

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/139848

Amiri, A.; Cordero Barbero, A.; Darvishi, M.; Torregrosa Sánchez, JR. (07-2). A fast
algorithm to solve systems of nonlinear equations. Journal of Computational and Applied
Mathematics. 354:242-258. https://doi.org/10.1016/j.cam.2018.03.048

https://doi.org/10.1016/j.cam.2018.03.048

Elsevier

A fast algorithm to solve systems of nonlinear equations I

Abdolreza Amirib, Alicia Corderoa, Mohammad Taghi Darvishib, Juan R. Torregrosaa,∗

aInstituto de Matemáticas Multidisciplinar, Universitat Politècnica de València, 46022 València, Spain
bDepartment of Mathematics, Faculty of Science, Razi University, Kermanshah 67149, Iran

Abstract

A new HSS-based algorithm for solving systems of nonlinear equations is presented and its semilocal convergence is

proved. Spectral properties of the new method are investigated. Performance profile for the new scheme is computed

and compared with HSS algorithm. Besides, by a numerical example in which a two-dimensional nonlinear convection-

diffusion equation is solved, we compare the new method and the Newton-HSS method. Numerical results show that

the new scheme solves the problem faster than the Newton-HSS scheme in terms of CPU-time and number of iterations.

Moreover, the application of the new method is found to be fast, reliable, flexible, accurate, and has small CPU time.

Keywords: Nonlinear systems; iterative method; Newton method; Newton-HSS method; Newton-GPSS method;

Jacobian free scheme

1. Introduction

Let us consider the following system of nonlinear equations F (x) = 0, where F : D ⊆ Cn −→ Cn is a nonlinear dif-

ferentiable function andD is an open set. We suppose that Jacobian matrix F ′(x) is a positive definite, nonsymmetric and

sparse matrix. Nonlinear systems arise in different areas of scientific computing and engineering computations, especially

in the discretization of nonlinear partial differential equations, boundary value problems, integral equations, etc. There

are cases where thousands of nonlinear equations on some independent variables must be solved effectively. Therefore,

finding roots of systems of nonlinear equations has widespread applications in numerical and applied mathematics. The

most common root-finding scheme for systems of nonlinear equations is the second order classical Newton’s method,

with iterative expression

x(k+1) = x(k) − [F ′(x(k))]−1F (x(k)), k = 0, 1, . . .

To avoid the computation of the inverse of the Jacobian matrix, previous expression is changed to

F ′(x(k))(x(k+1) − x(k)) = −F (x(k)),

which is a linear system. Therefore, for obtaining the new iteration we can solve the following linear system:

F ′(x(k))s(k) = −F (x(k)), (1)

whence x(k+1) = x(k) + s(k). Thus, for applying Newton’s scheme, we must solve a linear system in each iteration.

Therefore, any step of Newton’s method contains two kinds of iterations. The linear one to solve (1), which is called

inner iteration, and the nonlinear iteration to compute {x(k)} that is called outer iteration. Some of the most famous

inner iteration methods are Jacobi, Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR) and

Krylov subspace methods. They are based on splitting of the coefficient matrix A of the linear system as A = M − N .

Conjugate gradient (CG) and GMRES methods are widely used as outer iteration schemes.

If we apply Krylov subspace method as the inner iteration, the method is called Newton-Krylov subspace method.

Similarly, Newton-CG and Newton-GMRES are methods which use CG and GMRES as the outer iterations. In the last

decade, some efforts were made to present efficient splitting of the coefficient matrix for solving the linear system of

IThis research was partially supported by Ministerio de Economı́a y Competitividad under grants MTM2014-52016-C2-2-P and Generalitat Valen-

ciana PROMETEO/2016/089.
∗Corresponding author

Email addresses: amiriabdolreza@ymail.com (Abdolreza Amiri), acordero@mat.upv.es (Alicia Cordero),

darvishimt@yahoo.com (Mohammad Taghi Darvishi), jrtorre@mat.upv.es (Juan R. Torregrosa)

Manuscript
Click here to view linked References

http://ees.elsevier.com/cam/viewRCResults.aspx?pdf=1&docID=49174&rev=3&fileID=412880&msid={7C615067-5C38-4E23-B104-17A09730B0F6}

equations (1). In this regard, some HSS-based iteration algorithms were introduced to solve linear systems. Bai et al.

[1] introduced the Hermitian/skew-Hermitian splitting (HSS) iteration scheme for non-Hermitian positive definite linear

systems. Bertaccini et al. [2] studied the role of preconditioning for coercive problems for two-step iterative methods,

based on the Hermitian/skew-Hermitian splitting of the coefficient matrix of a nonsymmetric linear system whose real part

is coercive. Bai et al. in [3] established a class of preconditioned Hermitian/skew-Hermitian splitting iterative methods,

for a positive semidefinite linear system when its coefficient matrix had a two-by-two block structure.

A class of lopsided Hermitian/skew-Hermitian (LHSS) methods was established to solve non-Hermitian and positive

definite systems of linear equations in [4], which included a two-step LHSS iteration, its inexact version, and the inexact

Hermitian/skew-Hermitian (ILHSS) iteration. Also, a preconditioned iterative method based on HSS preconditioned is

used for weighted Toeplitz least squares problems in [5]. Li et al. [6] presented an asymmetric Hermitian/skew-Hermitian

(AHSS) iterative method for large sparse non-Hermitian positive definite systems of linear equations. Li et al. [7] modified

the HSS method and presented the Lopsided-HSS (LHSS) iterative method.

