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Abstract

Discrete stochastic systems model discrete response data on some phenomenon with inherent
uncertainty. The main goal of uncertainty quantification is to derive the probabilistic features of
the stochastic system. This paper deals with theoretical and computational aspects of uncertainty
quantification for nonlinear difference equations with dependent random inputs. When the ran-
dom inputs are independent random variables, a generalized Polynomial Chaos (gPC) approach
has been usually used to computationally quantify the uncertainty of stochastic systems. In the
gPC technique, the stochastic Galerkin projections are done onto linear spans of orthogonal poly-
nomials from the Askey-Wiener scheme or from Gram-Schmidt orthonormalization procedures.
In this regard, recent results have established the algebraic or exponential convergence of these
Galerkin projections to the solution process. In this paper, as the random inputs of the differ-
ence equation may be dependent, we perform Galerkin projections directly onto linear spans of
canonical polynomials. The main contribution of this paper is to study the spectral convergence
of these Galerkin projections for the solution process of general random difference equations.
Spectral convergence is important to derive the main statistics of the response process at a cheap
computational expense. In this regard, the numerical experiments bring to light the theoretical
discussion of the paper.
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Uncertainty quantification; Dependent random inputs.
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1. Introduction1

Stochastic systems allow getting a better understanding of the processes involved in complex2

phenomena with inherent uncertainty. These phenomena may belong to the applied fields of3

Physics, Epidemiology, Biology, Engineering, etc. Essentially, stochastic systems are dynamical4

∗Corresponding author
Email addresses: jucagre@doctor.upv.es (J. Calatayud), jccortes@imm.upv.es (J.-C. Cortés),

marjorsa@doctor.upv.es (M. Jornet)

Preprint submitted to Journal of Communications in Nonlinear Sciences and Numerical Simulations (Elsevier)December 21, 2018



systems (continuous or discrete) in which the involved input parameters are random rather than5

constants. From a modeling standpoint, it is important to obtain the main statistics corresponding6

to the response process, and this is called uncertainty quantification [1].7

Among the most important statistics of the response process are the expectation and the8

variance at each time instant. These two statistics provide measures of the average and the dis-9

persion, respectively, and they permit having a good understanding of the uncertainty associated10

to the system output. Random variables with well-defined expectation and variance are encom-11

passed in the Lebesgue space L2, which possesses the good structure of a Hilbert space. The12

convergence endowed by the metric of L2, so-called mean square convergence , preserves the13

convergence of the expectation and variance. Thus, representing the response process as a limit14

of stochastic processes in L2 at each time instant (for instance, via infinite series expansions),15

allows approximating its expectation and variance.16

Galerkin methods have been extensively used in computational uncertainty quantification for17

stochastic systems, especially as an application of the so-called generalized Polynomial Chaos18

(gPC) [2, 3] for continuous stochastic systems (random ordinary and partial differential equations19

[4, 5]). With many applications in practice, see [6, 7, 8, 9, 10, 11], the algebraic or exponential20

mean square convergence of gPC-based Galerkin projections for random differential equations21

has been established in [12, 13].22

However, Galerkin methods have not been applied to random difference equations with such23

an emphasis. Random recursive equations are essential to model discrete response data on phe-24

nomena with uncertainty. When time is large, the explicit expression of the response to the25

random difference equation may be a huge complex formula involving the random input param-26

eters, so direct uncertainty quantification becomes an impracticable task, thus the necessity of27

appropriate stochastic Galerkin methods. The authors of this paper have proved recently in [14]28

that algebraic mean square convergence of adaptive gPC-based Galerkin projections [15, 16] for29

random difference equations can be expected under general conditions. However, the reasoning30

used in [14] only works for independent random input parameters. It is both of theoretical and31

of practical interest to extend these results to dependent random inputs. In [17], the authors pro-32

posed a computational approach to deal with continuous stochastic systems with dependent ran-33

dom coefficients. The Galerkin projections, instead of being done onto orthogonal polynomials,34

are calculated onto multivariate polynomials from the canonical basis evaluated at the random35

inputs. The novelty of our paper is to apply this technique to nonlinear difference equations with36

dependent random inputs, and to study both from a theoretical and computational standpoint the37

spectral mean square convergence to the time-discrete solution stochastic process.38

The structure of this paper is the following. Section 2 establishes conditions under which39

a random vector depending on dependent random inputs is a mean square limit of multivariate40

polynomials evaluated at those inputs, with spectral convergence rate. This provides a stochastic41

Galerkin projection technique to quantify computationally the uncertainty for difference equa-42

tions with dependent random inputs. Section 3 shows a theoretical discussion on the spectral43

mean square convergence of these Galerkin projections. In Section 4, we illustrate our findings44

via numerical experiments. In Section 5 conclusions are drawn.45

2. Method and application to nonlinear random difference equations46

In this section, we will show how to expand random vectors as a mean square limit of mul-47

tivariate polynomials. We will apply this theory to nonlinear random difference equations, via a48
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stochastic Galerkin projection technique. Thus, a computational approach to quantify the uncer-49

tainty for discrete random data will have been developed.50

2.1. Method51

Let (Ω,F ,P) be a complete probability space, where Ω is the sample space formed by out-52

comes ω ∈ Ω and equipped with a σ-algebra of events F and a probability measure P. We will53

work in the Hilbert space (L2(Ω), 〈, 〉) of random vectors u : Ω → Rq with finite second order54

moments: ‖u‖L2(Ω) =
√
E[|u|2] < ∞, where E stands for the expectation operator.55

