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Abstract

The Berlekamp-Massey algorithm solves the problem of finding the
shortest linear feedback shift register which generates a given finite se-
quence of scalars. This problem is reinterpreted from the point of view
of the realization theory and several extensions to sequences of matri-
ces are analyzed. We give a generalization of the result on which the
Berlekamp-Massey algorithm is based in terms of the partial Brunovsky
indices of a sequence of matrices and propose an algorithm to obtain them
for sequences of vectors. The results we obtain hold for arbitrary fields.
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1 Introduction

Given a finite sequence of numbers YN = (y0, y1, . . . , yN−1), yi ∈ F, a classical
problem consists in finding the shortest linear feedback shift register (LFSR)
which generates it. The Berlekamp-Massey algorithm ([7, 18]) provides an effi-
cient solution to this problem. This algorithm and its extensions to sequences of
vectors or of matrices have been widely analyzed in the literature, and solutions
have been provided from different approaches, with different achievements. We
summarize below some of the most important results in the area.
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A LFSR is characterized by a length L and a polynomial C(D) = 1 + c1D +
c2D

2 + · · ·+ cLD
L, ci ∈ F, satisfying

yj = −
L∑
i=1

ciyj−i, L ≤ j ≤ N − 1.

For sequences of matrices YN = (Y0, Y1, . . . , YN−1), Yi ∈ Fp×m, the problem
can be interpreted in the following ways:

Problem 1: Find a minimal length linear generator of the sequence, i.e. a
polynomial of minimal length L, C(D) = 1 + c1D + c2D

2 + · · · + cLD
L, such

that

Yj = −
L∑
i=1

ciYj−i, L ≤ j ≤ N − 1.

Problem 2:

2a Find a minimal length right matrix generator of the sequence, i.e. a matrix
polynomial of minimal length L, CR(D) = Im + R1D + · · · + RLD

L ∈
F[D]m×m such that

Yj = Yj−1R1 + · · ·+ Yj−LRL, L ≤ j ≤ N − 1.

2b Find a minimal length left matrix generator of the sequence.

A left matrix generator of YN is a right matrix generator of (Y T0 , . . . , Y
T
N−1).

Problem 3: Find a minimal partial realization of the sequence, i.e. a matrix
triple (A,B,C) ∈ Fd×d × Fd×m × Fp×d of least possible order d such that

Yj = CAjB, 0 ≤ j ≤ N − 1.

If m = 1 (p = 1), Problems 1 and 2a (2b) coincide. Moreover, solving Problem
2a (2b) is equivalent to finding a minimal realization in reduced controllability
(observability) form of the sequence (hence Problem 3 will be solved).

The Berlekamp-Massey algorithm is an iterative procedure, which nests the
shortest LFSR generating the sequence YN−1 = (Y0, Y1, . . . , YN−2) into a new
one generating the sequence YN = (Y0, Y1, . . . , YN−1), updating the polynomial
of the register if necessary and, eventually, its length. The updating of the
length is based on Theorem 2.1 (see Section 2) proved in [18]. Additionally, in
[18] all of the minimal length LFSRs generating the sequence YN are provided,
and uniqueness is characterized.

A proof of Massey’s conjecture of the extension of Berlekamp-Massey algorithm
to the multisequence case (a multisequence can be considered as a sequences of
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vectors) was given in [11]. The result is very close to the scheme of the original
algorithm by Massey ([18]).

Other achievements in the multisequence case can be found in [20, 21, 12].
An improvement of these results is given in [1] and [2] for multisequences of
the same length and of arbitrary lengths, respectively. In these papers the
linear recurrence relations satisfied by the given sequences are described by the
annihilator ideal of the sequences. The problem of finding the linear recurrence
of minimal order for the multisequence turns then into the problem of finding a
minimal Gröbner basis of the ideal. Essentially, in all these papers the problem
solved is Problem 1 for m = 1 (p = 1).

Following a different approach, some results in the realization theory of linear
systems led to reinterpretations of Berlekamp-Massey algorithm. In an early
strategy, minimal state-space realizations of sequences were obtained from the
Hankel matrix associated to the sequence ([14, 19, 13, 8, 15]). In general, min-
imal realizations of successively longer parts of the sequence were found, and
intermediate results were nested to obtain a partial realization of a longer piece
of the sequence. The updating step has been carried out, in turn, using different
tools. Several authors ([10, 3]) obtained partial realizations of sequences taking
advantage of matrix fraction descriptions of systems. In [3], once a partial real-
ization is obtained, its Kronecker indices are involved in order to construct the
transfer matrix of the updating step. Another approach, within the theory of
linear systems, was based on the modeling of behaviors ([4, 17]).

Finally, minimal matrix generators of sequences of matrices are obtained in [22].
See also [16] for a summary of previous results.

We revisit here Problems 2 and 3 for sequences of matrices. Our approach re-
mains within the framework of the realization theory, involving Hankel matrices
and Kronecker indices of linear systems. Interesting to our work is the paper by
Bosgra ([8]) who introduced the partial Kronecker indices of a sequence. They
are defined in terms of ranks of Hankel matrices associated to the sequence, and
it was proved in [8] that they coincide with the Kronecker indices of all minimal
partial realizations of the sequence, therefore, avoiding the need of obtaining a
minimal realization to compute them.

The minimal order d of a partial realization of a sequence of matrices is the
sum of its partial Kronecker column (row) indices. We will see that the minimal
length β (α) of a right (left) matrix generator is the largest partial Kronecker
column (row) index. It results that a minimal realization is unique, modulo
similarity, if and only if α + β ≤ N . In the scalar case, d = α = β and
they coincide with the length of all the shortest LFSRs which generate the
sequence. Therefore, the uniqueness condition reduces to 2d ≤ N , which is
Massey’s characterization of uniqueness.

In this paper we relate the partial Kronecker indices of a sequence with those
of a subsequence. It allows us to generalize Theorem 2.1 (see Theorem 5.5),
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showing that in the matrix case the role of the minimal length of a register is
split into α and β.

For the case m = 1 (p = 1), we provide a method for obtaining α and β and the
partial Kronecker indices of a sequence, which allows us to find minimal real-
izations in reduced controllability and observability forms. From them, we also
obtain minimal length right and left matrix generators of the sequence. Hence,
Problems 1, 2a (2b) are solved. Concerning Problem 3, we obtain solutions in
controllability and observability forms for both cases m = 1 and p = 1.

The paper is structured as follows: In Section 2 we introduce some notation,
definitions and previous results. In Section 3 we review some known results
about partial realizations and introduce the partial Brunovsky indices of a se-
quence of matrices. In Section 4 we characterize the minimal length of a matrix
generator of a given sequence of matrices, and provide a method to obtain it. In
Section 5 we generalize the main result of [18]. From it, we propose in Section
6 an algorithm to compute the Brunovsky indices of a sequence of vectors. In
turn, from them we are able to obtain minimal realizations in controllability
and observability forms, and minimum length matrix generators. The latter are
shown in an example.

2 Preliminaries

Let F be a field. Fn×m denotes the set of n×m matrices over F and F[D]n×m

the set of polynomial matrices of size n×m with indeterminate D.

