techniques to help humans in selecting strategies for labor negotiations.

Nevertheless, nowadays most of the works in automated negotiation do not focus in this

kind of applications. Additionally, since human negotiation across the internet could be

time consuming, automated negotiation has been seriously considered as a key for electronic

commerce. More concretely there has been a growing interest in developing agent mediated

electronic commerce [15, 16, 17]. The properties shown by software agents prove specially in-

teresting in electronic market environments. Nowadays agent-mediated electronic commerce
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is still a very active line of work.

AmI domains are not alien to conflict situations where automated negotiation is needed.

For instance, shopping malls may be converted into ubiquitous environments where several

vendors offer their products to passing shoppers [18, 19]. In many cases, the shoppers know

what they want but do not have time to check every shop that offers such product. A

possible way of enhancing the customer experience is to automatically negotiate with all

of the vendors. A list with the best agreements may be presented to the user through its

mobile device. This way, the user does not have to check every possible shop since its mobile

device has negotiated with every shop taking into account the user preferences. Nevertheless,

there are also benefits for the vendors since automated negotiation allows a more flexible

commerce than classic e-commerce. For instance, they may negotiate issues such as price,

payment method, discounts, and dispatch dates, which is what often happens in traditional

non-electronic commerce. Flexibility in e-commerce produces a fidelization of the clients

since the vendor is able to adapt as much as possible to the client preferences. Therefore,

automated negotiation is a proper technology for e-commerce-based AmI applications such

as shopping malls.

Despite the specific domain where automated negotiation has been applied, Artificial in-

telligence has traditionally studied multi-issue negotiations where utility functions are repre-

sented as a linear combination of the issues involved in the negotiation process [20, 21, 22, 17].

In linear utility functions, issue values are usually monotonic, so these functions usually have

a single global optimum and consequently, the utility function is easy to optimize. Never-

theless, most real world problems are hardly modelled by linear utility functions since they

have a higher degree of complexity than the one offered by linear utility functions (e.g.

e-commerce [23, 24, 25] ). Some of the issues in the negotiation setting may present interde-

pendence relationships. Thus, the value of the utility function may be drastically changed by

the positive/negative synergy of interdependent issues. The result is that the utility function

is no longer linear, and therefore there may be several local optima. Optimizing non-linear

utility functions is hard by itself (e.g. may require non-linear optimizers such as simulated
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annealing, genetic algorithms, etc.), and so is learning opponent preferences and looking for

good agreements. Utility functions that have the trait of being non-linear are usually known

in the literature as complex utility functions.

In the last few years, there has been an effort to research negotiation strategies that are

capable of working with such complex utility functions where issues may have relationships

of interdependence. Works in these complex domains have focused on negotiation strategies

that require a mediator [23, 25, 26, 27], or non-mediated strategies that are devised for

very specific utility functions [24]. However, non-mediated strategies are more interesting

from the point of view of AmI environments due to the fact that users enter and leave the

system in an extremely dynamic way. Thus, it may be difficult to find a trusted mediator

for every possible user. Although non-mediated strategies are more interesting from the

point of view of different domains, there has been lack of work in non-mediated strategies for

complex utility functions. The work of Lai et al. [28] presents a non-mediated strategy for

general utility functions, which obviously includes complex utility functions. The strategy

is based on the calculation of current iso-utility curves and a similarity heuristic that sends

offers from the current iso-utility curve that are the most similar to the last offers received

from the opponent. However, the entire calculation of the iso-utility curve may require an

exhaustive exploration of the utility function, which may not be tractable in the case of a

large number of issues. Furthermore, if the exploration of one’s own utility function is not

performed in an intelligent way, it may result that most of the offers sampled are of no use

for the negotiation process since they might not interest the opponent. Mechanisms that

sample as few offers as possible are needed, specially for environments where devices may

have limited computational resources as AmI environments.
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Research Goals

Albeit the fact that some scholars have deeply studied the automated negotiation topic, not

much concern has been given to the specific domain of Ambient Intelligence. This domains

presents certain particularities that need to be carefully treated. As it has been stated

above, Ambient Intelligence applications mainly rely on mobile technologies and devices

with extremely bounded computational capabilities. Most works on automated negotiation

have focused on achieving economic efficiency (pareto efficiency, utility maximization, Nash

bargaining point) but they have overlooked some aspects such as computational efficiency

(number of offers sampled during the negotiation process, number of negotiation rounds,

etc.). The problem is still more important in the area of complex utility functions, where

the optimization process carried out by each agents in order to explore its own preferences

requires additional computational resources.

In this work, a non-mediated bilateral multi-issue negotiation model for AmI environments

is presented. Its main goal is to optimize the computational resources while maintaining a

good performance in the negotiation process. The proposed model is inspired in the seminal

work of Lai et al. [28]. The three main differences between this present work and the work

of Lai et al. are: (i) The present approach assumes that it is not possible to exhaustively

search the utility function. Before the negotiation process starts, each agent samples one’s

own utility function by means of a niching genetic algorithm (GA) [29, 30]. The effect of this

sampling is that offers obtained are highly fit and significantly different;(ii) A few additional

samples are obtained during the negotiation process by means of genetic operators that are

applied over received offers and one’s own offers. The heuristic behind this sampling is
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that offers obtained by genetic operators have genetic material from one’s own agent and

the opponent’s offers. Thus, these new offers may be interesting for both parties. (iii)

Genetic operators act as a learning mechanism that implicitly guides the offer sampling and

selection of which offers must be sent to the opponent. Results show that the proposed work

outperforms similarity heuristics that are able to sample the same number of offers before

the negotiation process starts. Additionally, it is also shown how the proposed strategy is

capable of achieving similar results than similarity heuristics that sample the entire utility

function with far fewer samples. This result is accomplished due to the learning mechanism

provided by genetic algorithms.

It must be stated this thesis is enclosed in the work carried out by the GTI-IA research

group. GTI-IA’s research is focused on the area of multi-agent systems. Multi-agent systems

are distributed systems formed by special software entities named as agents. What makes

multi-agent systems different from other distributed system is that these special entities

may be autonomous, reactive to changes in the environment, proactive according to its

user’s goals, and social (they may need to cooperate with other agents in order to fulfill their

own goals).

The group has been granted with several active research projects related to the area

of multi-agent systems: Agreement Technologies (Consolider Ingenio CSD2007-00022), Ad-

vances on Agreement Technologies for Computational Entities (PROMETEO 2008/051),

COST Agreement Technologies (IC0801-AT), MAGENTIX II: Una plataforma para sistemas

multiagente abiertos (TIN2008-04446/TIN), Organizaciones Virtuales Adaptativas: Arqui-

tecturas y Métodos de Desarrollo (TIN2009-13839-C03-01). Next, we will describe how this

thesis is related to the different research projects carried out in our group.

• Agreement Technologies (Consolider Ingenio CSD2007-00022): This project is a joint

effort among GTI-IA (UPV, Valencia), IIIA (CSIC, Barcelona), and CETINIA (Univer-

sidad Rey Juan Carlos, Madrid). The goal of this project is designing new mechanisms

that allow distributed systems to coordinate and cooperate in open and dynamic envi-

ronments. Automated negotiation is pointed out as one of the core technologies that
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will allow computers to cooperate and coordinate in such dynamic open environments.

• Advances on Agreement Technologies for Computational Entities (ATfCE): This is a

project granted by Generalitat Valenciana. It also focus on agreement technologies

as the proper paradigm for coordinating new generation distributed systems. How

automated negotiation is related to agreement technologies has already been stated

above.

• COST Agreement Technologies : This is a European project where the goal is the same

as the one stated in the two previous projects.

• MAGENTIX II: Una plataforma para sistemas multiagente abiertos : Magentix is a

multi-agent support platform for multi-agent systems. Multi-agent systems require

special infraestructures in order to be conveniently deployed. Since automated nego-

tiation is bound to be one of the key technologies in agent research, it is necessary

to analyze how current infraestructures need to be adapted to support automated

negotiation.

• Organizaciones Virtuales Adaptativas: Arquitecturas y Métodos de Desarrollo: A Vir-

tual Organization is a complex entity where dynamic collections of individuals and

institutions agree to share resources (software services, computational resources, etc.).

Some works have already stated that Multi-agent systems (MAS) and agent organiza-

tions are one of the possible technologies to implement VO’s. However, since Virtual

Organizations may be situated in dynamic environments, they need to adapt them-

selves in order to maintain a certain level of performance. Automated negotiation is

necessary for the different partners to reach a consensus concerning the changes to be

applied to the Virtual Organization.
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Thesis Structure

The remainder of this thesis is organized as follows. First, we review the state-of-the-art

in automated negotiation. Two main sub-areas are reviewed: negotiation models for com-

plex utility functions and negotiation models with learning capabilities. Why we study the

first subarea is clear. We are interested in utility functions that are able to capture inter-

dependence relationships among negotiation attributes. Learning capabilities are included

because they allow to reach more efficient economic results than those that do not include

them. Moreover, learning capabilities also allow to reach faster agreements, which is specially

interesting in Ambient Intelligence domains. We also analyze those models that include both

traits. At the end of each review, we include a brief discussion where we deeply analyze the

main characteristics of both sub-areas.

In the next part we describe our proposed negotiation model. A chapter is dedicated

to explain the negotiation protocol and its main advantages. After that, we describe the

negotiation strategy. More specifically, we focus in the sampling carried out during the

pre-negotiation phase in order to discover own good offers, the concession strategy, the

acceptance criteria for opponent offers, the offer selection mechanism and, most importantly,

the evolutionary sampling which is carried out during the negotiation process to discover

new offers that are interesting for both agents. The final chapters of this part includes

the experiment design and the results obtained by the proposed model. These results are

analyzed and compared state-of-the-art similarity heuristics.

The final part of this thesis include a discussion of the work carried out during this thesis,
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work to be carried out in the future, and a list of publications related to this thesis.
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State-of-the-art
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Chapter 1

Complex Utility Functions

Negotiation Models

Negotiation is an interaction and cooperation mechanism whose goal is to look for an agree-

ment among two or more parties. For instance, buyers and sellers may negotiate about

the price of a product in a electronic commerce domain. However, this approach is not

the most convenient one in every real-world domain. As a matter of fact, most real-world

negotiation processes negotiate about more than a single attribute. In the case of electronic

commerce, buyers may include other negotiable services such as guarantee time, delivery

time, and product quality. It is possible that a buyer is interested in incrementing the paid

ammount in order to get an improvement in one of the mentioned services. The single-

attribute approach results much more unnaceptable in more complex domains like team

formation, resource distribution o every other situation that does not involve just money.

The state-of-art in automated negotiation detected this problem and the focus of research

evolved from single-attribute negotiations to multi-attribute negotiations.