Suppose that u is written as a deterministic function of random input parameters: u =56

g(ζ1, . . . , ζs), where ζ1, . . . , ζs : Ω → R are random variables and g : Rs → Rq is a Borel57

measurable function. We describe a procedure to approximate u in the mean square sense via58

multivariate polynomials in ζ = (ζ1, . . . , ζs).59

Assume that ζ is an absolutely continuous random vector with finite moments of all orders.60

We allow any probability distributions for ζ1, . . . , ζs, not necessarily the standard ones. Moreover,61

we do not impose any independence condition on them. Let Cp
i = {1, ζi, . . . , ζ

p
i }, 1 ≤ i ≤ s,62

be the canonical basis of polynomials evaluated at ζi up to degree p. By means of a tensor63

product, see [17], we obtain the canonical basis of multivariate polynomials evaluated at ζ up64

to degree p: ΞP = {φ1(ζ), . . . , φP(ζ)}, where P = (p + s)!/(p!s!), φ j(ζ) = ζ i1
1 · · · ζ

is
s , being65

i1, . . . , is ≥ 0, i1 + . . . + is ≤ p, and the multi-index (i1, . . . , is) is associated in a bijective manner66

with j ∈ {1, . . . , P} in such a way that (0, . . . , 0) corresponds to j = 1 (that is, φ1 = 1). Letting p67

and P grow up to infinity, we obtain the sequence {φi(ζ)}∞i=1. Formally, we may expand u as68

u =

∞∑
i=1

ũiφi(ζ) (1)

in L2(Ω), where ũi are coefficients to be determined.69

Notice that the difference with the classical gPC method [2, 3] is that ΞP is not formed by70

orthogonal polynomials from the Askey-Wiener scheme. In the gPC approach, when the distribu-71

tion of a random input, ζi, does not coincide with a standard distribution from the Askey-Wiener72

scheme, one has to deal with inverses of cumulative distribution functions, and the convergence73

weakens to being in probability [2, Th. 5.7]. On the other hand, the main difference with the74

adaptive gPC approach suggested in [15, 16] is that we do not perform an orthonormalization75

procedure for each Cp
i , because the random inputs may not be independent. The orthonormal-76

ization procedure, usually done via a Gram-Schmidt method, may entail numerical errors due to77

loss of orthogonality [14, 18]. In the approach presented in our paper, these drawbacks do not78

arise.79

From classical results on several complex variables [19], we can analyze conditions under80

which (1) holds at spectral rate.81

Proposition 2.1. Suppose that |ζi| ≤ Ai, for certain constants Ai, i = 1, . . . , s. Assume that g is82

real analytic on Rs. Then (1) holds in L2(Ω) at exponential rate.83

Proof. Since g is real analytic on Rs, we may write u = g(ζ) =
∑∞

i=1 ũiφi(ζ) pointwise on
ζ(ω) ∈ Rs. In multi-index notation, u = g(ζ) =

∑
|α|≥0 ũαζα pointwise on ζ(ω) ∈ Rs, where

ζα = ζα1
1 · · · ζ

αs
s , α = (α1, . . . , αs). We will prove that, given any b > 1, bN‖

∑
|α|≥N ũαζα‖L2(Ω) → 0
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as N → ∞ (in fact, this means that the convergence to 0 is much faster than exponentially). By
the triangular inequality and the boundedness condition on ζi, we have the first estimates

bN

∥∥∥∥∥∥∥∥
∑
|α|≥N

ũαζα

∥∥∥∥∥∥∥∥
L2(Ω)

≤ bN
∑
|α|≥N

|ũα|‖ζα‖L2(Ω) = bN
∑
|α|≥N

|ũα|‖ζ
α1
1 · · · ζ

αs
s ‖L2(Ω)

≤ bN
∑
|α|≥N

|ũα|A
α1
1 · · · A

αs
s = bN

∑
|α|≥N

|ũα|Aα, (2)

where A = (A1, . . . , As) and Aα = Aα1
1 · · · A

αs
s . By Cauchy-Hadamard Theorem in several vari-84

ables, see [19, Th. 4, p. 32],85

lim sup
|α|→∞

|α|
√
|ũα|ρα = 1,

for all ρ = (ρ1, . . . , ρs) ∈ (0,∞)s. Thus, for large |α|, |α|
√
|ũα|ρα ≤ 2, that is, |ũα| ≤ 2|α|/ρα.

