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Abstract 7 

Masonry cross vaults are among the most beautiful structures ever created by the human 8 

race. Although cross vaults have been the subject of diverse numerical and experimental 9 

studies, they are still in need of further study, for example, the effect on their behaviour 10 

of the differential settlement of their supports. However, of all the experiments carried 11 

out on these structures so far none has been on full-scale specimens. In the study 12 

described here, carried out at the ICITECH laboratories of the Universitat Politècnica de 13 

València (Spain), a full-scale timbrel cross vault was constructed and tested under the 14 

vertical settlement of one of its supports. The design of the vault resembled those in a 15 

church on the outskirts of Valencia, one of which had collapsed due to the settlement of 16 

its supports. Thanks to the ambitious monitoring system used, the behaviour of the vault 17 

could be characterised from the results obtained in the tests.  18 
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1. Introduction 29 

Most historical constructions are made of masonry. Mortar joints and solid blocks 30 

generally compose this material, which can be considered a heterogeneous material. 31 

During the centuries and depending from the local availability of the row materials, 32 

masonry has been constructed using different kind of blocks and type of mortars. As 33 

expected, its variety makes assessing a masonry building’s safety particularly 34 

challenging, from both a numerical and experimental point of view. In spite of this, 35 

masonry material often exhibits an orthotropic behaviour characterized by a negligible 36 

tensile strength and experiences far lower compressive stresses than its actual capacity 37 

[1]. Therefore, it might exhibits some peculiar cracking phenomena, which comprised: 38 

(i) sliding in mortar joints, (ii) tensile cracking in the blocks, (iii) diagonal tensile 39 

cracking in blocks and (iv) frictional behavior of the joints. In addition, although most 40 

of the masonry constructions being part of the architectural heritage have been 41 

constructed following rules of thumb, they are currently subjected to different types of 42 

loads, for example: overloading, dynamic actions, settlement, in-plane and out-of-plane 43 

deformations [2–4], which can worst their behaviour or even led to their collapse. Some 44 

dramatic examples of these events have occurred throughout history and even more 45 

recently [5,6]. They show the importance of improving our knowledge of masonry 46 

structures. In particular, the damage suffered by many historical churches and buildings 47 

after the recent Italian earthquakes [6–10] has shown that masonry vaulted structures are 48 

particularly vulnerable to seismic action. 49 

In addition to dynamic vibration, the heaviest loads on these structures are foundation 50 

settlement and seasonal temperature changes [11]. Differential settlements in the 51 

support have adverse effects on the serviceability and stability of vaulted masonry 52 

structures, may result in deformations, cracking, and cause changes in their geometry, 53 



twist and vertical alignment [12–14]. Evaluating the consequences associated with 54 

foundation or support movements, both in terms of damage (i.e. crack width) and 55 

collapse (i.e. amount of support displacements involving loss of stability), is one of the 56 

main questions that has attracted the attention of the architects and engineers who have 57 

to assess historical and other types of masonry constructions. 58 

Some of the most extreme examples that posed significant challenges to builders were 59 

the differential foundation settlements of Venetian masonry buildings caused by soft 60 

soils [15], the settlement mechanisms in the naves of the Cathedral of Milan due to 61 

subsidence [16] and in the Cathedral of Agrigento due to slope instability problems 62 

[17], to cite just a few. As can be noted in the cited examples, a large part of the 63 

architectural heritage comprised masonry vaulting systems. Indeed, cross vaults have 64 

played a very important role in the history of architecture. For example, tile vaults left 65 

their mark not only on Spanish and colonial architecture, but many Spanish architects 66 

and master builders, e.g. Guastavino, used this type of structure extensively in America 67 

in the 19
th

 and 20
th

 centuries. In order to study the behaviour of a masonry cross vault 68 

subjected to vertical settlement in one of its supports, numerical models and 69 

experimental tests have been performed in recent years. The numerical modelling of 70 

masonry structures demands a knowledge of different masonry mechanical parameters 71 

such as its elastic behaviour, the compression, tensile and shear strengths of stone 72 

materials and mortars, friction angles and cracking energies [18–20]. Due to the 73 