Negotiation processes normally consist in the exchange of proposal between the involved

parties. One of the key issues in negotiation strategies is how to value received proposals,

and how to generate proposals that are likely to be accepted by the different parties. In
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processes where just a single attribute is involved it is quite clear how to evaluate and

generate proposals: The value of the attribute. However, it is not easy to give a valuation

when there is a need to negotiate for several attributes. The multi-attribute utility theory

[31, 32] comes into play in this part. This theory provides mechanisms for the valuation

of proposals composed of multiple attributes. This is normally accomplished by means of

utility functions. First works in automated negotiation assumed that the attributes of the

negotiation were independent in the utility function. Thus, proposals were valuated by means

of a linear function where attributes where weighted according to its preference.

Despite the fact that linear functions perform well in some simple domains, there are

still possible scenarios where they become poorly suited [33]. Just as an example we could

think of a water market domain where two parties negotiate over the exploitation of several

water resources. One of the parties desires to satisfy its water needs whereas the other party

has got rights over several water exploitations. In this negotiation, the different attributes

are the water exploitations to be included in the deal. Even although the provider offers a

proposal whose ammount of water could satisfy the buyer, the value of the proposal may turn

into a low utility for the buyer if the water sources are too distant. Thus, some attributes

have a negative effect over the value of others and preferences can no longer be represented

as linear utility functions. There is a need to provide complex utility functions that are

capable of representing these complex preferences. Furthermore, the negotiation strategies

that performed well in domains with linear utility functions may not perform equally in the

case of complex utility functions. In fact, the search space for each agent is much more

complicated. Therefore, new negotiation strategies adapted to complex utility functions are

needed.

Current research in automated negotiation has started to provide negotiation strategies

and complex utility functions that allow parties to work in these complex domains. In this

chapter, some strategies for the complex utility function problem are reviewed.

20



1.1 Utility graphs

Robu et al.[24] introduces the idea of utility graphs and a negotiation strategy capable of

working with utility graphs. The selected protocol is the bilateral multi-issue negotiation and

it focuses on offers based on bundles of items (binary attributes) for electronic commerce.

Utility graphs are graphical models that relate negotiation issues that are dependent.

Nodes represent negotiation issues whereas arcs connect issues that are at least included in

one cluster. Intuitively, a cluster of items is a group of issues that have some joint effect in the

final utility of a bundle offer. Therefore, the final utility of an offer can be viewed as the sum

of the joint effects of each cluster. Consequently, items connected through arcs have certain

dependency since they appear in a cluster. Since the size of the cluster is not theoretically

limited, it is possible to represent interdependence relationships among attributes that are

not restricted in its cardinality.

Robu et al.[24] propose a negotiation strategy where the buyer preferences and the seller

preferences are modeled through utility graphs. In this approach, the seller is the one that

carries out an exploration of the negotiation space to search for situations where both parties

are satisfied. In order to accomplish this task, the seller has a model about the structure of

the opponent utility graph due to past deals or information provided by experts [34]. This

is specially feasible in electronic commerce domains. Robu also provided an strategy based

on utility graphs that is capable of selecting which offers to send and learning/updating the

model of the opponent.

1.2 Mediation for Complex Agreements

Klein et al.[35] is one of the seminal works in the complex utility function case. They argued

that in most real-world domains attributes have interdependence relationships that directly

affect on the utility of proposals. He devised a mediated negotiation protocol with the goal of

the design of negotiation strategies for complex utility function domains. More specifically,
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Klein et al. focused on bundles of items (binary attributes). Preferences are modelled via

a preference matrix. The content this matrix represents the value decrement or increment

in the utility function when two different issues appear in a bundle offer. Therefore, this

complex utility function can only take into account interdependent relationships that involve

a pair of attributes. The mediator proposes offers to the different parties. Each party can

reject or accept the proposal with a certain weight strength (weak or strong). If every party

accepts the deal, or there is a weak reject and a strong accept, then the mediator mutates

one of the attributes and sends back the new proposal to every participant. If a deal is

rejected by one of the parties, then the mediator returns to the previous accepted deal and

mutates one of the issues. This process is repeated until a fixed number of proposals is

reached. Two different agents are studied as players in Klein et al.[35]: a hill-climbing agebt

and one more complex agent based on simulated annealing. Hill-climber agents only accept

a deal if it improves the best deal reached until the moment, whereas annealing agents have

a probability of accepting a deal even if it does not improve the best past deal. The results

show that the annealing approach obtains better deals, specially when all negotiating agents

employ an annealing approach.

Ito et al. propose a multilateral negotiation strategy for complex utility functions based

on the figure of a mediator[36]. The idea of this work is to find a consensus between more

than two parties. Complex preferences are modeled through weighed constraints that add

value to the utility function when they are satisfied. The number of attributes involved

in one constraint is not limited a priori. Thus, the interdependence cardinality that the

complex utility function is capable of taking into account is unlimited. Since agent pref-

erences are complex, each agent samples its search space to find high utility areas. High

utility areas are explored by means of simulated annealing in order to find local optimal

bids. After such local optimal bids have been found, the agents find equally valued contracts

in the near region for each bid. Finally these regions are sent to a mediator which looks for

overlapping regions between agents and selects the one that maximizes the social welfare.

The negotiation strategy was enhanced in [37] by allowing several negotiation steps. Agents
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are limited with respect to the number of regions they can send to the mediator. This solves

scalability problems and keeps good deals providing that agents select the region bids to be

sent intelligently. The mediator ask agents to submit promising space regions. Then, he

finds overlapping regions between the bids received from the agents and sends them back to

the other agents. By means of simulated annealing, each agent finds its locally optimal bids

in the overlapping regions. Wide areas that include the local optimal bids are sent to the

mediator. Finally, the mediator selects the overlapping region with the highest value for the

social welfare function.

In [38], Lai et al. present a bilateral negotiation strategy based on an unbiased mediator.

The focus of the work is to provide agents with proper a negotiation protocol and strategy

that works in environments where agent preferences are complex and utility functions are not

explicitely given (preference elicitation). The only assumption is that agents can compare

which offer they prefer in a limited set of offers. The search space is divided into negotiation

baselines so that agents do not need to search in a n-dimensional space. One of the parties,

proposes an offer to the mediator in the negotiation baseline. Then, the mediator works with

both parties in order to find a point that is Pareto optimal for both parties in the current

negotiation baseline. If the point found by the mediator is not accepted by the other party

the negotiation line is updated.

1.3 K-Alternating protocol for Complex Agreements

Lai also proposed a protocol and negotiation strategy [28] based on the alternating protocol.

However, the parties are allowed to make k offers in each negotiation step in order to explore

better the negotiation space. In each step, one of the parties chooses the offer from its

iso-utility curve (points with the same utility) that is closer to the last offer received from

the opponent that reported more utility. Then, it generates k − 1 offers that are in the

neighbourhood of the chosen offer. The k offers (chosen offer plus k− 1 generated offers) are

sent to the other party. The main advantage of this method is that it is general and does
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not assume any particular mechanism to model complex preferences.

1.4 Discussion

Complex utility functions has been a hot topic in the last few years. Research in this direction

is still in its early stages and therefore there is still a long road ahead. Complex agent

preferences cannot be modeled in a perfect way, thus there are multiple valid mechanisms

that can be applied with success in different situations. The modeling mechanisms that

have been analyzed in this paper are utility graphs[34, 24], weighted constraints[36, 37] and

preference matrix[35]. On the other hand, there are works that do not take into account

any specific complex utility function. For instance, Lai et al. presented a strategy that is

independent of the underlying complex utility function [28] and a strategy that assume that

agents may not have its utility function explicitely represented [38].

In the reviewed works, we can classify the different works according to the cardinality of

the interdependence that the complex utility function is able to represent. Some works like

Klein et al. [35] are able to represent interdependencies between pairs of attributes, whereas

other works like Robu et al.[34, 24], and Ito et al.[36, 37] are not restricted in the number of

attributes that form an interdependency relationship in the complex utility function. It must

be highlighted that unrestricted interdependence cardinality in complex utility functions is

preferred due to the fact that these models are able to cope with more complex problems.

However, the number of complex utility functions with such characteristics is currently lim-

ited to weighted constraints[36, 37] and utility graphs[34, 24]. The study of new models for

complex utility functions is a potential are of future work in the area.

Another issue that can be identified in these works is whether they use an unbiased

mediator or not. Negotiations carried out by means of a mediator usually get better results

for every party. This is usually related to the fact that agents are less reluctant to share more

information with an unbiased mediator than with an opponent. Mediated strategies may

help to cope with the problem of complex utility functions since a more exploratory strategy

24



may be applied. Works that apply a mediated strategy are [36, 37, 38, 35]. Nevertheless,

an unbiased mediator is not always possible in every real-world domain. Therefore, non-

mediated strategies are also required in some domains. It has been detected that there is a

lack of works that do not use mediator. In fact, only Robu et al.[24, 34] and Lai et al. [28]

use a non-mediated strategy.

Finally, it has been detected that there is a lack of work in learning and opponent modeling

when agents use complex utility functions. The reasons for this lack are two: the recent use

of complex utility functions and the fact that learning in this domains is much more complex

than learning in the linear case. Robu et al. [34, 24] applies explicit learning mechanisms to

help the negotiation process, whereas Lai et al. [28] employs an implicit learning mechanisms

that is able to adapt to opponent preferences since it sends offers from the current iso-utility

curve that are closer to the last offers received from the opponent. The use of learning

mechanisms in the case of complex utility functions is acknowledged as a potential area of

work. A brief sketch of the discussion presented in this chapter can be found in Table 1.1.

Despite the fact that some work has been done regarding complex utility function, it

mainly focus on mediated strategies. Mediated strategies may not be available in some AmI

domains since they mainly consist of ad-hoc networks with limited bandwith. Mediated

strategies as the ones proposed above make a great use of network bandwith, and therefore

they may not suitable for AmI domains. Among non-mediated strategies, we are more in-

terested in those negotiation models that are independent of the underlying complex utility

function since they may be adapted to a wide variety of domains. However, many cur-

rent models only focus on economic efficiency and do not take into account computational

efficiency. Our goal is providing a solution for this problem.
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Chapter 2

Negotiation Models With Learning

Capabilities

One way to speed up the negotiation process and achieve good deals is to know the prefer-

ences of the opponent. Unfortunately, this is not possible in real situations. Consequently,

alternatives must be found in order to reach good agreements fast. Even although it is logi-

cal to think that parties are willing to reach good agreements fast, reality is not as perfect

as theory and parties involved in a negotiation process are reluctant to share information

about their preferences. For instance, there is certain exploitation risk when revealing infor-

mation about the reservation value and the private deadline established for the negotiation

process due to the fact that self-interested parties could simply offer opponent reservation

value when deadline is near. This forces the opponent to accept the worst deal possible.

This situation becomes more plausible in open dynamic environments where parties may not

have any information about the opponent intentions.

Albeit parties are not willing to share information with their opponents, it is still possible

to try to reach good agreements for every party. Automated learning is one of the most

researched areas in computer science. There are several algorithms and models that allow

computers to deal with a vast set of learning problems. The goal of applying learning

27



techniques to automated negotiation is to model the opponent preferences in order to reach

good deals and possibly speed up the negotiation process.

