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Abstract
The quality of the decisionsmade by amachine learningmodel depends on the data and
the operating conditions during deployment. Often, operating conditions such as class
distribution and misclassification costs have changed during the time since the model
was trained and evaluated. When deploying a binary classifier that outputs scores,
once we know the new class distribution and the new cost ratio between false posi-
tives and false negatives, there are several methods in the literature to help us choose
an appropriate threshold for the classifier’s scores. However, on many occasions, the
information that we have about this operating condition is uncertain. Previous work
has considered ranges or distributions of operating conditions during deployment,
with expected costs being calculated for ranges or intervals, but still the decision for
each point is made as if the operating condition were certain. The implications of
this assumption have received limited attention: a threshold choice that is best suited
without uncertainty may be suboptimal under uncertainty. In this paper we analyse the
effect of operating condition uncertainty on the expected loss for different threshold
choice methods, both theoretically and experimentally. We model uncertainty as a
second conditional distribution over the actual operation condition and study it the-
oretically in such a way that minimum and maximum uncertainty are both seen as
special cases of this general formulation. This is complemented by a thorough exper-
imental analysis investigating how different learning algorithms behave for a range of
datasets according to the threshold choice method and the uncertainty level.
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1 Introduction

It is now generally recognised inmachine learning that optimal decisions depend on an
appropriate identification and use of the operating condition surrounding the problem
at hand. In classification, the operating condition is usually represented by the class
distribution and the costs of misclassification. For instance, an undetected fault (false
negative) in a production line can be far more critical than a false alarm (false positive)
depending on the kind of product that is been manufactured. In this case, the kind of
product, the deadline of the order and other factors determine the operating condition.
While in general this operating condition can present itself in many ways, in important
cases it can be integrated in the utility function or cost function. If a decision disregards
the operating condition then it is very likely to be suboptimal. Conversely, if we predict
the class by taking proper account of the operating condition, better decisions can be
made.

But when is the operating condition known, and how much is effectively known
about it? Sometimes we have this information when we train and test our models,
and the operating condition does not change when the model is finally deployed to
classify a new case. For instance, in themanufacturing example, if we train and test our
models in a production line that always manufactures the same product and deploys
the model in this very same line, the operating condition is well known and constant.
This is represented by case A in Table 1. On other occasions, “the class distribution
and costs can change with time, or [...] the distribution in the datasets used for training
and evaluating the classifier may not reflect reality” (Drummond and Holte 2006).
For the manufacturing line, this happens when deadlines or products change, but
we have perfect information about them and the associated costs when the model
is deployed. This is case B in the table. On the other extreme, one can also have a
situation where the operating condition may be changing, but we do not know how it
changes, as represented by case D. All these cases have been analysed in prior work
and approaches to deal with them are readily available, as indicated in the right-most
column of the table.

The present paper is about case C, a common situation situated between cases B
and D: the operating condition has changed, and we have some (imprecise, uncertain)
information about the most likely change. For example, we may have assumed equal
misclassification costs when training the classifier, but now we need to handle a situ-
ation or operating condition c where false negatives are approximately twice as costly
as false positives.

There are two ways of understanding and addressing case C. On the one hand, we
can consider a range of operating conditions, e.g., an interval or a distribution, where
c would be somewhat in the middle, and calculate the expected cost in this range
of scenarios. This “precise information [being] unavailable when the system is run”
(Provost and Fawcett 2001) has been considered in the literature under different terms
and mechanisms: “imprecise distribution information [defining a] range of slopes”
(Provost et al. 1997), “an interval within which he or she is confident” (Adams and
Hand 1999) or “uncertain deployment scenarios” (Johnson et al. 2015). However, for
each particular operating condition, all these approaches still calculate the threshold as
if c were true. On the other hand, we can explicitly model that there is an uncertainty
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Table 1 Four different cases according to changes in the operating condition (o.c.) during deployment and
how much is known about this change

Description Approaches

A Perfect knowledge about operating
condition during deployment. The
o.c. is the same as the one the
model was trained with

Cost-sensitive learning, over- and
under-sampling, robust methods to
class imbalance, etc. (Elkan 2001)

B Perfect knowledge about o.c. during
deployment. The o.c. changes from
the one the model was trained with

Threshold choice using ROC
analysis, DEC curves or cost
curves. Calibration (Fawcett 2006;
Drummond and Holte 2006;
Zadrozny and Elkan 2001b)

C Uncertain knowledge about o.c.
during deployment. The o.c. may
change from the one the model was
trained with, where some changes
are more likely than others

This paper

D No knowledge about o.c. during
deployment. The o.c. can change
from the one the model was trained
with in any possible way

Aggregated metrics, such as AUC,
Brier score, etc. (Hernández-Orallo
et al. 2012; Flach et al. 2011;
Zadrozny and Elkan 2001a; Liu
et al. 2011)

around c and make the decision accordingly, which we can then aggregate or not
in regions or intervals. In this paper, we address this scenario in a systematic way,
modelling the uncertainty of the operating condition explicitly and analysing how to
set a threshold optimally according to that uncertainty.

In classification, given caseA in Table 1we do not need the classifier to be very flex-
ible, as we do not have changing conditions. A crisp classifier outputting class labels
can suffice. For the other three cases, we need more versatile classifiers, whose pre-
dictions can be adjusted. In particular, when we talk about thresholds we are assuming
that the models are able to estimate scores for the classes, and we compare these scores
against the threshold, so making the predictions of one or the other class more likely.
These scores usually represent some kind of confidence on the prediction, which, if
well calibrated, matches the probability that an example is of a particular class. For
example, in a well-calibrated binary classifier, if we consider the set of instances for
which themodel predicts scores around 0.8 then approximately 80% of these instances
belong to the positive class.

In binary classification, given the true operating condition and a classifier outputting
scores for the classes (e.g., probability estimations), we are in case B, for which there
are several procedures in the literature to choose the threshold between positive and
negative classification. These procedures are known as threshold choice methods.
Previous work (Hernández-Orallo et al. 2011, 2012, 2013) has investigated these
methods systematically, and the situations in which some are preferable over others.
The analysis has also been extended to case D, by studying aggregated metrics of
performance, such as the area under the ROC curve or the Brier Score, assuming a
uniform distribution of operating conditions, considering this a very entropic situation
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modelling total uncertainty of the operating condition. However, for the common case
C inTable 1,wedonot knowwhether these results can be extrapolated—or interpolated
between cases B and D. In other words, how do the threshold choice methods behave
for case C? This is the main question addressed in this paper.

Using a model of uncertainty based on the Beta distribution, we provide a the-
oretical analysis, accompanied by graphical illustrations in terms of cost curves, as
well as an extensive empirical evaluation, where several threshold choice methods
are analysed for varying degrees of uncertainty. Our empirical results demonstrate
different behaviours depending on the kind of dataset and the classification technique,
with several factors affecting the performance, such as the calibration of the scores,
the dataset imbalance, etc. Analysing these two parameters together (threshold choice
method and operating condition uncertainty) for the first time suggests their addition
as crucial variables in the learning process as well as in model selection procedures.

In summary, this paper makes a number of novel contributions. First, we con-
sider that the operating condition can be known during deployment with degrees of
uncertainty. Second, we model this by means of a cost parameter drawn from a Beta
distribution, which is appropriate as the cost parameter is a number between 0 and 1.
The location parameter of this Beta distribution is the expected value (as if there were
no uncertainty) and a second parameter controls the shape and hence the uncertainty.
Third, we perform a theoretical analysis of uncertainty in relation to several thresh-
old choice methods. Fourth, we perform a complete experimental analysis about how
different techniques behave for a range of datasets.

The paper is organised as follows. We first further motivate and illustrate case C in
the next section. In Sect. 3 we review related work, focusing on the threshold choice
methods used for performing model selection and configuration, and different kinds
of uncertainty. Section 4 introduces basic notation, the formal definitions of operating
conditions, cost curves and threshold choice methods. In Sect. 5 we formalise the
notionof operating conditionuncertainty and analyse howuncertainty affects threshold
choice methods, deriving a series of theoretical results for cost curves and particularly
for expected loss for complete uncertainty. Section 6 includes a thorough experimental
evaluation with a range of learning techniques, datasets and threshold choice methods
for different levels of uncertainty, and extracts a series of findings from the analysis.
Finally, Sect. 7 closes the paper with an overall assessment of the results and some
future work.

2 The case of operating condition uncertainty

As a motivating example, consider the following simple spam filtering scenario.
Detecting spam in email, SMS, or other kinds of communications represents a
paradigmatic use of machine learning (Guzella and Caminhas 2009). This is also
a representative example to illustrate varying operating conditions, since the cost
and prevalence of spam depends on the user: the amount of spam messages each
user receives can vary considerably, and additionally the associated costs also differ
widely over users as they depend on many factors (Ridzuan et al. 2010). Experiments
in Sakkis et al. (2003) consider several operating conditions, some representing that
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Table 2 Cost matrices for a
spam filtering application

Predicted

Spam Ham

(a)

Actual Spam – $0.28

Ham $0.04 –

(b)

Actual Spam – $0.21

Ham $0.07 –

(a): Cost matrix as assumed when making a decision with a tentative
cost proportion ĉ = 0.28/(0.28+0.04) = 0.875. (b): True cost matrix
for the user with a true cost proportion c = 0.21/(0.21+0.07) = 0.75

blocking a good message is as bad as letting 99 spam messages pass the filter, but also
operating conditions where blocking 1 good message has the same cost as letting 1
spammessage in. In other words the cost ratios go from 99 to 1 depending on the user.
Nevertheless, even if we know the exact preferences of a single user, the context of the
problem is highly uncertain because of the varying proportions of the spam deliveries.
For instance, Figures 1 and 3 in Fawcett (2003) report the percentage of spam over
total e-mail for a population of users.1

Consider a previously learnt scoring classifier is used to determine whether to flag
a message as spam or ham. Table 2a shows the assumed cost matrix to deploy the
model for a particular user, which suggests that misclassifying a non-spam email for
a given user is 0.28/0.04 = 7 times more costly than misclassifying spam email. This
can be integrated into an assumed cost proportion (i.e., the cost of a false negative
in proportion to the joint cost of one false negative and one false positive) of ĉ =
0.28/(0.28+0.04) = 0.875. Now imagine that for a particular messagem during this
deployment stage the classifier outputs an estimated spam probability of 0.8. Using
a score-driven threshold choice method—which compares the estimated probability
with the assumed cost proportion ĉ—we would classify the message as ham, as this
minimises the expected loss (0.8· $0.04 < (1 − 0.8)· $0.28).