difficulty of characterising the properties of masonry and its three-dimensional 74 

behaviour, laboratory and in situ testing are vital. To this scope, laboratory 75 

investigations on small scale specimens might help to characterize the mechanical 76 

behaviour of the constituent materials, whereas experimental campaign on in-situ full 77 

scale specimens are useful to understand the actual structural behaviour of complex 78 



structures when subjected to a variety of excitations. As expected, this latter type of 79 

investigation is more expensive and more difficult to be performed than the previous 80 

one and therefore it has been carried out only on few replicates. As a matter of fact, 81 

some tests on masonry structures have been reported in the literature, and few of the 82 

tests carried out to date have been on full scale specimens. For this reason, full-scale 83 

tests are needed in order to fully characterise the three-dimensional behaviour of 84 

masonry cross vaults, especially in vaults under the vertical displacements of a support, 85 

which has never been studied before. 86 

De Lorenzis et al. [21] tested a ½ scale semicircular vault subjected to a distributed 87 

gravity load. Theodossopoulos et al. [22], Mazarredo Aznar [23], Theodossopoulos et 88 

al. [22] tested a wooden cross vault pointed arch, subjected to its own weight and 89 

horizontal movements of the supports. Mazarredo Aznar [23] tested an elliptical section 90 

tile groin vault under a gravity load. Considering the limited amount of research that has 91 

been done in this field, the aim of the present study is to investigate the behaviour of 92 

cross vaults subjected to vertical settlement in one of their supports. This paper 93 

therefore describes the experimental test carried out on a full-scale timbrel cross vault 94 

subjected to differential settlement in one support. 95 

2. Definition of experimental test 96 

The laboratory investigation comprised the test of a full-scale timbrel masonry cross 97 

vault subjected to a monotonically increased vertical displacement in one of its support 98 

to simulate soil settlement. The experimental campaign has been aimed at assessing the 99 

structural behaviour of masonry vaults during this type of event using the data collected 100 

by traditional (i.e. Linear Variable Displacement Transducer sensors) and innovative 101 

(i.e. Fiber Optic sensors) sensors located along the whole surface of the vault. The 102 

monitoring strategy adopted has been intended to detect the activation of different 103 



collapse mechanisms which might led to its partial or total failure. To assess the 104 

potentialities of the proposed network of sensors, a masonry vault has been constructed 105 

at the ICITECH laboratories of the Universitat Politècnica de València (Spain) using as 106 

reference the vaults in the San Lorenzo parish church in Castell de Cabres, Spain 107 

(Figure 1-a). It is important to note that, the church experienced a series of soil 108 

settlement-induced damages, which caused one of the vaults to partially fail and 109 

multiple cracks in the others. 110 

2.1. Geometry and experimental set-up 111 

As indicated previously, the geometry of the tested vault has been defined in accordance 112 

with those in the Parish Church of San Lorenzo (Figure 1-a), with slight modifications 113 

to adapt to laboratory conditions.  114 

  

Figure 1. Plan view of the Parish Church of San Lorenzo [34] and partial 

collapse of a vault over the choir. 

This church, built in 1750, contains timbrel cross vaults in the side naves and over the 115 

baptistery [24].The cross vaults in this church are composed of two layers of bricks with 116 

a total thickness approximately equal to 80 mm (Figure 1-b). As can be noted in Figure 117 

1-b, the masonry vault constructed in the ICITECH has been characterized by four 3.6 118 

m lateral semi-circular section arches built on formwork. The arches were 160 mm thick 119 

and consisted of four layers of bricks, joined by gypsum plaster (first and third layers), 120 

cement mortar (second layer) and lime mortar (fourth layer). The first layer was used as 121 

formwork for the further layers, thanks to the quick-drying gypsum plaster. The 122 



webbing had two layers of bricks cemented by a gypsum plaster paste for the first layer 123 

and lime mortar for the second. In addition, the second layer of bricks has been laid 124 

perpendicularly to the first. Finally, it is worth mentioning that the vault has been 125 

conducted following the traditional method used to build Spanish timbrel vaults.  126 

  

    
 S2-S4 S1 S3 

Figure 2. Experimental set-up adopted during the test. 

