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Abstract

The Berlekamp-Massey algorithm solves the problem of finding the
shortest linear feedback shift register which generates a given finite se-
quence of scalars. This problem is reinterpreted from the point of view
of the realization theory and several extensions to sequences of matri-
ces are analyzed. We give a generalization of the result on which the
Berlekamp-Massey algorithm is based in terms of the partial Brunovsky
indices of a sequence of matrices and propose an algorithm to obtain them
for sequences of vectors. The results we obtain hold for arbitrary fields.

Keywords: Linear feedback shift registers, partial realizations, matrix genera-
tors,Brunovsky indices.
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1 Introduction

Given a finite sequence of numbers Y = (yo,y1,...,yn_1), ¥ € F, a classical
problem consists in finding the shortest linear feedback shift register (LFSR)
which generates it. The Berlekamp-Massey algorithm ([7, 18]) provides an effi-
cient solution to this problem. This algorithm and its extensions to sequences of
vectors or of matrices have been widely analyzed in the literature, and solutions
have been provided from different approaches, with different achievements. We
summarize below some of the most important results in the area.
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A LFSR is characterized by a length L and a polynomial C(D) =1+ ¢, D +
caD? + .-+ ¢ D ¢; €T, satisfying

L

yj:*zcz‘yj—i, L<j<N-1L
=1

For sequences of matrices YV = (Yp,Y1,...,Yn_1), Y; € FPX™ the problem
can be interpreted in the following ways:

Problem 1: Find a minimal length linear generator of the sequence, i.e. a
polynomial of minimal length L, C(D) = 1+ ¢;D + caD? + - - + ¢, D¥, such
that

L
Yj=-) &Y L<j<N-L
i=1

Problem 2:

2a Find a minimal length right matrix generator of the sequence, i.e. a matrix
polynomial of minimal length L, Cr(D) = I,, + RiD + --- + R DY €
F[D]™*™ such that

Y, =Y 1 Ri+--+Y; 1Ry, L<j<N-—1

2b Find a minimal length left matrix generator of the sequence.

A left matrix generator of YV is a right matrix generator of (Y ,..., Y& _,).

Problem 3: Find a minimal partial realization of the sequence, i.e. a matrix
triple (A, B,C) € F4xd x Fdxm x FPXd of Jeast possible order d such that

Y; = CA’B, 0<j<N-L1

Ifm=1(p=1), Problems 1 and 2a (2b) coincide. Moreover, solving Problem
2a (2b) is equivalent to finding a minimal realization in reduced controllability
(observability) form of the sequence (hence Problem 3 will be solved).

The Berlekamp-Massey algorithm is an iterative procedure, which nests the
shortest LFSR generating the sequence YV =1 = (Y, Y1,...,Yy_2) into a new
one generating the sequence YV = (Yp, Y7, ..., Yn_1), updating the polynomial
of the register if necessary and, eventually, its length. The updating of the
length is based on Theorem 2.1 (see Section 2) proved in [18]. Additionally, in
[18] all of the minimal length LFSRs generating the sequence YV are provided,
and uniqueness is characterized.

A proof of Massey’s conjecture of the extension of Berlekamp-Massey algorithm
to the multisequence case (a multisequence can be considered as a sequences of



vectors) was given in [11]. The result is very close to the scheme of the original
algorithm by Massey ([18]).

Other achievements in the multisequence case can be found in [20, 21, 12].
An improvement of these results is given in [1] and [2] for multisequences of
the same length and of arbitrary lengths, respectively. In these papers the
linear recurrence relations satisfied by the given sequences are described by the
annihilator ideal of the sequences. The problem of finding the linear recurrence
of minimal order for the multisequence turns then into the problem of finding a
minimal Groébner basis of the ideal. Essentially, in all these papers the problem
solved is Problem 1 for m =1 (p =1).

Following a different approach, some results in the realization theory of linear
systems led to reinterpretations of Berlekamp-Massey algorithm. In an early
strategy, minimal state-space realizations of sequences were obtained from the
Hankel matrix associated to the sequence ([14, 19, 13, 8, 15]). In general, min-
imal realizations of successively longer parts of the sequence were found, and
intermediate results were nested to obtain a partial realization of a longer piece
of the sequence. The updating step has been carried out, in turn, using different
tools. Several authors ([10, 3]) obtained partial realizations of sequences taking
advantage of matrix fraction descriptions of systems. In [3], once a partial real-
ization is obtained, its Kronecker indices are involved in order to construct the
transfer matrix of the updating step. Another approach, within the theory of
linear systems, was based on the modeling of behaviors ([4, 17]).

Finally, minimal matrix generators of sequences of matrices are obtained in [22].
See also [16] for a summary of previous results.

We revisit here Problems 2 and 3 for sequences of matrices. Our approach re-
mains within the framework of the realization theory, involving Hankel matrices
and Kronecker indices of linear systems. Interesting to our work is the paper by
Bosgra ([8]) who introduced the partial Kronecker indices of a sequence. They
are defined in terms of ranks of Hankel matrices associated to the sequence, and
it was proved in [8] that they coincide with the Kronecker indices of all minimal
partial realizations of the sequence, therefore, avoiding the need of obtaining a
minimal realization to compute them.

The minimal order d of a partial realization of a sequence of matrices is the
sum of its partial Kronecker column (row) indices. We will see that the minimal
length S («) of a right (left) matrix generator is the largest partial Kronecker
column (row) index. It results that a minimal realization is unique, modulo
similarity, if and only if « + 8 < N. In the scalar case, d = o« = 8 and
they coincide with the length of all the shortest LFSRs which generate the
sequence. Therefore, the uniqueness condition reduces to 2d < N, which is
Massey’s characterization of uniqueness.

In this paper we relate the partial Kronecker indices of a sequence with those
of a subsequence. It allows us to generalize Theorem 2.1 (see Theorem 5.5),



showing that in the matrix case the role of the minimal length of a register is
split into o and .

For the case m = 1 (p = 1), we provide a method for obtaining o and 8 and the
partial Kronecker indices of a sequence, which allows us to find minimal real-
izations in reduced controllability and observability forms. From them, we also
obtain minimal length right and left matrix generators of the sequence. Hence,
Problems 1, 2a (2b) are solved. Concerning Problem 3, we obtain solutions in
controllability and observability forms for both cases m =1 and p = 1.

