

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/138907

Leiva, LA.; Alabau, V. (01/0). The Impact of Visual Contextualization on UI Localization.
ACM. 3739-3742. https://doi.org/10.1145/2556288.2556982

https://doi.org/10.1145/2556288.2556982

ACM

The Impact of Visual Contextualization on UI Localization
Luis A. Leiva and Vicent Alabau

PRHLT Research Center, Universitat Politècnica de València
{luileito,valabau}@dsic.upv.es

ABSTRACT
Translating the text in an interface is a challenging task. Be-
sides the jargon and technical terms, many of the strings are
often very short, such as those shown in buttons and pull-
down menus. Then, as a result of the lack of visual context
in the traditional localization process, an important ambigu-
ity problem arises. We study three approaches to solve this
problem: using plain gettext (baseline condition), using get-
text plus being able to operate the UI, and translating the UI
in-place. We found that translators are substantially faster
with plain gettext but commit a significantly higher number
of errors in comparison to the other approaches. Unexpect-
edly, the mixed condition was slower and more error-prone
than in-place translation. The latter was found to be compa-
rable to plain gettext in terms of time, although some strings
passed unnoticed as the UI was operated. Based on our re-
sults, we arrive at a set of recommendations to augment lo-
calization tools to improve translator’s productivity.

Author Keywords
Localization; L10n; Internationalization; i18n; Translation

ACM Classification Keywords
H.5.2 User Interfaces: Prototyping, Interaction styles; D.2.2
Design Tools and Techniques: User interfaces

INTRODUCTION
Designing products and services that are intended to support
more than one language is a challenging task. Translation is
just one of the activities of software localization, yet the most
important overall [1, 2]. So much so that when a product is
translated into a new culture it becomes a new product [7].

On the UI, some texts may be confusing or offensive for a par-
ticular cultural target. Even more, UIs often introduce addi-
tional subtleties such as jargon, specialized words, and tech-
nical terms. This can be an obstacle for speakers of lesser
known tongues because of a non-familiar vocabulary [4], and
may prevent the access to cultural resources that are other-
wise available in other languages.

What is more important, many of the strings that have to be
translated are often very short, such as those shown in but-
tons and pull-down menus. Therefore, an important ambigu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2473-1/14/04..$15.00.
http://dx.doi.org/10.1145/2556288.2556982

ity problem arises as a result of the lack of visual context in
the traditional localization process. A string may appear in
more than one situation on the UI with completely different
translations, e.g., the same word may behave as a verb when
placed in a button, but also as a noun if attached to a label.
Misinterpretation of these differences could result in major
issues for the users of the application [5, 9].

It has been shown that context brings systematic variation in
cognitive functioning and performance [6]. Hence, coupling
translations with the UI from which all messages were drawn
should help translators to better disambiguate, and today there
is software to achieve this effect. However, we are not aware
of any empirical evaluation of this capability among the re-
search literature. As such, the impact of visually contextual-
ized localization approaches still remains largely unexplored.
We therefore contribute to HCI with a rigurous and compre-
hensive study on the influence of the visual context on trans-
lation quality and translator’s productivity.

BACKGROUND AND RELATED WORK
UI localization is the process of translating and adapting
(source) texts in UI buttons, menus, or headings, in order to
support different (target) languages or “locales”. To achieve
this goal, these source texts must be decoupled first from the
source code of the UI, basically by wrapping each string with
a translation-capable function. A very popular tool to do so
is GNU gettext, although other utilities such as Qt Linguist
follow similar principles. Then, strings are exported to a file
so that translators can use either a regular text editor or spe-
cialized applications; just to name a few: Pootle, Crowdin,
Verbatim, and Launchpad. However, the main problem with
these applications is that translators often do not have access
to the UI from where the source texts were extracted.