The vaults rested on four supports (S1, S2, S3 and S4), formed of steel elements, 127 

designed to allow monitoring of vertical reactions during construction and testing. 128 

Support S1 (Figure 2) was formed by a steel box supported on 20 mm diameter metal 129 

rollers, allowing free movement in both horizontal directions. Below the rollers there 130 

was a 159 mm diameter, 200 mm high and 2 mm thick tubular steel element to allow 131 

monitoring the reactions by means of three strain gauges. In its turn, this element rested 132 

on a 20 mm thick metal plate firmly joined to two mechanical jacks which applied the 133 

vertical displacements. The jacks were anchored to a 600x600x150 mm
3
 concrete block, 134 

with a 60 mm orifice at its centre, through which the entire support has been fixed to the 135 

laboratory reaction floor slab. Conversely to support S1, supports S2 and S4 have been 136 

restrained with respect to vertical movements, whereas horizontal displacements were 137 

possible. To this scope, the 20 mm metal plate supporting the tubular element has been 138 
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directly anchored to a 600x600x520 mm
3
 concrete block. Finally, S3 has been directly 139 

anchored to a 600x600x500 mm
3
 concrete block (Figure 2). A detailed sketch of  the 140 

parts forming support S2 has been depicted in Figure 2. A solid concrete structure rested 141 

on each of the supports forming a square 4 m long base for the four arches (Figure 2). In 142 

order to prevent the activation of a failure mechanism produced by the free horizontal 143 

movements of supports S2 and S4, and simulated the presence of contiguous vaulting 144 

systems, a lattice frame of steel girders (Figure 2) has been used. To this scope, five 145 

steel beams (with height equal to 140 mm) have been hinged to the steel boxes 146 

supporting the masonry vault. A detail of the connection used is showed in Figure 2, 147 

where it can be noted that the welded surface has been reduced to the central portion of 148 

the beam to prevent the transmission of bending moments and allow axial movements 149 

only. 150 

2.3. Material properties 151 

This section is aimed at describing the laboratory tests performed to characterize the 152 

mechanical properties of the materials adopted during the construction of the vault. 153 

Solid clay bricks with dimensions equal to 230×110×26 mm
3
 and a specific weight of 154 

1820 kg/m
3 

have been used to construct the whole vault. The bricks have been tested in 155 

simple compression and with three points bending test, as showed in Table 1. 156 

Furthermore, in Table 1 have been listed the results obtained at the end of the 157 

experimental tests. 158 

Table 1. Laboratory tests performed to characterize clay bricks. 

 N. of 

specimens [-] 

Dimensions  Elastic Modulus 

[MPa] 

Strength [MPa] 

Compression test 8 47x26x26 mm3 4333 47.6 

Three points bending 

test 

3 Full bricks: 

230x110x26 mm3 

- 11.1 

 159 



Similarly to the clay bricks, the three types of mortars have been characterized by 160 

means of a series of laboratory tests. The lime mortar contained natural pozzolan and 161 

has been provided by the GRUPO PUMA [25]. The cement employed has been 162 

identified as I-42.5 MPa. The dosages in kilos of all the materials used to build the vault 163 

have been summarized in Table 2. The bending and compressive strengths of gypsum 164 

plaster and mortars used to lay the bricks have been assessed at different ages, in 165 

accordance with the current standards [26]. A total of 18 bending and 36 compression 166 

tests have been carried out on the different materials. A summary of the strengths can be 167 

seen in Table 3. 168 

Table 2. Dosage of cement mortar, lime mortar, gypsum plaster and concrete. 

Kg Cement Sand Gravel Water Lime 
Gypsum 

Plaster 

Cement Mortar 5 25 - 3.6 - - 

Lime Mortar - - - 3.5 25 - 

Gypsum Plaster - - - 3 - 18 

Concrete 190 470 450 90 - - 

 169 

Further experimental tests have been conducted to characterize the mechanical 170 

properties of the masonry constituting the vault web. A total of 10 specimens (four for 171 

compression and six for bending tests) have been employed to characterise the masonry 172 

assemblage. It is worth mentioning that, the brick distribution adopted is similar to that 173 

used in the webbing of the actual vault under study as visible in Figure 3, which shows 174 

the three points bending test carried out. 175 

Table 3. Mechanical properties of constituent materials. 