A linear feedback shift register (LFSR) of length L is a structure formed by L
cells of memory {S0, S1, . . . , SL−1} able to store information, and provided with
a clock. The initial content of the cells is denoted by (y0, y1, . . . , yL−1), yi ∈ F.
At each clock control the information is shifted one step sideways producing an
output term, and leaving an empty cell, which is filled in with the result of a
linear feedback function according to an expression of the form

yj = −
L∑
i=1

ciyj−i, j = L,L+ 1, . . . (1)

where yi, ci ∈ F for i = 0, 1, . . . . The polynomial in the indeterminateD, C(D) =
1 + c1D+ c2D

2 + · · ·+ cLD
L (D means “delay”), is associated to the LFSR and

is called the connection polynomial. The LFSR is determined by the length L
and the connection polynomial C(D).

The Berlekamp-Massey algorithm ([18]) solves the following problem: Given a
sequence of numbers YN = (y0, y1, . . . , yN−1), find a LFSR of minimal length
which generates YN . It is an iterative adaptive procedure which is based on the
result of the next theorem, where given Y = (y0, y1, . . .), Li denotes the length
of the shortest register generating Yi = (y0, y1, . . . , yi−1), for i ≥ 1.
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Theorem 2.1 [18, Theorem 2]

1. If some LFSR of length LN generates the sequences YN = (y0, y1, . . . , yN−1)
and YN+1 = (y0, y1, . . . , yN−1, yN ), then LN+1 = LN .

2. If some LFSR of length LN generates the sequence YN = (y0, y1, . . . , yN−1)
but not the sequence YN+1 = (y0, y1, . . . , yN−1, yN ), then

LN+1 = max{LN , N + 1− LN}.

Additionally, in [18] all of the minimal length LFSRs generating the sequence
YN are provided. It is proven that the solution is unique if and only if 2LN ≤ N .

A LFSR can be considered as a linear generator or as a right (left) matrix
generator. On the other hand, these problems are closely related to the minimal
partial realization problem. Then, natural generalizations of the problem solved
by the Berlekamp-Massey algorithm are Problems 1, 2 and 3 stated in the
Introduction section.

In [8, Theorem 2.1] it is shown that the order dN of the minimal partial realiza-
tions of a sequence YN = (Y0, Y1, . . . , YN−1), Yi ∈ Fp×m, is equal to the sum of
the partial Kronecker row indices and to the sum of the partial Kronecker col-
umn indices of YN . In addition, if αN and βN are the biggest partial Kronecker
row and column indices of YN , respectively, then a minimal partial realization
is unique modulo similarity if and only if αN + βN ≤ N .

In this paper, following [5, 6], we work with the conjugate partitions of the
partial Kronecker row (column) indices and we call them partial Brunovsky
row (column) indices of YN . We will introduce them in Section 3, together
with some known results about partial realizations. We will show that when
m = 1 (p = 1) the problem of finding a right (left) matrix generator of YN
is equivalent to that of finding a partial realization of YN , and that the order
dN of all minimal partial realizations is dN = βN (dN = αN ). Moreover, if
m = p = 1, then both problems are equivalent to that of finding a LFSR which
generates YN . In this case, dN = αN = βN (with the notation of Theorem 2.1,
dN = LN ).

For the general case, we will prove that the minimal length of the right (left)
matrix generators of a given sequence of matrices is βN (αN ) (Proposition 4.4)
and we will give a method to obtain such a generator of minimal length (Corol-
lary 4.6). Afterwards, we will analyze the relation between βN+1, αN+1 and
βN , αN . In particular, Theorem 5.5 generalizes Theorem 2.1, and from it we
will obtain an algorithm to compute the partial Brunovsky indices of a sequence
of vectors.
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3 Partial realizations

In this section we will review some known results about partial realizations,
and will relate the problem of finding a LFSR which generates a sequence of
numbers to the problem of finding a partial realization of the sequence.

Let (A,B,C) ∈ Fδ×δ×Fδ×m×Fp×δ be a partial realization of YN = (Y0, . . . , YN−1),
Yi ∈ Fp×m, of order δ. If (A,B,C) is similar to (A,B,C), i. e. A = T−1AT ,
B = T−1B, C = CT for some invertible matrix T , then (A,B,C) is also a
partial realization of YN .

Given a triple (A,B,C) ∈ Fδ×n × Fδ×m × Fp×δ, the Brunovsky indices of con-
trollability of (A,B,C) are defined as follows ([9]):

ri = rank Ci(A,B)− rank Ci−1(A,B), 1 ≤ i ≤ δ,

where
Ci(A,B) =

[
B AB . . . Ai−1B

]
, 1 ≤ i ≤ δ,

and we take rank C0(A,B) := 0.

Analogously, the Brunovsky indices of observability of (A,B,C) are

si = rankOi(C,A)− rankOi−1(C,A), 1 ≤ i ≤ δ,

where

Oi(C,A) =


C
CA

...
CAi−1

 , 1 ≤ i ≤ δ,

and we take rankO0(C,A) := 0.

Notice that r1 ≥ · · · ≥ rδ ≥ 0 and s1 ≥ · · · ≥ sδ ≥ 0. We take ri = 0 and si = 0
for i > δ.

The pair (A,B) is controllable if rank Cδ(A,B) = δ (equivalently, if
∑δ
i=1 ri = δ)

and the pair (C,A) is observable if rankOδ(C,A) = δ (equivalently, if
∑δ
i=1 si =

δ).

If (A,B,C) is a minimal partial realization of YN = (Y0, . . . , YN−1), Yi ∈ Fp×m,
then (A,B) is controllable and (C,A) is observable.

On the other hand, two sequences of nonnegative integers can also be associated
to YN . We define:

r′i = rankHN+1−i,i(YN )− rankHN+1−i,i−1(YN ), 1 ≤ i ≤ N,

s′i = rankHi,N+1−i(YN )− rankHi−1,N+1−i(YN ), 1 ≤ i ≤ N,
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where Hi,j(YN ) is the Hankel matrix

Hi,j(YN ) =


Y0 Y1 . . . Yj−2 Yj−1
Y1 Y2 . . . Yj−1 Yj
... . .

.
. .

.
. .

. ...
Yi−2 Yi−1 . . . Yi+j−2 Yi+j−1
Yi−1 Yi . . . Yi+j−3 Yi+j−2

 , 1 ≤ i ≤ N ; 1 ≤ j ≤ N+1−i,

and we take rankH0,N (YN ) = rankHN,0(Y) = 0. It is clear that r′i ≥ r′i+1 ≥ 0
and s′i ≥ s′i+1 ≥ 0, 1 ≤ i ≤ N − 1.

The sequences of integers r′1 ≥ · · · ≥ r′N and s′1 ≥ · · · ≥ s′N are called the partial
Brunovsky column and row indices of YN , respectively ([5] and [6]). They are
in fact the conjugate partitions of the the partial Kronecker column and row
indices of YN introduced by Bosgra in [8], respectively.

The following proposition can be derived from definitions.

Proposition 3.1 Let YN = (Y0, . . . , YN−1) be a sequence of matrices, Yi ∈
Fp×m, and let (r′1, . . . , r

′
N ) and (s′1, . . . , s

′
N be its partial Brunovsky column and

row indices, respectively. Then

rankHN+1−i,i(YN ) =

i∑
j=1

r′j −
N∑

j=N+2−i
s′j =

N+1−i∑
j=1

s′j −
N∑

j=i+1

r′j , 1 ≤ i ≤ N,

and

rankHN−i,i(YN ) =

i∑
j=1

r′j −
N∑

j=N+1−i
s′j =

N−i∑
j=1

s′j −
N∑

j=i+1

r′j , 1 ≤ i ≤ N − 1.