Some general-purpose translation tools such as TRADOS
or Google Translator Toolkit support visually contextualized
translation, although they are oriented to translate content like
text documents or static web pages. This means that most
UI elements cannot be localized, e.g., buttons, placeholders,
drop-down lists, etc. For that reason, a number of more so-
phisticated approaches to support UI localization have risen
recently. For instance, dedicated localization tools for the
desktop include Passolo, Catalyst, or RCWintrans; which sel-
dom support more than one programming language but allow
to perform contextualized translations. A more interesting ap-
proach is ScreenMatch [3], a platform-independent system to
assist software translators by showing UI screenshots along-
side each translatable string.

In addition, it is worth mentioning that what all these tools
display as UI is not the actual UI end users will operate, just
a static visualization, and may therefore be outdated over

time. Consequently, we believe that translators should be
able to access the actual UI being translated. In this regard,
applications like SmartLing or Drupal translations, featuring
a gettext-like interface alongside the current web-based UI,
may help to overcome such limitation. However, this capa-
bility has not yet been formally assessed.

EVALUATION
Intuitively, being able to access the actual UI should provide
translators with better disambiguation capabilities and thus
improve the quality of the produced translations. This should
come at the expense of an increase in the time spent local-
izing, since localizable elements must be located on the UI
and sometimes operated. Also, some elements may not be
obvious (or even possible) to locate. Such is the case of er-
ror messages or dynamic content that disappear after a short
amount of time. However, if translations are properly con-
textualized the final outcome would result in fewer errors to
amend, resulting hopefully in higher productivity. Therefore,
we formulated the following hypotheses:

H1. Visual context improves localization quality.
H2. When the UI is available, translations are finished later.
H3. In-place localization leaves strings untranslated.
H4. Visual context improves translator’s productivity.

To test these hypotheses, we studied three UI localization pos-
sibilities, ranging from no visual context at all to a pure visu-
ally contextualized translation approach (see Design section).
We developed a small airline website (Figure 1), by draw-
ing inspiration from actual airline websites. The source lan-
guage was English, and we decided to localize the website
into Spanish. We noticed that some lexical ambiguities were
evident. For instance, ‘delayed’ is a neutral word in English
but can be both masculine and feminine in Spanish, depend-
ing on the context of the string. However, in the absence of
context, it is usually translated using its masculine form.

Participants
Thirty participants aged 24–37 (M = 30.3, SD = 4.1) were re-
cruited via email advertising. All were native Spanish speak-
ers with an advanced English level according to CEFR1 and
had had previous experience as translators. Participants per-
formed the assigned tasks at a dedicated laboratory room, and
were rewarded with a gift voucher at the end of the evaluation.

Design
Participants were assigned to exactly one condition (between-
subjects design). People were randomly split into 3 groups
of 10 users each: one group would use a gettext-based ap-
plication (GT condition), other group would use gettext plus
being able to operate the UI when desired (GTVIS condi-
tion), and the other group would use in-place translation (VIS
condition). An alpha level of .05 was used for all statistical
tests. There were no departures from normality (verified by
the Shapiro-Wilk test, n.s.) or homoscedasticity (verified by
Levene’s test, n.s.). Hence, we used the one-way ANOVA
test to compare the differences between the 3 conditions, fol-
lowed by post-hoc pairwise comparisons where applicable.
1http://www.coe.int/lang-CEFR

Apparatus
The website was coded in PHP and was manually interna-
tionalized using PHP’s gettext() function. This way, all
translatable messages could be automatically extracted using
the xgettext command. Overall, the website comprised 92
strings of 1.99 words each on average (SD = 1.87).

Figure 1: Screenshots of the website used in the study. The website com-
prised 5 sections in total.

For the baseline approach, GT, we used the traditional way of
localizing interfaces at present, which is based on the GNU
gettext model; i.e., the text is decoupled from the UI and is
delivered as a PO file to the translator, who then uses a dedi-
cated localization tool. Typically, such localization tools fea-
ture two sections: one that displays the resource strings (the
texts in the PO file) and other that allows the translator to en-
ter the target strings (the translated text); see Figure 2.