Type of mortar Age [days] Compressive strength [MPa] Flexural strength [MPa] 

Cement mortar 
7 15.5 2.8 

28 16.1 3.6 

Lime Mortar 60 9.4 2.1 

Gypsum Plaster 7 7.22 2.4 



The compressive strength of the specimens was between 8-10 MPa. The bending 176 

strength was more varied; four of the six specimens reached a value of 1.5 MPa while 177 

the other two reached 2,0 and 2.5 MPa. 178 

 179 

  
(a) (b) 

Figure 3. Three points bending test (-a) and failure mechanism (-b). 

 180 

2.2. Preliminary numerical analysis  181 

In order to properly design the experimental investigation at hand, the authors 182 

developed a linear elastic 3D finite element model by means of the LUSAS software 183 

[27]. To speed up the calculations and obtain a preliminary evaluation of the vault 184 

behaviour, the structure has been modelled by means of bi-dimensional FEs. The 185 

geometry of the vault has been obtained starting from the free span of the lateral arches, 186 

which resulted equal to 3.6 m. The obtained surface represents the mid plane of the 187 

webs vault. 188 

Table 4. Elastic properties adopted in the FE model. 

Material Density [kN/m
3
] Elastic Modulus [MPa] Poisson ratio [-] 

Masonry 18 2100 0.2 

Concrete 20 30000 0.2 

Steel 78 209000 0.3 

 189 

In detail, both webbing and arches have been simulated by shell-type elements, whereas 190 

the concrete structure over the support has been modelled by hexahedral elements. 191 

Finally, the steel beams have been simulated by two-nodes truss FEs. The analysis has 192 

been carried out under displacement control applying the following boundary 193 



conditions. In detail, S3 has been clamped, S2 and S4 have been simply supported along 194 

the vertical direction only. Similarly, S1 has been not restrained along the horizontal 195 

plane, a vertical displacement has been applied to simulate a downward soil settlement. 196 

The vault has been subjected to two types of loads: 1) the self-weight and 2) a 197 

downward vertical displacement applied to S1. A summary of the density and the 198 

Elastic Moduli adopted for the constitutive materials has been provided in Table 4.It is 199 

worth mentioning that, the parameters adopted have been assumed according to the 200 

results of the laboratory tests developed to characterize the materials involved into the 201 

vault construction. The parameters of the concrete used for the support have been 202 

obtained from the results of practical tests on specimens, and the parameters for the 203 

steel were considered to be as provided by the manufacturer’s specifications. 204 

 
Figure 4. Principal stress maps obtained with an imposed displacement 

equal to 30 mm. 

 205 

As clearly visible in Figure 4, the model has been able to identify the points in the vault 206 

that suffered the greatest stresses and thus where cracks could be expected to appear. In 207 

details, the critical points on the inner surface of the vault are concentrated along the 208 

elliptical arch that joins supports S1 and S3 and close to the support, while on the outer 209 

surface the stresses reached the maximum value in correspondence of the keystone of 210 

the elliptical arch joining supports S2 and S4. In both cases the tensile forces extend 211 



towards the circular arches joining the supports. On the basis of the results obtained, it 212 

has been also possible to define the position of the sensors employed. In addition, the 213 

tensile forces acting in the truss FEs used to model the bracing frame has been used to 214 

design the steel profiles to be used during the experimental test. 215 

2.4. Loading protocol and monitoring system adopted 216 

As discussed previously, the proposed masonry vault has been tested applying a vertical 217 

downward displacement in support S1. In detail, the vertical settlement has been 218 

imposed by means of two mechanical jacks placed parallel to each other under the steel 219 

box visible in Figure 2. The downward displacement has been imposed manually in a 220 

quasi-static fashion synchronising the mechanical jacks to prevent any rotation of the 221 

support. The history of displacements applied is depicted in Figure 5. In addition, a total 222 

of 23 sensors have been placed along both the inner and outer surfaces of the structure 223 

to allow the monitoring of the vault behaviour. In detail, from the network of sensors 224 

employed during the test, it has been possible to extract information about: i) the 225 

reactions forces in correspondence of the supports, ii) the collapse mechanism with the 226 

widening of tensile and flexural cracks, iii) the horizontal displacements in the supports, 227 

and iv) the axial forces in the steel girders. 228 

 
Figure 5. History of displacements applied to support S1. 
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 229 