Discretization of certain nonlinear partial differential equations results in nonlinear systems of equations of the form

[8, 9]

F (x) := Ax− ϕ(x) = 0, (2)

where Ax and ϕ(x) are linear and nonlinear parts of (2), respectively. Besides, (2) is a weakly nonlinear system when the

linear part is strongly dominant on the nonlinear part. In this case, based on the separability and strong dominance between

the linear term and the nonlinear one, Bai and Yang [10] introduced the Picard-HSS and the nonlinear HSS-like iterative

methods. To solve large sparse systems of weakly nonlinear equations, Zhu [11] proposed a class of modified iteration

methods, Picard-LHSS and nonlinear LHSS-like algorithms, by using optimal parameters for asymmetric Hermitian and

skew-Hermitian splitting iteration schemes.

Picard iterative method Ax(k+1) = ϕ(x(k)) is not a suitable scheme to solve weakly nonlinear system (2). There

are many iterative methods to solve nonlinear systems, but most of them need to evaluate the Jacobian function in one or

some points. Some authors tried to use HSS iterative method for inner iterations of Newton’s procedure. Bai and Guo [12]

applied Newton-HSS method to solve systems of nonlinear equations with positive definite Jacobian matrices. By making

use of the HSS iteration as the inner solver for the Newton method, Bai et al. [13] proposed a class of Newton-HSS

methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices at the solution

points.

Let us split the coefficient matrix A of the linear system as A = M − N . With this splitting we have the following

iterative scheme to solve Ax = b

Mxl = Nxl−1 + b, l = 1, 2,

If this scheme is used as inner iteration, we obtain the following inner/outer iteration scheme [1, 16]

for a given x(0)

x(k+1) = x(k) − (T lk−1
k + · · ·+ T 2

k + Tk + I)M−1
k F (x(k)), (3)

Tk =M−1
k Nk,

where lk is the number of inner iteration steps, Mk and Nk are splitting parts of the matrix F ′(x(k)), that is, F ′(x(k)) =
Mk −Nk, k = 0, 1,

To solve nonlinear systems with Newton-HSS method, one uses HSS and Newton methods for inner and outer itera-

tions, respectively. As we mentioned above, Newton’s scheme needs to evaluate the Jacobian in one or some points which

is too time consuming, so any method that reduces the number of evaluations of Jacobian is widely welcome. Here, we

present a fast algorithm to solve the nonlinear system F (x) = 0. In our algorithm, HSS method is the inner iteration as

well. But, for the outer iteration, we use an inexact version of the following third order Newton-like iterative method

x(k+1) = x(k) − [F ′(x(k))]−1
(

F (x(k)) + F (x
(k+1)
∗)

)

(4)

where x
(k+1)
∗ is a Newton step. This method is known as Traub’s scheme and has order of convergence three [14].

In fact, this study presents a fast HSS-based algorithm to solve systems of nonlinear equations. In this algorithm, an

inexact version of the third order Newton-like method (4) is applied as an outer iteration. We prove that this algorithm is

convergent. Also, numerical results show that the new algorithm is faster than Newton-HSS scheme in terms of CPU-time

and number of outer iterations. We also compare our algorithms with Picard-HSS and Nonlinear HSS-like introduced in

[10], with good results.

2

The rest of the paper is organized as follows: In Section 2, the new algorithm is presented. Semilocal convergence of

the new method is proven in Section 3. In Section 4, some computational tests are presented which confirm the theoretical

results. Finally, some concluding remarks are shown in Section 5.

2. The design of the new method

Let us consider a system of linear equations of size n × n, Ax = b. Suppose that H and S are the Hermitian and

skew-Hermitian parts of A, respectively, that is, A = H + S with H = 1
2 (A + A∗) and S = 1

2 (A − A∗), where A∗

denotes the conjugate transposed ofA. Now, for an initial guess x(0) ∈ Cn, and positive constants α and tol, HSS scheme

presented in [1] computes x(l), for l = 0, 1, 2, . . ., by

{

(αI +H)x(l+
1

2
) = (αI − S)x(l) + b,

(αI + S)x(l+1) = (αI −H)x(l+
1

2
) + b,

(5)

where I denotes the identity matrix of size n× n. Stopping criterion for relations (5) is ‖b− Ax(l)‖ ≤ tol‖b − Ax(0)‖,

for an initial guess x(0) and a given tolerance tol.
If HSS method is used to solve the linear system obtained at each iteration of Picard method Ax(k+1) = ϕ(x(k)), it

leads to the following inexact Picard iteration method, which is called Picard-HSS.

The Picard-HSS Iteration Method. [10] Let ϕ : D ⊂ C
n → C

n be a continuous function and A ∈ C
n×n be

a positive definite matrix. Suppose that H and S are Hermitian and skew-Hermitian parts of A, respectively, that is,

A = H+S withH = 1
2 (A+A∗) and S = 1

2 (A−A∗). Given an initial guess x0 and a positive integer sequence {ln}∞n=0

and using the following iteration scheme to compute x(n+1) for n = 0, 1, 2, . . . until stopping criterion is satisfied,

1) Set x
(n)
0 := x(n);

2) For l = 0, 1, 2, · · · , n− 1, solve the following linear systems to obtain x(n+1):







(αI +H)s
(n)

l+ 1

2

= (αI − S)s
(n)
l + ϕ(x(n))

(αI + S)s
(n)
l+1 = (αI −H)s

(n)

l+ 1

2

+ ϕ(x(n))

where α is a positive constant and I denotes the identity matrix.

3) Set x(n+1) := x
(n)
ln

.

Determining the quantity of inner iterations ln at each step is problem dependent. Usually a modified form of Picard

scheme called nonlinear Picard is used, which does not use the stopping criterion at each step of Picard iteration.

The Nonlinear HSS-like Iteration Method. [10] Given an initial guess x0 ∈ D ⊂ Cn, let us compute x(n+1) for

n = 0, 1, 2, . . . by using the following iteration scheme until the stopping criterion is satisfied,

{

(αI +H)s(n+1) = (αI − S)s(n) + ϕ(x(n+
1

2
)),

(αI + S)s(n+
1

2
) = (αI −H)s(n) + ϕ(x(n))

,

where α is a positive constant and I denotes the identity matrix.