Basically, there are two different trends in automated learning. They are related to

the moment when the learning process is carried out. On one hand, the first approach is

what is known as offline learning. In offline learning, the learning process is carried out

prior to dealing with the real problem. The model remains static until it is re-trained with

new data. When applied to automated negotiation, offline learning takes place after the

negotiation process has been terminated with the new data generated from the negotiation.

The new model is used in future negotiations. On the other hand, online learning supposes

a dynamic adaptation of the model when placed in the real enviroment. More specifically,

the adaptation takes place as the negotiation process advances. The goal is to adapt the

current model, which may have been built from scratch at the start of the negotiation, to

the real preferences of the opponent. Obviously this last approach is much more interesting

from the automated negotiation viewpoint although is also harder to provide solutions with

online learning since very little information may be revealed during the negotiation process.

In this chapter some negotiation strategies that make use of learning techniques are re-

viewed. At the end of the chapter, a discussion about these works is included.

2.1 Observing concessions from opponents

Jonker et al. presented a bilateral barganing model [39] where offers for a specific negotiation

step are computed taking into account the previous offer utility and a concession step.

Each attribute adjusts its value to fit the new computed utility, always bearing in mind

the importance the agent grants to the specific attribute. In [17], Jonker et al. assume

that negotiators are willing to share certain information about their preferences before the

negotiation process. This is specially true in electronic commerce domains where the buyer

might be willing to reveal what he considers important to trusted sellers. The model assumes

independent issues that are linearly combined. The information revealed to the seller is some
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of the attribute weights of the linear utility function. During the negotiation process, the

heuristic tries to guess the importance the opponent gives to the other issues by observing

the concession rate. Seller concessions are made taking into account which attributes are

more important for the buyer. The objective of the learning process is to adapt to buyer

preferences during the negotiation process.

2.2 Similarity Criteria as implicit opponent modeling

Trade-off consists in decrementing the benefit obtained from some issues in order to get

the decremented benefit as an equivalent increase in the benefit obtained by other issues.

Intuitively, given a certain offer, a trade-off would be a different offer with exactly the same

utility. The general idea is that although we get the same utility, we may offer a bid that

is more interesting for the opponent. Faratin et al.[40] proposed a bilateral negotiation

strategy based on a trade-off mechanism. The idea behind the strategy is to offer a bid

with the same utility value than one’s last bid, but closer to the last bid received from the

opponent. The concept of similarity is adressed as a fuzzy similarity problem. The start

point for the algorithm is the last bid received from the opponent. The algorithm performs

in sequential steps. At each step random points from an iso-utility curve closer to one’s own

last offer are calculated. The bid selected as start point for the next step of the algorithm is

the one closer to the opponent last bid. This process continues until reaching the iso-utility

curve of the last offer sent. Although it does not model explicitely the preferences of the

opponent, the mechanism has certain online adaptability to the preferences of the opponent

because of its trade-off heuristic. Similarly, Lai et al.[28] proposes a negotiation strategy

where the similarity criteria is the euclidean distance. It is capable of adapting to opponent

preferences through implicit mechanisms.
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2.3 Bayesian approach

From the large set of methods that solve the problem of explicit learning, one of the tech-

niques that possibly fits better to the negotiation domain is probably the bayesian approach.

Bayes is not only a powerful learning techinque for problems where no prior information

is available, but also provides a computationally cheap update mechanism compared to

other techniques like support vector machines and neural networks. This features make the

Bayesian approach adequate for the negotiation problem.

One of the first approaches that used bayesian learning methods for automated nego-

tiation was the work of Zeng et al. [41]. Its goal is to learn the opponent’s reservation

point using Bayesian learning in bilateral negotiations. However, this work only focused on

single-issue negotiation. Later, Narayanan et al.[42] designed a negotiation strategy for bi-

lateral negotiation that aimed to provide solutions in non-stationary environments(changes

are possible during the negotiation process. Therefore, opponents may change strategies

during the negotiation process. They used Markov chains and Bayesian learning in order

to learn negotiation strategies that obtained optimal results under the above assumptions.

However, the algorithm was only devised for single-issue negotiations. Hindriks et al. [43]

presented a work where bayesian learning is used to learn attribute preferences in bilateral

multi-attribute negotiations.

2.4 Genetic Algorithms

Genetic Algorithms (GA’s) have also contributed in the state-of-art of offline learning in

automated negotiation. The seminal work of GA’s in Automated Negotiation was Oliver

et al. [44]. Their work focus in evolving negotiation strategies for bilateral multi-issue

negotiations. In their experiments, strategies were sequential rules and thus they were coded

as chromosomes of the GA. A rule is a utility threshold for the proposals that come from the

opponent and a proposal to make to the opponent in case that its offer is rejected. A random
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population of negotiation strategies is generated as initial population of the GA. In order

to obtain the fitness of each individual, it is necessary to test the strategies against several

opponents. The strategies that averaged the best pay-offs are selected as the parents of the

new population, which is created through genetic operators . Although GA’s allow to evolve

negotiation strategies (obtaining implicit adaptability to the environment) the expressivity

of the model, simple rules, is far from the complexity needed in real negotiation problems.

Faratin et al. [20] designed strategies to evaluate and generate proposals in an alternating

offer protocol for non-cooperative bilateral multi-attribute negotiation. Strategies are com-

posed of three families of tactics: according to the remaining time in negotiation, resource

quantity and the behaviour observed in the opponent. Remaining time tactics are divided

into boulware tactics, which concede slowly at early stages but do it faster as the remain-

ing negotiation time decreases, and Conceder tactics, which concede faster at early stages.

Moreover, behaviour dependent tactics are divided into telative tit-for-tat, which reproduces

the opponent behaviour in relative terms, random absolute tit-for-tat, which reproduces the

opponent behaviour in absolute terms with a random factor of increase or decrease, and

averaged tit-for-tat, which reproduces the average relative behaviour of the opponent in a

certain window of past time. Thus, Faratin et al. designed a total of six different tactics

that were linearly combined for each attribute in order to obtain its value in each negotiation

step. Matos et al. [45] enhanced Faratin’s negotiation model[20] by adding offline adaptabil-

ity. The general idea is to allow agents to evolve Faratin’s strategies [20] in order to adapt

themselves to the prevailing environment circumstances. A GA is used as a mechanism of

evolution for these tactics. The parameters of the tactics are coded as chromosomes of the

GA. In their experiments, populations of buyers and sellers with different strategies negotiate

in a round robin way. After each round robin round, strategies are evaluated by means of a

fitness function that involves the comparision between the obtained negotiation result, and

the number of messages exchanged in the negotiation process. Then, strategies are selected

to be the parents of the next population according to their fitness function. In the end, a

population of strategies implicitely adapted to the environment is obtained.

31



Tu et al. [46] worked also on evolving negotiation strategies, but the negotiation strategies

are represented as finite state machines (FSM). The general idea is the same that the applied

by Oliver et al.[44]: A initial population of individuals, coded as FSM chromosomes, is

generated randomly. After that, the evolution process starts by testing the strategies against

several opponents. One of the advantadges of using FSMs is that they allow branching and

certain memory in negotiation strategies. Arcs have an associated condition regarding the

opponent proposal that needs to be satisfied in order to move to the next state. If the

condition is satisfied, arcs have also an associated action (proposal) that is performed. After

being tested, the strategies with the best fitness are selected as the mating pool for the

genetic operators.

Other experiments involving GA and negotiation were carried out by Gerding et al.[47].

The author focuses on negotiation processes where the utility function is a linear combination

of the different issues. Furthermore, issues are real values [0,1] that indicate the value of the

issue that is assigned to one of the parties. The rest of the value is assigned to the other

party. Despite the fact that the chosen representation for negotiation strategies is the one

employed by Oliver et al.[44], the work of Gerding et al. is interesting because he introduces

the idea of fairness and social awareness in the evolution of negotiation strategies. The

first concept relates to the idea that low valued proposals have high probabilities of being

rejected. Thus, agents should make proposals having into account the probability of being

accepted by the opponent. The social awareness is the ability of agents to reject proposals

in the last round provided that they are capable of negotiate with different parties.

Despite the fact that GA’s have been used mostly in offline learning, there are also a

few works that employ GA’s as an adaptive online negotiation mechanism. Krovi et al.[48]

proposes a GA for bilateral negotiations that is performed each time a negotiation round ends.

The population of chromosomes is randomly initialized with 90 random offers and 10 heuristic

offers: the last offer of the opponent and the nine best offers from the previous GA. Adaptive

learning is achieved by mutating and crossing offers with the offer proposed by the opponent.

Choi et al.[49] enhanced the model with more learning capabilities. More specifically, it is

32



capable of learning opponent preferences by means of stochastic approximation and adapt

its mutation rate to the opponent behaviour.

2.5 Utility Graphs revisited

As we mentioned in Section 1.1, Robu et al. [34, 24] introduces the idea of utility graphs.

Besides the fact that utility graphs can be used to model complex utility functions, they

also may be used to learn opponent preferences. In Robu et al., the buyer preferences are

modelled by means of an utility graph. The model is updated as the negotiation process

advances. However, the utility graph structure must be known a priori. The model was

improved by building the buyer utility graph structure based on past negotiation data and

recommendation techniques [34].

2.6 Discussion

One of the main differences among the strategies that have been analyzed above is whether

they are applied during the negotiation process (online learning) or not (offline learning). On

one hand, strategies that use online learning include [17, 40, 48, 49, 24, 34, 41, 42, 43, 28].

Online strategies are particularly interesting from the point of view of open and dynamic

environments where it is possible that agents meet with their opponents just one or a few

times. Furthermore, the dynamicity of the environment makes it possible to observe several

behaviour or preference changes during the negotiation process. Consequently, mechanisms

that are able to adapt during the negotiation process are required. It is acknowledged that

learning during the negotiation process is much more complicated since very little useful

information may be revealed.

On the other hand, most of the works that employ offline learning methods come from the

works that use genetic algorithms. Genetic approaches are focused on learning evolution-

ary negotiation strategies that can adapt to different enviromental conditions or behaviours
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[44, 45, 46, 47]. The use of evolutionary negotiation strategies seeks two goals. First, it is

an excellent mechanism to study new negotiation strategies and behaviours that are to be

applied under certain environmental conditions. For instance, it is possible to study in the

laboratory which strategies work better against competitive agents. However, it requires

knowledge about such environmental conditions, which may be quite unpredictable in open

and dynamic environments. Second, it is possible to apply a set of reasonably good nego-

tiation strategies to a real environment and optimize them for the prevailing environmental

conditions. Nevertheless, it requires a set of negotiation strategies that are known to work

well, since randonmly generated strategies may be too poor to be applied to a real environ-

ment. Additionally, strategies do not perform equally against different types of opponents,

thus mechanisms to identify the type of opponent would be needed. Despite these incon-

veniences, GA provide a good framework to adapt existing strategies (strategy parameters,

new strategies) to the prevailing environment conditions. It is specially true when the en-

vironment is not very dynamic and the the type of behaviours that can be observed in the

environmental are well known.