The vertical reactions have been calculated starting from the average deformation of 3 230 

strain gauges glued to each of the tubular steel element positioned in supports S1, S2 231 

and S4. To eliminate the temperature effect, a control tube fitted with a strain gauge was 232 

kept in the laboratory and not subjected to loading. Displacements have been monitored 233 

at critical points by two types of long gauge sensors: 1) Linear Variable Displacement 234 

Transducers (LVDT), and 2) FBG-based long gauge fibre optic sensors [28,29]. Table 5 235 

shows the sensors used and their positions, whereas Figure 6 depicts the positions of all 236 

the sensors employed in the proposed experimental campaign. In particular, sensors 237 

LVDT_Y1 and LVDT_Y2 have been installed on support S1 to measure settlement 238 

during the test (Figure 6-b). Sensors S1_X, S1_Y, S2_X, S2_Y, S4_X and S4_Y have 239 

been attached as shown in Figure 6-d on supports S1, S2 and S4. In addition, the loads 240 

on the steel girders used to join the supports have been monitored by means of strain 241 

gauges attached to the mid-point of the web plate. 242 

Table 5. Long gauge sensors installed on the cross vault. 

Type of sensor Length [cm] Location 

LVDT1 60 On support S1, in elliptical arch S1-S3 

LVDT2 39 On support S1, in elliptical arch S1-S3 

LVDT3 59 On support S1, in elliptical arch S1-S3 

LVDT4 64.5 On support S1, in elliptical arch S1-S3 

LVDT5 45 On support S1, elliptical arch S1-S3 

LVDT6 35 Upper surface of the vault, in elliptical arch S2-S4 

LVDT7 36 Upper surface of the vault, in elliptical arch S2-S4 

FOS1 32 On support S1, in elliptical arch S1-S3 

FOS2 32 Upper surface of the vault, in elliptical arch S2-S4 

FOS3 100 Upper surface of the vault, in elliptical arch S2-S4 

S1_X 15 On support S1, horizontally in X direction 

S1_Z 15 On support S1, horizontally in Z direction 

S2_X 15 On support S2, horizontally in X direction 

S2_Z 15 On support S2, horizontally in Z direction 

S4_X 15 On support S4, horizontally in X direction 



S4_Z 15 On support S4, horizontally in Z direction 

LVDT_Y1, LVDT_Y2 30 On support S1, vertically in Y direction 

 243 

The treatment of all the data recorded from the strain gauges and LVDTs has been 244 

performed on HBM CATMAN software [30], whereas the MicronOptics MOI 245 

ENLIGTH software has been used for the data from the fibre optic sensors [31]. 246 

3. Vault construction 247 

In the first stage of building the vault, the four arches have been built on metal 248 

formwork. The first layer of bricks formed has been used as formwork for the following 249 

ones, as showed in Figure 7. The formwork has been removed after 48 hours. 250 

The first part of the webbing has been laid in the corners between two arches. When the 251 

first layer reached an height about 1.5 m from the base of the arches, the second layer 252 

has been constructed perpendicular to the first. The whole construction process of the 253 

vault can be seen in Figure 7. 254 
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Figure 6. Position of long gauge sensors: along the elliptic arch S1-S3 (-a), in support S1 (-b), along 

the outer surface of the vault (-c) and in support S1, S2 and S4 (-d). 

 255 

 
Figure 7. Construction phases of the vault. 