To use the third order Traub’s algorithm (4) as a root-finder of nonlinear systems, we must solve the following two

systems:

For a given x(0), first we solve

F ′(x(k))d
(k)
1 = −F (x(k)) (6)

and then we set x
(k+1)
∗ = x(k) + d

(k)
1 . Second, since from (4) we can write

−(F (x(k)) + F (x
(k+1)
∗)) = F ′(x(k))(x(k+1) − x

(k+1)
∗ + x

(k+1)
∗ − x(k))

= F ′(x(k))(d
(k)
2 + d

(k)
1),

3

hence, by using (6), we must solve the following system

F ′(x(k))d
(k)
2 = −F (x(k+1)

∗), (7)

whence x(k+1) = x
(k+1)
∗ + d

(k)
2 .

Now, we present the new HSS-based algorithm for approximating a solution of F (x) = 0. In this new method, HSS

scheme is our inner iteration and the third-order Newton-like method is the outer iteration. This new scheme is denoted

by INHSS. Algorithm 1 shows Traub’s iterative algorithm presented by relations (6) and (7).

Algorithm 1: Inexact version of the third order Newton-like scheme (4)

Input: x(0) and tol.
For k = 1, 2, . . . until ‖F (x(k))‖ ≤ tol ‖ F (x(0)) ‖ do:

1 For ηk ∈ [0, 1) find d
(k)
1 such that

‖ F (x(k)) + F ′(x(k))d
(k)
1 ‖< ηk ‖ F (x(k)) ‖ (8)

2 Set x
(k+1)
∗ = x(k) + d

(k)
1 .

3 Find d
(k)
2 such that

‖ F (x(k+1)
∗) + F ′(x(k))d

(k)
2 ‖< ηk ‖ F (x(k+1)

∗) ‖ (9)

4 Set x(k+1) = x
(k+1)
∗ + d

(k)
2 .

End For

To present INHSS method for lk = 0, 1, 2, . . . and l′k = 0, 1, 2, . . ., let us consider the following relations:

d1k,lk = (I − T lk
k)(I − Tk)

−1M−1
k F (z(k)),

d2k,l′
k

= (I − T
l′
k

k)(I − Tk)
−1M−1

k F (z
(k+1)
∗),

(10)

where α is a positive constant, Tk = T (α; z(k)), Mk =M(α; z(k)), and

T (α; z) = M(α; z)−1N(α; z),

M(α; z) =
1

2α
(αI +H(z))(αI + S(z)), (11)

N(α; z) =
1

2α
(αI −H(z))(αI − S(z)),

H(z) = 1
2 (F

′(z) + F ′(z)∗) and S(z) = 1
2 (F

′(z)− F ′(z)∗) are the Hermitian and skew-Hermitian parts of the Jacobian

matrix F ′(z), respectively. So each iteration in INHSS method can be written as

z(k+1) = z(k) − (I − T lk
k)F ′(z(k))−1F (z(k))− (I − T

l′
k

k)F ′(z(k))−1F (z
(k+1)
∗). (12)

Algorithm 2 describes the steps of INHSS scheme. This method solves the nonlinear system F (x) = 0 with a positive

definite Jacobian matrix. In Algorithms 1 and 2, ηk denotes a constant in each step that is equal to η. The used norm in

these algorithms is the Euclidean one.

In Algorithm 2, we firstly choose d1k,0 = 0 and, for l = 0, 1, 2, . . . until relation (15) holds, we use HSS scheme to

compute d1k,lk as follows

{

(αI +H(z(k)))d1
k,l+ 1

2

= (αI − S(z(k)))d1k,l − F (z(k)),

(αI + S(z(k)))d1k,l+1 = (αI −H(z(k)))d1
k,l+ 1

2

− F (z(k)),
(13)

where l is the counter of the inner iterations, d1k,lk is the solution in k-th step of first outer iteration in INHSS scheme

and lk is the number of HSS iterations which is necessary to satisfy (15). After obtaining a good approximation, we set

z
(k+1)
∗ = z(k) + d1k,lk . Actually, z

(k+1)
∗ is (k + 1)-th intermediate approximation in the INHSS Algorithm. After this,

4

similarly to the first outer iteration, we choose d2k,0 = 0 and for l′ = 0, 1, 2, . . . until (16) holds, we apply the HSS scheme

as






(αI +H(z(k)))d2
k,l′+ 1

2

= (αI − S(z(k)))d2k,l′ − F (z
(k+1)
∗),

(αI + S(z(k)))d2k,l′+1 = (αI −H(z(k)))d2
k,l′+ 1

2

− F (z
(k+1)
∗),

(14)

where l′ is the counter of inner iterations, d2k,l′
k

is the solution in k−th step of second outer iteration in INHSS scheme

and l′k is the required number of HSS iterations to satisfy (16). Finally, we set z(k+1) = z
(k+1)
∗ + d2k,l′

k

, so z(k+1) is the

(k + 1)-th approximation which is obtained by the INHSS method.

Algorithm 2: INHSS Algorithm

Input: z(0), tol, α and positive integer sequences {lk}∞k=0, {l′k}∞k=0.

For k = 1, 2, . . . until ‖F (z(k))‖ ≤ tol ‖ F (z(0)) ‖ do:

1 Set d1k,0 = 0.

2 For l = 0, 1, 2, . . . , lk − 1 until

‖ F (z(k)) + F ′(z(k))d1k,lk ‖< ηk ‖ F (z(k)) ‖ (15)

apply the HSS algorithm:

(αI +H(z(k)))d1
k,l+ 1

2

= (αI − S(z(k)))d1k,l − F (z(k))

(αI + S(z(k)))d1k,l+1 = (αI −H(z(k)))d1
k,l+ 1

2

− F (z(k))

3 Set z
(k+1)
∗ = z(k) + d1k,lk .

4 Set d2k,0 = 0.

5 For l′ = 0, 1, 2, . . . , l′k − 1 until

‖ F (z(k+1)
∗) + F ′(z(k))d2k,l′

k

‖< ηk‖F (z(k+1)
∗)‖ (16)

apply the HSS algorithm:

(αI +H(z(k)))d2
k,l′+ 1

2

= (αI − S(z(k)))d2k,l′ − F (z
(k+1)
∗)

(αI + S(z(k)))d2k,l′+1 = (αI −H(z(k)))d2
k,l′+ 1

2

− F (z
(k+1)
∗)

6 Set z(k+1) = z
(k+1)
∗ + d2k,l′

k

.