In the next theorem we see that the partial Brunovsky indices of a given sequence
of matrices and the Brunovsky indices of its minimal realizations coincide.

Theorem 3.2 [8, Th. 2.2] Given a finite sequence of matrices YN = (Y0, . . . , YN−1),
Yi ∈ Fp×m, all the minimal partial realizations of YN have the same Brunovsky
indices of controllability and of observability, and they are equal to the partial
Brunovsky column and row indices of YN , respectively.

The following proposition shows that, when the number of positive partial in-
dices of a sequence of matrices is less than or equal to the number of matrices in
the sequence, then the minimal partial realizations of the sequence are unique
modulo similarity.

Proposition 3.3 [8, Th. 2.1] Let YN = (Y0, . . . , YN−1), Yi ∈ Fp×m be a se-
quence of matrices and let (r1, . . . , rN ), (s1, . . . , sN ) be its partial Brunovsky
column and row indices, respectively. Assume that

m ≥ r1 ≥ · · · ≥ rβN > 0 = rβN+1 = · · · = rN = 0,
p ≥ s1 ≥ · · · ≥ sαN > 0 = sαN+1 = · · · = sN = 0.

(2)
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If αN + βN ≤ N , then all the minimal partial realizations of YN are similar.

From now on, if (r1, . . . , rN ) and (s1, . . . , sN ) are the partial Brunovsky column
and row indices of YN , respectively, we will assume that they satisfy (2).

Let (A,B,C) ∈ FdN×dN × FdN×m × Fp×dN be a minimal partial realization of
YN . Notice that by Theorem 3.2, the integers (r1, . . . , rN ) and (s1, . . . , sN )
are the Brunovsky indices of controllability and of observability of (A,B,C),
respectively. Moreover, as (A,B) is controllable and (C,A) is observable, we
have that

N∑
i=1

ri =

N∑
i=1

si = dN .

If in addition m = 1, then r1 = · · · = rβN = 1, dN = βN , and since (A,B) is
controllable, (A,B,C) is similar to a unique triple of the form

A =


0 0 0 . . . 0 cβN
1 0 0 . . . 0 cβN−1
0 1 0 . . . 0 cβN−2
...

...
...

. . .
...

...
0 0 0 . . . 1 c1

 , B =


1
0
...
0

 , C =
[
Y0 Y1 . . . YβN−2 YβN−1

]
.

Then

CAjB =

L∑
i=1

ciYj−i, L ≤ j ≤ N − 1. (3)

We see that in this case, the problem of finding a minimal partial realization of
YN is equivalent to that of finding a right matrix generator of YN .

Analogously, if p = 1, then s1 = · · · = sαN = 1, dN = αN and the problem of
finding a minimal partial realization of YN is equivalent to that of finding a left
matrix generator of YN .

As a consequence, in the scalar case (m = p = 1), the problem of finding a
LFSR of minimal length which generates a given sequence YN is equivalent to
that of finding a minimal partial realization of YN , and to that of finding a right
a left matrix generator of YN .

For the general case, we will show how to obtain a partial realization of YN .
Although developed in another context, the result was presented in [5, Section
6] (see also [6, Section 5]), and it can be adapted to our situation. From the
realization of YN , we will see in the next section how to obtain a right matrix
generator of the sequence. We summarize here the method.

We will use the following notation: If a and b are positive integers 0 < a ≤ b,
the set of families of ordered indices of length a chosen from 1 to b is denoted
by Qa,b := {(i1, . . . , ia) : 1 ≤ i1 < · · · < ia ≤ b}. If I = (i1, . . . , ia) ∈ Qa,b and
p is an integer number, p+ I = (p+ i1, . . . , p+ ia). For A ∈ Fp×m, I ∈ Qs,p and
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J ∈ Qr,m, A(I, J) will denote the s × r submatrix of A formed by the rows in
I and the columns in J . Similarly, A(I, :) ∈ Fs×m and A(:, J) ∈ Fp×r are the
submatrices of A formed by the rows in I and the columns in J , respectively.

In the rest of this section, and to simplify notation, we will denote the Hankel
matrices Hij(YN ) as Hij .

From the definition of the partial Brunovsky row indices, we can select sets of
indices (not necessarily unique) Ii ∈ Qsi,p, 0 ≤ i ≤ αN (s0 = p), corresponding
to rows of the matrix Hi,N−i+1, satisfying

Ii+1 ⊆ Ii, 0 ≤ i ≤ αN − 1,

and
rankHi,N+1−i = rankHi,N+1−i(Ii, :), 1 ≤ i ≤ αN ,

where Ii := I1 ∪ (p+ I2) ∪ · · · ∪ (i− 1)p+ Ii, 1 ≤ i ≤ αN .

Hence, if Ici = Ii−1\Ii, the rows corresponding to the positions in Ici are linearly
dependent from the rows corresponding to the positions in Ii. Then there exist
matrices [

Ai1 . . . Aii
]
∈ F(si−1−si)×(s1+···+si), 1 ≤ i ≤ αN ,

and a matrix
[
AαN+1,1 . . . AαN+1,αN

]
∈ FsαN×d such that[

Yi−1 . . . YN−1
]

(Ici , :) =
[
Ai1 . . . Aii

]
Hi,N−i+1(Ii, :), 1 ≤ i ≤ αN ,[

YαN . . . YN−1
]

(IαN , :) =
[
AαN+1,1 . . . AαN+1,αN

]
HαN ,N−αN (IαN , :).

(4)

(If αN = N , then
[
AαN+1,1 . . . AαN+1,αN

]
is any matrix in FsαN×d).

Then, defining for 1 ≤ i ≤ αN[
Ci1 . . . Cii

]
(Ii, :) =

[
0 . . . Isi

]
,
[
Ci1 . . . Cii

]
(Ici , :) =

[
Ai1 . . . Aii

]
,

a minimal partial realization of YN is given by

Ao =


C21 C22 0 . . . 0 0
C31 C32 C33 . . . 0 0

...
...

...
. . .

...
...

CαN1 CαN2 CαN3 . . . CαN ,αN−1 CαNαN
AαN+1,1 AαN+1,2 AαN+1,3 . . . AαN+1,αN−1 AαN+1,αN

 ,

Bo =


Y0(I1, :)
Y1(I2, :)

...
YαN−1(IαN , :)

 , Co =
[
C11 0 . . . 0

]
.

It is said that (Ao, Bo, Co) is in observability reduced form.
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Remark 3.4 For 1 ≤ i ≤ αN + 1, the number de equations in (4) is #Ici =
si−1 − si. Then, the solution depends on

(si−1 − si)(
i∑

j=1

sj − rankHi,N+1−i).

free parameters. By Proposition 3.1,

i∑
j=1

sj − rankHi,N+1−i =

N∑
j=N+2−i

rj .

Therefore, the total number of free parameters in an observability reduced form
is

no(YN ) =

αN+1∑
i=1

(si−1−si)
N∑

j=N+2−i
rj = (s1−s2)rN+(s2−s3)(rN−1+rN )+· · ·+sαN (r1+· · ·+rN )

=

αN∑
i=1

sirN+1−i =

αN∑
i=N+1−βN

sirN+1−i.