5. Analysis of results 256 

This section contains a detailed analysis of the results obtained at the end of the 257 

experimental campaign at hand. In detail, the laboratory outcomes have been subdivided 258 

into: (i) vertical reactions calculated in supports S1, S2 and S4; (ii) development of 259 

cracks and cracking mechanism of the cross vault and finally, (iii) the structural 260 

behaviour of the masonry vault. 261 

 262 

5.1. Vertical reactions 263 

Figure 8-a shows the evolution of the reactions in the supports according to the 264 

settlement applied in S1. The maximum settlement value applied to S1 was 40 mm. In 265 
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S2 and S4 the reactions rose while in S1 and S3 they diminished as settlement 266 

increased. In detail, S1 and S3 reactions fell in the order of 28% and 55% of their initial 267 

values, respectively, while those of S2 and S4 rose by 27% and 50%, respectively. 268 

The reaction pairs S1-S2 and S3-S4 had similar evolutions; in the initial phase the 269 

evolution of the reactions is practically linear but becomes increasingly non-linear as 270 

settlement of S1 advances. As a matter of fact, the reactions were found to be linearly in 271 

proportion to the settlement value until this reached 5 mm. Between 5 and 10 mm they 272 

became non-linear and after 10 mm settlement the reactions remained practically 273 

constant or were even found to fall until the end of the test, in spite of the fact that S1 274 

continued to settle. This behaviour was due to the appearance of the first cracks close to 275 

the supports, which re-distributed the loads over the rest of the webbing. Similarly, the 276 

loads on the girders that join the supports experienced the same evolutions (Figure 8-a 277 

and-b). In detail, P1, P2, P3 and P4 have been loaded with compressive forces, as 278 

clearly visible comparing Figure 8–b, whereas tensile forces higher than the 279 

compressive forces have been detected in P5. The loads on the girders increased with 280 

settlement up to 15 mm, after that point they remained relatively constant or even 281 

decreased slightly. 282 
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Figure 8. Evolution of reactions according to settlement of S1 (-a) and on the base bracing girders 

(-b). 

5.2. Development of cracks  283 

Figure 9 depicts the displacements recorded by means of the long gauge sensors, 284 

LVDTs and FOS, placed along the vault. It is worth mentioning that, all the sensors 285 

depicted in Figure 9 show displacements related to tensile stresses. Those installed on 286 

S1 along the S1-S3 elliptical arch (LVDT1, FOS1, LVDT2, LVDT3, LVDT4) show 287 

maximum displacements of 0.05 mm, while those attached to the cornerstone on the 288 

upper surface of the vault (LVDT6, LVDT7, FOS2 and FOS3), give considerably 289 

higher displacements of between 2 and 2.5 mm, indicating the presence of cracks. The 290 

value registered by LVDT5 on the lower vault face over arch S1-S3 reached 1 mm at 291 

the end of the test, indicating cracks in this area also. 292 
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Figure 9. Displacements recorded by long gauge sensors. 

 293 

The visual inspections carried out during and after the test revealed the zones where 294 

cracks appeared. In general, two types of cracks have been detected: 1) those close to 295 

supports and arches, and 2) those that developed on the vault masonry web. 296 

The cracks close to S1 were tensile cracks caused by the settling of the support. These 297 

started in the base of S1 towards S2 and propagated horizontally towards the S1-S3 298 

elliptical arch following the inter-brick joints (Figure 10-a). However, those that 299 

appeared in S2 have been caused by the bending of arch S2-S4 and also started in the 300 

outer faces of the arches rising from S2. They have been propagated not only along the 301 

joints but also through breaks in the bricks themselves. Since these were bending 302 

cracks, their openings were wider on the outer face of the vault, where they reached a 303 

maximum of 3 mm. Those on the inner face were narrower and shorter (Figure 10-b). 304 

During the visual inspection carried out when the settlement had reached 20 mm, a 305 

small horizontal crack approximately 1 mm wide was seen on the S3 support along a 306 

line of brick joints. At 35 mm settlement this same crack was 3 mm wide and had gone 307 

from one side of the vault to the other (Figure 10-c).  308 
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Figure 10. Cracks close to supports S1 (-a), S2 (-b) and S3 (-c). 