End For

To improve our method, we combine it with a Jacobian-free scheme. Knoll and Keyes [17] proposed a Newton-Krylov

Jacobian free (JFNK) algorithm based on the generalized minimal residual method (GMRES). By applying a similar

procedure based on Hermitian and skew-Hermitian splitting, we construct a Jacobian-free INHSS scheme. As applying

of inexact version of the Newton method does not require the exact solution of the linear system in each iteration, we can

approximate the Jacobian operator by

F ′(x)v ≈ F (x+ εv)− F (x− εv)

2ε
. (17)

Equation (17) is a second order approximation to the Jacobian matrix F ′(x) acting on a vector v. If each individual

component Ji,j of the Jacobian matrix F ′ is approximated as

Ji,j ≈
Fi(v + εej)− Fi(v − εej)

2ε
,

where ej is the unit vector and Fi is the coordinate function of F , so we can estimate the j-th column of the Jacobian

5

matrix F ′ as










J1,j
J2,j

...

Jn,j











=
F (x0 + εej)− F (x0 − εej)

2ε
. (18)

If one uses this approach, any column of F ′ can be estimated without any direct computation of F ′. This means that we

have a Jacobian-free method.

3. Semilocal convergence of the INHSS method

In this section, we present the semilocal convergence of INHSS method. Guo and Duff [18] proved a Kantorovich-

type convergence theorem for the Newton-HSS method. In this part we extend these results for INHSS scheme. First, we

need some preliminaries and assumptions. Hence, to obtain convergence results for the INHSS method first consider the

Kantorovich-type convergence Theorem for the Newton-HSS scheme as follows.

3.1. Assumptions

Let x(0) ∈ Cn and F : D ⊂ Cn → Cn be a G-differentiable function on an open set N0 ⊂ D on which F ′(x)
is continuous and positive definite. Suppose that F ′(x) = H(x) + S(x), where H(x) = 1

2 (F
′(x) + F ′(x)∗) and

S(x) = 1
2 (F

′(x) − F ′(x)∗) are the Hermitian and skew-Hermitian parts of the Jacobian matrix F ′(x), respectively. In

addition, let us assume that the following conditions hold.

(C1) (Bounded condition) There exist positive constants β, γ and δ such that

max{‖H(x(0))‖, ‖S(x(0))‖} ≤ β, ‖F ′(x(0))−1‖ ≤ γ, ‖F (x(0))‖ ≤ δ. (19)

(C2) (Lipschitz condition) There exist nonnegative constants Lh and Ls such that for all x, y ∈ B(x(0), r) ⊂ N0,

‖H(x)−H(y)‖ ≤ Lh‖x− y‖,
‖S(x)− S(y)‖ ≤ Ls‖x− y‖, (20)

where B(x, r) ≡ {y : ‖ y − x ‖< r} shows an open ball with center x and radius r.
From previous assumptions, F ′(x) = H(x) + S(x), L = Lh + Ls and by applying Banach’s Lemma, the next result

holds.

Lemma 1. [18] Under conditions (C1) and (C2), we have

1) ‖F ′(x) − F ′(y)‖ ≤ L‖x− y‖,

2) ‖F ′(x)‖ ≤ L‖x− x(0)‖+ 2β,

3) If r ≤ 1/(γL), then F ′(x) is nonsingular and satisfies

‖F ′(x)−1‖ ≤ γ

1− γL‖x− x(0)‖ .

Therefore, the following semilocal convergence result is presented by Guo and Duff [18].

Theorem 1. Let us assume that conditions (C1) and (C2) and Lemma 1 hold with the constants satisfying

δγ2L ≤ 1− η

2(1 + η2)
, (21)

where η = maxk{ηk} < 1, r = min{r1, r2} with

r1 =
α+ β

L

(
√

1 +
2ατθ

(2γ + γτθ)(α + β)2
− 1

)

,

r2 =
b−

√
b2 − 2ac

a
, (22)

a =
γL(1 + η)

1 + 2γ2δLη
, b = 1− η, c = 2γδ

6

and with l∗ = liminfk→∞lk satisfying l∗ > ⌊ln(η)/ln((τ + 1)θ)⌋, τ ∈ (0, (1− θ)/θ) and

θ ≡ θ(α;x(0)) = ‖T (α;x(0))‖, (23)

where ⌊u⌋ shows the largest integer lower than or equal to u.

Then, the iteration sequence {x(k)}∞k=0 generated by NHSS algorithm is well-defined and converges to x∗, satisfying

F (x∗) = 0.

Now, we state and prove the extension of this result for INHSS method. We consider r2 as in Theorem 1 and following

the notations in [18], we introduce
t0 = 0,

tk+1 = tk −
g(tk)

h(tk)
, k = 0, 1, . . .

(24)

where g(t) = 1
2at

2 − bt+ c and h(t) = at− 1.
Authors in [18] proved that sequence (24) converges to r2 monotone increasingly and h(tk) ≤ 0. Therefore, we have

tk < tk+1 < r2 and tk → t∗(= r2). The following result shows some properties of sequence {tk}.