But because of the uncertainty of the problem, the costs were an assumption. The
true costs may be somewhat different, as depicted in Table 2b. This is an example
of case C in Table 1: it is not only that the costs have changed from training/test to
deployment, but also that the assumed costs during deployment were wrong. The true
operating condition is seen to be represented by a cost proportion c = 0.75. Using
this true cost proportion, the optimal decision would be to classify message m as
ham (0.8· $0.07 > (1 − 0.8)· $0.21). We see that the assumed cost matrix leads to
a suboptimal decision, not because the classifier is poorly calibrated, but because
the operating condition has been poorly estimated. Note that it is not that we were
completely wrong about the operating condition. It is 0.75 when we thought it was
0.875 so we are not in case D in Table 1.

1 For the variability of global trends, one can check https://www.talosintelligence.com/reputation_center/
email_rep or https://www.statista.com/statistics/420391/spam-email-traffic-share/.
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What is of interest for our present investigation is that this uncertainty of the oper-
ating condition does not affect all threshold choice methods in the same way. In the
example above, we used the score-driven threshold choice method, but other meth-
ods can be more sensitive to this uncertainty and magnify this error in the operating
condition. Let us explore this with some real data. We trained a decision tree model
(J48 Unpruned) for the Spambase dataset of the UCI repository (Lichman 2013). This
dataset contains a collection of spam and valid emails, and it has been used to build
spam filters. Themodel was trained with 99% of the data. Train dataset and test dataset
have a similar class proportion. Figure 1 shows the performance on the remaining 1%,
in the form of a cost curve. A cost curve (Drummond andHolte 2006) is a powerful tool
to represent performance of binary classifiers on the full range of cost contexts. Cost
lines in this plot show possible outputs of the performance of the model depending on
the threshold employed.

There are different methods to set the threshold according to the cost context. The
most common methods are train-optimal, estimating the optimal thresholds from the
training dataset, with the cost curve in blue in Fig. 1, and score-driven, as described
above, giving the red cost curve in Fig. 1. Test-optimal is represented in green. This
method assumes to be able to choose the best threshold for each test instance, and
hence gives an over-optimistic baseline (the lower envelope of all cost lines). These
and other methods, such as rate-driven (using the intended predicted positive rate
to derive the threshold), have been studied in previous work (Hernández-Orallo et
al. 2011, 2012, 2013), showing that train-optimal may be affected by overfitting and
score-driven by bad calibration, while rate-driven incurs a constant baseline cost. The
use of cost curves allows us to express these different threshold choice methods in a
common currency, expected loss, and decide which method to use depending on the
situation. For instance, we see that for a cost proportion of c = 0.15 train-optimal has
an expected loss of around 0.2 while test-optimal and score-driven have an expected
loss of around 0.1. However, this analysis performed in previous work considers that
the operating condition during deployment is perfect, i.e., they were considering case
B in Table 1.

Consider now the same cost proportion for deployment as above, but now it is just
an estimation ĉ = 0.15. Again, using score-driven or test-optimal, we would expect to
have a loss of around 0.1. However, due to the high uncertainty in the context, imagine
that the true cost context is actually c = 0.4. This means that we have to follow the
cost line that grows steeply from (0,0), which is prolonged in dotted grey. The true
loss we actually have with the chosen cost line goes from 0.1 to slightly above 0.3
as we see with the green arrows in Fig. 1. In this uncertain situation, train-optimal
turns out to be a better choice, despite being theoretically a worse option because of
its worse area under the curve. For c = 0.15, it selects the cost line between 0.26 and
0.16, but it even goes slightly down for the actual context of c = 0.4 (shown with
the blue arrows). Note that taking a region or interval around c = 0.4 or ĉ = 0.15
and calculating an expected cost for that region (one traditional way of modelling
uncertainty, as we discussed in the introduction) would never show that train-optimal
is better sometimes, as in the case that we are analysing. In other words, there is no
region where train-optimal is better than test-optimal, but we can still find decisions,
under uncertainty, where train-optimal might be better.
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Fig. 1 Cost curve for an
unpruned J48 tree and the
spambase dataset. The x-axis
shows the cost ratio c and the
y-axis shows the expected loss.
Three curves are shown
corresponding to threshold
choice methods score-driven,
test-optimal and train-optimal.
The area under these curves is
included in the legend

In this paper we analyse thismore realistic casewhen using several threshold choice
methods, by taking into account that the assumed operating condition can be uncertain.
For instance, if we use both train-optimal and score-driven threshold choice methods
when we are given an operating condition of ĉ = 0.2, which method is more robust
if this information has a high degree of uncertainty (and in the end it might well be
c = 0.1 or c = 0.5)? How should we treat information about the operating condition
that is vague or noisy?

The key issue to analyse this case C in Table 1 is to model this uncertainty. For a
new user, a good approximation might be to take the operating conditions that we have
seen for a sample of existing users, which is simply a distribution of cost ratios. We
choose to model the uncertainty in ĉ by a Beta distribution with mode c and certainty
γ (we use an alternate parametrisation of the usual Beta(α, β) with α = cγ + 1 and
β = (1− c)γ + 1). Hence certainty in ĉ ranges from γ = ∞, i.e., complete certainty
modelled by a delta function at ĉ = c (case B); to γ = 0, i.e., complete uncertainty
modelled by a uniform distribution over ĉ ∈ [0, 1] (case D). Figure 2 includes the
distribution of operating conditions considering two values of γ (10 and 100) and an
estimated operating condition with mode in 0.2.

We analyse how expected loss and cost curves change for increasing uncertainty
to the case of total uncertainty (γ = 0). We find that many threshold choice meth-
ods collapse and become equivalent to their uniform counterparts (e.g., score-driven
becomes score-uniform) and we can analytically derive the cost curves and expected
losses in this extreme situation of complete uncertainty. This allows us to frame the
evolution from perfect operating condition information to total absence of information
for all threshold choice methods, where case C in Table 1 becomes a generalisation of
both cases B and D.
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Fig. 2 Histograms (using 1,000,000 values) of ĉ for a cost value c = 0.2 and two different levels of certainty:
γ = 10 and γ = 100

3 Related work

Research on threshold choice methods mostly originates from the general area of
decision making, ROC analysis and cost-sensitive learning in machine learning. A
threshold choice method is a particular decision rule that converts the prediction or
score provided by a model to a final decision. For instance, one of these methods is
provided by ROC analysis, by calculating the Convex Hull of the ROC curve (Flach
2004; Fawcett 2006) [or, equivalently, applying the Pool Adjacent Violators algorithm
(Fawcett and Niculescu-Mizil 2007)] to obtain the non-dominated operating points,
each of which correspond to an optimal decision threshold for a range of class distri-
butions and/or cost proportions. ROC analysis is usually performed on a training or
validation dataset, which means that the decisions are optimal (in the sense of taking
the most from the model) for that dataset. It is then important to distinguish between
the term train-optimal to denote when the decisions are chosen optimally according
to the training (or validation) dataset and the term test-optimal, which refers to the
optimal decisions that would be made assuming the ROC curve could be estimated
from the test data (which is usually impossible). Similarly, whenwe refer to calibration
(Zadrozny and Elkan 2001b; Bella et al. 2013; Fawcett and Niculescu-Mizil 2007),
it is important to clarify that a model is calibrated for a specific class distribution or
dataset (usually the training or validation dataset). These distinctions are important
because otherwise (for perfect ROCcurves and perfect calibration) choosing according
to the convex hull or choosing according to probability estimations would be equally
optimal.

Accordingly, recent works have studied other threshold choice methods, such as
the so-called score-driven and rate-drivenmethods, which might be more appropriate
depending on the quality of the ranking and/or the probability estimates. This has
led to a better understanding of aggregate performance metrics such as AUC or the
Brier score (Hernández-Orallo et al. 2011, 2012, 2013), which are seen as expected
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loss for a particular threshold choice method for a range of operating conditions.
Most of this work has been theoretical or oriented towards new types of visualisa-
tion (e.g., all threshold choice methods can be visualised on the same cost space, as
all are expressed in terms of expected loss). An exception is de Melo et al. (2014),
which considers cost and different threshold choice methods for proposing algorithm
similarity measures from a meta-learning perspective. However, no full experimental
analysis has been performed comparing the main realistic threshold choice methods
(train-optimal, score-driven and rate-driven) with test-optimal.

The issues about the usual inductive extrapolation from training to test, and ulti-
mately deployment are not the only cause of suboptimal decisions. Some of these
other causes are usually grouped under the term ‘uncertainty’, a widely-researched
topic in machine learning that has been covered in almost all aspects that can affect
model selection and decision making. For instance, much research effort has focused
on uncertainty in data, i.e., noise in the output and/or input features used to learn a
model or the instances to be predicted (Bishop 2011). In this context, someworks have
developed versions of existing learning techniques such as decision trees (Tsang et al.
2011; Qin et al. 2009) or Naive Bayes (Ren et al. 2009) to handle this uncertainty.
Other papers have addressed data uncertainty in a cost-sensitive setting (Liu et al.
2011; Huang 2015). In Dalton (2016), the authors address uncertainty from a different
perspective, they assume the true population densities are members of an uncertainty
class of distributions.

The uncertainty in the predictions produced by a classifier is also a very common
topic in machine learning, and it has usually been linked to calibration (Zadrozny and
Elkan 2001b; Bella et al. 2013; Fawcett and Niculescu-Mizil 2007). Calibration is
closely related to the performance of several threshold choice methods, as it has been
analysed theoretically (Hernández-Orallo et al. 2012), although not experimentally.