It is also observable that there are strategies that maintain an explicit model of the

opponent and strategies where the model of the opponent is implicit. In the first case, we

can find works such as [17, 24, 34, 41, 43]. Keeping an explicit model of the opponent is

specially interesting in domains where it is possible to face the same opponent several times.

Explicit models allow to start with past information that may speed up the negotiation

process from the beginning. The latter case, implicit models, includes works such as [44,

40, 48, 49, 45, 46, 47, 42, 28]. Explicit models may not be the most feasible approach in

situations where it is unlikely that two opponents face more than a few times. Additionally,

domains where the prefereces of the agents are very dynamic pose also a big disadvantage

for strategies that use explicit models of the opponent since they may need to discard their

models continuosly. In this cases, the implicit modeling approach may be more adequate.

In any case, both approaches can be mixed: using implicit models for those opponents that

are not to be encountered frequently and explicit models for those opponents that are to be
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found frequently.

Negotiation strategies that apply learning mechanisms also differ in what is the object

of learning. This is usually related to whether the strategy explicitely models the opponent

or not. In the case of explicit models, the object of learning are usually parameters that

represent opponent’s preferences. Works that learn parameter of the opponent’s preferences

include [41, 43, 17, 24, 34]. However, the object of learning may vary when implicit modeling

is used. In [44, 46, 47, 42], the object of learning are negotiation strategies that are adapted to

work optimally in certain environments. Another approach is to learn optimal parameters for

one’s own negotiation strategies, as presented in [45]. Additionally, there are also negotiation

strategies that use implicit modeling and learn opponent preferences [40, 48, 49, 28].

Finally, it must be noted that most of the works focus on domains where complex utility

functions are not used [43, 45, 17, 40, 48, 49]. Additionally, some of approaches like [44,

46, 47, 42, 28] are independent of the underlying utility function. The only work that is

explicitely designed to learn in domains of complex utility functions, more specifically utility

graphs, is [24, 34]. A brief sketch of the discussion presented in this chapter can be found in

Table 2.1.

Since our goal is providing economically and computationally efficiently solutions for

automated negotiations in a wide variety of AmI environments, we need to employ learning

mechanisms. From this point of view, genetic algorithms may prove extremely interesting

since they provide an implicit learning mechanism independent of the underlying utility

function.

In the next chapter we present our bilateral negotiation model proposal. It aims to provide

solutions for AmI environments where complex utility functions are used to model agent’s

preferences. Due to the particularities of AmI domains the proposed model does not rely on

a trusted mediator, it does not assume an specific complex utility functions, it is optimized

to offer efficient economic and computational solutions, and it relies on genetic algorithms

in order to reach such solutions.
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Part III

Genetic-Aided Multi-Issue Bilateral
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Chapter 3

Negotiation Model

In this chapter we describe the proposed negotiation model. Negotiation models are com-

posed of a negotiation protocol and a negotiation strategy. On the one hand, the negotiation

protocol defines the communication rules to be followed by the agents that participate in the

negotiation process. More specifically, it states in which moments the different agents are

allowed to send messages and which kind of messages the agents are allowed to send. For

instance, the Rubinstein alternating protocol specifies [50] that agents are allowed to send

one offer in alternating turns. Basically, the negotiation protocol acts as mechanism for the

coordination and regulation of the agents that take part in the negotiation process.

On the other hand, the negotiation strategy defines the different decisions that the agent

will make at each step of the negotiation process. It includes the opponent’s offers acceptance

rule, the selection of which offers are to be sent to the opponent, the concession strategy,

the decision of wheter the agent should continue in the negotiation process or not, and so

forth. Therefore, the negotiation strategy includes all the decision-making mechanisms that

are involved in the negotiation process.

The negotiation protocol used can be categorized as an alternating protocol for bilateral

bargaining [50]. More specifically, the protocol used is the k-alternating protocol proposed

by Lai et al. [28]. The proposed negotiation strategy belongs to the family of negotiation
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strategies that use a similarity heuristic in order to propose new offers to the opponent

[21, 28].

3.1 Negotiation Protocol

As it was mentioned above, the negotiation protocol belongs to the family of alternating

protocols for bilateral bargaining. In this kind of protocols, two different agents negotiate

without the need of a mediator. As it has been previously stated, non-mediated strategies

are more adequate for AmI applications since users enter and leave the AmI system in a very

dynamic way. Thus, it may not be feasible to find a trusted mediator for every possible pair

of agents. Furthermore, in some AmI domains as shopping malls, where there are different

competing vendors and lots of potential users, it is difficult to determine who will mediate

the negotiation process.

The protocol used is the k-alternating protocol proposed by Lai et al. [28]. This protocol

is composed of several rounds where the agents exchange offers in an alternating way. One

of the agents, called the initiator, is responsible for starting the current round. He can

accept one of the previous offers received from the opponent in the last round, exit from

the negotiation process, or send up to k different offers to the opponent agent. Once the

initiator has performed one of the possible actions, the opponent agent is able to accept one

of the offers he has just received, exit from the negotiation process or propose to the initiator

up to k different offers. Then, the round ends and a new round is initiated by the initiator

agent. The negotiation process ends when one of the agents accepts an offer (the negotiation

succeeded) or one of the agents decides to abandon the negotiation (the negotiation failed).

Some of the properties of the k-alternating protocol proposed by Lai et al. are:

• The protocol is adequate for situations where both agents are equal in power (e.g. none

of them has the monopoly over a resource).

• Each agent is capable of sending up to k different offers, being more probable that one
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AGENT A AGENT B

Propose (OfferA1,OfferA2,OfferA3)

Propose (OfferB1,OfferB2,OfferB3)

Propose (OfferA4,OfferA5)

Accept (OfferA4)

Figure 3.1: An example of two agents in the k-alternating protocol proposed by Lai et al.

[28]

of the proposed offers satisfies the requirements of the opponent agent.

• Since k different offers are proposed in each agent’s turn more information about oppo-

nent preferences can be inferred, increasing the chances of finding a win-win situation.

This may produce faster agreements, which is inherently interesting for every domain

but particularly for AmI domains since it may reduce the number of messages ex-

changed and thus the bandwidth consumption.

An example of two agents negotiating with a 3-alternating protocol (k = 3) can be ob-

served in Figure 3.1. Agent A is the initiator of the negotiation round, whereas Agent B is

the responding agent. The first round starts with 3 offers proposed by the initiator. Once the

offers arrive to Agent B, he decides whether he should accept one of them or not. Since the

3 offers are not interesting for Agent B, he decides to counteroffer 3 different offers. When

the 3 first offers from Agent B arrive to Agent A, the second round starts. Due to the fact

that none of the proposed offers by Agent B are interesting for the initiator, he decides to

send 2 offers. The 2 offers from the initiator arrive to Agent B, whom analyzes the offers in

order to determine if they are interesting. Since he found out that OfferA4 is interesting, he

decides to accept it and thus the protocol ends with an agreement.
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3.2 Negotiation Strategy

The proposed negotiation strategy can be classified into the group of strategies that use sim-

ilarity heuristics to propose new offers to the opponent [21, 28]. The proposal complements

some of the benefits introduced in the inspiring work of Lai et al. [28], making it specially

interesting for AmI environments. The goal is to optimize the computational resources while

maintaining a good performance in the negotiation process. The main traits of the proposed

model are twofold. Firstly, it is not necessary to sample the entire utility function. Secondly,

the proposed strategy provides an implicit learning mechanism that guides the offer sampling

and which of the offers sampled are to be sent to the opponent.

The different decision-making mechanisms of the negotiation strategy can be grouped

according to the period where they are applied: pre-negotiation and negotiation. The former

group of decision making is applied before the negotiation process starts. Basically, since

utility functions are complex and it is not feasible to completely explore them, each agent

samples its own utility function by means of a niching GA (self-sampling).

The latter group of mechanisms is applied during the negotiation process. It includes the

acceptance criteria for opponent offers, the concession strategy, the evolutionary sampling,

and the selection of which offers are to be sent. The most remarkable part is introduced

with the evolutionary sampling : genetic operators are carried out over received offers and

one’s own offers in order to sample new offers that may be of interest to both parties. The

evolutionary sampling acts as an implicit learning mechanism of opponent’s preferences. The

result of the evolutionary sampling may be used afterwards when the offers to be sent to the

opponent are selected. A brief outline of the proposed strategy can be observed in Algorithm

1. A more detailed outline of the strategy used before the negotiation process and during

the negotiation process can be observed in Algorithms 2 and 3.
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Algorithm 1 A brief outline of the negotiation strategy

Negotiation Strategy

Pre-negotiation

1.Self-sampling

Negotiation Process

2.Receive opponent offer(s) in case there is any offer

3.Acceptance criteria: Accept and offer and end the negotiation, or reject and continue the

negotiation process

4.Concession strategy

5.Evolutionary sampling

6.Select which offers to send

7.Send offer(s) and go to step 2
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3.2.1 Pre-negotiation: Self-sampling

When an agent uses complex utility functions to represent its preferences it may be difficult

to find own offers with good utility. If the number of issues is not very large the complete

sampling of the utility function may be feasible. However, when the number of issues is large,

this complete sampling may be an extremely expensive process. For instance, a complete

sampling of a negotiation domain formed by 10 integer issues from 0 to 9 requires sampling

1010 offers. The cost associated to this sampling can be exorbitant, especially if agent

preferences change with a frequency that is greater than the time invested in the sampling.

Furthermore, this sampling is unacceptable for AmI domains. Not only it takes too much

computational time and power, but it also would need too much storage for the limited

devices that are usually found in these domains. The sampling process can be reduced by

skipping offers that are of very low quality for the agent (i.e., offers with utility equal to

zero).

A possible solution to this problem is to use mechanisms that enable to sample good offers

for the negotiation process and skip low quality ones. Due to the highly non-linear nature

of complex utility functions, non-linear optimizers are required for this task. The main goal

is to sample a set of different offers that have good utility and are significantly different

because these offers may point to different regions of the negotiation space where a good

deal may be found for the agent.