For the mixed approach, GTVIS, each string was augmented
with a link to the page where such string appeared. Links
opened in a dedicated browser tab so that, if desired, the trans-
lator could browse each page and see the context of the task.

For the in-place translation approach, VIS, we instrumented
the calls to the PHP gettext function to mark the localizable
elements. Then, using JavaScript, these elements would be
edited on the very same UI. By CTRL+clicking on an ele-
ment, a pop-up dialog asked the user to enter the translation,
which was then stored in a plain text log file.

Figure 2: A typical localization interface. This is in turn the tool we used
for GT and GTVIS conditions.

It was ensured that the airline website would be as similar
as possible to that of an actual airline company, i.e., there
were city names, dates, or loan words such as ‘premium’ or
‘business’. As such, some messages were not required to be
translated. For these cases, it was assumed that a VIS user
would not submit a translation. Then, to align the capabilities
of the other groups to that of this group, the gettext editor
featured a checkbox near each target input field. This way, by
clicking on a checkbox, GT and GTVIS users would indicate
that the source string should not be translated (Figure 2).

http://www.coe.int/lang-CEFR

Procedure
Each participant was briefly introduced to the localization ap-
proach assigned to them for about 5 minutes, including a mo-
tivating discussion on the importance of software localiza-
tion. No restrictions were set regarding time to complete the
task, using auxiliary tools such as online dictionaries, and so
on. All participants were given the following statement: “You
have been hired to localize the website of an airline company.
You are expected to deliver a translation as professional as
possible.” By giving this high-level articulation, we expected
that our hypotheses would be clearly assessed: being able to
navigate the pages of the site while localizing them would
provide GTVIS and VIS users with enough context to disam-
biguate properly. Therefore, these users should produce bet-
ter translations than GT users, who were not shown the site.
VIS users were expected to perform slower than the other par-
ticipants, since the UI had to be operated at any time in order
to translate the strings. However, it was expected that their
translations would be of the highest quality, since the visual
context would be always available.

For H1, quality was measured with the Human-targeted
Translation Edit Rate (HTER): the number of word post-edits
required to change a submitted translation into a valid ref-
erence [8]. For H2, we measured the time to complete the
task (in minutes); whereas for H3, we counted the number
of strings edited. Finally, for H4, we evaluated translator’s
productivity as follows. In the translation industry, produc-
tivity is measured in words per day. This assumption is rea-
sonable if the provided translations are of high quality, and
thus an additional round for reviewing them is not required.
However, in UI localization some translations might be irre-
solvable without a proper context, regardless of how profes-
sional the translator is. As a result, more than one review-
ing round may be needed. Hence, we define raw productivity
as the number of correct words per day. We should empha-
size that, since all wrongly translated strings would require to
be re-submitted in a real-world localization workflow, actual
productivity would be much affected by the turnaround time,
which typically spans from 2 to 7 business days [5].

RESULTS
While inspecting the data, we found a GT user that took an
unusual amount of time to complete the task. This participant
took exactly 46 minutes to complete the task, while the rest
of GT users spent 13 minutes on average, and therefore was
removed from the analysis. He was asked about this unusual
delay, and stated that “translations can change completely
according to the context of the sentence on the website. In
addition, I found an important problem while determining the
gender of some words, since in English adjectives are neutral
but in Spanish they can be masculine, feminine, or both. [. . .]
I had to browse other airline websites to give a more accurate
picture of how to translate these sentences properly.”