The paper is structured as follows: In Section 2 we introduce some notation,
definitions and previous results. In Section 3 we review some known results
about partial realizations and introduce the partial Brunovsky indices of a se-
quence of matrices. In Section 4 we characterize the minimal length of a matrix
generator of a given sequence of matrices, and provide a method to obtain it. In
Section 5 we generalize the main result of [18]. From it, we propose in Section
6 an algorithm to compute the Brunovsky indices of a sequence of vectors. In
turn, from them we are able to obtain minimal realizations in controllability
and observability forms, and minimum length matrix generators. The latter are
shown in an example.

2 Preliminaries

Let F be a field. F"*™ denotes the set of n x m matrices over F and F[D]"*™
the set of polynomial matrices of size n x m with indeterminate D.

A linear feedback shift register (LFSR) of length L is a structure formed by L
cells of memory {Sp, S1,...,Sr—_1} able to store information, and provided with
a clock. The initial content of the cells is denoted by (yo,y1,---,yr—1), ¥; € F.
At each clock control the information is shifted one step sideways producing an
output term, and leaving an empty cell, which is filled in with the result of a
linear feedback function according to an expression of the form

L
y]:_zcly]—w J:LaL+17 (1)

i=1

where y;,¢; € Ffori=0,1,.... The polynomial in the indeterminate D, C'(D) =
14+c1D+cyD? 4+ 4 c DY (D means “delay”), is associated to the LFSR and
is called the connection polynomial. The LFSR is determined by the length L
and the connection polynomial C(D).

The Berlekamp-Massey algorithm ([18]) solves the following problem: Given a
sequence of numbers YV = (yo,v1,...,yn_1), find a LFSR of minimal length
which generates Y. It is an iterative adaptive procedure which is based on the
result of the next theorem, where given ) = (yo,v1,...), L; denotes the length
of the shortest register generating V' = (yo,91,---,¥i_1), for i > 1.



Theorem 2.1 [18, Theorem 2]

1. If some LFSR of length Ly generates the sequences Y~ = (Yo, Y1, -, YN—-1)
and yN+1 = (y()ayh s 7yN—13yN)7 then LN+1 = LN

2. If some LFSR of length L generates the sequence YN = (yo,y1,...,yn—_1)
but not the sequence YN = (yo,y1,...,yn—_1,Yn), then

LN+1 = maX{LN,N—I— 1-—- LN}

Additionally, in [18] all of the minimal length LFSRs generating the sequence
YN are provided. It is proven that the solution is unique if and only if 2Ly < N.

A LFSR can be considered as a linear generator or as a right (left) matrix
generator. On the other hand, these problems are closely related to the minimal
partial realization problem. Then, natural generalizations of the problem solved
by the Berlekamp-Massey algorithm are Problems 1, 2 and 3 stated in the
Introduction section.

In [8, Theorem 2.1] it is shown that the order dx of the minimal partial realiza-
tions of a sequence YV = (Y, Y1,...,Yn_1), Y; € FPX™ is equal to the sum of
the partial Kronecker row indices and to the sum of the partial Kronecker col-
umn indices of Y. In addition, if ax and Sy are the biggest partial Kronecker
row and column indices of YV, respectively, then a minimal partial realization
is unique modulo similarity if and only if ay + By < N.

In this paper, following [5, 6], we work with the conjugate partitions of the
partial Kronecker row (column) indices and we call them partial Brunovsky
row (column) indices of Y. We will introduce them in Section 3, together
with some known results about partial realizations. We will show that when
m = 1 (p = 1) the problem of finding a right (left) matrix generator of Y~
is equivalent to that of finding a partial realization of V, and that the order
dy of all minimal partial realizations is dy = By (dy = an). Moreover, if
m = p = 1, then both problems are equivalent to that of finding a LFSR which
generates YV In this case, dy = any = By (with the notation of Theorem 2.1,
dy = Ly).

For the general case, we will prove that the minimal length of the right (left)
matrix generators of a given sequence of matrices is By (ay) (Proposition 4.4)
and we will give a method to obtain such a generator of minimal length (Corol-
lary 4.6). Afterwards, we will analyze the relation between Sny1, anyi and
BN, an. In particular, Theorem 5.5 generalizes Theorem 2.1, and from it we
will obtain an algorithm to compute the partial Brunovsky indices of a sequence
of vectors.



3 Partial realizations

In this section we will review some known results about partial realizations,
and will relate the problem of finding a LFSR which generates a sequence of
numbers to the problem of finding a partial realization of the sequence.

Let (A4, B,C) € F‘SX‘SXF‘SX"LXI@Xibe a partial realization of YV = (Yo,...,Yn-1),
Y; € FPX™ of order 4. If (A, B,C) is similar to (4, B,C),i. e. A =T 1AT,

B = T7'B, C = CT for some invertible matrix T, then (A, B,C) is also a
partial realization of Y.

Given a triple (A, B, C) € FO*" x F®X™ x FP*% the Brunovsky indices of con-
trollability of (A, B, C) are defined as follows ([9]):

r; =rankC;(A, B) —rankC;_1(A,B), 1<1i<39,
where

Ci(A,B)=[B AB ... A™'B], 1<i<§,
and we take rank Co(A4, B) := 0.
Analogously, the Brunovsky indices of observability of (A, B,C) are

s; =rank O;(C, A) —rank O;_1(C, 4), 1<i<§,

where

and we take rank Oy (C, A) := 0.

Notice that vy > -+ >rs >0and s1 > --- > ss > 0. We taker; =0 and s; =0
for i > 4.

The pair (4, B) is controllable if rank Cs (A, B) = § (equivalently, if Zle r; =0)

and the pair (C, A) is observable if rank Os(C, A) = § (equivalently, if Z?zl 8; =
5).

If (A, B, C) is a minimal partial realization of YV = (Yy,...,Yn_1), ¥; € FPX™,
then (A, B) is controllable and (C, A) is observable.

On the other hand, two sequences of nonnegative integers can also be associated
to YN. We define:

i =rank Hyy1-4; (YY) —rank Hyjq1-;,-1 (YY), 1<i<N,

s, = rank H; y11-;(YN) —rank H;_y y11-; (YY), 1<i<N,



where H; j(YV) is the Hankel matrix

Yo Yo o... Yo Y
Vi Yo ... Y, Y
H ;YN = : : , 1<i<N;1<j<N+1—,
Yio Yix ... Yigj o Yigj
Yioi Vi ... Yy Yo

and we take rank Ho n (V") = rank Hy o(Y) = 0. It is clear that 7} > r],; >0
and s; > sj,; >0, 1<i< N -1

The sequences of integers 1] > --- > rly and s} > --- > &y are called the partial
Brunowvsky column and row indices of Y, respectively ([5] and [6]). They are
in fact the conjugate partitions of the the partial Kronecker column and row
indices of YV introduced by Bosgra in [8], respectively.