Taking ρ1 = . . . = ρs = r that will be determined later, |ũα| ≤ (2/r)|α| = δ|α|. Take r such that
δAi ≤ 1/(6b), for i = 1, . . . , s. Then, from (2),

bN

∥∥∥∥∥∥∥∥
∑
|α|≥N

ũαζα

∥∥∥∥∥∥∥∥
L2(Ω)

≤ bN
∑
|α|≥N

|ũα|Aα ≤ bN
∑
|α|≥N

δ|α|Aα = bN
∑
|α|≥N

(δA1)α1 · · · (δAs)αs

≤ bN
∑
|α|≥N

(
1

6b

)α1

· · ·

(
1

6b

)αs

= bN
∑
|α|≥N

(
1

6b

)|α|
≤

∑
|α|≥N

1
6|α|

=

∞∑
j=N

∑
|α|= j

1
6|α|

=

∞∑
j=N

1
6 j · card{α = (α1, . . . , αs) : |α| = j} =

∞∑
j=N

1
6 j

(
j + s − 1

j

)
, (3)

where the identity card{α = (α1, . . . , αs) : |α| = j} =
(

j+s−1
j

)
comes from [2, (5.26), p. 65]. If86

j ≥ N and N is sufficiently large, the inequality j+ s−1 ≤ 2 j holds. Then the binomial coefficient87

may be bound as follows:88 (
j + s − 1

j

)
≤

(
e( j + s − 1)

j

) j

≤ (2e) j (4)

(the first inequality is a standard upper bound for binomial coefficients: ( n e
k )k = nk

kk

∑∞
j=0

k j

j! ≥89

nk

k! ≥
(

n
k

)
). Thus, from (3) and (4), the statement of the proposition follows:90

bN

∥∥∥∥∥∥∥∥
∑
|α|≥N

ũαζα

∥∥∥∥∥∥∥∥
L2(Ω)

≤

∞∑
j=N

(
2e
6

) j

=

∞∑
j=N

( e
3

) j
=

(e/3)N

1 − e/3
N→∞
−→ 0.

�91

Compare the convergence established in Proposition 2.1 with the characterization proved in92

[12] for the convergence of gPC expansions. An implication of [12, Th. 3.4 and Th. 3.6] is93

that gPC expansions by means of orthogonal polynomials with bounded random inputs converge94

in L2(Ω). The result derived from Proposition 2.1 establishes convergence for expansions via95

non-orthogonal multivariate polynomials.96
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2.2. Application to nonlinear random difference equations97

Consider a system of difference equations98

u(m + 1) = R(ζ, u(m)), ζ = (ζ1, . . . , ζs), (5)

where u(m) : Ω→ Rq is a random vector for each step m (i.e., a time-discrete stochastic process)99

and R : Rs×Rq → Rq is a nonlinear Borel measurable function. The terms ζ1, . . . , ζs are random100

variables that represent the inputs of the stochastic system (5). The initial condition u(0) = u0 is101

supposed to be a constant vector in Rq.102

As we have previously seen, we may formally write the solution stochastic process of the103

system of random difference equations (5) as104

u(m) =

∞∑
i=1

ũi(m)φi(ζ). (6)

Truncating the series from (6) up to order P gives the motivation to look for an approximate105

solution to (5) of the form106

ûP(m) =

P∑
i=1

ûP
i (m)φi(ζ). (7)

This is called the stochastic Galerkin projection onto the span of {φi(ζ)}Pi=1. This method has107

been already developed in [17] for continuous stochastic systems (random ordinary differential108

equations), but only from a computational point of view.109

Substituting (7) into (5) gives110

P∑
i=1

ûP
i (m + 1)φi(ζ) = R

ζ, P∑
i=1

ûP
i (m)φi(ζ)

 ,
with initial condition111

P∑
i=1

ûP
i (0)φi(ζ) = u0. (8)

We perform the inner product with each φk(ζ), k = 1, . . . , P (stochastic Galerkin projection112

technique):113

P∑
i=1

ûP
i (m + 1)〈φi(ζ), φk(ζ)〉 = 〈R

ζ, P∑
i=1

ûP
i (m)φi(ζ)

 , φk(ζ)〉, (9)

114
P∑

i=1

ûP
i (0)〈φi(ζ), φk(ζ)〉 = u0E[φk(ζ)]. (10)

This gives a deterministic system of difference equations for {ûP
i (m)}Pi=1, which can be solved115

numerically by repeated iteration in (9) from the initial condition (10) up to the time m desired,116

whatever the degree of nonlinearity of the map R. Thus, the approximation ûP(m) is numerically117

computable.118

Notice that, since u0 is constant and φ1 = 1, equations (8) and (10) are trivial, because119

ûP
1 (0) = u0 and ûP

i (0) = 0 for 2 ≤ i ≤ P. However, for the sake of completeness, we have shown120

the full development of the stochastic Galerkin projection technique.121
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Based on intuition and numerical experiments, one expects ûP(m) → u(m) as P → ∞ in122

L2(Ω), for each m ≥ 1. In Section 3, we discuss theoretically the convergence of the Galerkin123

projections, while Section 4 illustrates the theoretical findings via numerical experiments. The124

mean square convergence allows approximating the main statistics of the response stochastic125

process u(m), say the expectation E[u(m)] and the covariance matrix, via126

E[ûP(m)] =

P∑
i=1

ûP
i (m)E[φi(ζ)] (11)

and127

Cov[ûP(m), ûP(m′)] =

P∑
i, j=1

ûP
i (m)ûP

j (m′)Cov[φi(ζ), φ j(ζ)], (12)

respectively.128

In the system from (9), an important matrix G which one has to deal with is Gik = 〈φi(ζ), φk(ζ)〉.129