Analogously, we can obtain a partial realization in controllability reduced form,
and the number total of free parameters in this case is

nc(YN ) =

βN+1∑
j=1

(ri−1 − ri)
n∑

j=N+2−i
sj =

βN∑
i=N+1−αN

risN+1−i = no(YN ).

We observe that the number of free parameters in the reduced forms is the same.
Moreover, if αN +βN ≤ N , then no(YN ) = nc(YN ) = 0, which means that once
the sets of indices Ii, Ji are fixed, the reduced forms are unique.

Example 3.5 Let p = 4, m = 2, Y5 = (Y0, Y1, Y2, Y3, Y4) with α5 = 3, β5 = 4,
Assume that

(s1, s2, s3) = (3, 1, 1), (r1, r2, r3, r4) = (2, 1, 1, 1),

and I1 = {1, 2, 4}, I2 = I3 = {2}, i.e. (notice that p+I2 = {6}, 2p+I3 = {10})

rankH1,5(Y5) = rankH1,5(Y5)({1, 2, 4}, :) = s1 = 3,
rankH2,4(Y5) = rankH2,4(Y5)({1, 2, 4, 6}, :) = s1 + s2 − r5 = 4,
rankH3,3(Y5) = rankH3,3(Y5)({1, 2, 4, 6, 10}, :) = s1 + s2 + s3 − r5 − r4 = 4,
rankH4,2(Y5) = rankH4,2(Y5)(:, {1, 2, 4, 6, 10}, :) = s1 + s2 + s3 + s4 − r5 − r4 − r3 = 3,

and there exist aij ∈ F such that (Ic1 = {1, 2, 3, 4}\{1, 2, 4} = {3}, Ic2 = I1 \I2 =
{1, 4}, Ic3 = I2 \ I3 = ∅)[

Y0 Y1 . . . Y4
]

(3, :) =
[
a31 a32 a33

]
H1,5(Y5)({1, 2, 4}, :),[

Y1 . . . Y4
]

({1, 4}, :) =

[
a11 a12 a13 a14
a41 a42 a43 a44

]
H2,4(Y5)({1, 2, 4, 6}, :),[

Y3 Y4
]

({2}, :) =
[
a21 a22 a23 a24 a25

]
H3,2(Y5)({1, 2, 4, 6, 8}, :)
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Then a minimal partial realization of Y5 in observability reduced form is

Ao =


a11 a12 a13 a14 0
0 0 0 1 0
a41 a42 a43 a44 0
0 0 0 0 1
a21 a22 a23 a24 a25

 , Bo =

Y0({1, 2, 4}, :)
Y1({2}, :)
Y2({2}, :)

 , Co =


1 0 0 0 0
0 1 0 0 0
a31 a32 a33 0 0
0 0 1 0 0

 .
Similarly, if J1 = {1, 2}, J2 = J3 = J4 = {1}, a minimal partial realization of
Y5 in controllability reduced form is

Ac =


0 b12 0 0 b11
0 b22 0 0 b21
1 b32 0 0 b31
0 0 1 0 b41
0 0 0 1 b51

 , Bc =


1 0
0 1
0 0
0 0
0 0

 , Cc =
[
Y0 Y1(:, {1}) Y2(:, {1}) Y3(:, {1})

]
.

2

4 Matrix generators

In this section we deal with the problem of finding a right matrix generator of
YN = (Y0, . . . , YN−1), Yi ∈ Fp×m. Obviously, analogous results can be obtained
for left matrix generators.

Recall that when m = 1, the problem is equivalent to that of finding a minimal
partial realization of YN .

For the general case, we observe first that the problem can also be stated in
terms of partial realizations.

Proposition 4.1 CR(D) = Im + R1D + · · · + RρD
ρ ∈ F[D]m×m is a right

matrix generator of YN if and only if

AR =


0 0 0 . . . 0 Rρ
Im 0 0 . . . 0 Rρ−1
0 Im 0 . . . 0 Rρ−2
...

...
...

. . .
...

...
0 0 0 . . . Im R1

 , BR =


Im
0
0
...
0

 , CR =
[
Y0 Y1 . . . Yρ−1

]

is a partial realization of YN .

Proof. Defining
Zj := Yj , 0 ≤ j ≤ Yρ−1,

Zj := Zj−1R1 + · · ·+ Zj−ρRρ, N ≤ j ≤ N + ρ− 2,

11



we have 
CR

CRAR
...

CRA
N−1
R

 =


Z0 Z1 . . . Zρ−1
Z1 Z2 . . . Zρ
...

...
. . .

...
ZN−1 ZN . . . ZN+ρ−2

 ,
therefore, 

CRBR
CRARBR

...

CRA
N−1
R BR

 =


CR

CRAR
...

CRA
N−1
R

BR =


Z0

Z1

...
ZN−1

 .
Then, CR(D) is a right matrix generator of YN if and only if

Yj = Zj = CRA
j
RBR, ρ ≤ j ≤ N − 1.

2

For a given ρ, the following results characterize the existence of a right matrix
generator of length ρ of YN and provide us with a method to obtain it.

Proposition 4.2 There exists a right matrix generator CR(D) ∈ F[D]m×m of
length ρ of YN if and only if

rankHN−ρ,ρ+1(YN ) = rankHN−ρ,ρ(YN ). (5)

Proof. There exists a right matrix generator if and only if there exist matrices
R1, . . . , Rρ ∈ Fm×m such that

Yj = Yj−1R1 + · · ·+ Yj−ρRρ, ρ ≤ j ≤ N − 1,

if and only if

rank


Y0 Y1 . . . Yρ−1 Yρ
Y1 Y2 . . . Yρ Yρ+1

...
...

. . .
...

...
YN−ρ−1 YN−ρ . . . YN−2 YN−1

 = rank


Y0 Y1 . . . Yρ−1
Y1 Y2 . . . Yρ
...

...
. . .

...
YN−ρ−1 YN−ρ . . . YN−2

 .
2

Proposition 4.3 If (5) holds, then a right matrix generator of Y N is CR(D) =
Im +R1D + · · ·+RρD

ρ, where R1, . . . , Rρ ∈ Fm×m are matrices such that

Hn−ρ,ρ(YN )

Rρ...
R1

 = Hn−ρ,ρ+1(YN ).
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Proof. Straightforward. 2

Recall that the partial Brunovsky column indices of YN are

r1 ≥ · · · ≥ rβN > 0 = rβN+1 = · · · = rN = 0,

and that

ri = rankHN+1−i,i(YN )− rankHN+1−i,i−1(YN ), 1 ≤ i ≤ N.

Then, condition (5) is equivalent to rρ+1 = 0. As a consequence, if we denote
by gN the minimal length of the right matrix generators of YN , we have the
following characterization of gN .

Proposition 4.4 The minimal length gN of the right matrix generators of YN
is gN = βN .

Once βN is calculated, Proposition 4.3 allows us to obtain a right matrix gen-
erator of minimal length.

Nevertheless, instead of using Proposition 4.3, we show next another method to
obtain a minimal length right matrix generator of YN , taking advantage of a
minimal partial realization of the sequence.