None of the above notions of uncertainty concern uncertainty or noise in the operat-
ing condition (case C in Table 1). However, it is well-recognised in machine learning
that determining a precise cost matrix is problematic (Provost et al. 1997; Drum-
mond and Holte 2006; Adams and Hand 1999; Provost and Fawcett 2001), as we have
discussed in the introduction. Yet surprisingly, only a fewworks have focused on solv-
ing or systematically analysing this issue. Zadrozny and Elkan (2001a) is a seminal
work on making optimal decisions when costs and probabilities are both unknown by
introducing decision tree andNaive Bayesmethods for obtainingwell-calibrated prob-
ability estimates. A more recent approach is presented in Liu and Zhou (2010), where
learning is done assuming cost intervals, specifically with support vector machines.
They consider that the false positive and negative costs are taken as c0 = 1 and c1
ranging in a predefined interval [cmin, cmax ], which is given. They finally consider
any possible distribution, showing that the expected value of the distribution is not
the best decision in general, and thereby proposing a method which is based on sam-
pling from the cost distribution, learning independent classifiers and then combining
their outputs, which is essentially a Monte Carlo approach. In other words, the model
assumes that we have access to the true distribution of c, and hence can sample many
ĉ from this distribution. However, this is unrealistic in many situations.

Similarly, Wang and Tang (2012) consider multiple cost matrices, and the goal is to
minimise loss considering all of them are given, so there is no real uncertainty, either.
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This is as if themodelswere evaluated for a set of operating conditions. Recently, John-
son et al. (2015) consider hypothetical deployment scenarios engendered by uncertain
operating environments. The authors employ different loss functions to model uncer-
tainty including a Beta distribution. The paper proposes a boosting-based method,
RiskBoost, that reduces classifier risk when considering the Beta distribution, as sug-
gested by Hand (2009). Finally, Dou et al. (2016) also consider a set of cost matrices
and derives a method based on rough set theory such that “the smallest possible cost
and the largest possible cost are calculated”, which can be seen as an intermediate
approach between the interval case and the multiple matrices case.

It is important to clarify that all the above approaches are given the parameters of
the distribution or the set of cost matrices during deployment. Consequently, despite
the name of some of these works, they view uncertainty as variability, and require
information about this variability specified as a range of operating conditions [as
done, for instance, in Hernández-Orallo et al. (2013)]. Once the range is defined as a
distribution on c, the local decisions are made as if the operating condition were the
true one, and then aggregated into regions. In otherwords, there is only one distribution
over the true costs. In the current paper, in contrast, we consider that we get a value
of ĉ that is sampled (following one conditional distribution) from a true c (following
another unconditional distribution), but the distribution is not known by the decision
making system. This is a more realistic situation and more in accordance with the
notion of uncertainty. Of course, in our theoretical analysis and the experiments we
use some distributions to generate the values of ĉ, but the decision rule is not aware
of these distributions.

Finally, all the above approaches in the literature have explicitly or implicitly
assumed a kind of test-optimal threshold choice method. It is unclear whether the
results would be better or worse for some other threshold choice methods. We study
this theoretically for an uncertainty model and experimentally for a range of datasets.

4 Preliminaries

In this section we introduce basic notation and the key concepts of threshold choice
methods, expected loss under a distribution of operating conditions, and cost curves.
Most of this section follows (Hernández-Orallo et al. 2012).

A classifier is a function that maps instances x from an instance space X to classes
y from an output space Y . For this paper we will assume binary classifiers, i.e., Y =
{0, 1}. A model is a function m : X → R that maps examples to scores on an
unspecified scale. We use the convention that lower scores express a stronger belief
that the instance is of class 0, which we label the positive class. A probabilistic model
is a functionm : X → [0, 1] that maps examples to estimates p̂(1|x) of the probability
of example x to be of class 1. In order to make predictions in the Y domain, a model
can be converted to a classifier by setting a decision threshold t on the scores. Given
a predicted score s = m(x), the instance x is classified in class 1 if s > t , and in class
0 otherwise.

For a given, unspecified model and population from which data are drawn, we
denote the score density for class k by fk and the cumulative distribution function
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by Fk . Thus, F0(t) = ∫ t
−∞ f0(s)ds = P(s ≤ t |0) is the proportion of class 0 points

correctly classified if the decision threshold is t , which is the sensitivity or true positive
rate at t . Similarly, F1(t) = ∫ t

−∞ f1(s)ds = P(s ≤ t |1) is the proportion of class 1
points incorrectly classified as 0 or the false positive rate at threshold t ; 1 − F1(t) is
the true negative rate or specificity.

Given a dataset D ⊂ 〈X ,Y 〉 of size n = |D|, we denote by Dk the subset of
examples in class k ∈ {0, 1}, and set nk = |Dk | and πk = nk/n. Clearly π0 + π1 = 1.
We will use the term class proportion for π0. Given a model and a threshold t , we
denote by R(t) the predicted positive rate, i.e., the proportion of examples that will
be predicted positive if the threshold is set at t . This can also be expressed as R(t) =
π0F0(t) + π1F1(t).

A deployment context or operating condition is usually defined in practice by a
misclassification cost function and a class distribution. In this paper we concentrate
on misclassification costs as operating condition since the case of varying class dis-
tributions can be mapped back to a cost-sensitive scenario (Elkan 2001; Flach 2014).

Most approaches to cost-sensitive learning assume that the cost does not depend
on the example but only on its class, and then cost matrices can specify that some
misclassification costs are higher than others (Elkan 2001). Typically, the costs of
correct classifications are assumed to be 0. In this way, for binary models we can
describe the cost matrix by two values ck ≥ 0 with one or both being strictly greater
than 0, representing the misclassification cost of an example of class k. Two examples
were given in Fig. 2. These costs can be normalised by setting b = c0 + c1, (which
is strictly greater than 0), and c = c0/b; we will refer to c as the cost proportion.
Under these assumptions, an operating condition can be defined as θ = 〈b, c, π0〉.
The space of operating conditions is denoted by Θ . Given a classifier characterised
by its cumulative distribution functions F0 and F1, the loss for an operating condition
θ using threshold t is defined as:

Q(t; θ) � b{cπ0(1 − F0(t)) + (1 − c)π1F1(t)} (1)

A threshold choice method is a key issue when applying a model under different
operating conditions, defined as follows:

Definition 1 Threshold choice method. A threshold choice method is a function T :
Θ → R that given an operating condition returns a decision threshold.

Given a threshold choice method T , the loss for a particular operating condition θ

is given by Q(T (θ); θ). When we are not given the operating condition until deploy-
ment, we should evaluate the loss over a distribution of possible (or likely) operating
conditions w(θ), leading to the following general definition of expected loss:

L �
∫

Θ

Q(T (θ); θ)w(θ)dθ (2)

As already mentioned we will assume the variability of the operating condition to be
fully captured by the cost parameters, so πk are assumed to be constant. Furthermore,
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we assume that b and c are independent and that thresholds are chosen solely in terms
of c. Under these assumptions Eq. 1 is simplified as follows:2

Q(t; c) � E{b}{cπ0(1 − F0(t)) + (1 − c)π1F1(t)} (3)

The expected value of b appears in the loss expression as a scaling factor, and can
conveniently be set to 2 in order for loss to be commensurate with error rate when
costs are balanced (c = 0.5).

The expected loss for costs is then adapted from Eq. 2 as follows:

Definition 2 Given a threshold choice method T and a probability density function
over cost proportions w, expected loss Lδ is defined as

Lδ �
∫ 1

0
Q(T (c); c)w(c)dc (4)

Here we use the symbol δ to denote absolute certainty about the operating condition
(a Dirac delta distribution, as explained later).

If we plot Q(T (c); c) against c we obtain cost curves as defined by Drummond and
Holte (2000, 2006). For fixed thresholds these curves are straight lines running from
Q(t; 0) = 2π1F1(t) for c = 0 to Q(t; 1) = 2π0(1 − F0(t)) for c = 1. Given
n examples with different scores (no ties), assuming they are ordered by increasing
score, changing a threshold anywhere between two consecutive scores does not change
the decision. Consequently, these straight lines corresponding to these n+ 1 cases are
usually referred to as “cost lines”, and are represented by the pair Q(t; 0) → Q(t; 1)
of values at c = 0 and c = 1 respectively, or simply by their index i , between 0 to n.

Wenowproperly introduce the threshold choicemethods studied in this paper. Some
theoretical properties of thesemethods can be found inHernández-Orallo et al. (2012).

The first threshold choice method is based on the optimistic assumption that at
deployment time we select the threshold that minimises the loss using the current
model. This threshold choice method, denoted by T o, is defined as follows:

Definition 3 The optimal threshold choice method is defined as:

T o(c) � argmin
t

{Q(t; c)} (5)

= argmin
t

2{cπ0(1 − F0(t)) + (1 − c)π1F1(t)} (6)

Note that the arg min will typically give a range (interval) of values which give the
same optimal value. So this method could be called non-deterministic.

This threshold choicemethodwas employed byDrummond andHolte (2000, 2006)
to define their cost curves. The cost curve formed by applying this optimal threshold
choicemethod corresponds to the lower envelope of the set of all cost lines, and accord-
ing to Hernández-Orallo et al. (2012) the area under this lower envelope is related to

2 Hernández-Orallo et al. (2012) considered a second version of the loss expression where the class prior
is absorbed into a different operating condition (z). Here we stick to the above version.
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the model’s refinement loss, actually RLConv, the refinement loss after convexification
of the model [convex hull calibration, (Flach and Matsubara 2007)].

From a practical point of view, we need to differentiate between the test and train
(or validation) situations, as already illustrated above. The original optimal thresh-
old choice method is applied over the same data that is used to compute the loss
arg mint {Q(t; c)}. This is clearly unrealistic in practical scenarios and is included
here as an optimistic baseline to compare against; it will be called the test-optimal
threshold choice method (sometimes just abbreviated to optimal), as we can usually
see this with test data, but this is usually considered as an ideal situation during deploy-
ment. More realistically, the train-optimal threshold choice method T o(c) uses one set
of data to set the threshold (usually training data) and another set of data to evaluate
the associated loss.

The next threshold choice method treats the classifier’s scores as calibrated proba-
bility estimates.

Definition 4 Assuming the model’s scores are expressed on a probability scale [0, 1],
the score-driven threshold choice method is defined as follows:

T sd(c) � c

The curve for a given classifier defined as a plot of loss against operating condi-
tion using the score-driven threshold choice method is defined as the Brier curve
(Hernández-Orallo et al. 2011). The area under the Brier curve is equal to the Brier
score (Brier 1950). These curves are also useful to know the calibration loss of clas-
sifiers by comparing the difference of its Brier curve with respect to the test optimal
cost curve.