This matrix G is symmetric and positive definite, hence invertible, and it corresponds to the Gram130

matrix of {φi(ζ)}Pi=1 [20, Cor. 7.2.9, Th. 7.2.10]. Furthermore, G−1 is positive definite too [20,131

p. 397]. Numerically, it is checked that this matrix is ill-conditioned, which may entail numeri-132

cal errors for large P. This is a limitation of our computational approach. In this paper, we will133

not deal with specific numerical procedures to deal with ill-conditioned linear systems [21].134

3. Convergence for nonlinear random difference equations135

In this section, we analyze the theoretical convergence of the Galerkin projection ûP(m) given136

by (7) to the solution process u(m) of the system of nonlinear random difference equations given137

by (5).138

The main result to be proved is the following Theorem 3.1. For the proof of this result we139

will use some ideas from [13, 14]. Reference [13] studies, in the context of random differen-140

tial equations, the convergence of stochastic Galerkin projections based on gPC expansions for141

independent random inputs. In [14], we have analyzed the convergence of stochastic Galerkin142

projections based on adaptive gPC [15, 16], in the context of difference equations with indepen-143

dent random inputs.144

Theorem 3.1. Consider the system of random difference equations u(m + 1) = R(ζ, u(m)), where145

ζ = (ζ1, . . . , ζs) : Ω → Rs is an absolutely continuous random vector, u(m) : Ω → Rq is a146

random vector, R : Rs × Rq → Rq is a Borel measurable function, and the initial condition147

u(0) = u0 is a deterministic constant in Rq. Let ζ1, . . . , ζs be bounded random variables, not148

necessarily independent. Let J1, . . . , Js ⊆ R be compact intervals that contain the support of149

ζ1, . . . , ζs, respectively. Let I =
∏s

i=1 Ji be the multidimensional compact rectangle that contains150

the support of ζ. Let gm be the solution of the system of difference equations for u(m), i.e.,151

u(m) = gm(ζ). Assume that gm is real analytic on Rs. Suppose that R is Lipschitz on I×Rq: there152

exists a constant K > 0 such that ‖R(ζ, v1) − R(ζ, v2)‖L2(Ω) ≤ K‖v1 − v2‖L2(Ω), for every pair of153

random vectors v1, v2 ∈ L2(Ω). Let G be the P × P matrix defined as Gik = E[φi(ζ)φk(ζ)].154

Then the Galerkin projection ûP(m) defined by (7) and the partial sum ũP(m) =
∑P

i=1 ũi(m)φi(ζ)

6



from (6) satisfy the following inequality:

‖ûP(m) − ũP(m)‖L2(Ω) ≤ ‖ũ
P(0) − u0‖L2(Ω)(K∆P)m

+

m∑
j=1

(
K∆P‖u( j − 1) − ũP( j − 1)‖L2(Ω) + ‖u( j) − ũP( j)‖L2(Ω)

)
(K∆P)m− j, (13)

where155

∆P =

√√√ P∑
l,k=1

‖φl‖L2(Ω)‖φk‖L2(Ω)|(G−1)lk |. (14)

Proof. Since gm is real analytic on Rs, we derive that ũP(m) → u(m) as P → ∞ in L2(Ω),156

for each m ≥ 0, as a consequence of Proposition 2.1. Thereby, we may expand u(m) as in (6):157

u(m) =
∑∞

i=1 ũi(m)φi(ζ). Substituting this expression for u(m) into (5),
∑∞

i=1 ũi(m + 1)φi(ζ) =158

R(ζ,
∑∞

i=1 ũi(m)φi(ζ)). Multiplying by φk(ζ), k = 1, . . . , P, and applying the expectation operator,159

we obtain160
∞∑

i=1

ũi(m + 1)E[φi(ζ)φk(ζ)] = 〈R(ζ,
∞∑

i=1

ũi(m)φi(ζ)), φk(ζ)〉. (15)

On the other hand, recall the deterministic recursive equations (9) satisfied by the Galerkin pro-
jection ûP(m). Combining both (9) and (15) implies

P∑
i=1

(ũi(m + 1) − ûP
i (m + 1))Gik

= 〈R

ζ, ∞∑
i=1

ũi(m)φi(ζ)

 − R

ζ, P∑
i=1

ûP
i (m)φi(ζ)

 , φk(ζ)〉︸                                                                ︷︷                                                                ︸
:=bP

k (m)

−

∞∑
i=P+1

ũi(m + 1)Gik︸                ︷︷                ︸
:=gP

k (m+1)

.

Let us put this expression in matrix form. Let161

ũP
∨(m) = (ũi(m))P

i=1, ûP
∨(m) = (ûP

i (m))P
i=1,

162

bP(m) = (bP
k (m))P

k=1, gP(m) = (gP
k (m))P

k=1.