Lemma 2. Sequence (24) for positive integers m and n, (m > n) satisfies the following relations:

g(tm)− g(tn)− h(tn)(tm − tn) =
1

2
a(tm − tn)

2 + η(tm − tn), (25)

1

−h(tm)
(g(tm)− g(tn)− h(tn)(tm − tn)) ≤ (tm+1 − tn+1). (26)

Proof. Since g(t) = 1
2at

2 − bt+ c, h(t) = at− 1 and b = 1− η,

g(tm)− g(tn)− h(tn)(tm − tn) =

= (
1

2
at2m − btm + c)− (

1

2
at2n − btn + c)− (atn − 1)(tm − tn)

=
1

2
a(tm − tn)

2 − b(tm − tn) + (tm − tn) =
1

2
a(tm − tn)

2 + η(tm − tn),

hence relation (25) is obtained. To prove (26), we take into account that {tk} is an increasing sequence, h(t) is an

increasing function, h(tn) ≤ h(tm) and

1

−h(tm)
(g(tm)− g(tn)− h(tn)(tm − tn))

≤ (− g(tm)

h(tm)
+ tm) + (

g(tn)

h(tn)
− tn) = (tm+1 − tn+1).

This completes the proof. 2

Now, from this lemma we present the following result to show the semilocal convergence of the INHSS method.

Theorem 2. Let us suppose that the tolerance in INHSS algorithm is lower than 1
8η, where η is defined as in Theorem 1.

Assume condition (C2) holds for constants defined in Theorem 1 and condition (C1) is changed by

max{‖H(z(0))‖, ‖S(z(0))‖} ≤ β, ‖F ′(z(0))−1‖ ≤ γ
′

, ‖F (z(0))‖ ≤ δ

4
, (27)

for an initial guess z(0). Moreover, l∗ = min{liminfk→∞lk, liminfk→∞l
′

k}, satisfying l∗ > ⌊ lnη
ln(τ+1)θ ⌋, τ ∈

(

0,
1− θ

θ

)

and

θ = θ(α; z(0)) = ‖T (α; z(0))‖ < 1. (28)

Then, the iteration sequence {z(k)}∞k=0 generated by INHSS algorithm is well-defined and converges to z∗ satisfying

F (z∗) = 0. Further, sequence {z(k)}∞k=0 hold the following relations

‖z(1)∗ − z(0)‖ ≤ 1

4
(t1 − t0), (29)

‖z(k)∗ − z(k−1)‖ ≤ 1

2k+3
(t2k−1 − tk−1), k = 2, 3, . . . (30)

7

and also for k = 1, 2, . . ., we have

‖F (z(k)∗)‖ ≤ 1

2k+3

1− γLt2k−1

γ(1 + η)
(t2k − tk), (31)

‖z(k) − z(k−1)‖ ≤ 1

2k+2
(t2k − tk−1), (32)

‖F (z(k))‖ ≤ 1

2k+2

1− γLt2k
γ(1 + η)

(t2k+1 − tk), (33)

‖z(k) − z(0)‖ ≤ 1

2
r2, (34)

‖z(k)∗ − z(0)‖ ≤ 1

4
r2, (35)

where γ = 4γ
′

, z
(k+1)
∗ = z(k) − F ′(z(k))−1F (z(k)), r2 is defined as in Theorem 1 and {tk} is the sequence (24).

Proof. Since r = min{r1, r2} and F ′(z) =M(α; z)−N(α; z), the proof of the relation

‖T (α; z)‖ < 1

is similar to the corresponding one of Theorem 1 for NHSS scheme in [18].

Now, we use mathematical induction to prove relations (30)-(33). For k = 1, from relations (10) and item 3 of

Algorithm 2, we have

z
(k+1)
∗ − z(k) = d1k,lk = (I − T lk

k)(I − Tk)
−1M−1

k F (z(k)), (36)

which from (11), changes to

z
(k+1)
∗ = z(k) − (I − T lk

k)F ′(z(k))−1F (z(k)), (37)

setting k = 0 in (37) and by relations (10)-(11) we have

‖z(1)∗ − z(0)‖ ≤ ‖F ′(z(0))−1F (z(0))‖+ ‖T l∗
0 F

′(z(0))−1F (z(0))‖,

≤ γ

4
(1 + θl∗)

δ

4
≤ 1

4
(2γδ) =

1

4
c =

1

4
(t1 − t0),

hence, equation (29) is obtained. Also,

‖F (z(0))‖ ≤ δ

4
≤ 1

4

2δ

1 + η
=

1

4

1− γLt0
γ(1 + η)

(t1 − t0).

By using the integral mean-value Theorem and Lemma 1 for x, y ∈ B(z(0), r), we obtain

‖F (x)− F (y)− F ′(y)(x − y)‖

= ‖
∫ 1

0

F ′(y + t(x− y))(x− y)dt− F ′(y)(x − y)‖

≤
∫ 1

0

‖F ′(y + t(x− y))− F ′(y)‖‖x− y‖dt

≤
∫ 1

0

Lt‖x− y‖2dt = L

2
‖x− y‖2. (38)

Now, from (38) and since z(0), z
(1)
∗ ∈ B(z(0), r) and also from (15),

‖F (z(1)∗)‖ ≤ ‖F (z(1)∗)− F (z(0))− F ′(z(0))(z
(1)
∗ − z(0))‖+ ‖F (z(0)) + F ′(z(0))(z

(1)
∗ − z(0))‖

≤ L

2
‖z(1)∗ − z(0)‖2 + η

8
‖F (z(0))‖

≤ L

2
(
1

4
(t1 − t0))

2 +
η

8
(
1

4

1− γLt0
γ(1 + η)

)(t1 − t0), (39)

≤ 1

16

(

L

2
(t1 − t0)

2 + η(
1− γLt0
γ(1 + η)

)(t1 − t0)

)

,

8

then we have

γ(1 + η)

1− γLt1
‖F (z(1)∗)‖ ≤ 1

16

γ(1 + η)

1− γLt1

(

L

2
(t1 − t0)

2 + η
1− γLt0
γ(1 + η)

(t1 − t0)

)

=
1

16

(

1

2

(1 + η)γL

1− γLt1
(t1 − t0)

2 +
η

1− γLt1
(t1 − t0)

)

≤ 1

16

(

1

2

a

−h(t1)
(t1 − t0)

2 +
η

−h(t1)
(t1 − t0)

)

.