Let (A,B,C) be a minimal partial realization of YN . By Theorem 3.2, the
Brunovsky indices of controllability of (A,B,C) are r1 ≥ · · · ≥ rβN > 0 =
rβN+1 = · · · = rN = 0. Then,

0 = rβN+1 = rank CβN+1(A,B)− rank CβN (A,B),

it implies that there there exist R1, . . . , RβN ∈ Fm×m such that

AβNB = CβN (A,B)

RβN...
R1

 . (6)

Proposition 4.5 Let (A,B,C) be a minimal partial realization of YN and let
R1, . . . , RβN ∈ Fm×m be matrices satisfying (6). Then

AR =


0 0 0 . . . 0 RβN
Im 0 0 . . . 0 RβN−1
0 Im 0 . . . 0 RβN−2
...

...
...

. . .
...

...
0 0 0 . . . Im R1

 , BR =


Im
0
0
...
0

 , CR =
[
Y0 Y1 . . . YβN−1

]

is a partial realization of Y.
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Proof. First, let us prove by induction on i that

AiCβN (A,B) = CβN (A,B)AiR, i ≥ 0. (7)

For i = 0, (7) trivially holds. Assume now that AkCβN (A,B) = CβN (A,B)AkR.
By (6) and the definition of AR, CβN (A,B)AR =

[
AB A2B . . . AβNB

]
.

Thus,

Ak+1CβN (A,B) = ACβN (A,B)AkR =
[
AB A2B . . . AβNB

]
AkR = CβN (A,B)Ak+1

R .

On the other hand, since (A,B,C) is a partial realization of YN , CR = CCβN (A,B).
Then, from (7) we deduce

CRA
i
RBR = CCβN (A,B)AiRBR = CAiCβN (A,B)


Im
0
...
0

 = CAiB = Yi, 0 ≤ i ≤ N−1.

2

Now, from Proposition 4.1 we obtain the next result.

Corollary 4.6 Let (A,B,C) be a minimal partial realization of YN . Then a
right matrix generator of minimal length of Y N is CR(D) = Im +R1D + · · ·+
RβND

βN , where R1, . . . , RβN ∈ Fm×m are matrices satisfying (6).

Example 4.7 With the data of Example 3.5, a right matrix generator of mini-
mal length of Y5 is C(D) = 1 +R1D+R2D

2 +R3D
3 +R4D

4 where Ri ∈ F2×2

are matices such that

A4
cBc = C4(Ac, Bc)


R4

R3

R2

R1

 .
Let b1, b2 be the columns of Bc. Then

A4
cb1 =

[
b1 b2 Acb1 A2

cb1 A3
cb1
]

b11
b21
b31
b41
b51

 = C4(Ac, Bc)X1, where X1 =



b11
b21
b31
0
b41
0
b51
0


.

Acb2 =
[
b1 b2 Acb1

] b12b22
b32

 , from where A4
cb2 =

[
A3
cb1 A3

cb2 A4
cb1
] b12b22
b32

 .
14



Then

A4
cb2 =

[
A3
cb1 A3

cb2
] [b12
b22

]
+A4

cb1b32 = C4(Ac, Bc)X2, where X2 =



0
0
0
0
0
0
b12
b22


+X1b32.

Let


R4

R3

R2

R1

 :=
[
X1 X2

]
=



b11 b11b32
b21 b21b32
b31 b31b32
0 0
b41 b41b32
0 0
b51 b12 + b51b32
0 b22


,

Then, C(D) = 1 +R1D+R2D
2 +R3D

3 +R4D
4 is a right matrix generator of

minimal length of Y5. 2

5 Partial indices of sequences and subsequences

Our aim in this section is to generalize Theorem 2.1. To achieve it, we study
the relation between the partial indices of a sequence Y N+1 = (Y0, . . . , YN ),
Yi ∈ Fp×m, and those of the subsequence YN = (Y0, . . . , YN−1).

The next lemma follows from Proposition 3.1.

Lemma 5.1 Let Yn = (Y0, . . . , Yn−1) be a sequence of matrices and let (r1, . . . , rn)
and (s1, . . . , sn) be its partial Brunovsky column and row indices, respectively.
Then

1.

ri − sn+1−i = rankHn−i,i(Yn)− rankHn+1−i,i−1(Yn), 1 ≤ i ≤ n.

2.

ri − sn+2−i = rankHn+1−i,i(Yn)− rankHn+2−i,i−1(Yn), 2 ≤ i ≤ n.

In the rest of the section, Y = (Y0, Y1, . . . , ), Yi ∈ Fp×m, will be a sequence of
matrices and for i ≥ 1 we will denote by (ri1, . . . , r

i
i) and (si1, . . . , s

i
i) the partial
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Brunovsky column and row indices of Yi = (Y0, . . . , Yi−1), respectively. We will
assume that

m ≥ ri1 ≥ · · · ≥ riβi > 0 = riβi+1 = · · · = rii = 0,

p ≥ si1 ≥ · · · ≥ siαi > 0 = siαi+1 = · · · = sii = 0,

i∑
j=1

rij =

i∑
j=1

sij = di.

Proposition 5.2

1.

rN+1
i ≥ rNi , sN+1

i ≥ sNi , 1 ≤ i ≤ N + 1 (rNN+1 = sNN+1 = 0),

and as a consequence,

αN+1 ≥ αN , βN+1 ≥ βN .

2.
rN+1
i = rNi + sN+1

N+2−i − s
N
N+2−i, 1 ≤ i ≤ N + 1. (8)

Equivalently,

sN+1
i = sNi + rN+1

N+2−i − r
N
N+2−i, 1 ≤ i ≤ N + 1. (9)

Proof.

1. For 1 ≤ i ≤ N + 1, let us consider the matrix

HN+2−i,i(YN+1) =


Y0 . . . Yi−2 Yi−1
...

. . .
...

YN−i . . . YN−2 YN−1
YN+1−i . . . YN−1 YN

 .
Observe that rN+1

i is the number of independent columns of the last

block column


Yi−1
Yi
...

YN−1
YN

 which are linearly independent from the previous

ones, that is, from the columns of HN+2−i,i−1(YN+1). In the same way,

for 1 ≤ i ≤ N , rNi is the number of independent columns of


Yi−1
Yi
...

YN−1


16



which are linearly independent from the columns of HN+1−i,i−1(YN ).

Notice that if a column of


Yi−1
Yi
...

YN−1
YN

 depends linearly on the columns of

HN+2−i,i−1(YN+1), then the same column in


Yi−1
Yi
...

YN−1

 depends linearly

on the columns of HN+1−i,i−1(YN ). Thus, m− rNi ≥ m− r
N+1
i , therefore

rN+1
i ≥ rNi . Analogously, sN+1

i ≥ sNi , 1 ≤ i ≤ N .

2. By Lemma 5.1, for 1 ≤ i ≤ N + 1,

rN+1
i − sN+1

N+2−i = rankHN+1−i,i(YN+1)− rankHN+2−i,i−1(YN+1).

ButHN+1−i,i(YN+1) = HN+1−i,i(YN ) andHN+2−i,i−1(YN+1) = HN+2−i,i−1(YN ).
Therefore

rN+1
i −sN+1

N+2−i = rankHN+1−i,i(YN )−rankHN+2−i,i−1(YN ) = rNi −sNN+2−i.