The following proposition can be derived from definitions.
Proposition 3.1 Let YV = (Yo,...,Yn_1) be a sequence of matrices, Y; €

FPxm™ and let (ry,...,m%) and (sh,..., sy be its partial Brunovsky column and
row indices, respectively. Then

i N N+1—i N
rank Hy -0 (VV) =D rf— Y sj= > 8- i, 1<i<N,
j=1 j=N+2-i j=1 j=it1
and
i N —i N
rankHN,i’i(yN):Zr;-— Z s;: s;-— Z 7“;-, 1<i<N-1.
i=l  j=N+1-i =1 =it

In the next theorem we see that the partial Brunovsky indices of a given sequence
of matrices and the Brunovsky indices of its minimal realizations coincide.

Theorem 3.2 [8, Th. 2.2] Given a finite sequence of matrices YN = (Yo, ..., Yn_1),
Y; € FP*™ | qll the minimal partial realizations of YV have the same Brunovsky
indices of controllability and of observability, and they are equal to the partial
Brunovsky column and row indices of YN, respectively.

The following proposition shows that, when the number of positive partial in-
dices of a sequence of matrices is less than or equal to the number of matrices in
the sequence, then the minimal partial realizations of the sequence are unique
modulo similarity.

Proposition 3.3 [8, Th. 2.1] Let YN = (Yy,...,Yn_1), Vi € FPX™ be a se-
quence of matrices and let (r1,...,rn), (S1,...,8N) be its partial Brunovsky
column and row indices, respectively. Assume that

mzry 2 2rgy > 0=rgyy = =1y =0, (2)
pZSlz...ZsaN>O:SQN+1:...:SN:O'



If an + By < N, then all the minimal partial realizations of YV are similar.

From now on, if (r1,...,ry) and (s1,...,sy) are the partial Brunovsky column
and row indices of YV, respectively, we will assume that they satisfy (2).

Let (A, B,C) € Fivxdn x Fdnxm » FPXdy he a minimal partial realization of
YN, Notice that by Theorem 3.2, the integers (r1,...,7x) and (s1,...,5x)
are the Brunovsky indices of controllability and of observability of (A, B,C),
respectively. Moreover, as (4, B) is controllable and (C, A) is observable, we

have that
N N
S Ss
i=1 i=1
If in addition m = 1, then r; = --- = rg, = 1, dy = B, and since (A4, B) is

controllable, (A, B, () is similar to a unique triple of the form

o

0 CBn

0 0 ... )
100 ... 0 cgyon
0
A=1|0 10 0 cav—2| B=1|.|,C=[Yo Vi ... Yay-o Ysy_1].
000 ... 1 ¢ 0
Then
. L
CAB=> ¢Y;;, L<j<N-L (3)
=1

We see that in this case, the problem of finding a minimal partial realization of
YN is equivalent to that of finding a right matrix generator of Y.

Analogously, if p =1, then sy = -+ = so = 1, dyv = an and the problem of
finding a minimal partial realization of YV is equivalent to that of finding a left
matrix generator of AN

As a consequence, in the scalar case (m = p = 1), the problem of finding a
LFSR of minimal length which generates a given sequence Y is equivalent to
that of finding a minimal partial realization of YV, and to that of finding a right
a left matrix generator of YV.

For the general case, we will show how to obtain a partial realization of Y.
Although developed in another context, the result was presented in [5, Section
6] (see also [6, Section 5]), and it can be adapted to our situation. From the
realization of YN , we will see in the next section how to obtain a right matrix
generator of the sequence. We summarize here the method.

We will use the following notation: If a and b are positive integers 0 < a < b,
the set of families of ordered indices of length a chosen from 1 to b is denoted
by Qap = {(i1,...,8a) : 1<i1 <---<ig <b}.UT=(i1,...,4q) € Qqp and
p is an integer number, p+1 = (p+1i1,...,p+1i,). For A € FP*™ [ € @), and



J € Qrm, A(I,J) will denote the s x r submatrix of A formed by the rows in
I and the columns in J. Similarly, A(I,:) € F**™ and A(:,J) € FP*" are the
submatrices of A formed by the rows in I and the columns in J, respectively.

In the rest of this section, and to simplify notation, we will denote the Hankel
matrices H;; (V) as H;;.

From the definition of the partial Brunovsky row indices, we can select sets of
indices (not necessarily unique) I; € Qs, p, 0 < i < ay (so = p), corresponding
to rows of the matrix H; n_;y1, satisfying

Iiyn €L, 0<i<any-—1,

and
rank Hi,N-i—l—i = rankHivN_H_i(li, :), 1 < ) < apn,
where I; ;=1 U(p+L)U---U(i—1)p+1I;; 1 <i<an.

Hence, if I¢ = I;_1\ I;, the rows corresponding to the positions in I¢ are linearly
dependent from the rows corresponding to the positions in I,. Then there exist
matrices

[Ain ... Ay e Fleimmsx(nbtsd ) < < ay,
and a matrix [AaNH)l AaN+1,aN] € Fsen*? guch that
[Yicr ... Ynoa| (I5,:) = [Air - As] Hinv—iv1(Lyn0), 1<i<ap, A
Yoy - Yno1] (Tays?) = [Aan+1,1 - Aay+tian ] Hay Noay Loy, )- ()

(If ay = N, then [AaN-H,l AaN+17aN} is any matrix in Fsen xd)_
Then, defining for 1 <i < ay

a minimal partial realization of YV is given by

[ Cn C22 0 0 0
Cs1 Cs2 Cs3 0 0
Ao = : )
C{lNl OO/,N2 COLNB A CO[N,CZN—l C()INOLN
_AOLN+1,1 AO[N+1,2 AO(N+1,3 .. AOLN+1,OLN71 AOéN+1,OcN
[ Yo(I1,:)
Yl(IQ, I)
B, = _ , Co=[Cn 0 ... 0]
_YaNfl(IOéN’ :)

Tt is said that (A,, B,, C,) is in observability reduced form.