Since δ ≤ 1

(2γ2L)
, we have 1 − γLt1 ≥ −h(t1) and from tk ≥ t1 = 2γδ, so

(1 + η)γL

(1 − γLt1)
≤ a

−h(t1)
, hence the last

inequality is correct.

Now, from

g(t1)− g(t0)− h(t0)(t1 − t0) =
1

2
a(t1 − t0)

2 + η(t1 − t0)

and (26), we obtain

γ(1 + η)

1− γLt1
‖F (z(1)∗)‖ ≤ 1

16

1

−h(t1)
(g(t1)− g(t0)− h(t0)(t1 − t0)) ≤

1

16
(t2 − t1),

and, therefore,

‖F (z(1)∗)‖ ≤ 1

16

1− γLt1
γ(1 + η)

(t2 − t1),

hence relation (31) holds for k = 1. Also, we have

‖z(1) − z(0)‖ ≤ ‖(I − T l∗
0)F ′(z(0))−1F (z(0)) + (I − T

l′
∗

0)F ′(z(0))−1F (z
(1)
∗)‖

≤ ‖F ′(z(0))−1‖
(

‖(I − T l∗
0)‖‖F (z(0))‖+ ‖(I − T

l′
∗

0)‖F (z(1)∗)‖
)

≤ (1 + η)
γ/4

1− γLt0

(

1

4

1− γLt0
γ(1 + η)

(t1 − t0) +
1

16

1− γLt1
γ(1 + η)

(t2 − t1)

)

≤ 1

8
((t1 − t0) + (t2 − t1)) =

1

8
(t2 − t0).

So, last inequality is correct since 1− γLt1 ≤ 1− γLt0. Thus, relation (32) holds for k = 1.

Again, using (38) for F (z(1)), since z(1) − z(0) = d11,l1 + d21,l′
1

and inequalities (15) and (16) hold, then

‖F (z(1))‖ ≤ ‖F (z(1))− F (z(0))− F ′(z(0))(z(1) − z(0))‖
+‖F (z(0)) + F (z

(1)
∗) + F ′(z(0))(z(1) − z(0))‖ + ‖F (z(1)∗)‖

≤ L

2
‖z(1) − z(0)‖2 + ‖F (z(0)) + F ′(z(0))d11,l1‖

+‖F (z(1)∗) + F ′(z(0))d21,l′
1

‖+ ‖F (z(1)∗)‖

≤ L

2
‖z(1) − z(0)‖2 + η

8
‖F (z(0))‖+ η

8
‖F (z(1)∗)‖+ ‖F (z(1)∗)‖.

By multiplying both sides by
γ(1 + η)

1− γLt2
and by using upper bounds (31) and (39) for the third and last term, respec-

tively, in the right hand side of the above inequality, we obtain

γ(1 + η)

1− γLt2
‖F (z(1))‖

≤ γ(1 + η)

1− γLt2

(

L

2
(
1

64
(t2 − t0)

2) +
1

32
η
1− γLt0
γ(1 + η)

(t1 − t0) +
1

16

η

8

1− γLt1
γ(1 + η)

(t2 − t1)

)

+
γ(1 + η)

1− γLt2

(

L

2
(
1

4
(t1 − t0))

2 +
η

8
(
1

4

1− γLt1
γ(1 + η)

)(t1 − t0)

)

≤ 1

8

(

L

2

γ(1 + η)

1− γLt2
(t2 − t0)

2 +
η

1− γLt2
(t2 − t0)

)

≤ 1

8

(

1

2

a

−h(t2)
(t2 − t0)

2 +
η

−h(t2)
(t2 − t0)

)

.

9

By similar calculations, we get

γ(1 + η)

1− γLt2
‖F (z1)‖ ≤ 1

8

(

1

−h(t2)
(g(t2)− g(t0)− h(t0)(t2 − t0))

)

≤ 1

8
(t3 − t1).

So relation (33) for k = 1 is obtained.

Suppose that relations (30)-(33) hold for an arbitrary k, now we prove these relations for k + 1. Since

‖z(k+1)
∗ − z(k)‖ = ‖F ′(z(k))−1F (z(k)) + T l∗

k F
′(z(k))−1F (z(k))‖,

as

‖z(k) − z(k−1)‖ ≤ 1

2k+2
(t2k − tk−1) ≤ (t2k − t0) =

1

2k+2
t2k,

‖z(k−1) − z(k−2)‖ ≤ 1

2k+1
(t2k−2 − tk−2) ≤ (t2k−2 − t0) =

1

2k+1
t2k,

...

‖z(1) − z(0)‖ ≤ 1

22
(t2 − t0) ≤

1

2k+1
(t2k−2 − tk−2) =

1

22
t2k,

thus

‖z(k) − z(0)‖ ≤ t2k.

Also, by Lemma 1, and since r ≤ 1/(γL) ≤ 1/(
γ

4
L), we have

‖F ′(z(k))−1‖ ≤ γ/4

1− γ/4L‖z(k) − z(0)‖ ≤ γ/4

1− γLt2k

and

‖z(k+1)
∗ − z(k)‖ ≤ (1 + ((τ + 1)θ)l∗)

γ/4

1− γLt2k
‖F (z(k))‖

≤ (1 + η)
γ/4

1− γLt2k

(

1

2k+2

1− γLt2k
γ(1 + η)

(t2k+1 − tk)

)

=
1

2(k+1)+3
(t2k+1 − tk).

This is relation (30) for k + 1.