2

Corollary 5.3 If αN + βN ≤ N , then

1. If rN+1
βN

= rNβN then rN+1
i = rNi , 1 ≤ i ≤ βN . Similarly, if sN+1

αN = sNαN
then sN+1

i = sNi , 1 ≤ i ≤ αN .

2. rN+1
βN+1 = · · · = rN+1

N+1−αN = sN+1
αN+1 = · · · = sN+1

N+1−βN .

3. αN+1 = αN if and only if βN+1 = βN . In this case

rN+1
i = rNi , 1 ≤ i ≤ βN , and sN+1

i = sNi , 1 ≤ i ≤ αN .

4. αN+1 > αN if and only if βN+1 > βN . In this case

αN+1 ≥ N + 1− βN , βN+1 ≥ N + 1− αN .

5. If αN+1 > αN and rN+1
βN

= rNβN , then αN+1 = N + 1 − βN . Similarly, if

βN+1 > βN and sN+1
αN = sNαN , then βN+1 = N + 1− αN .

6. If αN+1 > αN and rNβN = m, then αN+1 = N + 1 − βN . Similarly, if

βN+1 > βN and sNαN = p, then βN+1 = N + 1− αN .

17



Proof. If αN + βN ≤ N , conditions (8)-(9) are

rN+1
i =


rNi + sN+1

N+2−i, 1 ≤ i ≤ βN ,

sN+1
N+2−i, βN + 1 ≤ i ≤ N + 1− αN ,

sN+1
N+2−i − sNN+2−i, N + 2− αN ≤ i ≤ N + 1,

sN+1
i =


sNi + rN+1

N+2−i, 1 ≤ i ≤ αN ,

rN+1
N+2−i, αN + 1 ≤ i ≤ N + 1− βN ,

rN+1
N+2−i − rNN+2−i, N + 2− βN ≤ i ≤ N + 1.

1. If rN+1
βN

= rNβN ,

0 ≤ rN+1
i − rNi = sN+1

N+2−i ≤ s
N+1
N+2−βN = rN+1

βN
− rNβN = 0, 1 ≤ i ≤ βN .

2. We have that sN+1
N+1−βN = rN+1

βN+1 ≥ r
N+1
N+1−αN = sN+1

αN+1 ≥ s
N+1
N+1−βN , hence

rN+1
βN+1 = rN+1

N+1−αN = sN+1
αN+1 = sN+1

N+1−βN .

3. By item 2,

αN+1 = αN ⇔ sN+1
αN+1 = 0⇔ rN+1

βN+1 = 0⇔ βN+1 = βN .

In this case, sN+1
N+2−i = 0 for 1 ≤ i ≤ βN , and rN+1

N+2−i = 0 for 1 ≤ i ≤ αN .

4. It follows from items 3 and 2.

5. It follows from item 4 and sN+1
N+2−βN = rN+1

βN
− rNβN = 0.

6. If follows from item 5, bearing in mind that m ≥ rN+1
βN

≥ rNβN .

2

Corollary 5.4 If N < αN + βN , then

1. If rN+1
N+1−αN = rNN+1−αN , then rN+1

i = rNi , 1 ≤ i ≤ N + 1− αN . Simi-

larly, if sN+1
N+1−βN = sNN+1−βN then sN+1

i = sNi , 1 ≤ i ≤ N + 1− βN .

2. βN+1 > βN if and only if sN+1
N+1−βN > sNN+1−βN and αN+1 > αN if and

only if rN+1
N+1−αN > rNN+1−αN .

3. If sNN+1−βN = p then βN+1 = βN . Similarly, if rNN+1−αN = m, then
αN+1 = αN .
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Proof. If N < αN + βN , conditions (8)-(9) are

rN+1
i =


rNi + sN+1

N+2−i, 1 ≤ i ≤ N + 1− αN ,

rNi + sN+1
N+2−i − sNN+2−i, N + 2− αN ≤ i ≤ βN ,

sN+1
N+2−i − sNN+2−i, βN + 1 ≤ i ≤ N + 1,

sN+1
i =


sNi + rN+1

N+2−i, 1 ≤ i ≤ N + 1− βN ,

sNi + rN+1
N+2−i − rNN+2−i, N + 2− βN ≤ i ≤ αN ,

rN+1
N+2−i − rNN+2−i, αN + 1 ≤ i ≤ N + 1.

(If αN + βN = N + 1, the second condition vanishes).

1. If rN+1
N+1−αN = rNN+1−αN , then

0 ≤ rN+1
i −rNi = sN+1

N+2−i ≤ s
N+1
αN+1 = rN+1

N+1−αN−r
N
N+1−αN = 0, 1 ≤ i ≤ N+1−αN .

2.
βN+1 > βN ⇔ rN+1

βN+1 > 0⇔ sN+1
N+1−βN − s

N
N+1−βN > 0.

3. It follows from item 2, bearing in mind that p ≥ sN+1
N+1−βN ≥ s

N
N+1−βN .

2

The following result is a generalization of Theorem 2.1.

Theorem 5.5 Let (A,B,C) be a minimal partial realization of YN .

1. If CANB = YN (i. e., (A,B,C) is a realization of YN+1), then

αN+1 = αN , βN+1 = βN , dN+1 = dN .

2. If CANB 6= YN (i. e., (A,B,C) is not a realization of YN+1), then

αN+1 ≥ max{αN , N+1−βN}, βN+1 ≥ max{βN , N+1−αN}, dN+1 ≥ dN .

Moreover, if rNβN = m, then

αN+1 = max{αN , N + 1− βN}, dN+1 = dN +

βN+1∑
i=βN+1

rN+1
i .

Similarly, if sNαN = p, then

βN+1 = max{βN , N + 1− αN}, dN+1 = dN +

αN+1∑
i=αN+1

sN+1
i .

19



Proof. It is clear that dN =
∑N
i=1 r

N
i ≤

∑N+1
i=1 rN+1

i = dN+1.

1. The order of (A,B,C) is dN and the order of the minimal partial realiza-
tions of YN+1 is dN+1. Therefore, if (A,B,C) is a realization of YN+1,
then dN+1 ≤ dN . Hence, dN+1 = dN and (A,B,C) is a minimal partial
realization of YN+1. By Theorem 3.2, αN+1 = αN and βN+1 = βN .

2. Assume that (A,B,C) is not a realization of YN+1.

If N < αN + βN , taking into account Proposition 5.2,

αN+1 ≥ αN = max{αN , N+1−βN}, βN+1 ≥ βN = max{βN , N+1−αN}.

When rNβN = m, sincem ≥ rNN+1−αN ≥ r
N
βN

= m, we have that rNN+1−αN =
m, and, by Corollary 5.4 (item 3),

αN+1 = αN = max{αN , N + 1− βN}.

If N ≥ αN +βN , then max{αN , N+1−βN} = N+1−βN . Let us see that
αN+1 > αN . If αN+1 = αN , then, by Corollary 5.3 (item 3), βN+1 = βN
and dN+1 = dN .

Let (A′, B′, C ′) be a minimal partial realization of YN+1. Then, (A′, B′, C ′)
is a realization of YN of order dN+1 = dN , therefore it is also a mini-
mal partial realization of YN . By Proposition 3.3, (A,B,C) is similar to
(A′, B′, C ′), from where (A,B,C) is also a minimal partial realization of
YN+1, which is a contradiction.