In this work, a genetic algorithm (GA) was used to solve this problem. GA’s are general

search and optimization mechanisms based on the darwinian selection process for species

[51, 29]. Genetic operators such as crossover, mutation, and selection are employed in order

to find near-optimal solutions for the required problem. Nevertheless, classic GA’s pose the

problem that the entire population converges to one optimal solution. As it has been stated,

different interesting offers for the negotiation process need to be explored. Niching methods

are introduced to confront problems of this kind [30, 52]. These methods look to converge

to multiple, highly fit, and significantly different solutions.
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A possible family of niching methods for GA’s is the crowding approach [52]. Crowding

methods achieve the desired result by introducing local competition among similar individ-

uals. One advantage of crowding methods is that they do not require parameters beyond

the classic GA’s. Euclidean distance is usually used to assess the similarity among indi-

viduals. Probabilistic Crowding (PC) and Deterministic Crowding (DC) [52] are two of the

most popular crowding methods. They only require a special selection rule with respect to

classic GA’s. Both rules are employed to select a winner given n different individuals. On

the one hand, DC selects the individual that has the highest fitness value, resulting in an

elitist selection strategy. On the other hand, PC allows lower fitness value individuals to be

selected as winners with a certain probability. This probability is usually proportional to

the fitness of each individual. PC behaviour is more exploratory than DC . In both cases, the

niching effect is achieved by applying either of the two rules to those individuals that are

similar. Each parent is usually paired with one of its children in such a way that the sum

of the distances between pair elements is minimum. For each pair, one of the two crowding

rules is employed to determine which individuals will form the next generation. DC and PC

can be observed in more detail in Equations 3.1 and 3.2, respectively.

Dc(s1, s2) =


s1 f(s1) > f(s2)

s2 f(s1) < f(s2)

s1 ∨ s2 other

(3.1)

Pc(s1, s2) =



s1 f(s1) > f(s2) ∧ rand ≤ p1

s2 f(s1) > f(s2) ∧ rand > p2

s2 f(s1) < f(s2) ∧ rand ≤ p2

s1 f(s2) < f(s1) ∧ rand > p1

s1 ∨ s2 other

(3.2)

with pi =
f(si)

f(si) + f(si′)
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where rand ∈ [0, 1], f(.) is the fitness function, s1 and s2 are two solutions, and p1 and p2

are the probability of acceptance of both solutions given the pair (s1, s2).

The designed mechanism uses a GA that employs crowding methods to find significantly

different good offers. This GA is individually executed by the agent before the negotiation

process begins. The chromosomes of this GA represent possible offers in the negotiation

process, whereas the fitness function used is one’s own utility function. A portfolio with DC

and PC is used. The population has a fixed number of individuals and the whole population

is selected to form part of the genetic operator pool. Pairs of parents are selected randomly

and multi-point crossover or mutation operators are applied over them. In both cases, the

result is two children. Each parent is paired with the child that is more similar to it according

to euclidean distance. PC or DC is applied to each of the pairs according to a stablished

probability pdc and 1 − pdc respectively. Those individuals that are selected as winners by

the crowding replace the current generation. The stop criterion was set to a specific number

of generations. At the end of the process, the whole population should have converged to

different good offers that are to be used by the negotiation process as an approximation to

the real utility function of the agent. This population, called P , is used as an input for

the negotiation process. A more detailed outline of the proposed GA can be observed in

Algorithm 2.

3.2.2 Negotiation: Concession strategy

A concession strategy determines which utility the agent will try to achieve at each negotia-

tion step. The agent usually proposes offers that have a utility equal or above the utility level

defined by its concession strategy at a specific negotiation round. In this work, we assume a

time-dependent strategy, where the utility required by each agent depends on the remaining

negotiation time. This kind of concession strategies are adequate for environments such as

AmI, where time is a limitation (e.g., limited power devices, goods that loose their value as

time passes, real-time environments, etc.). Some examples of concession strategies are sit-
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Algorithm 2 Pre-negotiation: Genetic algorithm with niching mechanism. Its goal is to

sample the agent utility function

P : Explored preferences, good quality offers Dc : Deterministic crowding rule

Pc : Probabilistic crowding rule pcr : Probability of crossover operator

pdc : Probability of DC n : Current number of generations

nmax : Maximum number of generations pairi : Pair of solutions

Initialize P

n = 0

Do

n = n + 1

shuffle P

Paux = ∅

i = 1

While i ≤ |P | − 1

p1 = Pi

p2 = Pi+1

If Random() ≤ pcr

(c1, c2) = crossover(p1, p2)

Else

c1 = mutate(p1)

c2 = mutate(p2)

EndIf

(pair1, pair2) = argmin

pi 6= pj

ck 6= cl

||pi − ck||+ ||pj − cl||

If Random() ≤ pdc

Add(Paux, Dc(pair1))

Add(Paux, Dc(pair2))

Else

Add(Paux, Pc(pair1))

Add(Paux, Pc(pair2))

EndIf

i = i + 2

EndWhile

P = Paux

While n ≤ nmax

Return P

47



and-wait [53] (no concession until the deadline, e.g. one of the agents has monopoly), linear

(same concession rate at each step), boulware [20, 6] (no concession until the last rounds,

where it quickly concedes to the reservation value), and conceder [20, 54] (at the start, it

quickly concedes to the reservation value).

One of the traits of similarity-based strategies is that they are usually independent of the

underlying concession strategy. However, this work assumes an environment where agents

have similar market power (similar concession rate), and similar computational resources

(similar deadlines). Thus, a linear concession strategy is assumed.

In each negotiation round, the agents concede according to their strategy until a private

deadline is reached. The minimum utility that an agent a demands for a negotiation round

t can be formalized as follows:

Ua(t) = 1− (1−RUa)(
t

Ta

) (3.3)

where Ua(t) is the minimum demanded utility level for agent a at negotiation round t, RUa

is the reservation utility, and Ta is the private deadline of the agent.

3.2.3 Negotiation: Acceptance criteria

The acceptance criteria for an agent usually depends on its concession strategy. Normally, an

opponent offer is accepted if it provides a utility that is equal or greater than the demanded

utility for the next negotiation round. Consequently, given the set of offers X t
b→a received

by agent a from agent b at instant t, the acceptance criteria for agent a can be formalized

as depicted in the following expression:

Acceptta(X t
b→a) =


accept Va(xt,best

b→a ) ≥ Ua(t + 1)

reject otherwise

(3.4)

where Acceptta(X t
b→a) is the offer acceptance function, Va(x) valuates the utility of an offer,

xt,best
b→a is the best offer received from the opponent at negotiation round t, and Ua(t + 1) is
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the utility demanded for the next negotiation round.

3.2.4 Negotiation: Evolutionary sampling

One of the keys of the proposed strategy is the evolutionary sampling. It provides an implicit

mechanism for learning opponent preferences and making an intelligent sampling. Basically,

it is based in the application of some genetic operators to offers received from the opponent

in the last negotiation round and one’s own good offers from P . The idea behind the

evolutionary sampling is that offers generated by this method have genetic material from

the opponent and one’s own agent. Therefore, these offers may yield a greater probability

of being accepted by the opponent that offers that have been sampled in a blind way. The

new offers are added to a special population called Pevo which contains offers that have been

generated by genetic operators.

Let us consider X t
b→a = [xt,1

b→a, x
t,2
b→a, ..., x

t,k
b→a], which is the set of offers sent by agent b

to agent a at negotiation round t, and U(t) the current desired utility to generate offers at

negotiation round t. For each offer xt,i
b→a, a total of M offers are selected from the current

iso-utility curve ICP (offers with a utility equal to U(t)) defined in the population P . These

M offers minimize the expression:

argmin

C ∈ ICP

|C| = M

M∑
j=1

||xt,i
b→a − cj|| (3.5)

where C is the set of M different offers, and ||xt,i
b→a−cj|| is the euclidean distance between one

of the offers in C and the offer received from the opponent. Thus, these M offers are the most

similar ones to xt,i
b→a from iso-utility curve in P and they will be involved in the evolutionary

process. Offers are selected from the current iso-utility curve since offers with much greater

utility may generate new offers with a utility that is no longer useful in the negotiation

process (e.g. a utility greater than the current utility), and offers with lower utility may
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2 10 1 18 5

8 11 4 6 0

xt,i
b→a

cj

Agent proposals: Each phenotype corresponds to the 
value of a negotiation issue

Total number of issues from the opponent (agent b): 3
Specific issues from the opponent (agent b) proposal: 1, 4, 5
Specific issues from agent's a proposal: 2, 3

Crossover

2 11 4 18 5s1

Figure 3.2: An example of a crossover operation

produce new offers that are not to be used until the last rounds of the negotiation process.

Furthermore, the M selected offers are the most similar since applying crossover operators

over offers that are too different may disrupt the quality of the solution for both agents (the

resulting offer is too far from both agents’ offers).

Once the M closest offers have been selected, a total of ncross crossover operations are

performed for each pair (xt,i
b→a, cj), where cj ∈ C. The crossover operator takes two parents

and generates one child. More specifically, the number of issues that come from xt,i
b→a is

chosen randomly from 1 and N − 1, with N being the number of issues. The rest of the

issues come from cj. Which particular issues come from each parent is also decided randomly.

This way, each agent’s preferences are taken into account in an equal statistically manner.

Each child is added to a special pool, called Pevo, that contains new offers sampled during the

different evolutionary sampling phases. An example of a crossover operation can be observed

in Figure 3.2.

A total of nmut mutation operations are carried out for each generated child by crossover

operations. The mutation operator changes issue values randomly, according to a certain
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probability of mutating individual issues (pattr). When pattr is low, mutated offers are close

to the original offer, so the effect is the exploration of the neighbourhood of the offer. The

operator is applied nmut times to each child that is produced by crossover operations and to

the original offers from the opponent. Mutation also generates new children that are added

to the special pool Pevo

Note that no offer from Pevo is discarded even although their utility may be considered

too low for the current negotiation round. The reason for this mechanism is that offers

that are not currently acceptable may be interesting in future negotiation rounds due to

the concession strategy. Furthermore, since they have genetic material from the opponent’s

offers, they are more likely to be accepted.

It can be observed in Algorithm 3 that if the negotiation process lasts nround rounds, the

Evolutionary Sampling will have explored a total number of offers that is equal to:

Samplesevo = nround ∗ ((k ∗M ∗ ncross) + (k ∗M ∗ ncross) ∗ nmut + k ∗ nmut)

= nround ∗ k ∗ (M ∗ ncross ∗ (1 + nmut) + nmut)

Then, the number of offers sampled during the negotiation process depends on the number

of rounds that the negotiation lasts, k, M , and the number of genetic operators that are

performed per offer selected from the iso-utility curve.

3.2.5 Negotiation: Select which offers to send

The next step in specifying the negotiation strategy consists of defining the mechanism to

propose new offers. In this case, it is necessary to devise a mechanism that is capable of

proposing up to k different offers to the opponent and taking into account the preferences

of the opponent. The applied heuristic takes into account the k offers received from the

opponent and the offers in P and Pevo.

In order to select these offers, k offers from the current iso-utility curve are sent. More

specifically, two different iso-utility curves are calculated. The first one is the iso-utility
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curve calculated using offers in P , called ICP . The second one is the iso-utility curve

calculated using offers in Pevo, called ICE. Basically, the first iso-utility curve has offers that

were generated during the self-sampling (only taking into account one’s own preferences),

whereas the second iso-utility curve only has offers that were generated in the evolutionary

sampling (they may take into account both agents’ preferences). The negotiation strategy

defines a proportion of ppevo offers to come from ICE. The rest of the offers come from ICP .