If G = (Gik)1≤i,k≤P, then163

ũP
∨(m + 1) − ûP

∨(m + 1) = G−1(bP(m) − gP(m + 1)). (16)

Since G is symmetric and positive definite, we can consider the norms ‖x‖G =
√

x>Gx and
‖x‖G−1 =

√
x>G−1x, where > stands for the transpose operator. From (16),

‖ũP(m + 1) − ûP(m + 1)‖L2(Ω) = ‖ũP
∨(m + 1) − ûP

∨(m + 1)‖G
= ‖G−1(bP(m) − gP(m + 1))‖G = ‖bP(m) − gP(m + 1)‖G−1

≤ ‖bP(m)‖G−1 + ‖gP(m + 1)‖G−1 . (17)

Let us estimate both ‖bP(m)‖G−1 and ‖gP(m+1)‖G−1 . By Cauchy-Schwarz inequality, the Lipschitz
condition for R and the triangular inequality, we have

|bP
k (m)| ≤

∥∥∥∥∥∥∥R

ζ, ∞∑
i=1

ũi(m)φi(ζ)

 − R

ζ, P∑
i=1

ûP
i (m)φi(ζ)


∥∥∥∥∥∥∥

L2(Ω)

‖φk(ζ)‖L2(Ω)

≤
(
K‖ũP(m) − ûP(m)‖L2(Ω) + K‖u(m) − ũP(m)‖L2(Ω)

)
‖φk(ζ)‖L2(Ω).

7



As a consequence, we get an upper bound for ‖bP(m)‖G−1 :

‖bP(m)‖G−1 =

√√√ P∑
l,k=1

bP
l (m)bP

k (m)(G−1)lk

≤
(
K‖ũP(m) − ûP(m)‖L2(Ω) + K‖u(m) − ũP(m)‖L2(Ω)

)
∆P, (18)

where ∆P is already defined in (14). On the other hand, the estimate for the second term ‖gP(m +

1)‖G−1 is derived as follows:

‖gP(m + 1)‖2G−1 =

P∑
l,k=1

gP
l (m + 1)gP

k (m + 1)(G−1)lk

=

P∑
l,k=1

∞∑
i=P+1

∞∑
j=P+1

ũi(m + 1)Gilũ j(m + 1)G jk(G−1)lk

=

∞∑
i=P+1

∞∑
j=P+1

 P∑
l,k=1

Gil(G−1)lkGk j

 ũi(m + 1)ũ j(m + 1)

=

∞∑
i=P+1

∞∑
j=P+1

Gi jũi(m + 1)ũ j(m + 1)

= ‖u(m + 1) − ũP(m + 1)‖2L2(Ω). (19)

Taking into account the estimates obtained in (18) and (19), a new inequality arises from (17):

‖ũP(m + 1) − ûP(m + 1)‖L2(Ω) ≤ K∆P‖ũP(m) − ûP(m)‖L2(Ω)

+K∆P‖u(m) − ũP(m)‖L2(Ω) + ‖u(m + 1) − ũP(m + 1)‖L2(Ω).

This inequality may be seen as a non-autonomous linear recursive equation (with inequality) for
‖ũP(m)− ûP(m)‖L2(Ω). Using the general solution for non-autonomous first-order linear difference
equations [22, Ch. 1], we conclude that

‖ûP(m) − ũP(m)‖L2(Ω) ≤ ‖ũP(0) − u0‖L2(Ω)(K∆P)m

+

m∑
j=1

(
K∆P‖u( j − 1) − ũP( j − 1)‖L2(Ω) + ‖u( j) − ũP( j)‖L2(Ω)

)
(K∆P)m− j,

which is exactly the inequality (13) that we wanted to prove.164

�165

An important consequence of this theorem is the following. Suppose that gm is real analytic166

on Rs, for all m ≥ 1. This is not an unrealistic assumption, since going backwards in (5) consists167

of compositions of functions, and the composition of analytic functions is analytic again. As168

it was previously discussed in Section 2, we have that ‖u(m) − ũP(m)‖L2(Ω) → 0 as P → ∞ at169

exponential rate, for each m ≥ 0. If ∆P had an exponential growth, i.e., ∆P ≤ CerP for certain170

C, r > 0, then we would conclude that ‖ûP(m) − ũP(m)‖L2(Ω) → 0 as P → ∞ at exponential171

rate, for each m ≥ 0. For example, if our sequence of polynomials {φi(ζ)}Pi=1 were orthonormal,172
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then G = IP and ∆P = P, and we recover the main result established in [14]. Thus, if gm173

is real analytic on Rs, the convergence of the stochastic Galerkin projection depends upon the174

growth rate of ∆P. It is an open question for us whether ∆P always grows exponentially. This175

would solve the problem of the spectral convergence of the Galerkin projection. Nonetheless,176

in practice, it is possible to analyze empirically the growth of ∆P. By fitting a regression line177

for the set of points (P, log(P)), one gets an idea on whether the growth of ∆P is exponential. If178

this is the case, we ensure that the Galerkin projections converge to the solution process u(m) at179

exponential, m ≥ 0. See Section 4 for examples of this methodology. We will see numerically180

that, in general, ∆P increases at most exponentially in P. In fact, there are examples, for instance181

when G is the Hilbert matrix of size P × P [23, 24, 25, 26, 27] (one random input parameter in182

(5) with Uniform(0, 1) distribution), in which ∆P grows exactly exponentially.183