Remark 3.4 For 1 < i < ay + 1, the number de equations in (4) is #I{ =
Si—1 — 8;. Then, the solution depends on

i
(Si_1 — Sz)(z S5 — rankHi7N+1_i).

j=1

free parameters. By Proposition 3.1,

i N
E S5 — rankHi’NJrl,i = E Tj.
j=1 j=N+2—1

Therefore, the total number of free parameters in an observability reduced form
18

an+1 N
noWN) = D (sici—si) Y 1= (s1—s2)rn+(s2—83) (PN 17N )+ - FSay (F1t - ATN)
i=1 Jj=N+2—i
an aN
= sirNiii= Y SiTNt1-is
=1 i=N+1-Bn

Analogously, we can obtain a partial realization in controllability reduced form,
and the number total of free parameters in this case is

BN+1 n BN
neN)= > (rica—m) D si= Y risngi-i =ne(YV).
=1 j=N+2—i i=N+1-ay

We observe that the number of free parameters in the reduced forms is the same.
Moreover, if ax + By < N, then n, (YY) = n. (YY) = 0, which means that once
the sets of indices I;, J; are fixed, the reduced forms are unique.

Example 3.5 Let p =4, m =2, Y° = (Yo, Y1,Ys,Ys,Yy) with as = 3, B5 =4,
Assume that

(81,82783) = (3, ]-7 1)3 (7‘1,7'2,7'3,7"4) = (2a 1, ]-7 1)3
and Iy = {1,2,4},I, = I3 = {2}, i.e. (notice that p+1I, = {6}, 2p+ 13 = {10})

rank Hq 5(Y°) = rank Hy 5(V°)({1,2,4},:) = 51 = 3,

rank Hy 4(V°) = rank Ha 4(V°)({1,2,4,6},:) = 51 + s2 — 15 = 4,

rank H373(y5) = rankH373(y5)({1, 274, 6, 10}, I) =81 +82+83—15 —T4= 4,

rank Hy o(Y®) = rank Hy 2(V°)(:,{1,2,4,6,10},:) = 81 + 82 + 83 + 84 — 15 — 14 — 73 = 3,

and there exist a;; € F such that (If = {1,2,3,4}\{1,2,4} = {3}, IS = 1\ [» =

Yo Y1 ... Yi|(3,:)=[as1 as2 ass] Hi5(V°)({1,2,4},1),

N @11 @12 a13 A4 .
Vi ... Ya]({1,4},) =  an an a44] Hy4(V°)({1,2,4,6},1),
Vs Yi] ({2},:) = [az1 a2z a3 aa ags] Hsp(V®)({1,2,4,6,8},:)

10



Then a minimal partial realization of Y° in observability reduced form is

@11 Gl2 a3 ai4 0
1 0 0O 0 0
O 0 0 1 0 Yo({1,2,4},:) 0 1 0 0 0
Ao = |ayn as2 agz a0 |, Bo=| Yi({2},:) |, Co= as1 a2 aszz 0 0O
o 0 0 0 1 Y>({2},1) 0 0 1 00

21 Q22 G23 Q24 425

Similarly, if Ju = {1,2}, Jo = J3 = Jy = {1}, a minimal partial realization of
V? in controllability reduced form is

0 b 0 0 by 1 0
0 by 0 0 by 0 1
Ac= {1 by 0 0 byu|,B.=1{0 0|, Cc=[Yy Vi({1}) Ya(:{1}) Ya(:,{1})].
0 0 1 0 by 0 0
0 0 0 1 by 0 0

4 Matrix generators

In this section we deal with the problem of finding a right matrix generator of
YN = (Yo,...,Yn_1), Y; € FPX™  Obviously, analogous results can be obtained
for left matrix generators.

Recall that when m = 1, the problem is equivalent to that of finding a minimal
partial realization of Y.

For the general case, we observe first that the problem can also be stated in
terms of partial realizations.

Proposition 4.1 Cr(D) = I, + RiD + --- + R,D? € F[D]"™*™ is a right
matriz generator of YN if and only if

0 0 0 0 R, I,
I, 0 0 0 Ry,_1 0

Ap=]0 In O 0 Rpa|l Bp=10 ,Cr=[Yo Y1 ... Y,4]
0 0 0 I, Ry 0

s a partial realization of YN,

Proof. Defining
Zj S:}/j, Ogjgyp—l,

ZjZ: j71R1+"'+ijpRp7 N§]§N+p—2,

11



we have

CR ZO Z1 e Zp—l
CrAg 71 Zy ... Z,
CRAg71 ZN_1 In ... ZN+p_2
therefore,
CrBr Cr Zy
CrARrBRr CrAR Z1
. = . Br = )
CrA} 'Bg CrAy ! Zn_1

Then, Cg(D) is a right matrix generator of YV if and only if
Y; = Z; = CrARBr, p<j<N-1.

O

For a given p, the following results characterize the existence of a right matrix
generator of length p of YV and provide us with a method to obtain it.

Proposition 4.2 There exists a right matriz generator Cr(D) € F[D]™*™ of
length p of Y if and only if

rank Hy_, ,41(VY) = rank Hy_, ,(VV). (5)

Proof. There exists a right matrix generator if and only if there exist matrices
Ri,...,R, € F™*™ such that

)/}:)/}—IR1+"'+§/}—pva pSJSN_lv

if and only if

Yy Yi o Y, Y, Yy Y: o Y,
Y, Yo e Y, Y 41 Y; Y, e Y,
rank . . ) . . = rank .
Yn_p-1 Yn—, ... Yn_o Yn_1 Yn_p-1 Yn—, ... Yn_o
O

Proposition 4.3 If (5) holds, then a right matriz generator of Y is Cr(D) =
Iy + RiD+ .-+ R,D?, where Ry,...,R, € F™*™ are matrices such that

R,
Hn*p,p(y]\” = n*p7p+1(yN)-
Ry

12



Proof. Straightforward. o
Recall that the partial Brunovsky column indices of YV are
T > 21y >0=1rgy41=---=rNny=0,
and that
r; = rank Hy (V) —rank Hy 1151 (™), 1<i<N.

Then, condition (5) is equivalent to r,41 = 0. As a consequence, if we denote
by gy the minimal length of the right matrix generators of YV, we have the
following characterization of gy .