The next method only considers the order of the scores and not its magnitude.

Definition 5 The rate-driven threshold choice method is defined as

T rd(c) � R−1(c)

where R(t) = π0F0(t) + π1F1(t) is the predicted positive rate at threshold t or,
equivalently, the cumulative distribution function of the classifier’s scores. R−1 is
hence the quantile function of the scores.

The rate-driven cost curve is defined as a plot of Q(T rd(c); c) and the area under this
curve is directly related toAUC(Hernández-Orallo et al. 2013), exactly as 1

3+π1π0(1−
2AUC). Unlike the other curves the rate-driven cost curve is interpolating between
different cost lines, as some predicted rates may only be achievable by introducing
fractional instances.

5 Uncertainty in the operating conditions

Consider again expected loss as in Definition 2. In this definition the operating con-
dition c plays a dual role: as input to the threshold choice method T (c) = t , and as
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input to the loss function Q(t; c), which calculates the loss at that threshold. However,
in practice we do not have access to the exact operating condition when setting the
threshold, but at best to an approximate, uncertain or noisy ĉ. The following definition
of expected loss captures this more realistic operating condition uncertainty:

Definition 6 Given a threshold choice method for cost proportions T , a probability
density function over true cost proportionsw and a conditional density function v over
presumed cost proportions given the true cost proportion, expected loss Lv is defined
as

Lv �
∫ 1

0
Kv(c)w(c)dc (7)

Kv(c) �
∫ 1

0
Q(T (ĉ); c)v(ĉ|c)dĉ (8)

In words, Kv(c) is the expected loss at true cost proportion c, where the expectation is
taken over the conditional density v(ĉ|c); and Lv is Kv(c) averaged over all c, where
the expectation is taken over the density w(c).

In real situations we do not know v exactly but we can assume a family of dis-
tributions that is sufficiently general and flexible to consider both the expectation
and the uncertainty of the operating condition. Since costs are bounded between 0
and 1, a natural choice for v(ĉ|c) is the Beta distribution Beta(α, β), which has two
positive shape parameters α and β. It is furthermore natural to set the mode of this
Beta distribution ((α − 1)/(α + β − 2)) equal to the expected cost proportion c as a
location parameter. The remaining degree of freedom is fixed by choosing a certainty
level γ = α + β − 2 as a shape parameter, ranging from γ = 0 (complete uncer-
tainty) to γ = ∞ (complete certainty). We can recover the conventional parameters
as α = cγ + 1 and β = (1 − c)γ + 1.

We define Kv[γ=x](c) as the expected loss at true cost proportion c, where v(ĉ|c)
is modeled by a Beta distribution using the γ parameter defined above fixed to x .
Trivially, for γ = ∞ we have c = ĉ, so the Beta distribution becomes a Dirac delta
distribution with all the mass in c and hence Kv[γ=∞](c) = Kδ(c) = Q(T (c); c) and
Lv[γ=∞] = Lδ . The beta distribution ranges from this delta distribution to the other
extreme, when γ = 0, which is a uniform distribution expressing complete uncertainty
about the true operating condition.

We continue with an analytical analysis of the impact of this uncertainty model
on expected loss under the various threshold choice methods. In what follows, we
study how cost curves are affected by uncertainty. Then, we centre the analysis on
the extreme case of complete uncertainy (γ = 0), first for non-interpolating threshold
choice methods, and then for the (interpolating) rate-driven threshold choice method.

5.1 Expected loss as a weighted average of cost lines

We can decompose cost curves Q(T (c); c) as follows.
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Definition 7 Given n + 1 cost lines indexed by i ∈ {0, 1, . . . , n} (for instance, corre-
sponding to a dataset with n examples without ties in the classifier scores), and T a
non-interpolating threshold choice method, let us consider the portion of Q(T (c); c)
that involves cost line i . We define ci (ci+1) as the lowest (highest) value of c for
which T selects cost line i . Clearly, c0 = 0. If a cost line is never selected by T then
ci = ci+1. The height of cost line i at c is denoted as hi (c). The trapezoid where a
cost line i is used is then given by ci , ci+1, hi (ci ) and hi+1(ci+1).

As introduced above, v(ĉ|c) is a distribution quantifying the uncertainty of ĉ; we
denote its cumulative distribution by V . As cost lines are straight, the following lemma
transforms the segment-wise view of Q(T (ĉ); c) into a weighted aggregate of all cost
lines that might be selected by ĉ.

Lemma 1 Given n + 1 cost lines, the expected loss at point c is given by a weighted
sum of the height of all n + 1 cost lines at c:

Q(c) =
n∑

i=0

ΔVi (c)hi (c)

where

ΔVi (c) = V (ci+1|c) − V (ci |c)

The proof of all theorems, lemmas and corollaries are found in Appendix A. This
lemma expresses that under uncertainty, the expected loss at true cost proportion c
is a ‘vertical’ average of all losses incurred by the different cost lines that may be
selected through the noisy ĉ, weighted by the cumulative probability of obtaining a ĉ
that would select that cost line.

From this decomposition in weighted aggregates it is easy to see that the area of a
curve can be computed as follows:

Theorem 1 The area under a cost curve (expected loss) can be decomposed as:

Lv =
n∑

i=0

Li

where

Li =
∫ 1

0
[V (ci+1|c) − V (ci |c)]hi (c)dc

quantifies the contribution of a single cost line to the expected loss.

This theorem states how we can compute expected loss for the full range of c under
an uncertainty function v by aggregating the contribution of the cost lines Q(c) for
the full range of c.
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From the general expression we can derive the special cases for complete certainty
and complete uncertainty. We need some notation first. For each cost line i we define
li = hi (0) and ki = hi (1) − li , which means that the cost line is defined by hi (c) =
ki c + li .

Theorem 2 The contribution of cost line i to the expected loss for complete uncertainty
is Li = (ci+1 − ci ){ki/2 + li }.
Theorem 3 The contribution of cost line i to the expected loss for complete certainty
is Li = (ci+1 − ci ){ki (ci+1 + ci )/2 + li }.
While mathematically straightforward, Theorems 2 and 3 allow us to say more pre-
cisely under what circumstances complete certainty gives a lower expected loss for a
given cost line than complete uncertainty: this happens exactly when

ki (ci+1 + ci ) < ki

For ascending cost lines with positive slope ki this means ci+1 + ci < 1: i.e., the
midpoint of the segment must be below 1/2. Analogously, for descending cost lines
the midpoint of the segment should be above 1/2. Taken together, the midpoint of the
segment should be within the lower half of the cost line. This is desirable in general
but cannot always be guaranteed for every cost line. However, we demonstrate in
the next section that when aggregating over all cost lines, expected loss for complete
uncertainty is indeed higher than for complete certainty for several threshold choice
methods.

5.2 Expected loss under complete uncertainty

In this section we analytically derive (expected) cost curves and expected loss for
several threshold choice methods under complete uncertainty (i.e., the conditional
density of ĉ given c is a uniform distribution in [0, 1], modelled by a Beta distribution
with certainty parameter γ = 0).

5.2.1 Score-driven thresholds

Theorem 4 Assuming scores in [0, 1], the expected cost curve for the score-driven
threshold choice method and complete operating condition uncertainty is given by:

K sd
v[γ=0](c) = 2{π1(1 − s1) + (π0s0 − π1(1 − s1))c} (9)

where sk represents the average scores for class k.

This cost curve is hence a straight line, moving from K = 2π1(1 − s1) for c = 0 to
K = 2π0s0 for c = 1. For calibrated classifiers it is horizontal and independent of c,
since in that case π0s0 = π1(1 − s1) (Hernández-Orallo et al. 2013, Theorem 41).
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Corollary 1 The expected loss for the score-driven threshold choice method, uniform c
and complete operating condition uncertainty is the classifier’s mean absolute error:

Lsd
v[γ=0] = π0s0 + π1(1 − s1) = MAE

This result should be contrasted with score-driven thresholds under complete certainty
of the operating condition, which leads to an expected loss equal to the Brier score
(aka mean squared error). For probabilities squared error is never larger than absolute
error, and hence the increase of expected loss from BS toMAE characterises precisely
the additional loss incurred as a result of uncertainty in c. We will see later that this
increase is maximally a factor 2 (for perfectly calibrated models).

These results also establish a connection with the score-uniform threshold choice
method defined by Hernández-Orallo et al. (2013), which sets a random threshold on
the scores irrespective of the operating condition c. They derive the same cost curve
and expected loss as above (Hernández-Orallo et al. 2013, Theorem 11 and Corol-
lary 12). In other words, setting the threshold according to an operating condition that
is maximally uncertain is equivalent to ignoring the operating condition and setting
the threshold randomly.

5.2.2 Rate-driven thresholds

Theorem 5 The expected cost curve for the rate-driven threshold choice method and
complete operating condition uncertainty is given by:

Krd
v[γ=0](c) = 2π0π1(1 − AUC) + π2

1 + (π0 − π1)c (10)

We again get a straight cost curve, moving from K = 2π0π1(1−AUC)+π2
1 for c = 0

to K = 2π0π1(1−AUC) + π2
1 + (π0 − π1) = 2π0π1(1−AUC) + π2

0 for c = 1. For
balanced classes this line is horizontal and the loss independent of c.

Corollary 2 The expected loss for the rate-driven threshold choice method, uniform
c and complete operating condition uncertainty is related to the classifier’s AUC as
follows:

Lrd
v[γ=0] = π0π1(1 − 2AUC) + 1/2

which is 1/6 higher than if the operating condition were fully known.

Wefind that setting the threshold according to an operating condition that is maximally
uncertain is equivalent to ignoring the operating condition and setting the threshold
randomly, which is another result of Hernández-Orallo (2013, Theorem 18).

5.2.3 Optimal thresholds

Theorem 6 The expected cost curve for the optimal threshold choice method and
complete operating condition uncertainty is:

K o
v[γ=0](c) = 2π0s

∗
0
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where s∗ denotes scores obtained after perfect calibration. Hence the loss is indepen-
dent of the true operating condition c.