 309 

The variation in the S4 reaction became stable after 20 mm settlement and no cracks or 310 

breaks were observed close to this support. The long gauge sensors fitted to the lower 311 

face of the vault close to the elliptical arch S1-S3 (LVDT1, FOS1, LVDT2, LVDT3, 312 

LVDT4) recorded maximum displacements of around 0.05 mm (Figure 9-a), but these 313 

did not cause any cracks in the area covered by these sensors. However, sensor LVDT5 314 

recorded maximum displacements of around 0.9 mm. Figure 10-a shows the crack 315 

recorded by this sensor, which started in the arch and propagated horizontally until 316 

reaching the S1-S3 arch, where it joined up with a smaller crack. Its evolution was seen 317 

to vary at 20 mm settlement, which appears to indicate the beginning of the opening of 318 

the crack. The displacements recorded by the sensors fitted to the vault’s upper face 319 

were somewhat larger, with a bigger opening of the crack on elliptical arch S2-S4. 320 

Sensors LVDT6 and LVDT7 placed symmetrically on arch S1-S3 showed very similar 321 

behaviour. After a settlement of between 5 and 10 mm (Figure 9-b) the slope of the 322 

displacement curves was seen to vary, indicating the appearance of cracks. Sensor FOS3 323 



recorded the opening of a crack at around 15 mm settlement. Cracks also appeared close 324 

to sensors FOS2 and LVDT6 and propagated towards support S4 as settlement 325 

progressed. 326 

5.3. Structural behaviour 327 

The structural behaviour of the vault suggests that the reactions varied in proportion to 328 

the settlement of the support S1 up to the activation of a failure mechanism. From then 329 

on, after about 15-20 mm settlement, all four reactions stayed almost constant. Indeed, 330 

at this settlement, the crack along the S2-S4 elliptic arch had run almost the complete 331 

length of the arch as far as the S2 and S4 supports (Figure 11). At the same time, the 332 

LVDT6, LVDT7, FOS2 and FOS3 sensors placed on top of the vault were showing 333 

cracks open to between 0.7 and 1.00 mm, indicating much higher tensile stresses than 334 

those found in the previously studied specimens. From this point onwards, the vault 335 

behaved as two relatively independent structures and the loads were no longer re-336 

distributed around it. This indicated that after this level of settlement the crack 337 

continued to widen but did not affect the rest of the structure. At the end of the test, it 338 

had reached the underside of the webbing and was 2.5 mm wide. 339 

  
Figure 11. Cracks on the keystone of the vault on elliptical arches S2-S4. 

 340 

6. Conclusions 341 

S1 S2

S3
S4



This paper describes the experimental results of testing a full-scale timbrel cross vault 342 

against the vertical settlement of one of its supports. The main conclusions drawn from 343 

the experiment are the following: 344 

- The maximum settlement applied to support S1 was 40 mm, when serious 345 

cracking made it advisable to stop the test. 346 

- When settlement was applied to S1, the reactions of S2 and S4 increased by 27 347 

and 50%, respectively, while those of S1 and S3 decreased by 28 and 55%, 348 

respectively. 349 

- The vault's structural behaviour indicated that the reactions varied in proportion 350 

to the settlement of S1 (up to 5 mm). After 10-15 mm this relationship came to 351 

an end, when cracks appeared close to the supports. When the settlement 352 

exceeded 15-20 mm all four reactions remained practically constant. 353 

- The most serious cracks in the supports were in S1 (tensile crack), S2 (bending 354 

crack) and S3 (tensile crack). Those in S1 and S3 followed the line of brick 355 

joints while those in S2 fractured the bricks and were more serious on the outer 356 

vault face. 357 

- The largest crack was found on the upper face of the vault and ran from support 358 

S2 along the elliptical arch to support S4. Other smaller cracks were found on 359 

the arch joining S1 and S3. 360 

- At a settlement of between 15-20 mm, a crack almost joined both sides of the 361 

arch between S2 and S4, after which the vault was divided into two relatively 362 

independent structures and the re-distribution of loads throughout the vault came 363 

to a halt almost completely. This meant that after this point the crack continued 364 

to widen but without repercussions on the rest of the structure. This crack also 365 



opened up on the underside of the webbing and by the end of the test had 366 

reached a width of approximately 2.5 mm. 367 
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