Overall, GT users translated 81.11 strings (SD = 1.76) in
12.73 minutes (SD = 5.03), with an HTER of 34.60%
(SD = 6.06). The remaining strings were accepted by click-
ing on the checkboxes, revealing that all strings were re-
viewed by all GT users. As shown in Figure 3a, it becomes

clear that gettext-based approaches allow to entirely local-
ize the website, since all strings are shown to the translator.
Meanwhile, GTVIS users localized 79.88 strings (SD = 3.95)
in 33.44 minutes (SD = 12.99). On average, they consulted
the website 56.55 times (SD = 42.64), which accounted for
20% of the total task time. (Time spent on the translatable
website was measured by looking at the focus/blur events on
that website.) Then, the remaining time was spent either on
the gettext editor or at auxiliary websites such as dictionary
or thesaurus sites. This time HTER was more competent,
19.14% (SD = 8.22). On the other hand, VIS users localized
71.6 strings (SD = 4.92) in 19.84 minutes (SD = 8.26), with a
very competent HTER of 10.79% (SD = 3.64).

We observed that problematic sentences are often those with
few words, as there is an important ambiguity problem. In
general, shorter sentences (up to 2 words) are more error-
prone. In this regard, we found a moderate correlation: the
longer the sentence, the more likely it will be successfully
translated with GT [r(292) = −0.34, p < .001] or GTVIS
[r(300) = −0.29, p < .001]. With VIS, the correlation is
smaller [r(269) = −0.21, p < .001] because ambiguities
can be properly solved with contextual information. In the
next section we provide some examples of sentences that can
be easily translated with and without visual context.

ANOVA revealed that differences between groups were sta-
tistically significant for all measures, i.e., HTER [F2,25 =
35.84, p < .001, η2p = 2.87], time [F2,25 = 11.52, p <

.001, η2p = 0.92], number of localized strings [F2,25 =

17.52, p < .001, η2p = 1.40], and raw productivity [F2,25 =

8.77, p < .001, η2p = 0.70]. Effect sizes suggested a high
practical significance. Post-hoc pairwise comparisons using
the t-test with Bonferroni correction revealed that GT trans-
lations were of significantly worse quality than GTVIS, and
VIS produced the highest quality results. Unexpectedly, no
time differences between VIS and GT were found. GTVIS
users were significantly slower than the other approaches, and
VIS localized significantly less strings than GT and GTVIS.
As expected, no differences between GTVIS and GT were
found in this regard, since both groups saw all localizable
strings. Productivity results are discussed next.

DISCUSSION
It can be observed that GT allowed users to complete the task
sooner than the other approaches (Figure 3b). This was unsur-
prising, as gettext aims for a completely sequential workflow
while the other approaches required to interact with the UI.
However, we must remark that less time does not necessarily
mean higher productivity. Actually, if translation errors are
found then more iterations between translators and developers
are likely to happen, which would lead to higher turnaround
times for companies [5]. For instance, assuming that all trans-
lation errors would be fixed after a second pass over the GT
data, participants would have needed on average 10 additional
minutes, which is comparable to the time GTVIS users spent
browsing the UI. This is nevertheless an upper bound, since
not being able to access the UI would probably result in more
than one review cycle for GT users.

(a) (b) (c) (d)

GT GTVIS VIS
0

30

60

90

#
S

tr
in

gs

GT GTVIS VIS
0

20

40

Ti
m

e
(m

in
)

GT GTVIS VIS
0

20

40

H
TE

R
(%

)

GT GTVIS VIS
0

2K

4K

6K

P
ro

du
ct

iv
ity

Figure 3: Evaluation results. Error bars denote 95% CIs. Productivity (3d) is estimated as the number of correctly translated words per day.

On the contrary, a visually contextualized localization tool
facilitates the disambiguation of messages that depend on
the UI context for a proper interpretation, leading to higher-
quality translations (Figure 3c). As a result, the number of
iteration cycles and refinements over the localization process
would be dramatically shortened. This is interesting for soft-
ware localizers, as well as for companies that decide to go
global, since time is often a scarce resource and translation
errors can be exceedingly costly. Unexpectedly, GTVIS qual-
ity was significantly worse than VIS. While the visual context
is always available to VIS users, in GTVIS it is the translator’s
decision to check the context by inspecting the UI, which was
often skipped to save time (29% of the strings in our data).