Theorem 7 The expected loss for the optimal threshold choice method with complete
uncertainty is twice the expected loss for the optimal threshold choice method with
complete certainty :

Lo
v[γ=0] = 2Lo

δ (11)

Again, we have a result where complete uncertainty increases the loss with respect to
complete certainty, this time very considerably by a factor two.

5.3 Discussion

Table 3 summarises our results so far for complete operating condition uncertainty.
The first column gives the expected cost lines in the form K (c) = A + Bc, and the
right column gives the expected loss (area under the expected cost line). Table 4 gives
the corresponding results for complete operating condition certainty from Hernández-
Orallo et al. (2013).

We have seen that the impact of uncertainty is different for different threshold
choice methods:

– for score-driven thresholds the loss evolves from BS to MAE and hence the addi-
tional loss due to complete operating condition uncertainty depends on themodel’s
performance;

– for rate-driven thresholds the additional loss is an additive constant (1/6);
– for (test-)optimal thresholds the additional loss is a multiplicative factor (2).

Table 3 Expected cost curve and expected loss for several threshold choice methods, under complete
operating condition uncertainty

Expected cost curve Kv[γ=0](c) Expected loss Lv[γ=0]

Score-driven 2{π1(1 − s1) + (π0s0 − π1(1 − s1))c} π0s0 + π1(1 − s1) = MAE

Rate-driven 2π0π1(1 − AUC) + π2
1 + (π0 − π1)c π0π1(1 − 2AUC) + 1/2

Optimal 2π0s
∗
0 2π0s

∗
0 = 2RL(Cal(m))

Table 4 Corresponding results from Hernández-Orallo et al. (2013), for complete operating condition
certainty

Cost curve Kδ(c) Expected loss Lδ

Score-driven 2{cπ0(1 − F0(c)) + (1 − c)π1F1(c)} BS

Rate-driven 2{cπ0(1 − F0(R
−1(c))) + (1 − c)π1F1(R

−1(c))} π0π1(1 − 2AUC) + 1/3

Optimal 2{cπ0(1 − F∗
0 (c)) + (1 − c)π1F

∗
1 (c)} π0s

∗
0 = RL(Cal(m))

F∗
k (c) indicates the optimal Fk for that value of c
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Fig. 3 Cost curves for the credit-a dataset for different threshold choice methods. The class proportion is
π0 = 0.44 and π1 = 0.56. Left: Prior model, Right: Random model. Solid lines correspond to complete
certainty (γ = ∞) and dashed lines correspond to complete uncertainty (γ = 0)

Hence it is conceivable that threshold choice method T1 outperforms T2 for one cer-
tainty level while the situation is reversed for another certainty level.

To illustrate, we consider two simple baseline models: a model predicting π1 for all
instances (henceforth called the prior model) and a random model assigning uniform
random scores in [0, 1]. Figure 3 presents the results of these two basic models for the
credit-a dataset from UCI (Lichman 2013). However, for these simple models we can
easily derive the cost curves analytically:

Prior model: (Figure 3 (Left)) This model is calibrated by construction (s0 = s1 = π1
and henceπ0s0 = π1(1−s1)), and so the score-driven thresholds are optimal.As the
model is constant we also have that train and test optimal coincide. Their complete
certainty curve consists of the two default cost lines 0 → 2π1 and 2π0 → 0,
crossing at (c = π0, Q = 2π0π1); the curve has an area of BS = π0π1. In the
case of complete uncertainty this doubles to MAE = 2π0π1, giving the dashed
horizontal line. The prior model has AUC = 1/2 and hence an expected rate-driven
loss under complete certainty of 1/3; the rate-driven cost curve is the same as for
the random model (see below). The expected loss increases to 1/2 for complete
uncertainty, corresponding to a cost line from (0, π0) to (1, π1) (which is slightly
tilted for credit-a as this dataset is not quite balanced).

Random model: (Figure 3 (Right))Amodel that generates scores uniformly randomly
between 0 and 1 has F0(s) = F1(s) = R(s) = s (in expectation) and hence
both the score-driven and rate-driven cost curves for complete operating condition
certainty can be derived fromTable 4 as Kδ(c) = 2c(1−c)with associated expected
loss of 1/3. As before, under complete uncertainty the expected loss increases to
1/2 with an expected cost line from (0, π0) to (1, π1). Furthermore, train-optimal
coincides with test-optimal (in expectation) so their complete certainty cost curves
are composed of the default cost lines while the complete uncertainty line is again
horizontal at lossMAE = 2π0π1.
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Fig. 4 More cost curves for the credit-a dataset. Different cost curves obtained by four different threshold
selection methods (solid lines). Dashed lines correspond to complete uncertainty for credit-a dataset (50%
train 50% test). Left, J48 decision tree unpruned with Laplace Correction. Right, Naive Bayes

If we move beyond the prior model and the random model, we get more elaborate
curves for the two extremes. Figure 4 includes the curves for no uncertainty (solid
lines) and the curves for complete uncertainty (dashed lines) for other models. The
left figure shows the curves for the J48 decision tree unprunedwith Laplace Correction
from the RWeka package (Hornik et al. 2009). The right figure includes the curves
for Naive Bayes. In these cases, we see that the curves without uncertainty dominate
the curves with complete uncertainty for most of the range between 0 and 1, although
there are a few small regions where the solid curve is above the dashed curve (e.g.,
train-optimal around 0.6 for J48 and score-driven between 0.15 and 0.5 approx. for
Naive Bayes).

Please refer to Appendix B for a detailed example of using different threshold
choice methods with complete certainty and complete uncertainty.

6 Experiments

In this section we will explore a series of questions experimentally, in order to shed
more light on the effect of operating condition uncertainty in classification models.
Specifically, we aim to investigate the following questions:

– Are the best configurations for complete certainty also the best when uncertainty
increases?

– Is this persistent acrossmodel classes or does it depend on theway differentmodels
generate scores?

– Is it possible to recommend appropriate threshold choice methods according to
the model type and an estimate of the uncertainty level?
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6.1 Materials andmethods

In order to do investigate the above questions, we vary on four dimensions:

Data: 26 datasets varying considerably in size (less than 100 to nearly 5000 instances;
4–168 attributes), class imbalance (relative size of the majority class from 0.50 to
0.97) and difficulty. They are shown in Table 5.
Classification Models: 12 representative model types including logical (decision
trees/ lists/ stumps), geometric (support vector machines), distance-based (nearest
neighbour), probabilistic (naive Bayes, logistic regression) and baseline (Prior, Ran-
dom). See Table 6.
Threshold choice methods: 4 threshold choice methods: test-optimal, train-optimal,
score-driven and rate-driven.
Uncertainty degree: We study the effect of uncertainty in ĉ by means of different
values of γ using the beta model.

To the best of our knowledge, this is the first time that these four characteristics are
studied together experimentally. Even for the complete certainty cases, whereas there
are several theoretical results about threshold choice methods in the literature, there
has been no experimental analysis to date regarding the performance of these methods
for different model types and datasets.

For simplicity and space, in this section we will summarise the results for the whole
range between c = 0 and c = 1 by using the expected loss, i.e., we use the area under
the cost curve as a performance measure, and we will only show a selection of cost
plots. The code and data used for these experiments can be found in the repository
Ferri et al. (2017).

For each dataset, we split the data in 50% for train and 50% test maintaining
the class proportion in the datasets (stratified samples). We repeat this procedure 10
times. In this way, we learn 26× 12× 10 = 3120models. For eachmodel, we compute
the expected loss considering the four threshold choice methods (train-optimal, test-
optimal, rate-driven and score-driven) over the test set.

We cover the range of the operating conditions (c) by performing 1001 steps with
true values c = 0, 0.001, . . . , 0.999, 1. In order to simulate uncertainty we use the
true c as the mode of a Beta distribution with certainty level γ , as explained in Sect. 5.
In that way, given a γ and a c value we generate values for ĉ, which are the presumed
operating conditions that are used by the threshold choice methods. We use the values
γ ∈ {∞, 16, 8, 4, 2, 1, 0}. The true c is employed for computing the cost lines, the
cost plots and the expected cost.

6.2 Comparison of threshold choice methods without uncertainty

We first analyse the case without uncertainty. To the best of our knowledge this is
the first published experimental comprehensive comparison for a range of threshold
choice methods, so we will first analyse this setting for its own sake and then we
will compare this with the situation with uncertainty. Table 7 gives the performance
obtained for differentmodel types and threshold choicemethodswithout incorporating
operating condition uncertainty.
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Table 5 Characteristics of the datasets used in the experiments

Dataset # Instances # Attributes Majority

1 Badges2 294 11 0.71

2 Breast-cancer 286 10 0.70

3 Breast-w 699 10 0.66

4 Bupa 345 7 0.58

5 Chess-KRVKP 3196 37 0.52

6 Credit-a 690 16 0.56

7 Credit-g 1000 21 0.70

8 Cylinder-bands 540 40 0.58

9 Diabetes 768 9 0.65

10 Haberman 306 4 0.74

11 Heart-statlog 270 14 0.56

12 Hepatitis 155 20 0.79

13 Ionosphere 351 35 0.64

14 Liver-disorders 345 7 0.58

15 Lung-cancer 32 57 0.72

16 Monks1 556 7 0.50

17 Monks2 601 7 0.66

18 Monks3 554 7 0.52

19 Musk1 476 168 0.57

20 Ozone 2536 73 0.97

21 Sonar 208 61 0.53

22 Spambase 4601 58 0.61

23 Spect_test 187 23 0.92

24 Spect_train 80 23 0.50

25 Tic-tac-toe 958 10 0.65

26 Vote 435 17 0.61

We use 26 binary datasets from the UCI repository (Lichman 2013). Here we include the size of the dataset
(number of instances and attributes) as well as the proportion of the majority class

Specifically, for each model type we include the average Area Under the ROC
Curve (AUC), the Brier Score (BS) and its decomposition in Calibration Loss (CL)
and Refinement Loss (RL). This decomposition is computed using the method defined
in Flach andMatsubara (2007). Given that performance metrics over different datasets
are not necessarily commensurate, in the last two columns we include two pairwise
comparisons between threshold methods: sc_vs_tr represents the proportion of cases
that the score-driven method obtains a better or equal performance than train-optimal,
while rd_vs_tr represents the proportion of cases that the rate-driven method obtains
a better or equal performance than train-optimal.