The offers selected from ICE are those that minimize the distance to any offer received

from the opponent in the previous negotiation round. This selection may be formalized as:

argmin

C⊂ICE

|C|=ppevo∗k

(
C∑

j=1

min
x∈Xt

b→a

||cj − x||

)
(3.6)

On the other hand, offers are also selected from ICP . The total number of offers corre-

sponds to a proportion that is equal to 1− ppevo. In this case, offers that are the closest to

any offer received from the opponent in the previous negotiation round are selected. This

selection can be formalized as:

argmin

D⊂ICP

|D|=(1−ppevo)∗k

(
D∑

j=1

min
x∈Xt

b→a

||dj − x||

)
(3.7)

The parameter ppevo determines how relevant are the new offers sampled during the evo-

lutionary sampling with respect to the offers sampled before the negotiation process. When

ppevo = 0, the strategy ignores the results that come from Pevo. Consequently, only offers

that were sampled in the pre-negotiation phase (self-sampling) are sent to the opponent. In

this particular case, the strategy is equivalent to a negotiation strategy that only samples

before the negotiation process and does not take into account opponent’s preferences. In

contrast, when ppevo = 1, the offers sampled during the evolutionary sampling are the only

ones taken into account. In any case, ppevo is a parameter to be adjusted.
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Algorithm 3 Negotiation strategy during the negotiation process

P: Offers from self-sampling Pnew: Offers from evolutionary sampling

k: Number of offers of the protocol M: Number of selected offers

ncross: Number of times to crossover nmut: Number of times to mutate

ppnew: Proportion of offers from Pnew

Receive Xt
b→ a

If Va(xt,best
b→ a) ≥ Ua(t + 1) then Accept

Update current utility t=t+1

/*Evolutionary sampling*/

For each xt,i
b→ a in Xt

b→ a

C = argmin

C⊂ ICP

|C|=M

PM
j=1 ||x

t,i
b→ a − cj ||

For each cj in C

Repeat ncross times

s1=Crossover(xt,i
b→ a, cj )

If s1 * Pnew then Add(Pnew,s1)

Repeat nmut times

s2=Mutate(s1)

If s2 * Pnew then Add(Pnew,s2)

EndRepeat

EndRepeat

EndFor

Repeat nmut times

s1=Mutate(xt,i
b→ a)

If s1 * Pnew then Add(Pnew,s1)

EndRepeat

EndFor

/*Select which offers to send*/

k1 = ppnew ∗ k

X1 = argmin

C⊂ ICE

|C|=k1

PC
j=1 min

x ∈ Xt
b→ a

||cj − x||

k2 = (1− ppnew) ∗ k

X2 = argmin

D⊂ ICP

|D|=k2

PD
j=1 min

x ∈ Xt
b→ a

||dj − x||

Xt+1
a→ b = X1 ∪ X2

Send Xt+1
a→ b
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3.3 Conclussions

This chapter has described the main traits of the proposed bilateral negotiation model for

AmI environments. As it has been pointed out thorough the chapter, the main traits of

the proposed model are: independence of the underlying complex utility function, aimed

to achieve computationally and economically efficient solutions (accomplished by means of

learning mechanisms provided by GA).

We have explained the employed negotiation protocol. It is adequate for situations where

both agents are equal in power, and, since up to k different offers are sent, it is more adequate

to explore opponent preferences and reach faster agreements. After that, the negotiation

strategy has been described in depth. First, each agent samples its own complex utility

function in order to obtain their own good offers. A Niching GA is used since it is able to

obtain good offers that are significantly different. During the negotiation process, each agent

performs genetic operators over own good offers and offers sent by the opponent. The aim of

these operators is finding new offers which are interesting for both agents. Offers sent to the

opponent are selected from the current iso-utility curve. In the next chapter the proposed

model is tested in several scenarios to check its performance.
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Chapter 4

Experiments

The performance of the devised strategy is detailed in this chapter. The proposed negotiation

model was tested against the weighted constraint model proposed by Ito et al. [25]. This

model allows to represent unrestricted interdependence relationships among the negotiation

issues. Furthermore, if the number of constraints is large, it can represent highly non-linear

utility functions. Therefore, it poses a proper testbed for the proposed strategy. Nevertheless,

as the work of Lai et al. [28], the proposed negotiation model is general and does not depend

on a particular utility function. The model of Ito et al. was selected as a testbed because

it provides a well studied utility function [25, 26, 27] that holds enough complexity to study

the real performance of the negotiation model.

First, the weighted constraint model is briefly introduced. After that, the negotiation

setting employed in the experiments is briefly described. Following, the different experiments

and their results are presented. Finally, a brief discussion that summarizes the results of the

experiments is included.
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4.1 Complex utility functions: Weighted constraint model

The weighted constraint model was first introduced by Ito et al.[25] as a complex utility

function to model agent preferences. Let us consider a negotiation model where the number

of issues is N , si represents the i-th issue, each issue has a domain si ∈ [0, X] that sets its

maximum and minimum value, and ~s = (s1, s2, ..., sN) represents a particular offer. These

settings conform a N-dimensional space for the utility function.

In the weighted constraint model, a constraint cl represents a specific region of the space.

Whatever point of the space enclosed in that region is said to satisfy the constraint cl.

Basically, the term constraint represents an interdependence relationship among the nego-

tiation issues. Each constraint cl has a certain value v(cl, ~s) that is added to the utility

of ~s when the constraint is satisfied by the point ~s. For instance, a constraint defined as

cl = (1 ≤ s1 ≤ 10 ∧ 3 ≤ s2 ≤ 4) and v(cl, ~s) = 10 would hold a utility of 10 for the point

(2,3) of the space.

A utility function in the weighted constraint model is formed by l constraints whose

values are summed up whenever the constraints are satisfied. The utility of a point ~s given

l constraints can be defined as:

U(~s) =
∑
cl∈L

v(cl, ~s) (4.1)

where ~s is the point/offer, cl is a constraint, L is the set of constraints, and v(cl, ~s) is the

value of the constraint if it is satisfied (0 otherwise).

As it was stated in [25], although the expression seems linear, it produces a non-linear

utility space due to the interdependence among the issues represented by the constraints.

Furthermore, the utility function may generate spaces with several local maxima, which

makes the problem highly non-linear and very difficult to optimize. Additionally, the agents

do not have any knowledge about the possible constraints of the opponent, thus the problem

of negotiation is still more difficult.

56



4.2 Negotiation settings

The aim of these experiments was to evaluate whether or not the proposed model is capable

of working in domains where the agents’ utility functions are highly non-linear. For that

purpose, different negotiation cases where randomly created:

• Number of issues N = [4-7].

• Integer issues. si ∈ [0, 9].

• L = N∗5 uniformly distributed constraints per agent. There are constraints for every

possible interdependence cardinality. For instance if N=4, there are 5 unary con-

straints, 5 binary constraints, 5 trinary constraints and 5 quaternary constraints.

• v(cl, .) for each n-ary constraint drawn randomly from [0, 100 ∗ n].

• For every constraint, the constraint width for each issue si is uniformly drawn from

[2, 4]. For instance, if the constraint width for issue s1 is 3, then (0 ≤ s1 ≤ 3),

(1 ≤ s1 ≤ 4), (2 ≤ s1 ≤ 5), (3 ≤ s1 ≤ 6), (4 ≤ s1 ≤ 7), (5 ≤ s1 ≤ 8) and (6 ≤ s1 ≤ 9)

are all of the possible configurations for issue s1 in the constraint (just one is used in

the constraint).

• Agent deadline T = 10. Agents do not know their opponent’s private deadlines.

• Agent reservation utility RU = 0. Agents do not know their opponent’s private reser-

vation utilities.

• Agents do not know their opponent’s utility functions

For each number of issues, a total of 100 negotiation cases were generated with the above

settings. The execution of each case was repeated 30 times in order to take into account the

possible differences between different executions of the methods.

In order to evaluate the quality of the agreements found by the participant agents, some

measures were gathered at the end of each negotiation.
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• Euclidean distance to the closest Pareto frontier point [55]. This is a measure of

economic efficiency for agreements. The closer to the pareto frontier, the better.

• Euclidean distance to the Nash Product [55]. Since both agents have the same conces-

sion strategy and the same deadline it is also feasible to study the distance to the Nash

Product. It is the point that maximizes the product u1 ∗ u2 in the Pareto Frontier,

where u1 is the utility of agent 1, and u2 is the utility of agent 2.

• Number of negotiation rounds. Faster agreements are preferred since a less number of

messages are exchanged, less bandwidth is needed, and limited devices need less power

to send messages.

4.3 Results

The proposed strategy, which will be named as Evolutionary Sampling or ES, was compared

with two different negotiation models. The first strategy is an implementation of the general

framework proposed by Lai et al. [28]. This model is provided with the whole sampling

of the utility function, so that it can completely calculate iso-utility curves. It is used as

a measure of how close the proposed strategy is to the ideal case where all of the offers

are available. The second model assumes that it is not possible to completely sample all of

the offers. Therefore, it samples before the negotiation process by means of a niching GA

(self-sampling) and uses the similarity heuristic (ppevo = 0) during the negotiation process,

which will be named as Non Evolutionary Sampling or NES model. The number of samples

explored before the negotiation process by the NES model is set equal to the number of

samples explored by the ES model (|P |+Samplesevo). Consequently, both the NES and ES

model yield the same computational cost in every experimentation.

Four different experiments were carried out in order to test the proposed model. In the

first experiment, the three different models are compared as the number of issues is increased.

In the second experiment, the impact of the proportion of offers (ppevo) that are sent from
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the special pool Pevo in the ES model is studied. Following, the three models are compared

as the number of proposals k increases. Finally, the ES and the NES model are compared

as the size of the population (|P |) provided by the self-sampling increases .

4.3.1 Experiment 1: Performance study on the number of issues

The goal of this experiment is studying how the proposed strategy behaves for negotiations

with different number of issues N = {4, 5, 6, 7}. It is important that the proposed model is

capable of properly handle negotiations with multiple issues since most real world domains,

including AmI domains, need to reach agreements for multiple issues. A negotiation setting

where agents are limited to k = 3 proposals per negotiation round is used. The three different

models were tested during this experiment.

The parameters of the self-sampling were set to nmax = 100, pdc = 80% and pcr = 80%.

The number of samples optimized before the negotiation process was set to |P | = 128 for

the ES model and to |P | = 128 + Samplesevo for the NES model.

The parameters of the ES were set to M = 5, ncross = 4, nmut = 4, pattr = 30%,

and ppevo = 100%. Therefore, all the offers are sent from the samples generated by the

evolutionary sampling carried out during the negotiation process.

The distance to the Nash Product, the distance to the closer Pareto Frontier Point, and

the number of negotiation rounds were measured for the three models. The results for this

experiment can be found in Figure 4.1. Intuitively, since the number of offers sampled

remains constant and the number of issues increases, the performance of the NES and the

ES model should be worsened with respect to the results achieved by the model of Lai et al.