Proposition 4.4 The minimal length gn of the right matriz generators of YN
is gN = BN

Once Sy is calculated, Proposition 4.3 allows us to obtain a right matrix gen-
erator of minimal length.

Nevertheless, instead of using Proposition 4.3, we show next another method to
obtain a minimal length right matrix generator of YV, taking advantage of a
minimal partial realization of the sequence.

Let (A, B,C) be a minimal partial realization of Y. By Theorem 3.2, the
Brunovsky indices of controllability of (4,B,C) are 11 > --- > rg, > 0 =
r3y+1 = -+ =7rn = 0. Then,

0 =rgy+1 =rankCg, +1(A, B) —rankCg, (4, B),
it implies that there there exist Ry, ..., Rg, € F™*™ such that

Rgy
APNB =Cg,(A,B)| : |. (6)
Ry

Proposition 4.5 Let (A, B,C) be a minimal partial realization of YN and let
Rq,...,Rgy € F™™™ be matrices satisfying (6). Then

0 0O 0 ... 0 Ry I
I, 0 0 ... 0 Rgy-1 0

Ap = o I, 0 ... 0 Rgy—2 , Bp = 0 , Cp = [YO Y, ... YﬁN—l]
0 0 0 ... I, Ry 0

s a partial realization of Y.
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Proof. First, let us prove by induction on ¢ that

AiCsy (A, B) = Cpy (A, B)A%, i>0. (7)
For i = 0, (7) trivially holds. Assume now that A*Cg, (A, B) = Cg, (A, B)A%,.
By (6) and the definition of Ag, Csy (A4, B)Ar = [AB A’B ... APNB].
Thus,
AMICg (A, B) = ACs, (A, B)AY, = [AB A’B ... APvB] Ak =Cgs, (A, B)AM.

On the other hand, since (A, B, C) is a partial realization of YV, Cr = CCs, (A, B).
Then, from (7) we deduce

L,

—

_ _ _ 0 .
CrARBr = CChy (A, B)ALBr = CACs (A,B) | . | =CA'B=Y,, 0<i<N-

Now, from Proposition 4.1 we obtain the next result.

Corollary 4.6 Let (A, B,C) be a minimal partial realization of YN . Then a
right matriz generator of minimal length of YV is Cr(D) = I, + RyD + -+ +
Rpy DPN | where Ry, ..., Rg, € F™ ™ are matrices satisfying (6).

Example 4.7 With the data of Example 3.5, a right matriz generator of mini-
mal length of V° is C(D) = 1+ R1D + Ry D? + R3D? + Ry D* where R; € F?*?
are matices such that

Ry
AlB, = C4(A., B.) Tt
Ry
Ry
Let by, by be the columns of B.. Then
by
b
b1 b21
b 31
) 21 0
Agbl = [bl b2 Acbl A%bl A?bl] b31 = C'é;t(AC,BC)AXVl7 where Xl = b
by él
bs1
bs1
L 0 -
b12 b12
Acbg = [bl b2 Acbl] 622 5 from where Aébg = [Agbl Azbg Azclbl} 622
632 b32

14



Then

0
0
0
Alby = [A%b A%y {212] Dby = Co(Ac, Bo) X, where Xo = {04 +X1byo.
22
0
b12
[ D22 ]
Let _ -
b11 b11b32
bo1 ba1b32
Ry b31 b31b32
R3 0 0
= X X = s
Ry| =X Xl =
Ry 0 0
bs1 b1z + bs1b32
| 0 bao
Then, C(D) =1+ Ry D + RyD? + R3D3 + Ry D* is a right matriz generator of
minimal length of V°. a

5 Partial indices of sequences and subsequences

Our aim in this section is to generalize Theorem 2.1. To achieve it, we study
the relation between the partial indices of a sequence YN = (Yg,..., Yy),
Y; € FPX™ and those of the subsequence Y = (Yp,...,Yn_1).

The next lemma follows from Proposition 3.1.

Lemma 5.1 Let Y" = (Yy,...,Y,_1) be a sequence of matrices and let (r1,...,1y)
and (81,...,8n) be its partial Brunovsky column and row indices, respectively.
Then

1.

Ty — Spt1—; = rank H,—; ; (V") —rank H,, 15,1 (Y"), 1<i<n.

Ty — Spto—; = rank Hy41—; (V") —rank Hyyo_; ;-1 (Y"), 2<i<mn.

In the rest of the section, Y = (Yo, Y1,...,), Y; € FP*™ will be a sequence of
matrices and for ¢ > 1 we will denote by (r%,...,7) and (s,...,s!) the partial
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Brunovsky column and row indices of Y = (Yp, ..., Y;_1), respectively. We will
assume that

eriZ---Zr%i>0:Tgi+1:-~-—rf:0,
sziz-uzsfli>0=sfxi+1:---:s§:0,
% 7
i i g
T = s5 =d;.
j=1 j=1

Proposition 5.2

1.
N+l < N N+l N , N _ N  _
>y, s 2sy, 1<i<N+1 (ryg =Sy =0),

and as a consequence,

any1 > ay, Byt > B

2.
Nt =N Nt — SNga— 1 <i< N1 (8)
Equivalently,
sit =N 4Nt =Ny, 1<i<N+1L 9)
Proof.

1. For 1 <7 < N + 1, let us consider the matrix

Yo o Yo Y
Hyypooia(YVTh) = : - :
Ynoi ... Yn_o Yy
Yyyi—i .. Yno1 YN

Observe that r¥*! is the number of independent columns of the last

Yio1
Y;
block column : which are linearly independent from the previous
Yn_1
Yy
ones, that is, from the columns of Hy o ;;—1(YV*1). In the same way,
Yi1
Y
for 1 <7 < N, rlN is the number of independent columns of
Yn_1
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which are linearly independent from the columns of H N+1,i’i,1(yN ).

Yi1
Y;
Notice that if a column of depends linearly on the columns of
Yn-1
Yn
Y1
Y;
Hpyyo—ii—1(YNT1), then the same column in . depends linearly
Yn-1
on the columns of Hyy1_;;_1(YV). Thus, m —r > m—r¥T! therefore

N+1 N N+1 N ;
T > r;'. Analogously, s; >s;',1<i<N.

2. By Lemma 5.1, for 1 <i: < N 41,

N+1 N+1 N+1 N+1
r; 1 sNiQ—i = rankHNH_i,i(y + )—rankHN+2_i,i_1(y + )

But Hyy1-ii (VN = Hy1—i (YY) and Hy o i1 (V) = Hyyoii1 (YN).