If we analyse the results comparing the threshold choice methods, and regarding
pairwise comparisons, we see that in general score-driven is able to get better or
equal results compared to train-optimal in more than half of the cases. Excluding the
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Table 6 Model types used in the experiments

Model type Description

IBK1 k-Nearest Neighbours (k = 1)

IBK10 k-Nearest Neighbours (k = 10)

J48 J48 decision tree with pruning

J48Unp J48 decision tree without pruning but with Laplace correction

Logist Logistic Regression

NB Naive Bayes

PART Part decision lists

Prior Returns π1 for all instances

Random Returns a uniformly random score in the interval [0, 1]
Stump Decision stump

SVMp Support vector machines computing output probabilities

SVM Support vector machines outputting crisp scores (0 or 1)

All of them are included in the RWeka package (Hornik et al. 2009) and used with default parameters
(unless stated otherwise), except “Prior” and “Random”, which were implemented by the authors

baselines (Prior and Random), score-driven is better for all methods except for SVM
and NB. These two methods have, on average, poor performance on BS. In fact, if we
study the correlation of the difference of the rate-driven and train-optimal expected
losses (not reported here), we find that there is a correlation of 0.44 of this difference
with respect to BS, and 0.59 with respect to CL. This means that for models with
high BS (hence poor calibration) train-optimal is the best choice, but in general score-
driven thresholds are competitive in the absence of operating condition uncertainty.
Nevertheless, we have to be careful, because even if the means are not commensurate,
they are generally in favour of train-optimal (except for J48Unp). About rate-driven,
notice that it often achieves the worst performance because this method employs all
cost lines (even if some of them are never optimal), but in some cases (NB, IBK1) the
difference with score-driven is relatively small.

To complete the picture for the uncertainty-free case, in Table 8 we include the
results segmented by dataset and averaged by model type (except the baselines). This
different aggregation of results is advantageous because for each row as the area under
the cost curves for the four threshold choice methods are for the same dataset and this
is a common currency (expected loss) and hence commensurate. This means that the
means are now more meaningful for comparison than before. The entries are sorted
in increasing expected loss under the test-optimal threshold, which establishes an
optimistic baseline and indicates that the datasets indeed represent a wide range of
difficulties (the worst possible test-optimal loss is 0.25—achieved by both baselines—
which we get close to on the bottom three datasets: liver-disorders, bupa and cylinder-
bands). In the last two columns we again include the relative pairwise comparison
between score-driven vs. train-optimal and rate-driven vs. train-optimal, respectively.
If we look at the means, train-optimal is advantageous over score-driven (except for
dataset 3 and 11, and very slightly). The pairwise comparison gives more proportions
in favour of score-driven, but the clearest wins are for train-optimal. Consequently,
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on average for all model types, train-optimal seems a better option than score-driven.
Only if we are sure which model type we are using, and we expect this to be well
calibrated, should we use score-driven as a first option. Finally, about rate-driven, it
seems to perform better against train-optimal for the harder datasets further down in
the table, but the pattern is not sufficiently clear to recommend rate-driven consistently
in any situation.

6.3 Robustness against uncertainty

In the previous section we compared different threshold choice methods with full cer-
tainty regarding the operating condition, which in the beta model is represented by
γ = ∞. We now study the influence of decreasing operating condition certainty (γ ∈
{16, 8, 4, 2, 1, 0}). This is depicted in Fig. 5 for the same tenmodel types evaluated pre-
viously, for train-optimal and score-driven thresholds, averaged over all datasets. We
also include the γ = ∞ results from Table 7 (columns trainoptimal and scoredriven).

The way uncertainty affects different model types for train-optimal thresholds is
fairly gradual and similar, with one or two exceptions. Notice in particular that all
curves are monotonic. There are few changes in the performance ranking of the model
types untilwe reachhigh levels of uncertainty. For complete uncertainty, J48-Unpruned
and IBK1 obtain the best performance, while they are among the three worst for total
certainty. In other words, the relative increase in expected loss for high levels of
uncertainty is lower for those two methods than for the others. For J48-Unpruned this
is a consequence of the tree’s low-coverage leaves, which leads to extreme probability
estimates (slightly softened by the use of Laplace smoothing). A similar explanation
goes for IBK1, which in fact only outputs crisp probabilities (0 or 1) and hence results
in a three-point ROC curve with a single non-trivial operating point. The only reason
why the curve is not completely flat is that the train-optimal threshold choice method
can benefit from choosing one of the trivial operating points for extreme values of ĉ.
Overall, from this plot, we can conclude that most model types can deal correctly with
low levels of operating condition uncertainty with train-optimal thresholds.

In the case of score-driven thresholds we reach similar conclusions: uncertainty
affects different model types gradually, similarly and monotonically. We see that the
expected loss curve for IBK1 is completely flat, as score-driven thresholds will always
choose the non-trivial operating point regardless of the operating condition. We see
the same behaviour for SVM, at least if we use the version that outputs crisp proba-
bilities. If we convert the SVM scores to probabilities by means of Platt scaling the
behaviour changes considerably and is much more in line with the other model types.
The difference is quite striking (SVM is the best method for complete uncertainty but
the second-worst method for complete certainty) and relevant for machine learning
practitioners, who may not always realise which version of the SVM model type they
are actually using.

We continue by looking in more detail at the experimental results for complete
certainty (γ = ∞) and complete uncertainty (γ = 0). We do this through a scatter
plot, so we avoid averaging over datasets. For each of the 26 datasets we run 10
trials with different random train-test splits. Hence each point in the plots of Fig. 6
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Fig. 5 Evolution of expected loss (area under the curve) with different levels of certainty (γ ∈
{∞, 16, 8, 4, 2, 1, 0}) for different model types and threshold choice methods averaging all the datasets.
Left: train-optimal. Right: score-driven

represents the expected loss of two threshold choice methods, score-driven on the
y-axis against train-optimal on the x-axis for one of these trials and a particular model
type (indicated by colour). We analyse this without uncertainty (top, γ = ∞) and total
uncertainty (bottom, γ = 0). We include lines that represent the averages of every
model type (distinguished by colour), horizontal lines are for expected loss computed
by score-driven while vertical lines represent averages of expected loss with train-
optimal (hence these averages can be traced back to the extreme points of the curves
in Fig. 5). Points below the diagonal represents trials where score-driven outperforms
train-optimal, while points above the diagonal indicate the opposite.

If we observe the plot without uncertainty (top, γ = ∞) we see some distinct
patterns. Thepreference for train-optimal of SVMandNB is visible above the diagonal,
indicating that their scores are poorly calibrated as probability estimates. Conversely,
J48-Unpruned can be mostly found below the diagonal, indicating that train-optimal
thresholds have a tendency to overfit.We also indicate the two baselinemethods: Prior,
returning the prior probability for class 1 (i.e., π1); and Random, returning a uniform
random score in [0, 1]. As derived earlier at the end of Sect. 5.3, Random has expected
loss π0π1 for both score-driven and train-optimal thresholds under complete operating
condition certainty (slightly under 1/4 when averaged over the 26 datasets, some of
which are unbalanced); Prior has the same expected loss for train-optimal thresholds
but a fixed loss of 1/3 for score-driven thresholds.

When we analyse the plot with complete uncertainty (Fig. 6, bottom) we find that,
as expected, there is a considerable degradation in the performance of the models.
This can be related back to our analytical results summarised in Tables 3 and 4: for
score-driven thresholds the expected loss increases from BS to MAE, which can in
the worst case represent a doubling (although the effect decreases when probabil-
ities become more extreme); and for optimal thresholds the expected loss doubles
(although this holds analytically only for test-optimal thresholds and may be softened
by train-optimal thresholds). The plot shows that this generally degrades train-optimal
thresholds more than score-driven ones (most obviously for SVM).
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Fig. 6 Comparison between the
expected losses for score-driven
and train-optimal thresholds,
without uncertainty (top) and
with complete uncertainty
(bottom). Model types are
distinguished by colours, and for
each model type we plot 260
points (10 train-test splits for
each of the 26 datasets).
Horizontal and vertical lines
represent averages. Above
(below) the diagonal
score-driven performs worse
(better) than train-optimal
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Cost curves for some of the model types are given in Fig. 7. Here we can see in
detail some of the behaviours detected in Figs. 5 and 6. When we compare the plots
of J48 with pruning and without it, we can see how the pruning technique reduces
the number of leaves in the tree and this is represented by the lower number of cost
lines in the cost plot of J48 with pruning. The performance of all threshold choice
methods is reduced in the unpruned version, however score-driven is not so affected.
In fact, for the unpruned version score-driven obtains better performance than train-
optimal. A similar behaviour is foundwhenwe compare IBK10 (using ten neighbours)
versus IBK1 (using one neighbour). In the case of support vector machines, we can
see the difference between the version that computes scores (SVMp) and the version
without scores (SVM). In the case of the version without scores, score-driven selects
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Fig. 7 Cost curves for selected models on the credit-a dataset. The legend includes the expected loss of the
several threshold choice methods for complete certainty, and the dashed lines represent the expected curves
for complete uncertainty
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the same cost line regardless of the operating condition, and therefore it is invariant
under uncertainty.

After the experiments, what canwe say about the original questions at the beginning
of this section? We can summarise our findings as follows:

– The best threshold choice methods for all degrees of certainty seem to be train-
optimal and score-driven. Rate-driven thresholds give poor results in general, even
for poorly calibrated models.

– Those model types that are good without uncertainty are usually good for slight
degrees of uncertainty. However, for extreme uncertainty, those model types that
generate extreme probabilities can get superior results for train-optimal and espe-
cially for score-driven thresholds.

– For no uncertainty, several metrics, such as the calibration loss component of the
Brier score, might help estimate the performance for score-driven. This was known
theoretically, but we have seen this experimentally in Tables 7 and 8.

– For high uncertainty, however, this connection was not that clear theoretically.
In Tables 3 and 4 the change from BS to MAE for score-driven might be more
noticeable for uncalibrated models but this is more independent of calibration for
train-optimal (in the ideal case, the loss is just multiplied by 2). Consistently, now
we see experimentally that there is no clear pattern between calibration and perfor-
mance of score-driven for total uncertainty. Actually, for some poorly calibrated
models the results were better than other better calibrated models, suggesting that
if uncertainty is maximal, it might be better to turn the probabilities into crisp 0/1.