Our development emphasizes the importance of a detailed analysis for the matrix G. If G−1
184

has large entries as P increases, two problems arise: from a theoretical point of view, the Galerkin185

projection may not converge; from a computational standpoint, the condition number of G in-186

creases, which makes the computations in the computer less accurate. Section 4 illustrates how187

disastrous error may appear in practice when P grows.188

Concerning the hypothesis of boundedness for ζ in Theorem 3.1, which was necessary to ap-189

proximate gm by polynomials on I, see Proposition 2.1, we would like to remark that, in practice,190

this is not a restrictive assumption. If one works with an unbounded random input parameter ζi,191

then one may truncate this random variable, preserving nearly all the probabilistic features of192

it. This assertion is supported by Chebyshev’s inequality [28]. In addition, in some evolution193

equations, for instance epidemic models, parameters usually refer to proportions (proportion of194

infectives, proportion of vaccinated individuals, etc.), so that their domain of definition is [0, 1].195

Remark 3.2. The Lipschitz condition ‖R(ζ, v1) − R(ζ, v2)‖L2(Ω) ≤ K‖v1 − v2‖L2(Ω), for every pair196

of random vectors v1, v2 ∈ L2(Ω), may be difficult to check in practice. We show a stronger con-197

dition but which might be helpful in numerical examples. LetDm be a subset of Rq, independent198

of ζ, that contains the support of the random vector u(m), and let D = ∪∞m=0Dm. Such a set Dm199

exists because |u(m)| ≤ ‖gm‖L∞(I), being ‖gm‖L∞(I) < ∞ by compactness of I and continuity of gm.200

If201

|R(ξ,w1) − R(ξ,w2)| ≤ K|w1 − w2|, w1,w2 ∈ D, ξ ∈ I, (20)

then the Lipschitz condition from Theorem 3.1 holds. Indeed, for each ξ ∈ I, we apply Tietze202

Extension Theorem [29, Th. 1] to R(ξ, ·) : D → Rq. This gives an extension of R to I × Rq
203

such that |R(ξ,w1) − R(ξ,w2)| ≤ K|w1 − w2| for all w1,w2 ∈ Rq and ξ ∈ I. Applying the L2(Ω)204

norm, we derive ‖R(ζ, v1) − R(ζ, v2)‖L2(Ω) ≤ K‖v1 − v2‖L2(Ω), for every pair of random vectors205

v1, v2 ∈ L2(Ω). In Section 4, we show the generality of the Lipschitz condition (20).206

Remark 3.3. There are certainly examples in which the Galerkin projections do not converge.207

Consider the simple difference equation208 u(m + 1) = u(m) + 1
η
,

u(0) = 0,

where η ∼ logN(0, 1). Its solution is given by u(m) = m/η. By [12, Prop. 4.2], the gPC expansion209

of the random variable ζ = 1/η with respect to the orthonormal polynomials {ψi(η)}∞i=1 in η (these210

polynomials can be constructed in terms of Stieltjes-Wigert polynomials, see [12, Appendix A])211
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does not converge in mean square to ζ. That is, if ζ̄i = E[ζψi(η)] is the i-th Fourier coefficient of212

ζ (see [12, Appendix B] for an explicit expression of ζ̄i), then ζ ,
∑∞

i=1 ζ̄iψi(η). By [2, Th. 3.3],213 ∥∥∥∥∥∥∥u(m) −
P∑

i=1

(mζ̄i)ψi(η)

∥∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥∥u(m) −
P∑

i=1

ûP
i (m)φi(η)

∥∥∥∥∥∥∥
L2(Ω)

,

therefore the Galerkin projections ûP(m) cannot converge to u(m), m ≥ 1.214

4. Numerical experiments215

In this section we perform numerical experiments for time-discrete models with randomness.216

The goal is to assess the theoretical convergence of the Galerkin projections in order to carry217

out uncertainty quantification. The computations are performed in the software MathematicaR©,218

version 11.2 [30], installed on an IntelR© CoreTM i7 CPU 3.1 GHz.219

Example 4.1. Let us consider the nonlinear random difference equation220

u(m + 1) = sin(r)u(m)(T − u(m)). (21)

The terms r and T are considered random variables, so that u(m) is a random variable for each221

m ≥ 1. The initial condition u(0) = u0 is assumed to be constant.222

The equation (21) corresponds to a logistic model. We can interpret u(m) as the number223

of infected individuals at time m in a population of size T . The product u(m)(T − u(m)) is the224

number of contacts between infected and susceptible individuals. The parameter sin(r) represents225

the proportion of those contacts that gives rise to a new infective (in terms of modeling this is226

somewhat artificial, but we want to test our methodology with nonlinear terms).227

In order that model (21) makes sense, we need u(m) ∈ [0,T ] for all m ≥ 0. If 0 ≤ r ≤ 4/T228

and u0 ∈ [0,T ], then it is easily proved by induction on m that u(m) ∈ [0,T ]. Thus, we will set229

probability distributions for r and T such that 0 ≤ r ≤ 4/T .230

Let r ∼ Normal(0.02, σ = 0.005)|[0.01,0.04] and T ∼ Triangular(80, 100). These random231

variables are assumed to be independent. Notice that 0.01 ≤ r ≤ 0.04 = 4/100 ≤ 4/T , as232

required. As initial condition, we assume that u(0) = u0 = 3 individuals were infected at the233

beginning.234

Let us check that the conditions of Theorem 3.1 are satisfied. We have q = 1, s = 2 and235

ζ = (r,T ). The probability distributions are absolutely continuous, with finite moments and236

bounded. We have J1 = [0.01, 0.04], J2 = [80, 100] and I = J1 × J2. The function R is given237

by R(r,T, u) = sin(r)u(T − u). In the notation of Remark 3.2, take D = Dm = [0, 100]. For238