A deep analysis of the productivity reveals that VIS is statis-
tically comparable to GT, and so both can produce the same
number of correct words per day (Figure 3d). The reason is
that HTER is much higher in GT but in VIS some strings were
not localized. A particular example were error messages,
which tend to have more words on average (e.g. ‘Please fill
in the required form fields’), and thus their actual meaning is
easier to notice in the absence of visual context. In general,
messages composed by one or two strings should be trans-
lated with visual context, as their meaning depend on the UI
element; e.g. buttons (‘Book’), labels (‘One way’, ‘Display
unit’), or date fields (‘From’, ‘To’). More practical examples
can be found in Muntés-Mulero et al. [5, p.3].

On the other hand, GTVIS is significantly less productive than
the other approaches. In fact, we observed that VIS leads to
significantly faster translation time if compared with GTVIS.
As hinted by 3 participants, “[gettext] strings are not sorted
by page, so I had to switch often from page to page, which
may slow down the overall task time.” Indeed, if we discount
the time GTVIS users spent searching for the strings on the
UI, then there would be no differences between GTVIS and
VIS, as indicated by the Bonferroni-corrected pairwise t-test.

In consequence, we argue that pure visually contextualized
localization tools should be complemented with a gettext-like
interface to reach all resource strings. On the other hand,
while screenshots are a very useful approach to allow trans-
lators to get an overview of the visual context of the task, we
recommend gettext-like interfaces to be complemented with
pointers to the actual UI elements to safely save lookup time.
This could be implemented by e.g. dynamically generating
screenshots were each resource string is highlighted when-
ever the translator is localizing it on the gettext editor. Cur-
rently, the UI context is provided via textual descriptions, or

not at all [3]. Therefore, we hope researchers and practition-
ers will consider this work when developing new software lo-
calization tools.

CONCLUSION
This paper puts forward the fact that the impact of visual con-
textualization on UI localization can be considerable, lead-
ing to significant effects on translation quality and translator’s
productivity. In short, when the visual context is available to
the translator, better translations are produced. Additionally,
raw productivity is comparable to the traditional workflow if
translations are edited in-place. Furthermore, if the transla-
tor needs to locate the UI elements without an additional aid,
productivity may decrease significantly. We thus recommend
current localization tools be augmented with pointers to the
actual UI elements, clearly highlighting them, if possible.

ACKNOWLEDGMENTS
This work is supported by the 7th Framework Program of the
European Commision (FP7/2007-13) under grant agreements
287576 (CASMACAT) and 600707 (tranScriptorium).

REFERENCES
1. Dunne, K. J., Ed. Perspectives on Localization. John

Benjamins Publishing Company, 2006.
2. Keniston, K. Software localization: Notes on technology

and culture. Working Paper #26, MIT press, 1997.
3. Kovacs, G. ScreenMatch: providing context to software

translators by displaying screenshots. In Proc. CHI EA
(2012).

4. Leiva, L. A., and Alabau, V. An automatically generated
interlanguage tailored to speakers of minority but
culturally influenced languages. In Proc. CHI (2012).

5. Muntés-Mulero, V., Adell, P. P., España-Bonet, C., and
Màrquez, L. Context-aware machine translation for
software localization. In Proc. EAMT (2012).

6. Nardi, B. A., Ed. Context and consciousness: Activity
Theory and Human Computer Interaction. MIT Press,
1996.

7. Russo, P., and Boor, S. How fluent is your interface?
designing for international users. In Proc. CHI (1993).

8. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. A study of translation edit rate with targeted
human annotation. In Proc. AMTA (2006).

9. Sun, H. Building a culturally-competent corporate web
site: an exploratory study of cultural markers in
multilingual web design. In Proc. SIGDOC (2001).