Overall, the effects are different andmorediverse as thedegreeof uncertainty increases,
which reinforces the hypothesis that the expected degree of uncertainty must be taken
into account when selecting model type and threshold choice method.

7 Conclusion

The relevance of threshold choice methods to understand how classifiers behave is
increasingly being appreciated. Classifiers cannot properly be evaluated if we do not
specify what decision rule or threshold choice method will be used. Previous work
has analysed the expected loss for a range of operating conditions. However, this
previous work was done at the theoretical level for three threshold choice methods
(optimal, score-driven and rate-driven) assuming that the given operating condition
c is perfect. In this work, we first clarify that the optimal threshold choice method
has usually been considered in an idealistic way—as if a ROC curve and its convex
hull could alway be estimated perfectly—instead of a more realistic train-optimal
threshold choice method. Secondly, we have considered uncertainty in the operating
condition—as estimating misclassification costs precisely is problematic at best in
many cases—and we have provided a theoretical analysis of what this implies for
threshold choice methods. Thirdly, we have analysed the behaviour of these threshold
choice methods without uncertainty and with complete uncertainty (and situations in
between) experimentally, using a wide range of techniques and datasets.
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In the case of no uncertainty, the results partly follow the intuitions from the theoret-
ical results. For instance, the rate-driven threshold choice method has a constant term
that makes it worse than the rest in almost all situations. However we also saw that the
train-optimal threshold choice method often performs sub-optimally and hence has
to be distinguished from the idealistic test-optimal threshold choice method. Broadly
speaking, the train-optimal and score-driven threshold choice methods obtain simi-
lar performances, although there are differences depending on the model type and
dataset that is employed. Here, we want to emphasise the advantage of score-driven
threshold choice method since it can be applied directly without any other informa-
tion or process, provided we have some reasonably well-calibrated scores. In contrast,
the train-optimal threshold choice method requires to analyse which thresholds are
optimal on a train dataset (for instance, through ROC analysis) and then those selec-
tions are applied for predicting new data. Obviously, performance of the train-optimal
threshold choice method depends crucially on how well the train-optimal thresholds
generalise to the test set.

When considering uncertainty of operating conditions, we proposed to model this
through a Beta distributionmodelling the uncertainty in the deployed ĉ cost proportion
conditional on the true c. This leads to a model with a single parameter γ , ranging
from no uncertainty γ = ∞ to complete uncertainty γ = 0 on the operation condition.
We have theoretically studied how uncertainty influences threshold choice methods.
Concretely, we have introduced some results that show that with complete uncertainty,
the threshold choice methods select cost lines proportionally to the importance (length
of the the values of c where they are selected). These cost lines are used originally by
these threshold choice methods (not considering uncertainty). We thus see that under
high uncertainty, cost lines with optimal cost for a small cost range (cost lines with
high slopes) could translate into high costs in some regions.

Hence, if our learning task presents uncertainty in the operating conditions, it might
be better to use cost lineswith lower slopes that do not imply a high cost for some ranges
of the operating condition.Wecan see an example of this in theSupportVectorMachine
without scores of Fig. 7, where the score-driven threshold choice method obtains a
better performance with complete uncertainty γ = 0 because it always selects a cost
line with small slope in contrast to train-optimal, which, for the same example, uses
three different cost lines. Experiments over 26 datasets and 12 learning methods show
that, as expected, uncertainty degrades the performance of most learning techniques
and threshold choice methods. Methods that estimate crisp probabilities (SVM not
outputting scores, J48 unpruned or IBK1) are then recommended in situations with
extreme uncertainty. This might be surprising but it conveys an important message that
has been found whenever uncertainty appears in decision theory: perfectly rational
procedures when unreliable information is assumed reliable may lead to suboptimal
decisions.Only by including all the degrees of certainty involved canwe expect rational
decision making processes to be optimal.

There are many avenues of future work. For instance, we think that better versions
of the rate-driven threshold choice method are possible. Alternatively, we think that
with information of the uncertainty of the operating condition, we could define a
new optimal threshold choice method for a given uncertainty, or even include the
uncertainty as a new parameter in the score-driven method too. Finally, some of these
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ideas could be extended to multiclass classification, which would involve a more
complex modelling of uncertainty.

In summary, this work closes a circle about the analysis of threshold choicemethods
and gives a realistic account of how operating conditions have to be used for classifica-
tion, once one realises that they are rarely fully reliable. From this new understanding,
we can even talk about a new kind of overfitting in machine learning, which depends
on taking the operating condition (or a range of operating conditions) too seriously,
as if it were infallible.
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Appendix A: Proofs

In this appendix, we give the proofs for the theorems, lemmas and corollaries in the
paper.

Lemma 1 Given n + 1 cost lines, the expected loss at point c is given by a weighted
sum of the height of all n + 1 cost lines at c:

Q(c) =
n∑

i=0

ΔVi (c)hi (c)

where

ΔVi (c) = V (ci+1|c) − V (ci |c)

Proof For a cost proportion c and an uncertainty distribution v, the probability of the
cost line i being selected by T is ΔVi (c). Because of the linearity of cost lines the
weights can be calculated as a difference between the cumulative distributions for the
interval where T chooses i . ��

Theorem 1 The area under a cost curve (expected loss) can be decomposed as:

Lv =
n∑

i=0

Li
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where

Li =
∫ 1

0
[V (ci+1|c) − V (ci |c)]hi (c)dc

quantifies the contribution of a single cost line to the expected loss.

Proof The proof is straightforward by regrouping the summands of lemma 1.

Lv =
∫ 1

0
Q(c)dc =

∫ 1

0

n∑

i=0

ΔVi (c)hi (c)dc =
n∑

i=0

∫ 1

0
ΔVi (c)hi (c)dc

��
Theorem 2 The contribution of cost line i to the expected loss for complete uncertainty
is Li = (ci+1 − ci ){ki/2 + li }.
Proof We can express the cost of that line as:

Li =
∫ 1

0
[V (ci+1|c) − V (ci |c)](ki c + li )dc (12)

For complete uncertainty we have a uniform distribution, and the cumulative V is the
identity function, so V (ci+1|c) = ci+1 and V (ci |c) = ci . Hence,

Li =
∫ 1

0
(ci+1 − ci )(ki c + li )dc

= (ci+1 − ci ){ki
[
c2/2

]1

0
+ [li c]

1
0}

= (ci+1 − ci ){ki/2 + li }

��
Theorem 3 The contribution of cost line i to the expected loss for complete certainty
is Li = (ci+1 − ci ){ki (ci+1 + ci )/2 + li }.
Proof For complete certainty the cumulative distribution is a step function at c, and
the cost line has a non-zero contribution only if c ∈ [ci , ci+1]. Hence

Li =
∫ ci+1

ci
(ki c + li )dc

= {ki
[
c2/2

]ci+1

ci
+ [li c]

ci+1
ci }

= ki (c
2
i+1 − c2i )/2 + li (ci+1 − ci )

= (ci+1 − ci ){ki (ci+1 + ci )/2 + li }

��
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Theorem 4 Assuming scores in [0, 1], the expected cost curve for the score-driven
threshold choice method and complete operating condition uncertainty is given by:

K sd
v[γ=0](c) = 2{π1(1 − s1) + (π0s0 − π1(1 − s1))c} (13)

where sk represents the average scores for class k.

Proof We have v[γ=0](ĉ|c) = 1, so, from Eq. 8 and Definition 4 we derive:

Ksd
v[γ=0](c) =

∫ 1

0
Q(T sd(ĉ); c)v[γ=0](ĉ|c)dĉ

=
∫ 1

0
Q(ĉ; c)dĉ

=
∫ 1

0
2{cπ0(1 − F0(ĉ)) + (1 − c)π1F1(ĉ)}dĉ

=
∫ 1

0
2{π1F1(ĉ) + (π0(1 − F0(ĉ)) − π1F1(ĉ))c}dĉ

= 2{π1(1 − s1) + (π0s0 − π1(1 − s1))c

The last step follows because
∫ 1
0 Fk(t)dt = [t Fk(t)]10 − ∫ 1

0 t fk(t)dt = 1 − sk . ��
Corollary 1 The expected loss for the score-driven threshold choice method, uniform c
and complete operating condition uncertainty is the classifier’s mean absolute error:

Lsd
v[γ=0] = π0s0 + π1(1 − s1) = MAE.

Proof From Eq. 7,

Lsd
v[γ=0] =

∫ 1

0
Ksd

v[γ=0](c)w(c)dc

=
∫ 1

0
2{π1(1 − s1) + (π0s0 − π1(1 − s1))c}w(c)dc

= 2{π1(1 − s1) + (π0s0 − π1(1 − s1))Ew{c}}

For uniform c we have Ew{c} = 1/2 and the result follows. ��
Theorem 5 The expected cost curve for the rate-driven threshold choice method and
complete operating condition uncertainty is given by:

Krd
v[γ=0](c) = 2π0π1(1 − AUC) + π2

1 + (π0 − π1)c (14)

Proof We have v[γ=0](ĉ|c) = 1, so, from Eq. 8 and Definition 5 we derive:

Krd
v[γ=0](c) =

∫ 1

0
Q(T rd(ĉ); c)v[γ=0](ĉ|c)dĉ
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=
∫ 1

0
Q(R−1(ĉ); c)dĉ

= 2
∫ 1

0
{cπ0(1 − F0(R

−1(ĉ))) + (1 − c)π1F1(R
−1(ĉ))}dĉ

= 2
∫ 1

0
{cπ0 − cπ0F0(R

−1(ĉ)) + π1F1(R
−1(ĉ)) − cπ1F1(R

−1(ĉ))}dĉ.