Therefore
N+1_ _N+1  _ N Ny_ .N__N
ri  —Snio_; =rank Hy 1 (V7 )—rank Hy o i 1(V") =7 =8Ny

O

Corollary 5.3 If an + 8n < N, then
LIl = o then NV = pN, 1 <0 < By, Simalarly, if sNE = Y
then sﬁv"'l =sN 1<i<ay.

N+1 _ . _ . N+l  _ N+1 _  _ N+1
2 TBn+1 7 =T Ntl-an = San+1 = = SN+1-Bn-

3. an41 = ay if and only if Bnyy1 = Bn. In this case

PN =N 1<i<By, and sNT =5 1<i<an.

4. any1 > apn if and only if Bn+1 > By . In this case
any1 > N+1-08y, Bnvy1 2 N+1-an.

5 If ayy1 > ay and réVNH = réVN, then a1, = N + 1 — By. Similarly, if

Bni1 > By and s =sY | then By =N +1—ay.

6. If any1 > an and réVN = m, then ayt1 = N + 1 — fBn. Similarly, if
BNnt1 > By and sY =p, then Byy1 =N +1—ay.
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Proof. If ay + Sy < N, conditions (8)-(9) are

N N+1 .
T +5N12—i7 1S'LS6N7
PN = S%S—w By +1<i<N+1-—ap,

N+1 .
5Ni2—i_3%+2—z" N+2—ay <1< N+1,

N N4+1 .
s, + TNy2—i 1< < ay,

sN+1 = r%j:;_i, ay+1<i<N+1- 8y,

TNy —Nyo s N+2-By <i<N+1

N+1 _ N
1. If Ton = Thxn
N+1 N _ _N+1 N+1 _ .N+1 N _ .
O0<7r ™ =7 =sNis i SSNja gy =Ty —Tay =0 1<i< PN
N+1 _ .N+1 N+1 _ N+1 N+1
2. We have that SN41-n = Tan+1 > TNA1—anx = San+1 > SNt1—fn> hence

PN+ N4 — (N1 N1
By+l — TN+l-an = Sany+1 = SN+1-8n-

3. By item 2,

N+1 N41
anj1=an & sall =0& T5N++1 =0« Bny1 = BN

In this case, 8%1%4 =0for1<i<py,and 7"1]\\&%71‘ =0forl<i<ay.

4. Tt follows from items 3 and 2.

5. It follows from item 4 and S%i;_ﬁN = réVNH — réVN =0.

6. If follows from item 5, bearing in mind that m > rIBVNH > réVN.

Corollary 5.4 If N < ay + By, then

N+1 _ N N+1 _ N
1. IerJrkaN = TN41-an’ then r; =7,
N+1 _

1
larly, if S%E—ﬁw = S%_H_BN then s; sNo1<i

2. By+1 > BN if and only if S%—_:j_BN > s%+176N and any1 > ay if and

o N+1 N
only if TNA1-anx > TN+1—ax-

3. If S%H_BN = p then By = Bn. Similarly, if r,,_, = m, then
aN4] = N
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Proof. If N < ay + On, conditions (8)-(9) are

PN Nt 1<i<N+1-ay,
it =0 N SN =N, N+2—ay <i< By,
SNi2i — SNpaoin Ay +1<i<N+1,
sV Nt 1<i<N+1-8y,
8£v+1_ 3£V+r%i%_ifr%+2_i, N+2-0y <i<ap,
r%i;_i — N2 any+1<i<N+1L

(If ay + By = N + 1, the second condition vanishes).

N+1 _ N
1. If TNA1-any = "Ntl—an: then
N+1 N _ _N+1 N+1 _ N+1 N . .
O0<7r " =71y =8SNio i <Sant1 =T"Nil—ay "N4l-ay =0, 1 <1< N+l-ap.
2.

N+1 N+1 N
Bnt1> By g0 > 09 sy gy — Sny1-py > 0

3. It follows from item 2, bearing in mind that p > s%ﬁ_BN > S%JFFBN.

The following result is a generalization of Theorem 2.1.
Theorem 5.5 Let (A, B,C) be a minimal partial realization of Y.
1. IfCANB =Yy (i. e., (A, B,C) is a realization of YN*1), then
ant1 =an, Bn41=P0N, dni1=dn.
2. IfCANB #Yy (i. e., (A,B,C) is not a realization of YNT1), then
any1 > max{ay, N+1-By}, Bny1 > max{fy, N+1-an}, dyi1 > dn.

Moreover, if réVN =m, then

BN+1
ans1 =max{ay, N+1—8n}, dy+1=dy+ Z TZN-H.
i=BNn+1
Similarly, if sgN =p, then
QN1
Bni+1 =max{Bn, N +1—an}, dyyi=dn+ Z sp L
i=an+1
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Proof. It is clear that dy = Zfil rN < Zfiﬁl TlNH =dnyt1-

1. The order of (4, B,C) is dy and the order of the minimal partial realiza-
tions of YN+ is dy. ;. Therefore, if (4, B,C) is a realization of YN +1,
then dyy1 < dy. Hence, dyy1 = dy and (A, B,C) is a minimal partial
realization of YV 1. By Theorem 3.2, an,1 = ay and Bni1 = Bn.

2. Assume that (A4, B, C) is not a realization of YV +1,
If N < ay + By, taking into account Proposition 5.2,

ant1 > any = max{ay, N+1-8x}, Byy1 > By = max{By, N+1—an}.

When réVN = m, since m > -r]]\\;+1_aN > TJBVN = m, we have that T]I\\;-&-l—aN =
m, and, by Corollary 5.4 (item 3),

QNt1 = QN = max{aN,N +1-— ﬂN}

If N > ay+ 8N, then max{any, N+1—8y} = N+1—fy. Let us see that
ani1 > ay. If ayy1 = an, then, by Corollary 5.3 (item 3), Sni+1 = BN
and dN+l = dN.

Let (A’, B',C") be a minimal partial realization of YV 1. Then, (4’, B’,C")
is a realization of YV of order dn41 = dp, therefore it is also a mini-
mal partial realization of Y. By Proposition 3.3, (A4, B, C) is similar to
(A, B’,C"), from where (A, B,C) is also a minimal partial realization of
YN+1 which is a contradiction.