Therefore, αN+1 > αN and, by Corollary 5.3 (item 4), we have that

αN+1 ≥ N + 1− βN = max{αN , N + 1− βN},

βN+1 ≥ N + 1− αN = max{βN , N + 1− αN}.

When rNβN = m, by Corollary 5.3 (item 6), we have that

αN+1 = N + 1− βN = max{αN , N + 1− βN}.

Moreover, if rNβN = m, then dN = mβN and

m ≥ rN+1
i ≥ rN+1

βN
≥ rNβN = m, 1 ≤ i ≤ βN .

Then,

dN+1 = mβN +

βN+1∑
i=βN+1

rN+1
i = dN +

βN+1∑
i=βN+1

rN+1
i .

2

Recall that if m = 1, then dN = βN and, if p = 1, then dN = αN .
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Corollary 5.6 Let (A,B,C) be a minimal partial realization of YN . If (A,B,C)
is not a partial realization of YN+1, then

1. If m = 1, then

αN+1 = max{αN , N + 1− βN} = max{αN , N + 1− dN},

βN+1 = dN+1 ≥ max{βN , N + 1− αN} = max{dN , N + 1− αN}.

2. If p = 1, then

βN+1 = max{βN , N + 1− αN} = max{βN , N + 1− dN},

αN+1 = dN+1 ≥ max{αN , N + 1− βN} = max{dN , N + 1− βN}.

3. If m = p = 1, then αN = βN = dN and

αN+1 = βN+1 = dN+1 = max{dN , N + 1− dN}.

Proof. It follows directly from Theorem 5.5 bearing in mind that if m = 1,
then rβN = 1, and if p = 1 then sαN = 1.

2

Corollary 5.7

1. If m = 1 and N < αN + βN , then

αi = αN , N ≤ i ≤ αN + βN .

2. If p = 1 and N < αN + βN , then

βi = βN , N ≤ i ≤ αN + βN .

3. If m = p = 1 and N < 2dN , then

di = dN , N ≤ i ≤ 2dN .

Proof. Assume that N < αN + βN . By Proposition 5.2,

αi ≥ αN , βi ≥ βN , N ≤ i ≤ αN + βN ,

αi−1 + βi−1 ≥ αN + βN ≥ i > i− 1, N + 1 ≤ i ≤ αN + βN .

1. If m = 1, by Corollary 5.6,

αi = αi−1, N + 1 ≤ i ≤ αN + βN .

2. If p = 1, by Corollary 5.6,

βi = βi−1, N + 1 ≤ i ≤ αN + βN .

3. It follows from item 1, bearing in mind that αi = βi = di for 1 ≤ i ≤ N .

2
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6 Obtention of the partial Brunovsky indices of
sequences of vectors

In this section we propose an algorithm to compute the partial Brunovsky indices
of a given sequence of vectors Yn = (Y0, . . . , Yn−1), Yi ∈ Fp×1. Therefore,
throughout this section we have m = 1. Obviously, the same strategy will apply
for the case p = 1.

From the results of the previous section we derive the next proposition, which
summarizes some key properties for developing the algorithm. For convenience,
we put si0 = p for i ≥ 0.

Proposition 6.1 Assume that βN > βN−1. Then, taking β0 = 0, α0 = 0, s(0) =
(0), the following conditions are satified

1.
1 ≤ N + 1− βN ≤ min{N − βN−1, αN−1 + 1}.

2.

sNi =

{
sN−1i + 1, N + 1− βN ≤ i ≤ N − βN−1,
sN−1i , 1 ≤ i ≤ N − βN or N − βN−1 + 1 ≤ i ≤ N.

3. If for some i ∈ {1, . . . , N − 1}, sN−1i−1 = sN−1i , then N + 1− βN 6= i.

4. Let I be the set of indices

I =
{
i : 1 ≤ i ≤ min{N − βN−1, αN−1 + 1}, sN−1i−1 6= sN−1i

}
.

Then, βN = N + 1− j where

j = min

{
i ∈ I : rankHi,N+1−i(YN ) >

i∑
k=1

sN−1k

}
.

Proof.

1. From Theorem 5.5, as βN > βN−1, we have that βN ≥ max{βN−1+1, N−
αN−1}.

2. It follows from Proposition 5.2, bearing in mind that

rNN+1−i − r
N−1
N+1−i =


0− 0 = 0, 1 ≤ i ≤ N − βN ,
1− 0 = 1, N + 1− βN ≤ i ≤ N − βN−1,
1− 1 = 0, N − βN−1 + 1 ≤ i ≤ N.

3. Let us suppose that sN−1i−1 = sN−1i . If N+1−βN = i, then sNi = sN−1i +1 =

sN−1i−1 + 1 = sNi−1 + 1, which is a contradiction because sNi ≤ sNi−1.
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4. From items 1 and 3, βN = N + 1 − j for some j ∈ I. Moreover, by
definition,

βN = max{i : rNi > 0} = max{i : rankHN+1−i,i(YN ) > rankHN+1−i,i−1(YN )}.

Therefore, βN = N + 1− j where

j = min

{
i ∈ I : rankHi,N+1−i(YN ) >

i∑
k=1

sN−1k

}
.

For 1 ≤ i ≤ N − 1, Hi,N−i(YN ) = Hi,N−i(YN−1), and from Proposition
3.1,

rankHi,N−i(YN−1) =

i∑
k=1

sN−1k −
N−1∑

k=N+1−i

rN−1k .

If i ∈ I, then N + 1 − i > βN−1. Hence,
∑N−1
k=N+1−i r

N−1
k = 0 and the

property follows.

2

Given Yn = (Y0, . . . , Yn−1), Yi ∈ Fp×1, taking into account this Proposition and
Theorem 5.5 we can iteratively compute βN , αN , sN for 1 ≤ N ≤ n.

After initializing the procedure, once the step N − 1 is accomplished, we first
find the set I, then for j ∈ I we successively compute ρ =

∑j
k=1 sk and t =

rankHj,N+1−j(YN ) until t > ρ. If this occurs, we update α, s, β and the set of
indices R = {i : si−1 = si}. If t = ρ for all j ∈ I, then β = β, α = α, s = s
and R = R.

Algorithm

Input: Yn = (Y0, . . . , Yn−1), Yi ∈ Fp×1
Output: βn, αn, sn.

• Do β = 0, α = 0, s = (0), R = ∅.

• For N = 1, . . . n

– Calculate the set I = {i : 1 ≤ i ≤ min{N − β, α+ 1}, si−1 6= si}.
– Do stop = FALSE

– For each element j ∈ I
If stop == FALSE

∗ Do ρ =
∑j
k=1 sk

∗ Do t = rankHj,N+1−j(YN )

∗ If t > ρ

· Do α = max{N − β, α}
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· Do si = si + 1 for j ≤ i ≤ N − β
· Do β = N + 1− j
· Calculate the set of indices R = {i : si−1 = si}.
· Do stop = TRUE.

• Output: β, α, s.