Since, by the definition of R given in the preliminaries, π0F0(R−1(ĉ))) + π1F1(R−1

(ĉ)) = R(R−1(ĉ)) = ĉ,

Krd
v[γ=0](c) = 2

∫ 1

0
{cπ0 − cĉ + π1F1(R

−1(ĉ))}dĉ

= 2cπ0 − c + 2π1

∫ 1

0
{F1(R−1(ĉ))}dĉ

From the proof of (Hernández-Orallo et al. 2013, Theorem 22) we have

2π1

∫ 1

0
F1(R

−1(c))dc = 2π0π1(1 − AUC) + π2
1

and so

Krd
v (c) = 2π0π1(1 − AUC) + π2

1 + (2π0 − 1)c

= 2π0π1(1 − AUC) + π2
1 + (π0 − π1)c

��
Corollary 2 The expected loss for the rate-driven threshold choice method, uniform
c and complete operating condition uncertainty is related to the classifier’s AUC as
follows:

Lrd
v[γ=0] = π0π1(1 − 2AUC) + 1/2

which is 1/6 higher than if the operating condition were fully known.

Proof

Lrd
v[γ=0] =

∫ 1

0
Krd

v[γ=0](c)w(c)dc

=
∫ 1

0
{2π0π1(1 − AUC) + π2

1 + (π0 − π1)c}w(c)dc

= 2π0π1(1 − AUC) + π2
1 + (π0 − π1)Ew{c}
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For uniform c we have Ew{c} = 1/2 and so

Lrd
v[γ=0] = 2π0π1(1 − AUC) + π2

1 + (π0 − π1)/2

= π0π1(1 − 2AUC) + π0π1 + (1 − π0)π1 + (π0 − π1)/2

= π0π1(1 − 2AUC) + π1 + (π0 − π1)/2

= π0π1(1 − 2AUC) + (π0 + π1)/2

= π0π1(1 − 2AUC) + 1/2

(Hernández-Orallo et al. 2013, Theorem 22) derive the expected loss over uniform c
without considering operating condition uncertainty as Lrd

U (c) = π0π1(1 − 2AUC) +
1/3. ��

Theorem 6 The expected cost curve for the optimal threshold choice method and
complete operating condition uncertainty is:

K o
v[γ=0](c) = 2π0s

∗
0

where s∗ denotes scores obtained after perfect calibration. Hence the loss is indepen-
dent of the true operating condition c.

Proof From Eq. 8 and Definition 3 we derive:

Ko
v[γ=0](c) =

∫ 1

0
Q(T o(ĉ); c)v[γ=0](ĉ|c)dĉ

We know from Theorem 44 of Hernández-Orallo et al. (2013) that T o is equivalent
to T sd for calibrated models. In other words, optimal thresholds are equivalent to
score-driven thresholds after perfect calibration. Hence from Theorem 4 we derive:

Ko
v[γ=0](c) = 2cπ0s

∗
0 + 2(1 − c)π1(1 − s∗

1)

Furthermore, Theorem 41 of Hernández-Orallo et al. (2013) states that for calibrated
scores π0s0 = π1(1 − s1), and the result follows. ��

Theorem 7 The expected loss for the optimal threshold choice method with complete
uncertainty is twice the expected loss for the optimal threshold choice method with
complete certainty:
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Lo
v[γ=0] = 2Lo

δ (15)

Proof We make the model m explicit as an argument and we will denote the model
resulting from calibration as Cal(m). After perfect calibration, we know that optimal
thresholds are equivalent to score-driven thresholds (according to Theorem 44 of
Hernández-Orallo et al. (2013)), so we have:

Lo
v[γ=0](m) = Lsd

v[γ=0](Cal(m))

From Theorem 4, we have:

Lsd
v[γ=0](Cal(m)) = Lsu

δ (Cal(m)

Now, according to Figure 4 in Hernández-Orallo et al. (2013) we can follow all these
equalities for calibrated classifiers:

Lsu
δ (Cal(m)) = MAE(Cal(m)) = 2RL(Cal(m))

Here, RL refers to the refinement loss of a classifier, which is one of the components
of the Brier score of a classifier (the other component being the calibration loss, which
is zero for a perfectly calibrated classifier).

Similarly for the right-hand side of the theorem:

Lo
δ (m) = Lsd

δ (Cal(m))

and again referring to Figure 4 in Hernández-Orallo et al. (2013):

Lsd
δ (Cal(m)) = BS(Cal(m)) = RL(Cal(m)

��

Appendix B: Threshold choice methods on a toy example

We give an example of using different threshold choice methods with complete cer-
tainty and complete uncertainty.

We trained a decision tree model (J48 Unpruned) for the Spambase dataset of the
UCI repository Lichman (2013). This dataset contains a collection of spam and valid
emails, and it has been used to build spam filters. This dataset contains 4554 instances.
The model was trained with 1% of the data (47 instances, 28 of class 0 and 19 of
class 1). The following text shows the induced decision tree.
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Test: Unpruned J48 Decision Tree

score−driven 0.1739
test−optimal 0.1583
rate−driven 0.1938
train−optimal 0.1996

Fig. 8 Left: Cost lines of the J48 unpruned model in the train dataset. Right: Cost lines of the J48 unpruned
model in the test dataset. Cost curves by four different threshold choice methods: score-driven, test-optimal,
rate-driven and train-optimal. We consider the actual classes of the left example for the train-optimal
threshold choice method. The area under the four cost curves is shown in the legend

word_freq_our <= 0.28
| word_freq_your <= 3.17
| | char_freq_! <= 0.204: 0 (23/0)
| | char_freq_! > 0.204
| | | capital_run_length_longest <= 10: 0 (4/0)
| | | capital_run_length_longest > 10: 1 (0/4)
| word_freq_your > 3.17: 1 (0/2)
word_freq_our > 0.28: 1 (1/13)

There are five leaves in the tree, the distribution of positive and negative examples
is included in the model (numbers between parenthesis). Since Laplace correction is
applied, the estimated scores of being class 1 for each of the leaves are: (0.040, 0.833,
0.167, 0.750, 0.875). Higher scores express a stronger belief that the instance is of
class 1.

We have 5 leaves and hence 6 cost lines Q(t; 0) → Q(t; 1), as represented by
Fig. 8 (left), namely (i = 0) 0 → 0.8085, (i = 1) 0.0425 → 0.2553, (i = 2)
0.0425 → 0.0851, (i = 3) 0.0425 → 0, (i = 4) 0.2127 → 0 and (i = 5) 1.1914 → 0.
If we set a fixed threshold on t = 0.5, we would have a cost curve that corresponds to
the cost line in the plot (i = 3, 0.0425 → 0).

More generally, if we change the threshold with cwe would obtain a cost curve that
jumps between these cost lines in a way determined by the threshold choice method.
In particular, the lowest two cost lines cross at around c = 0.05 and so the optimal
strategy would be to choose the (i = 0) cost line for c < 0.05 and the (i = 3) cost
line for c > 0.05. In terms of thresholds, this would be achieved by setting t such that
t < 0.04 for c < 0.05 and 0.167 < t < 0.75 for c > 0.05.

Now consider applying the same model to the test dataset with 4554 examples
(2760 of class 0 and 1794 of class 1). The previous model obtains an Area under the
ROC curve of 0.7921, a Mean Average Error (MAE) of 0.2546, and a Mean Square
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Fig. 9 J48 unpruned decision
tree for the Spambase dataset
with cost curves under complete
operating condition certainty
(solid lines) and complete
uncertainty (dashed lines)
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Test: Unpruned J48 Decision Tree

score−driven 0.1739
test−optimal 0.1583
rate−driven 0.1938
train−optimal 0.1996

Error (MSE) of 0.1743. On this test set, the 6 cost lines are (i = 0) 0 → 0.788,
(i = 1) 0.189 → 0.393, (i = 2) 0.232 → 0.187, (i = 3) 0.258 → 0.161, (i = 4)
0.329 → 0.134, and (i = 5) 1.21 → 0. These cost lines can be seen in the right plot
of Fig. 8. On this test set, the optimal strategy would be select cost line i = 0 for
c < 0.27, cost line i = 2 for 0.27 < c < 0.5, cost line i = 3 for 0.5 < c < 0.72, cost
line i = 4 for 0.72 < c < 0.84, and cost line i = 5 for c > 0.84 with an expected loss
0.1583; but this test-optimal strategy would require knowledge of the test labels. If
we apply the train-optimal strategy from before we see that suboptimal decisions are
made in the range 0.05 < c < 0.27 and c > 0.84, resulting in a higher expected loss
of 0.1977. This difference between train-optimal and test-optimal has usually been
overlooked in the literature.

Threshold choice methods on a toy example with uncertainty

Table 3 summarises our results so far for complete operating condition uncertainty.
The first column gives the expected cost lines in the form K (c) = A + Bc, and the
right column gives the expected loss (area under the expected cost line). Table 4 gives
the corresponding results for complete operating condition certainty from Hernández-
Orallo et al. (2012).

We start by considering the example of Fig. 8. Figure 9 compares the cost curves for
complete operating condition certainty (solid lines) and complete uncertainty (dashed
lines).

Score-driven: In the test set we have π0 = 0.394, π1 = 0.606, s0 = 0.3065 and
s1 = 0.7790, so, following the equations in Table 3, the score-driven cost curve
under complete uncertainty can be derived as K (c) = 0.2677 − 0.0263c. The area
under this curve isMAE = 0.2546, which is worse that of the curve under complete
certainty (BS = 0.1743). Yet, as can be seen in Fig. 9 there is an interval around
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c = 0.2 where the model is poorly calibrated and the expected loss under complete
uncertainty is lower than the expected loss under complete certainty.
Rate-driven: We have AUC = 0.7921 and so the equation of the rate-driven cost
curve under complete uncertainty can be derived as K (c) = 0.4665− 0.21c with an
area of 0.3605, which is 1/6 higher than the expected loss under complete certainty
(0.1938).
Test-optimal: We can follow the calculations for score-driven thresholds if we first
calibrate the model, obtaining calibrated scores s∗. Here the optimal cost curve under
complete uncertainty has an expected loss of 0.3166, which is twice the expected
loss under complete certainty (0.1583).
Train-optimal: Again, we need to calibrate scores, and then we can follow the cal-
culations for score-driven. The train-optimal cost curve under complete uncertainty
obtains an expected loss of 0.2168, which should be contrasted with the expected
loss under complete certainty (0.1977).
In general, we see that, as expected, uncertainty degrades the expected loss for all the
threshold choice methods. However, if we observe the particular curve train-optimal,
we can find a small area where the complete uncertainty curve dips below the curves
for complete certainty. Hence, it may happen that a bad choice of threshold ismitigated
by a bad estimation of the operating condition.
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