Therefore, a1 > an and, by Corollary 5.3 (item 4), we have that
ans1 > N+1—- 0y =max{ay,N+1—0n},
ON41 > N+1—ay =max{fn,N+1—an}.
When réVN = m, by Corollary 5.3 (item 6), we have that
anyy1 =N +1-py =max{an,N+1-nx}.
Moreover, if réVN =m, then dy = mfy and

N+1 s N+l - N ;
m>r) zrﬁ; >rg, =m, 1<i<pfn.

Then,
BN+1 BN+1
dnt1 =mpBN + Z rv = dy + Z ri
i=fn+1 i=An+1

Recall that if m = 1, then dy = By and, if p =1, then dy = ay.
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Corollary 5.6 Let (A, B,C) be a minimal partial realization of YN . If (A, B,C)
is not a partial realization of YNt then

1. If m =1, then
ant1 = max{ay, N +1— 8y} =max{any, N +1—dn},
Bnir =dyy1 > max{fn,N +1—ay}=max{dy,N +1—an}.
2. If p=1, then
Bni1 =max{Bn, N +1—ayn}=max{fn,N +1—dn},
ans1 = dyy1 > max{any, N +1— By} = max{dy, N +1— fn}.
8. Ifm=p=1, then ay = By =dn and
ant1 = fn4+1 = dyy1 = max{dy, N +1—dy}.

Proof. It follows directly from Theorem 5.5 bearing in mind that if m = 1,
then rg, =1, and if p =1 then s,, = 1.

O
Corollary 5.7
1. Ifm=1 and N < ay + BN, then
a;=ay, N <i<an+pBn.
2. Ifp=1and N < ay + Bn, then
Bi=Bn, N<i<an+pBn.
8. Ifm=p=1and N < 2dy, then
di=dy, N <i<2dy.
Proof. Assume that N < ay + . By Proposition 5.2,
a; > an, Bi>pBn, N<i<ayn+pSn,
a1+ Bicizan+ P >i>i—1, N+1<i<ay-+0n.
1. If m = 1, by Corollary 5.6,
a;=a;_1, N+1<i<any+ On.
2. If p =1, by Corollary 5.6,
Bi=Bi-1, N+1<i<any+pn.
3. It follows from item 1, bearing in mind that o; = 8; = d; for 1 <i < N.
O
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6 Obtention of the partial Brunovsky indices of
sequences of vectors

In this section we propose an algorithm to compute the partial Brunovsky indices
of a given sequence of vectors V" = (Yp,...,Y,_1), Y; € FP*L. Therefore,
throughout this section we have m = 1. Obviously, the same strategy will apply
for the case p = 1.

From the results of the previous section we derive the next proposition, which
summarizes some key properties for developing the algorithm. For convenience,
we put s = p for ¢ > 0.

Proposition 6.1 Assume that By > Bn_1. Then, taking B =0, a9 = 0,50 =
(0), the following conditions are satified

1.
1< N+1-p8y< min{N—BN_l,ozN_l + 1}

N sl 41, N+1-8y<i<N-By_1,
sN-1 1<i<N—-By or N—fBn_1+1<i<N.

1 9

3. If for some i€ {1,...,N — 1}, sf\:l :sfvfl, then N +1— By # 1.
4. Let T be the set of indices
I:{Z : 1§i§min{N—ﬂN_1,ozN_1—|—1}, Sﬁ;l#sfv_l}

Then, Sy = N + 1 — j where
Jj = min {z €7 : rank H; ny1-:(YV) > ngl} :

Proof.
1. From Theorem 5.5, as Sy > By_1, we have that Sy > max{8y_1+1, N—
OéNfl}.
2. It follows from Proposition 5.2, bearing in mind that

7‘%+1_i—7"%;%_i: 1_0:17 N+1_/8N§1§N_5N717
1-1=0, N—fBy 1 +1<i<N.

3. Let us suppose that s 7' = s 1. If N4+1-By =i, then s = sV 141 =
s¥ 71+ 1 =5, + 1, which is a contradiction because s¥ < sV ;.
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4. From items 1 and 3, By = N + 1 — j for some j € Z. Moreover, by
definition,

By = max{i : TZN > 0} = max{i : rank HNH,M())N) > rank HNH,Z»’Z-,l(yN)}.

Therefore, By = N + 1 — j where

j = min {z €T : rank Hyny1-(YV) > ngl} :

k=1

For 1 <i< N -1, H n_i(YV) = H; y—i(YN1), and from Proposition

3.1,
i N-1
N—-1 N-1 N—1
rank H; y_;(Y )= E s, — E e .
k=1 k=N-+1—i

Ifi€Z then N+1—i> fy_s. Hence, \p n,q1_;7n * =0 and the
property follows.

O
Given Y™ = (Yo, ...,Y,_1), Y; € FP*1 taking into account this Proposition and
Theorem 5.5 we can iteratively compute Sy, ay, s for 1 < N < n.

After initializing the procedure, once the step N — 1 is accomplished, we first

find the set Z, then for j € T we successively compute p = Y 7_; s; and ¢ =

rank H; y+1—; (V™) until ¢ > p. If this occurs, we update «, s, 3 and the set of
indices R={i : s;_1 =s;}. ft=pforall jeZ then =0, a=qa, s=s
and R =R.

Algorithm

Input: V" = (Yo,..., Y1), Y; € FPX1
Output: 8,, ap, s™.

e Dof3=0,a=0,s=(0), R=0.
e For N=1,...n

— Calculate the set Z={i : 1 <i<min{N — 5, + 1}, s;_1 # s}
— Do stop = FALSE
— For each element j € 7
If stop == FALSE

x Do p= Zi:l Sk

* Do t = rank H; n1-;(YV)

x Ift>p

- Do a = max{N — §,a}
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-Dos;=s;+1forj<i<N-g
-Dof=N+1—-3j

- Calculate the set of indices R = {i :
- Do stop =TRUE.