ξ = (ξ1, ξ2) ∈ I and w1,w2 ∈ D, |R(ξ,w1)−R(ξ,w2)| = | sin(ξ1)w1(ξ2−w1)− sin(ξ1)w2(ξ2−w2)| ≤239

| sin(ξ1)||ξ2||w1 − w2| + | sin(ξ1)||w1 + w2||w1 − w2| ≤ 100|w1 − w2| + 200|w1 − w2| = 300|w1 − w2|,240

therefore the Lipschitz condition (20) is satisfied. By Remark 3.2, the Lipschitz condition of241

Theorem 3.1 holds. Finally, the function gm is real analytic on Rs = R2, because the sine242

function is analytic.243

By Theorem 3.1, the inequality (13) holds. Depending on the rate of growth of ∆P, the244

Galerkin projection ûP(m) will converge or not. In Table 1, we analyze the increase of ∆P (some245

inaccuracies in the computations of Table 1 might have occurred due to G being badly condi-246

tioned, especially for large p). Figure 1 shows a regression line for the set of points (P, log(∆P)).247

This gives an exponential model for (P,∆P), which is depicted in Figure 2. Since ∆P grows248
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slower than the exponential model, we conclude empirically that ∆P has at most exponential249

growth. As gm is real analytic on Rs = R2, ũP(m) converges to u(m) at exponential rate. Thus,250

as a consequence of Theorem 3.1, the Galerkin projection ûP(m) will indeed converge to u(m) at251

exponential rate.252

p 1 2 3 4 5 6 7
P 3 6 10 15 21 28 36
∆P 45 1691 67, 036 557, 137 2.00412 · 107 1.7873 · 108 8.5111 · 108

Table 1: Values of ∆P. Example 4.1.
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Figure 1: Regression line for the set of points (P, log(∆P)). Example 4.1.
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3.0 ×109

ΔP

Figure 2: Exponential model for (P,∆P). Since ∆P grows slower than the exponential model (solid line), we conclude
empirically that ∆P has at most exponential growth. Example 4.1.

In Figure 3, we perform numerical experiments for p = 1, 2, 3, 4, 5, 6. We show the aver-253

age number of infected individuals together with a confidence interval with the rule [mean ±254

standard deviation], for 0 ≤ m ≤ 30. The mean and variance are computed with (11)–(12). Since255

r and T are independent, the method based on adaptive gPC from [14] can also be applied. We256
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observe in Figure 3 that both approaches yield the same results. We notice disastrous errors from257

p = 5 in our approach and from p = 6 in [14] method, due to inaccuracies in the computations:258

for [14], the main computational drawback is the loss of orthogonality in the Gram-Schmidt pro-259

cedure; whereas in our approach, the ill-conditioned matrix G entails computational errors for260

large p. The best choice for uncertainty quantification in this example is p = 4.261
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Figure 3: Average number of infected individuals (continuous lines) together with a confidence interval with the rule
[mean ± standard deviation] (dashed lines), for 0 ≤ m ≤ 30. Up: technique from [14]. Down: our approach. Observe
that both techniques coincide for p = 1 (yellow), p = 2 (orange), p = 3 (green) and p = 4 (blue). For p = 5 (red) and/or
p = 6 (black), disastrous errors appear due to the accumulation of errors. Example 4.1.

From a dynamics standpoint, we observe that the expected number of infected individuals,262

as well as the confidence intervals, tend to stabilize as m → ∞. More concretely, the average263

number of infective tends to the expectation of the (random) fixed point T − 1/ sin(r), E[T −264

1/ sin(r)] = 37.7452, while the typical deviation approaches
√
V[T − 1/ sin(r)] = 13.853.265

Example 4.2. We consider the same example as before, but we change the distribution of ζ =266

(r,T ). We pick267

ζ ∼ Normal(µ,Σ)|[0.01,0.04]×[80,100], µ =

(
0.02
90

)
, Σ =

(
0.000025 0.01

0.01 9

)
.

The initial condition is taken u(0) = u0 = 3. This example cannot be addressed with the tech-268

niques exposed in [14], since both random input parameters are not independent.269

As in Example 4.1, the hypotheses of Theorem 3.1 hold. As a consequence, if the rate270

of growth of ∆P is exponential, then the Galerkin projection ûP(m) will converge to u(m) at271
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exponential rate. In Table 2, we present how ∆P increases as P augments (significant errors might272

have occurred in the computations of Table 2 due to G being badly conditioned, mainly for large273

p). Figure 4 presents a regression line for the set of points (P, log(∆P)). From this regression274

line, Figure 5 shows an exponential model for (P,∆P). It seems that there is at most exponential275

growth of ∆P (because ∆P grows slower than the exponential model), therefore Theorem 3.1276

ensures the convergence of the Galerkin projections as P→ ∞.277

p 1 2 3 4 5 6
P 3 6 10 15 21 28
∆P 80 4660 56, 764 114, 327 180, 509 396, 342

Table 2: Values of ∆P. Example 4.2.
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Figure 4: Regression line for the set of points (P, log(∆P)). Example 4.2.
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Figure 5: Exponential model for (P,∆P). Since ∆P grows slower than the exponential model (solid line), we conclude
empirically that ∆P has at most exponential growth. Example 4.2.