By using (38) and Lemma 1, as z
(k+1)
∗ , z(k) ∈ B(z(0), r), we have

‖F (z(k+1)
∗)‖ ≤ ‖F (z(k+1)

∗)− F (z(k))− F ′(z(k))(z
(k+1)
∗ − z(k))‖

+‖F (z(k)) + F ′(z(k))(z
(k+1)
∗ − z(k))‖

≤ L

2
‖z(k+1)

∗ − z(k)‖2 + η

8
‖F (z(k))‖.

By using induction hypothesis, we get

γ(1 + η)

1− γLt2k+1
‖F (z(k+1)

∗)‖

≤ γ(1 + η)

1− γLt2k+1

(

L

2

(

1

2(k+1)+3
(t2k+1 − tk)

)2

+
η

8

(

1

2k+2

1− γLt2k
γ(1 + η)

(t2k+1 − tk)

)

)

≤ 1

2(k+1)+3

(

1

2

a

−h(t2k+1)
(t2k+1 − tk)

2 +
η

−h(t2k+1)
(t2k+1 − tk)

)

.

With similar computations as for k = 1, we obtain

γ(1 + η)

1− γLt2k+1
‖F (z(k+1)

∗)‖ ≤ 1

2(k+1)+3

1

−h(t2k+1)
(g(t2k+1)− g(tk)− h(tk)(t2k+1 − tk))

≤ 1

2(k+1)+3
(t2k+2 − tk+1),

10

which is relation (31) for k + 1. Finally,

‖z(k+1) − z(k)‖ = ‖(I − T l∗
k)F ′(z(k))−1F (z(k)) + (I − T l∗

k)F ′(z(k))−1F (z
(k+1)
∗)‖

≤ (1 + η)
γ/4

1 − γLt2k

(

1

2k+2

1− γLt2k
γ(1 + η)

(t2k+1 − tk) +
1

2(k+1)+3

1− γLt2k+1

γ(1 + η)
(t2k+2 − tk+1)

)

≤ 1

2(k+1)+3
(t2k+2 − tk).

This is relation (32) for k + 1.

To prove inequality (33), we use again (38) and Lemma 1

‖F (z(k+1))‖ ≤ ‖F (z(k+1))− F (z(k))− F ′(z(k))(z(k+1) − z(k))‖
+‖F (z(k)) + F (z

(k+1)
∗) + F ′(z(k))(z(k+1) − z(k))‖+ ‖F (z(k+1)

∗)‖
≤ L

2
‖z(k+1) − z(k)‖2 + ‖F (z(k)) + F ′(z(k))d1k,lk‖

+‖F (z(k+1)
∗) + F ′(z(k))d2

k,l′
k

‖+ ‖F (z(k+1)
∗)‖

≤ L

2
‖z(k+1) − z(k)‖2 + η

8
‖F (z(k))‖ + η

8
‖F (z(k+1)

∗)‖+ ‖F (z(k+1)
∗)‖.

As z(k+1) − z(k) = d1k,lk + d2k,l′
k

, by using

‖F (z(k+1)
∗)‖ ≤ L

2
‖z(k+1)

∗ − z(k)‖2 + η

8
‖F (z(k))‖,

and applying (38) yields

‖F (z(k+1))‖ ≤ L

2

(

‖z(k+1) − z(k)‖2 + ‖z(k+1)
∗ − z(k)‖2

)

+
(η

4
‖F (z(k))‖ + η

8
‖F (z(k+1)

∗)‖
)

+ ‖F (z(k+1)
∗)‖

≤ L

2

(

(
1

2(k+1)+2
(t2k+2 − tk))

2 + (
1

2(k+1)+3
(t2k+1 − t2k))

2

)

+
η

4

1

2k+2

1− γLt2k
γ(1 + η)

(t2k+1 − tk)

+
η

8

(

1

2(k+1)+3

1− γLt2k+1

γ(1 + η)
(t2k+2 − tk+1)

)

≤ 1

2k+3

(

L

2
(t2k+2 − tk)

2 + η
1− γLt2k
γ(1 + η)

(t2k+2 − tk)

)

.

Again, we can write

γ(1 + η)

1− γLt2k+2
‖F (z(k+1))‖

≤ 1

2k+3

γ(1 + η)

1− γLt2k+2

(

L

2
(t2k+2 − tk)

2 + η
1− γLt2k
γ(1 + η)

(t2k+2 − tk)

)

≤ 1

2k+3

(

L

2

(1 + η)γL

1− γLt2k+2
(t2k+2 − tk)

2 +
η

1− γLt2k+2
(t2k+2 − tk)

)

≤ 1

2k+3

(

1

2

a

−h(t2k+2)
(t2k+2 − tk)

2 +
η

−h(t2k+2)
(t2k+2 − tk)

)

.

Now, in a similar way as our previous computations, we have

g(t2k+2)− g(tk))− h(tk)(t2k+2 − tk) =
1

2
a(t2k+2 − tk)

2 + η(t2k+2 − tk)

and so

γ(1 + η)

1− γLt2k+2
‖F (z(k+1))‖

≤ 1

2k+3

(

1

−h(t2k+2)
(g(t2k+2)− g(tk))− h(tk)(t2k+2 − tk)

)

≤ 1

2(k+1)+2
(t2k+3 − tk+1).

11

So, relation (33) for k + 1 is obtained.

Note that if relations (29)-(33) hold, then

‖z(k) − z(0)‖
≤ ‖z(k) − z(k−1)‖+ ‖z(k−1) − z(k−2)‖+ · · ·+ ‖z(2) − z(1) + ‖z(1) − z(0)‖
≤ 1

2k+2
(t2k − tk−1) +

1

2k+1
(t2k−2 − tk−2) + · · ·+ 1

8
(t4 − t1) +

1

4
(t2 − t0)

≤ 1

4
(
1

2k
r2 +

1

2k−1
r2 + · · ·+ 1

2
r2 + r2).