However, the results for the ES do not comply with this intuitive hypothesis. As it can be

observed, even although the proposed model and the NES model explore the same number

of offers, the NES obtains worse results than the other two models. This is particularly true

as the number of issues increases since the performance of this method drastically decreases.

On the contrary, the ES model is capable of achieving statistically equal results to the model
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of Lai et al., which can access the whole iso-utility curve. Nevertheless, the proposed model

explores far fewer offers than the complete sampling of the utility function, specially for

larger number of issues. For instance, when N = 6, Lai et al. has access to 106 offers,

whereas the proposed model only has sampled an average of 1510 samples (128+ average

Samplesevo).

The ES model has been able to achieve similar results to the case where the full iso-

utility curve can be calculated, while maintaining the offers sampled in a small number. This

result is particularly interesting for AmI domains where agents may be executed in devices

with low computational and storage capabilities. Therefore, less samples mean less power

consumption and less capacity needed to store them. Moreover, it must be also highlighted

that the number of rounds was also lower than the one obtained by NES, consequently

it means less number of messages sent, less bandwidth needed, and of course less power

consumption by the limited devices.

The reason for this improvement is the intelligent sampling achieved by the use of ge-

netic operators during the negotiation process. On the contrary, sampling only before the

negotiation process leads to worse results since it is not capable detecting which offers will

be interesting for the negotiation. Both, the ES and the NES model, have the same com-

putational cost, but the ES is obviously preferred since it is capable of achieving a better

performance.

4.3.2 Experiment 2: Performance study on ppevo

In this case, the experiment’s goal is to study how relevant is the proportion of offers that are

sent from the offers sampled during the negotiation process (governed by the parameter ppevo)

in the ES model. Since all of the configurations sample new offers during the negotiation

process, all of them yield a very similar computational cost. In fact, it may only be different

if one of the configurations obtains a significantly different number of negotiation rounds.

Consequently, the main subject of study in this scenario is the economic efficiency (distance
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Figure 4.1: Evolution of the distance to the Nash Product, distance to the closer Pareto

Point, and number of negotiation rounds in Experiment 1. The graphic shows the mean and

its associated confidence intervals (95%)

to Nash and Pareto Frontier), although some improvements in the computational cost may

be observed due to a lower number of rounds.

The same conditions from the previous experiment were set (k = 3 and N = {4, 5, 6, 7}),

and the same configuration parameters were set for the ES (M = 5, ncross = 4, nmut = 4,

and pattr = 30%). However, in this scenario we compare the ES model results when 1 out of

3 offers (ppevo = 30%), 2 out of 3 offers (ppevo = 50%), and 3 out of 3 offers (ppevo = 100%)

come from the offers sampled during the evolutionary sampling phase.

The results for this second scenario can be observed in Figure 4.2. The graphic shows that
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the three different configurations yield similar results for the distance to the Nash Product,

the distance to the closer Pareto Frontier Point, and the number of negotiation rounds. This

similarity is explained due to the fact that, most of the times, the offer accepted by the op-

ponent is the closest one from the evolutionary sampling population (Pevo). Therefore, it is

always sent as long as the results from the evolutionary sampling are not ignored. Neverthe-

less, it seems that higher values of ppevo have a slightly better economic and computational

performance than lower ones. The reason for this slight improvement is that in some cases

the offer preferred by the opponent may be the second or third closest from Pevo. Due to

this small improvement, higher values of ppevo are preferred in practice.
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Figure 4.2: Evolution of the distance to the Nash Product, distance to the closer Pareto

Point, and number of negotiation rounds in Experiment 2. The graphic shows the mean and

its associated confidence intervals (95%)
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4.3.3 Experiment 3: Performance study on k

The next experiment aims to study the performance of the three different models (Lai et al.,

NES, and ES ) as the limit in the number of offers k sent per agent’s round is increased. As

it was mentioned, the number of offers sent may help to reach agreements faster since agents

are capable of finding win-win situations. This is very important in AmI environments where

devices have limited power and their running time must be optimized. In Lai et al. [28], it

was shown how higher values of k helped to reach better agreements. In this scenario, the

experiment is repeated in order to evaluate if the differences among the three models still

hold for different values of k.

The studied values of k were 1, 3, 5, and 7. The rest of the negotiation setting was

configured to use negotiation cases with N = 6 issues. The parameters of the self-sampling

were set to the values employed in the previous tests except |P | = 256. The parameters of

the ES were set to the same conditions described in Experiment 1.

As it can be observed in Figure 4.3, the three models achieve better results as k increases.

This results agree with the ones presented in [28]. Although all of the models improve, the

differences observed in Experiment 1 still hold for this scenario. The NES model gets worst

results than Lai et al. and the proposed model. On the contrary, the ES obtains results that

are statistically equivalent to the case when the full iso-utility curve can be calculated. As

a matter of fact, for higher values of k the proposed model gets slightly better results than

Lai et al. Nevertheless, the difference between the two of them are not significant enough to

be considered as relevant.

It must be noted again that the number of offers sampled for ES and NES is the same

and it is much lower than the complete sampling of the utility function. For instance, in

this scenario, the complete sampling consists of 106 offers, whereas the other two methods

sampled an average of 773 samples for k = 1, 1653 for k = 3, 2497 for k = 5, and 3357 for

k = 7.
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Point, and number of negotiation rounds in Experiment 3. The graphic shows the mean and
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4.3.4 Experiment 4: Performance study on |P |

This last experiment was designed to assess the influence of the population optimized by

the self-sampling on the performance of the ES model and the NES model. It is specially

relevant to see how many samples needs the NES model to achieve similar results to the

ones obtained by the model proposed in this thesis. Obviously, more population means more

storage needed and more computational cost since it needs to optimize more samples.

The average number of samples explored was analyzed for a negotiation setting where

N = 6 and k = 3. The settings used for the self-sampling and the ES in previous experiments
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were repeated for this scenario. The number of sampled offers was increased by allowing more

offers to be optimized in the self-sampling (|P | = 128, 256, 512, 1024, 2048, 4096).

The results for this experiment can be observed in Figure 4.4. The x axis of the graphics

show the average number of offers sampled by both models, thus it shows |P |+averagerounds∗

Samplesevo. In the case of the NES model all of the samples were produced before the

negotiation process started. Several observations can be made from the data shown in the

graphics. On the one hand, it seems that the size of |P | does not affect too much the

performance of the ES model, since it is more dependent on the exploration carried out

during the negotiation process and does not need as much sampling to get results similar

to the case where the full iso-utility curve can be accessed. Therefore, the behaviour of the

model remained almost constant for different configurations of |P |. Again, this behaviour is

very adequate for AmI environments since the model can properly work with configurations

that do not require too many computational resources. On the other hand, the NES model

performance increased along with the number of offers sampled. It must be noted that when

the number of samples for both methods was 5506, the two of them obtained very similar,

almost equivalent, results. Therefore, the NES needed 5506 samples to achieve similar results

to the same results obtained by the ES model for 1510 samples. It can be concluded that

NES needs 5506
1510

= 3.64 times more samples to achieve similar results to ES.

4.4 Discussion

Ambient Intelligence domains are characterized as domains where computational resources

are of extreme importance. Users interact with its environment through devices with limited

capabilities, thus the efficient use of resources is crucial. Furthermore, the environment

infrastructures are usually connected by means of a limited bandwidth wireless connection.

Thus, network resources must also be optimized.

The results obtained by the proposed model, while maintaining fairly good economic

performance, cope with the problems found in AmI environments. If we assume that limited
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Figure 4.4: Evolution of the distance to the Nash Product, distance to the closer Pareto

Point, and number of negotiation rounds in Experiment 4. The graphic shows the mean and

its associated confidence intervals (95%)

devices cannot completely sample agent’s utility function and store those samples, some

mechanisms are needed to samples as few offers as possible. A straightforward method

would be sampling some offers before the negotiation process, which is precisely what the

NES model does. However, this sampling does not take advantage of the information revealed

by the opponent in the negotiation process. Most of the offers sampled before the negotiation

process may be useless since they are of no interest for the opponent. However, the proposed

model takes advantage of this information and employs it to make a more intelligent sample,

optimizing the computational resources. Nevertheless, although computational resources are

important, economic efficiency should not be ignored in AmI negotiations.

66



In the previous sections, we could observe the behaviour of the ES model in different

scenarios. Its performance was compared with a method that samples the same number of

offers before the negotiation process (NES ), and the ideal case where all of the samples of

the utility function are available. The results of the experiments can be summarized as:

• The proposed model needs very few computational resources and storage to obtain

statistically equivalent results to the ideal case where the all of the offers are available.

It obtained similar results in economic performance (distance to Nash, distance to

Pareto Frontier) and number of negotiation rounds.

• When the proposed model and the NES model sample the same number of offers, the

first obtains better results. In fact, the NES model needs to sample 3.64 times more

offers to obtain similar results.

• The proposed model needs less negotiation rounds to achieve better results than the

NES model. Therefore, the environment bandwidth is optimized since it needs less

messages to be sent in order to reach agreements.

Consequently, the proposed model fits perfectly the conditions needed by AmI environ-

ments since it needs less computational resources and it obtains economically efficient results.
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Part IV

Conclusions
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Discussion

Ambient Intelligence looks to offer personalized services and provide users with easier and

more efficient ways to communicate and interact with other people and systems [1, 2]. Since

several users may coexist in AmI environments, it is quite probable that their preferences

conflict and thus mechanisms are needed to allow users to cooperate. For instance, imagine

an ubiquitous shopping mall [18, 19] where buying agents have to help users to buy their

needed products and vendor agents have to maximize their users’ profits. Automated nego-

tiation provides mechanisms that solve this particularly interesting problem. Some authors

have already claimed that in most real world negotiations such as e-commerce [23, 24, 25],

issues present interdependence relationships that make agents’ utility functions complex.

Therefore, the problem of complex utility functions in automated negotiation yields also

interest for AmI applications.

A multi-issue bilateral bargaining model for Ambient Intelligence domains that deals

with complex utility functions has been presented in this thesis. This work complements the

inspiring work of Lai et al. [28] and provides a negotiation model that is proper for Ambient

Intelligence applications. The main goal of this work is to achieve efficient agreements while

maintaining the use of computational resources low.

The proposed model uses a negotiation protocol where agents are allowed to send up to k

different offers in each negotiation round. Before the negotiation process starts, each agent

samples its own utility function by means of a niching genetic algorithm. This genetic algo-

rithm gets highly interesting and significantly different offers for one’s own utility function
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(self-sampling). After the negotiation process starts, the agents apply genetic operators over

the last offers received from the opponent and those offers that are most similar from the

current iso-utility curve (evolutionary sampling). The desired effect is to sample new offers

that are interesting for both parties. Therefore, the opponent preferences guide the sampling

process during the negotiation process. The offers that are sent to the opponent are selected

from the current iso-utility curve, those that are the most similar to the last offers received

from the opponent. An additional mechanism is introduced that allows to give priority to

those offers that come from the evolutionary sampling iso-utility curve.