In Figure 6, we show the numerical experiments for p = 1, 2, 3 corresponding to the average278

of infected individuals and the confidence interval [mean ± standard deviation]. The means and279
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variances have been calculated with (11)–(12). For p = 1 and p = 2, similar results are obtained.280

However, from p = 3 catastrophic numerical errors appear. This implies that the best choice for281

uncertainty quantification in this example is p = 2.282
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Figure 6: Average number of infected individuals (continuous lines) together with a confidence interval with the rule
[mean ± standard deviation] (dashed lines), for 0 ≤ m ≤ 30. For p = 1 (yellow) and p = 2 (orange) similar results are
observed. For p = 3 (green), disastrous errors appear due to the accumulation of errors. Example 4.2.

Concerning the asymptotic behavior of the random discrete dynamical system, we observe283

that the expected number of infected individuals and the confidence intervals tend to stabilize284

as m → ∞. The average number of infective tends to the expectation of the (random) fixed285

point T − 1/ sin(r), E[T − 1/ sin(r)] = 37.8474, whereas the standard deviation approaches286
√
V[T − 1/ sin(r)] = 15.192.287

Example 4.3. In this example, we deal with the recursive equation288

u(m + 1) = 5 cos(ζ1u(m) + ζ2).

Here, ζ = (ζ1, ζ2) are the random input parameters, with joint distribution289

ζ ∼ Dirichlet(80, 4, 316).

The initial condition u0 is taken as u0 = −10. The degree of nonlinearity of this difference290

equation is higher than in the previous two examples. Due to the non-independence of the random291

input coefficients, this stochastic equation cannot be tackled with the techniques from [14].292

Let us see that the assumptions of Theorem 3.1 hold. We have q = 1 and s = 2. The support293

of ζ1 and ζ2 is contained in J1 = J2 = [0, 1]. Let I = J1 × J2 = [0, 1]2. The function gm is294

real analytic on ζ, because it consists of a composition of cosine functions. In the notation of295

Remark 3.2, Dm = D = [−5, 5]. Let us check the Lipschitz condition (20). For w1,w2 ∈ D and296

ξ1, ξ2 ∈ [0, 1], by the Mean Value Theorem we have |R(ξ1, ξ2,w1)− R(ξ1, ξ2,w2)| = 5| cos(ξ1w1 +297

ξ2) − cos(ξ1w2 + ξ2)| ≤ 5|w1 − w2|, as wanted.298

As a consequence of Theorem 3.1, the inequality (13) holds. Depending on the growth of ∆P,299

there will be exponential convergence of the Galerkin projections ûP(m) in L2(Ω). Table 3 shows300

the values of ∆P for p = 1, 2, 3, 4, 5 (significant errors might have occurred in the calculations of301

Table 3 due to G being ill-conditioned, mainly for large p). Figure 7 draws a regression line for302

the set of points (P, log(∆P)), from which Figure 8 depicts an exponential model for (P,∆P), in303
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order to check empirically whether ∆P grows exponentially. We deduce that ∆P grows at most304

exponentially, because ∆P lies below the exponential model. Hence, the Galerkin projections305

converge to the solution process at exponential rate, as wanted.306

p 1 2 3 4 5
P 3 6 10 15 21
∆P 21 309 3758 20, 296 30, 072

Table 3: Values of ∆P. Example 4.3.
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Figure 7: Regression line for the set of points (P, log(∆P)). Example 4.3.
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Figure 8: Exponential model for (P,∆P). Since ∆P grows slower than the exponential model (solid line), we conclude
empirically that ∆P has at most exponential growth. Example 4.3.

In Figure 9, we perform numerical experiments for p = 2, 3, 4 corresponding to the average307

and standard deviation. The means and variances have been determined with the formulas (11)–308

(12). Similar results are obtained for p = 2, 3, 4, which agrees with the exponential convergence309

stated by Theorem 3.1.310
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Figure 9: Average statistic together with a confidence interval with the rule [mean ± standard deviation] (dashed lines),
for 0 ≤ m ≤ 30. For p = 2 (orange), p = 3 (green) and p = 4 (blue) similar results are obtained. Example 4.3.

Concerning the asymptotic dynamics of the discrete stochastic system, we observe stabiliza-311

tion of both the mean and variance statistics in Figure 9. The mean goes towards the value 3.676,312

while the variance to 0.025, as m→ ∞.313

5. Conclusions314

In this paper, we have analyzed the application of a stochastic Galerkin method for uncer-315

tainty quantification for nonlinear difference equations with dependent random input parameters.316

The Galerkin projections have been done onto canonical multivariate polynomials evaluated at317

the random inputs. A theoretical discussion has been developed to analyze the mean square318

spectral convergence of these Galerkin projections to the time-discrete solution process. In the319

numerical experiments, we have performed uncertainty quantification for some specific random320

difference equations with different degrees of nonlinearity. We have observed rapid convergence321

of the Galerkin projections, although large truncation orders may entail significant numerical322

errors because the Gram matrix associated to the canonical polynomial basis is ill-conditioned.323

Thus, for proper uncertainty quantification in practice, a correct and cautious choice of the basis324

length is proved to be important.325
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