Example 6.2 Let F = R, p = 3,

Y12 = (e1, e2, 0, 0, e1, e2, 0, e3, 0, 0, 0, e1),

where, for i = 1, 2, 3, ei are the unitary vectors in R3. We obtain:

N β α s
0 β0 = 0, α0 = 0, s0 = (0)
1 β1 = 1, α1 = 1, s1 = (1)
2 β2 = 2, α2 = 1, s2 = (2)
3 β3 = 2, α3 = 1, s3 = (2)
4 β4 = 2, α4 = 1, s4 = (2)
5 β5 = 4, α5 = 3, s5 = (2, 1, 1)
6 β6 = 4, α6 = 3, s6 = (2, 1, 1)
7 β7 = 4, α7 = 3, s7 = (2, 1, 1)
8 β8 = 8, α8 = 4, s8 = (3, 2, 2, 1)
9 β9 = 8, α9 = 4, s9 = (3, 2, 2, 1)

10 β10 = 8, α10 = 4, s10 = (3, 2, 2, 1)
11 β11 = 8, α11 = 4, s11 = (3, 2, 2, 1)
12 β12 = 9, α12 = 4, s12 = (3, 2, 2, 2)

Just to help understanding, we describe the calculations performed in some steps:

• At N = 1 (we have β = β0 = 0, α = α0 = 0, s = s0 = (0), R = ∅),

I = {i : 1 ≤ i ≤ min{N − β, α+ 1}, si−1 6= si} = {1}.

For j = 1, ρ = s1 = 0, t = rankH1,1(Y1) = rank
[
e1
]
> ρ. Then

α = max{N−β, α} = max{1−0, 0} = 1, si = si+1 for 1 ≤ i ≤ N−β = 1,
i.e. s = (1), β = N + j − 1 = 1 + 1− 1 = 1, and R = ∅.

• At N = 4 (we have β = β3 = 2, α = α3 = 1, s = s3 = (2), R = ∅),

I = {i : 1 ≤ i ≤ min{N − β, α+ 1}, si−1 6= si} = {1, 2}.

For j = 1, ρ = s1 = 2, t = rankH1,4(Y4) = rank
[
e1 e2 0 0

]
= 2 = ρ.

For j = 2, ρ = s1 +s2 = 2, t = rankH2,3(Y4) = rank

[
e1 e2 0
e2 0 0

]
= 2 = ρ.

Then, β = 2, α = 1, s = (2), R = ∅.
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• At N = 9 (we have β = β8 = 8, α = α8 = 4, s = s8 = (3, 2, 2, 1),
R = {1, 3}),

I = {i : 1 ≤ i ≤ min{N − β, α+ 1}, si−1 6= si} = {1} \ {1, 3} = ∅.

Then, β = 8, α = 4, s = (3, 2, 2, 1), R = {1, 3}.

• At N = 12, (we have β = β11 = 8, α = α11 = 4, s = s11 = (3, 2, 2, 1),
R = {1, 3}),

I = {i : 1 ≤ i ≤ min{N−β, α+1}, si−1 6= si} = {1, 2, 3, 4}\{1, 3} = {2, 4}.

For j = 2, ρ = s1 + s2 = 5, t = rankH2,11(Y12) = 5 = ρ.

For j = 4, ρ = s1 + s2 + s3 + s4 = 8, t = rankH4,9(Y12) = 9 > ρ.

Then α = max{N −β, α} = max{12−8, 4} = 4, si = si+ 1 for 4 ≤ i ≤ 4,
i.e. s = (3, 2, 2, 2), β = N − j + 1 = 12− 4 + 1 = 9, and R = {1, 3, 4}.

To obtain a minimal partial realization of Y12 in observability reduced form (see
Section 3), the only possible choice of indices is

I1 = {1, 2, 3}, I2 = I3 = I4 = {1, 3}.

Hence, we solve the systems[
a21 . . . a25

]
H2,11(Y12)({1, 2, 3, 4, 6}, :) =

[
e2 0 . . . e1

]
({2}, :)

and[
a11 . . . a19
a31 . . . a39

]
H4,8(Y12)({1, 2, 3, 4, 6, 7, 9, 10, 12}, :) =

[
e1 e2 . . . e1

]
({1, 3}, :).

It follows that all the minimal partial realization of Y12 in observability reduced
form are

Ao =



0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 −a 1 0 0 0 a a −1
0 −b 0 1 0 0 b b 0


, Bo =



1
0
0
0
0
0
0
0
0


,

Co =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 , a, b ∈ F.

The number of free parameters is s4r9 = 2.
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Given a, b ∈ F, we can obtain a left matrix generator of minimal length CL(D) =
I3 + L1D + L2D

2 + L3D
3 + L4D

4 of Y12 solving the system (see Section 4)

CoA
4
o =

[
L4 L3 L2 L1

]
O4(C,A).

If c1, c2, c3 are the rows of Co, then

[
c1A

4
o

c3A
4
o

]
=

[
1 −a 1 0 0 0 a a −1
0 −b 0 1 0 0 b b 0

]


c1
c2
c3
c1Ao
c3Ao
c1A

2
o

c3A
2
o

c1A
3
o

c3A
3
o


.

Therefore,[
c1A

4
o

c3A
4
o

]
= X1O4(C,A), where X1 =

[
1 −a 1 0 0 0 0 0 a a 0 −1
0 −b 0 1 0 0 0 0 b b 0 0

]
.

c2Ao =
[

1 0 0 0 0
]

c1
c2
c3
c1Ao
c3Ao

 .
Hence

c2A
4
o =

[
1 0 0 0 0

]

c1A

3
o

c2A
3
o

c3A
3
o

c1A
4
o

c3A
4
o

 =
[
1 0 0

] c1A3
o

c2A
3
o

c3A
3
o

+
[
0 0

] [c1A4
o

c3A
4
o

]
= X2O4(Co, Ao),

where

X2 =
[

0 0 0 0 0 0 0 0 0 1 0 0
]

+
[
0 0

]
X1

=
[

0 0 0 0 0 0 0 0 0 1 0 0
]
.

Let

[
L4 L3 L2 L1

]
=

 1 −a 1 0 0 0 0 0 a a 0 −1
0 0 0 0 0 0 0 0 0 1 0 0
0 −b 0 1 0 0 0 0 b b 0 0

 .
Then CL(D) = I3 + L1D + L2D

2 + L3D
3 + L4D

4 is a left matrix generator of
minimal length of Y12.
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It can be checked that all the left matrix generators of minimal length of Y12 are
CL(D) = I3 + L1D + L2D

2 + L3D
3 + L4D

4 with

[
L4 L3 L2 L1

]
=

 1− x1 −a 1 −x2 x1 0 −x3 x2 a a x3 −1
−y1 0 0 −y2 y1 0 −y3 y2 0 1 y3 0
−z1 −b 0 1− z2 z1 0 −z3 z2 b b z3 0

 ,
for xi, yi, zi ∈ F.

Dually, to obtain a minimal partial realization of Y12 in controllability reduced
form we solve

H3,9(Y12)

b9...
b1

 =

 0
0
e1

 .
The solution depends on 2 = s4r9 free parameters:

b7 = 1, b5 = −b9, b2 = b3 = b4 = b6 = b8 = 0.

It follows that all the minimal partial realizations of Y12 in controllability reduced
form are

Ac =



0 0 0 0 0 0 0 0 a
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −a
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 b


, Bc =



1
0
0
0
0
0
0
0
0


,

Cc =
[
e1 e2 0 0 e1 e2 0 e3 0

]
, a, b ∈ F.

Equivalently, all the right matrix generators of minimal length of Y12 are

CR(D) = 1 + bD − aD5 +D7 + aD9, a, b ∈ F.
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