Several experimental scenarios have been carried out and studied. In these tests, the

proposed model has been compared with a similarity heuristic that has access to all of the

possible offers and a similarity heuristic that samples the same number of offers before the

negotiation process by means of a niching genetic algorithm (NES ). The results show that the

proposed model needs very few computational resources and storage to obtain statistically

equivalent results to the ideal case where all of the offers are available. For instance, the

full iso-utility curve consists of 106 offers and the proposed model just samples 1510 offers

in a negotiation setting where the number of issues is 6, and the number of offers sent

per negotiation round is 3. Additionally, although the proposed model and the NES model

sample the same number of offers, the first one obtains better results. In fact, the NES model

needs to sample 3.64 times more offers to obtain similar results. The low computational cost

and the efficient results make the proposed model very adequate for Ambient Intelligence

domains. Next, we will discuss how our proposal relates to similar works in the area.

Faratin et al. [20] presented a negotiation model for linear utility functions where a ne-

gotiation strategy is composed of different tactics that may be applied depending on the

negotiation time, the quantity of the resource and the behaviour of the opponent. Never-

theless, the model is only applicable in negotiation with linear utility functions, which are

easier cases than the ones presented in this present thesis.

Matos et al. [45] determined the successful strategies for different settings using the model

proposed by Faratin et al. [20]. They employ an evolutionary approach in which strategies
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and tactics correspond to the genetic material in a genetic algorithm. In their experiments,

populations of buyers and sellers with different strategies negotiate in a round robin way.

After each round robin round, strategies are evaluated by means of a fitness function. Then,

strategies are selected to be the parents of the next population according to their fitness

function. In the end, a population of strategies implicitly adapted to the environment is

obtained. They use genetic algorithms as a learning mechanism of negotiation strategies

when placed under certain circumstances. There are two differences between Matos et al.

work and the present work. Firstly, the negotiation model of Matos et al. is designed for

linear utility functions. Secondly, the genetic algorithm proposed in this present work is

an implicit learning mechanism of the opponent’s preferences that guides the offer sampling

during the negotiation process.

Later, Faratin et al. [21] presented a negotiation strategy for bilateral bargaining that

is focused on achieving win-win situations by means of trade-off. The heuristic applied

to perform trade-off is similar to the one employed in this present work. Given an agent’s

current utility, the offer from the iso-utility curve that is most similar to the last offer received

from the opponent is sent. The idea behind this heuristic is that, since the proposed offer

is the most similar to the last offer received from the opponent, it is more likely to be

satisfactory for both participants. A fuzzy similarity criteria is employed to compare offers.

Nevertheless, the use of fuzzy similarity requires some knowledge of opponent preferences.

The application of criteria of this kind is complicated in complex utility functions due to the

inter-dependencies among the different issues. In this present work, the euclidean distance is

used, which does not require any knowledge about the opponent and which is independent

of the inter-dependencies among issues.

Fatima et al. [56, 22, 57] analyzed the problem of multi-attribute negotiations in an

agenda-based framework. Agendas determine in which order the different issues are to be

negotiated when negotiations are carried out issue by issue. Once an agreement has been

found on a specific issue, it cannot be changed. Thus, the agents face the problem of which

issues should be negotiated first and which strategies should be applied. They studied
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the optimal agendas for different scenarios. Nevertheless, their work focused on linear utility

functions, which does not take into account the possible interdependences among the different

issues.

The work of Krovi et al. [48] opened the path for GA’s in automated negotiation. Krovi

et al. proposed a GA for bilateral negotiations that was performed each time a negotiation

round ended. The population of chromosomes was randomly initialized with 90 random

offers and 10 heuristic offers (the last offer from the opponent and the nine best offers from

the previous round). The idea behind using GA’s is that resulting the offers have good

characteristics for both agents. However, 60 generations were needed each round in order to

obtain the next offer, which may result computationally expensive in large issue domains.

Choi et al. [49] enhanced Krovi’s model with more learning capabilities. More specifically, it

is capable of learning opponent preferences by means of stochastic approximation and adapt

its mutation rate to the opponent behaviour. However, these strategies and mechanisms are

devised for linear utility functions with few negotiation issues. The performance of these

methods is uncertain when there is a large number of issues or complex utility functions

are used. This present work also employs genetic operators to obtain new offers, but it is

capable of providing solutions for domains with complex utility functions and domains where

the number of issues is large.

There have been some works that have studied the problem of negotiation models for com-

plex utility functions. Most of them have focused on negotiation models that are mediated.

The seminal work of Klein et al. [23] proposes a mediated negotiation model where agents

have their preferences represented by influence matrices. Influence matrices represent binary

interdependence relationships between binary issues. Their proposed approach consists in a

mediator that generates bids that are voted by the agents participant in the protocol. Ito

et al. [25] proposes a mediated negotiation model for multilateral negotiations where agents

have their preferences represented by weighted constraints. The agents sample their utility

function and carries out a simulated annealing for each point sampled in order to obtain

one’s own bids. If the utility of such point is above a certain threshold, the constraints that
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the bid satisfies are sent to the mediator (constraint bid). After receiving bids from the

agents, the mediator tries to look for contracts common to the bids received, while maxi-

mizing social welfare. Marsa-Maestre et al. [26, 27] further research in the area of mediated

negotiation models for complex utility functions. More specifically, they take advantage of

the constraint based model by proposing different bidding mechanisms that work in the con-

straint space instead of the bid space. They also allow for a negotiation protocol that may

not be one-shot. In fact, the mediator can suggest the relaxation of some constraint bids in

order to increase the probability of finding an agreement. Nevertheless, all of these works

need a trusted mediator, which may not be available in every domain. Furthermore, their

models are highly dependent on the underlying utility function. This present work does not

require a mediator and the model is independent of the underlying utility function.

Robu et al. [24, 34] presented a non-mediated bilateral negotiation strategy for agents in

electronic commerce. Agent utility functions are based on special graphical models called

utility graphs. One of the agents, the seller, is responsible for finding agreements that are

satisfactory for both parties. In order to do that, the seller models the buyer by means of

utility graphs and tries to learn the buyer’s preferences. However, utility graphs are only

designed for binary issues. Our work differs in that it is capable of working with general

complex utility functions and is also capable of working issue domains that are not necessarily

binary.

In Lai et al. [28], a powerful bilateral bargaining model with general utility functions is

presented. The negotiation protocol is based on the Rubinstein alternating protocol [50], but

each agent is allowed to send up to k different offers in each round. The offer with highest

utility is chosen from the k offers received from the opponent in the last round. The offer

from the current iso-utility curve that is the most similar to the one chosen by the agent from

the offers made by the opponent is selected. This offer from the iso-utility curve becomes a

seed from which k-1 offers in the neighbourhood are generated. The selected offer from the

curve and the k-1 generated offers are sent back to the opponent. Again, the general ideal

behind this heuristic is that since the offers are similar to one of the last offers received from
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the opponent, they are more likely to be satisfactory for both parties. The model proposed

in this thesis complements the seminal work of Lai et al. since it adapts similarity models for

AmI environments. In the model proposed in this thesis, only a small number of offers are

sampled before the negotiation process since it is assumed that the utility function cannot be

exhaustively explored. This is specially important for scenarios with a large number of issues

and scenarios where devices have limited storage and computational resources. Secondly, the

proposed model incorporates an implicit learning mechanism that allows, thanks to genetic

operators, an intelligent sampling of new offers that may be of interest for both parties.

The proposed model has been capable of achieving good economical results despite the fact

that it uses less computational resources. Therefore, it solves part of the problem regarding

automated negotiation in AmI environments. Next, we describe our future work in the line

of automated negotiation.
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Future Work

In a vast amount of literature, multi-agent systems have been appointed as an appropriate

paradigm for complex distributed systems. In the last few years, the community has focused

its efforts on resolving conflicts and coordination problems that may arise among agents.

Agreement technologies consist of the mechanisms that solve these conflict and coordination

problems. Negotiation is addressed as one of these core technologies. Despite the fact

that much work has been done in this area, there are still some complex problems that

may need new agreement mechanisms. In the next paragraphs we introduce a scenario that

represents a type of problems that may need new and as yet unstudied agent-based agreement

mechanisms.

Imagine you and your friends have decided to go on a trip together. Now you have to

arrange all of the trip details: the city you plan to visit, the number of days the group will

stay, accommodation, a flight that will take you and your friends to the city, and the amount

of money that the group will spend. Even though the wish of each friend is to go on the

trip together, each one may have different preferences and opinions about aspects of the

trip: different preferences about the cities, amount of money to be spent, the quality of the

hotel and so forth. A personal agent, an agent that acts on behalf of someone according to

their preferences, can perform the task of searching for and negotiating with multiple travel

agencies in order to get an optimal deal for its user. However, a personal agent only knows

about its user’s preferences. Ideally, the final deal with a travel agency should take into

account the preferences of every member of the group. Therefore, some sort of coordination

mechanism among the personal agents of each friend is required.
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One could think that the conditions found in the travelling friends problem are very

specific and rare. However, this view is far from reality. Similar problems may arise in other

complex domains where groups of agents may need to negotiate with opponents while solving

their inner conflicts. For instance, some of these scenarios are: Agricultural cooperatives

markets, Virtual Organizations, and Labor Union negotiations.

The previous examples illustrate that such conditions are also found in very different

domain scenarios. The proposed scenarios are inherently complex. Not only may they

require very complex mechanisms, but they also represent crucially important domains for

our society. Agreement technologies may be employed in these scenarios to study how

computationally provided solutions may help people in such delicate domains. For this

reason, one of our goals is to study the mechanisms that allow agent systems to provide

solutions to these complex problems.

Whether we recall the three examples above or the travelling friends problem (we will use

this last example from this point on for the sake of simplicity), all of them had a common

setting. Although all of the friends (farmers, employees, etc.) had the same joint-goal

(to go on a trip together), each one had their own preferences or sub-goals regarding the

different options available. Teams are appointed in the agent literature as the paradigm to

resolve problems where groups of agents share a joint intention. The group of friends can be

seen as a team whose goal is to negotiate a trip together with a travel agency. Obviously,

the same comparison can be made with the group of personal agents: they are an agent

team, and more specifically an agent-based negotiation team. In these kinds of situations,

the negotiation team has to deal with its own internal conflicts and the conflicts generated

during the negotiation with opponents.

Even though teamwork has been actively studied in multi-agent research, not much atten-

tion has been paid to negotiation teams from the point of view of agent research. Therefore,

our research goal consists in providing mechanisms for negotiations that teams carry out with

one or several opponents. For that purpose, we will try to employ the knowledge acquired

during this Msc. thesis.
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ing information extraction agents into a tourism recommender system. 5th Interna-

tional Conference on Hybrid Artificial Intelligence Systems (HAIS 2010) pp. In Press.

(2010). CORE C

• V.Sánchez-Anguix, V. Julian, V. Botti and A. Garćıa-Fornes. Towards agent-based
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