Si—1 = Si}

e Output: 3, a, s.
Example 6.2 Let F =R, p =3,
y12 = (61362707036176270363707070361)7

where, fori=1,2,3, e; are the unitary vectors in R3. We obtain:

N B o s

0 ﬂo = 0, ap = O, 80 = (0)

1 51 = 17 a1 = 1, Sl = (1)

2 /32 = 2, Qg = 1, 82 = (2)

3 ﬁ3 = 2, a3 = ]., 83 = (2)

4 Ba=2, az=1, st=(2)

5 Bs =4, a5=3, s°=(2,1,1)
6 ﬂe = 4, g = 3, 86 = (2, 1, 1)
7 Br=4, ar=3, s =(2,1,1)

8 Be =8, ag=4, s2=(3,2,2,1)
9 Bo=8, ag=4, s=(3,2,2,1)
10 610 = 8, Q10 = 4, 810 = (3, 2, 2, 1)
11 611 = 8, 11 = 4, 811 = (3, 2, 2, 1)
12 Bio=9, ap=4, s2=(3,2,2,2)

Just to help understanding, we describe the calculations performed in some steps:
e At N=1 (we have B =0y =0, a=ay=0,s=35"=(0), R=10),
ZT={i: 1<i<min{N -p,a+1}, s;—1 #s;} ={1}.

Forj =1, p=s =0, t=rankH;;(Y') = rank [61} > p. Then
a=max{N—p3,a} =max{1-0,0} =1, s; =s;+1 for1<i< N-g =1,
ie.s=(1),8=N+j-1=141-1=1, and R =0.
e At N=4 (wehave B=P3=2, a=a3=1,s=5=(2), R=0),
IT={i:1<i<min{N-pg,a+1}, s;_1 #s;}={1,2}.

Forj=1, p=s; =2, t =rank Hy 4(Y*) = rank [el es 0 O] =2=p.

620

Forj =2, p=s1+sy =2, t =rank Hp 3(J?*) = rank E; 0 O] =2=p.

Then, B=2,a=1, s=(2), R=10.
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e At N =9 (we have B = s = 8, a = ag = 4, s = s = (3,2,2,1),
R =1{1,3}),

T={i: 1<i<min{N —B,a+1}, s;i—1 #s;} ={1}\{1,3} =0.

Then, =8, a =4, s=(3,2,2,1), R = {1,3}.

o At N =12, (we have B = 11 =8, a = aj; = 4, s = stt = (3,2,2,1),
R =1{1,3}),

T={i: 1<i<min{N-p,a+1}, s;—1 # s;} ={1,2,3,4}\{1,3} = {2,4}.

For j =2, p=s1+s2 =5, t =rank Ha 11 (Y'?) =5 = p.

Forj=4, p=s1+sy+ 83+, =28, t=rank Hyo(V'?) =9 > p.

Then o = max{N — 3,a} = max{12—8,4} =4, s; = s;+ 1 for 4 <i < 4,
ie.5=(3,2,22), B=N—j+1=12—-4+1=9, and R = {1,3,4}.

To obtain a minimal partial realization of Y'? in observability reduced form (see
Section 3), the only possible choice of indices is

L={1,23}, L=I=1I,=/{1,3}.

Hence, we solve the systems

l[ao1 ... ass] Hon1(V')({1,2,3,4,6},0) =[e2 0 ... e]({2},2)
and
B;i N Z;Z} Hyg(V'?)({1,2,3,4,6,7,9,10,12},:) = [e1 e ... e1] ({1,3},9).

It follows that all the minimal partial realization of Y2 in observability reduced
form are

o 0 01 0 0 00 O 1
1 0 00 0 0 0 0 O 0
0O 0 001 0 00 O 0
0O 0 0 0 0 1 0 0 O 0

A,=10 0 0 O O O 1T 0 0], B,=10{,
o 0 0 0 0 O0 0 1 O 0
O 0 0 0 0 0 0 0 1 0
1 —a 1 0 0 0 a a -1 0
0 -6 0 1.0 0 b b 0] 10]
1 0 000 0O 0O

c,=10 1. 0 00O O0O 0O , a,beT.
00100 0000

The number of free parameters is sqrg = 2.
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Given a,b € F, we can obtain a left matriz generator of minimal length Cr, (D) =
I3+ LD + LyD? + L3D3 + LyD* of Y2 solving the system (see Section 4)

CoAs=[Ls L3 Ly L] O4(C,A).

If ¢1,co, c3 are the rows of C,, then

C1
C2
C3
[clAf;] {1 —a 1]0 0[]0 ala —1} ilﬁ"
4 = _ 3 o
csA; 0b0100bb061A3
C3Az
ClA(?;
CgAg_
Therefore,
A |1 ala 0 -1
|:03A3:| —X104(05A)a where Xl - |: 0 b b 0 0 :|
A, =[1 0 0[0 0]
Hence
ad, cp A
A =10 0]0 0] =[1 0 0] |43 +[0 0] {IAZ} = X204(Co, 4o),
CgAg c3so

where
Xo= [0 0 0|0 0 0[O0 0 0[1 0 0]+[0 0]X,
= [0 00|00 O0[0O0O0[1 O O].
Let
1 =a 1|0 0 0{0 O a|a 0 -1
[Ly Ly Ly LiJ=|[0 0 0/0 0 0|0 0 O|1 0 0
0 -b 0[1 0 0|0 0 b|b 0 0

Then C(D) = I3 + L1 D + Ly D? + L3D? + LyD* is a left matriz generator of
minimal length of Y12.
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It can be checked that all the left matriz generators of minimal length of Y12 are
CL(D) = 13 + LlD + L2D2 + L3D3 + L4D4 with

l—-21 —a 1| —290 1 0| —-23 22 ala z3 -—1
[L4 Ly Lo Ll] = -1 0 O —y2 wy1 O|—-y3s yp 0|1 y3 O
—ZzZ1 -b 01— Zo 21 0 —Z3 z2 blb z3 0

for xi,y;,z; € F.

Dually, to obtain a minimal partial realization of Y12 in controllability reduced
form we solve

bg 0
Hz oY) || =10
by €1

The solution depends on 2 = surg free parameters:
br =1, bs=—bg, by =0b3=0by="0bg=>bs=0.

It follows that all the minimal partial realizations of Y'2 in controllability reduced
form are

o= O

b
o]

Il
cCoocococooRrRO
coococoocor~roO
coococorooO
coocorrooooO
cooroocOoOoO
co~oocooooO
oOrrocococoooOo
—mooococoooo

|

S
jou
(¢

I

coococococo ok

ot O O O

CC = [61 es 0 0 e ey 0 eg3 0] , a, bel.

Equivalently, all the right matriz generators of minimal length of Y2 are

Cr(D)=14bD —aD® + D" +aD®, a,bcF.
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