By simplifying the last inequality, we get

‖z(k) − z(0)‖ ≤ 1

2
r2,

by similar computations as for {z(k)∗ }, we obtain

‖z(k)∗ − z(0)‖ ≤ 1

4
r2

and these yield inequalities (34) and (35).

If z ∈ B(z(0), r) then, we have the following bounded for iterative matrix T (α; z)

‖T (α; z)‖ ≤ (τ + 1)θ < 1.

Since sequence {tk} converges to t∗ = r2, so the sequence {z(k)} converges to its limit, say z∗. Because T (α; z∗) < 1,

from (12), we have

F (z∗) = 0.

This completes the proof. 2

4. Numerical results

Consider the following two-dimensional nonlinear convection-diffusion equation

−(uxx + uyy) + q(ux + uy) = −eu − sin(1 + ux + uy), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω

where Ω = (0, 1) × (0, 1), ∂Ω is its boundary and q is a positive constant for measuring the magnitude of the convec-

tion term. Applying a five-point finite difference scheme to the diffusive term and the central difference scheme to the

convective term, a system of nonlinear equations is obtained as

F (u) =Mu+ h2ψ(u), (40)

where h =
1

N + 1
is the equidistant step-size with N as a prescribed positive integer, M = AN ⊗ IN + AN ⊗ IN ,

B = CN ⊗ CN and ψ(u) = sin(1 + Bu) + ϕ(u), with tridiagonal matrices AN = tridiag(−1 − qh/2, 2, 1 + qh/2),
CN = tridiag(−1/h, 0, 1/h) and ϕ(u) = (eu1 , eu2 , ..., eun)T , ⊗ denotes the Kronecker product, n = N ×N and sin(u)

means (sin(u1), sin(u2), . . . , sin(un))
T

.

The stopping criterion for the outer iteration in Jacobian free NHSS, Jacobian free INHSS, Nonlinear HSS-like and

Picard-HSS are set to be
‖ F (u(k)) ‖
‖ F (u(0)) ‖ ≤ 10−11. The stopping criterion for the inner iteration in Newton-HSS and Picard-

HSS iteration is

‖F (u(k)) + F ′(u(k))s(k)nk
‖ ≤ η‖F (u(k))‖. (41)

{u(k)} is the sequence generated by NHSS and Picard-HSS method, s
(k)
n is the n-th HSS inner iteration in the k-th step

of NHSS and Picard-HSS method and nk is the number of HSS inner iterations which needs to satisfy relation (41). Also,

stopping criterions for the inner iterations in INHSS algorithm are

‖F (v(k)) + F ′(v(k))d1k,ℓk‖ ≤ η‖F (v(k))‖

12

and

‖F (v(k+1)
∗) + F ′(v(k))d2

k,ℓ
′

k

‖ ≤ η‖F (v(k+1)
∗)‖,

where v
(k+1)
∗ = v(k) + d1k,ℓk and {v(k)} is the sequence generated by INHSS scheme.

Numerical results for Jacobian free INHSS, Jacobian free NHSS, nonlinear HSS-like and Picard-HSS schemes in

terms of total CPU-time (denoted by CPU), the outer and inner iteration steps (respectively denoted as ITout and ITint)
are presented in Tables 1 and 2. IT shows the total inner iterations and ITint is the average of total inner iterations.

‖F (x(n))‖ denoted the norm of the function in the last iteration. Since Jacobian free INHSS algorithm contains two inner

iterations, namely relations (15) and (16), hence we have reported these iterations by IT 1int and IT 2int, so IT 1int and

IT 2int are respectively the average of inner iterations (15) and (16) .

In Table 1 numerical results are listed for q = 100, 1000, 2000, different values of N , η = 0.1 and initial guess

u(0) = e = (1, 1, . . . , 1)T . One can see that all the methods can perform the iterations, but for q = 1000 and q = 2000,

Picard-HSS is not successful to solve this problem. Increasing q give us an ill-posed matrix at each iteration, so Picard-

HSS, nonlinear HSS-like, Jacobian free INHSS and Jacobian free NHSS need more inner iterations. Picard-HSS even for

q = 100 needs many inner iterations.

Note that in the outer iterations one must compute the Jacobian matrix. Hence the most consumable time is in this

part. So, by using Jacobian-free NHSS or Jacobian-free INHSS, the results can be improved impressively in terms of

CPU-time. When parallel computing is applied to approximate the Jacobian matrix by divided difference (18), the time

that is needed for computing this matrix, compare with the total time is negligible. Computing the real Jacobian matrix

usually fails for large numberN (In our computations it fails for N > 50).

Table 2 shows the numerical results for q = 1000 and initial guess u(0) = 4.5e and u(0) = 13e. For u(0) = 4.5e
that is relatively far from the solution (the real solution is near zero), only for N = 80 and N = 100 nonlinear HSS-like

method was successful to solve the problem, and for initial guess u(0) = 13e it couldn’t perform the iterations at all. But

Jacobian free INHSS and Jacobian free NHSS in all cases could easy solve the problem. Picard-HSS for both initial guess

could not solve the problem.

These results show the efficiency of Jacobian free INHSS and Jacobian free NHSS with respect to Picard-HSS and

nonlinear HSS-like especially when the problem is unstable or the initial guess is far away from the solution of the

problem. Picard-HSS and nonlinear HSS-like are more suitable to solve weakly nonlinear problems but by starting from a

very far point, the linear term is not strongly dominant over the nonlinear term at the starting point, so they cannot perform

the iterations successfully. From these tables we can see the number of outer iterations in Jacobian free INHSS method

are less than or equal to half of outer iterations in Jacobian free NHSS scheme. This shows that our new algorithm can

reduce the number of computations of the Jacobian matrix as well, because the convergent rate of INHSS method is faster

than that in the NHSS algorithm.

Determining the optimal value for parameter α that minimizes the number of iteration matrices is important, because

it improves the convergence speed of these methods. However, determining the optimal value at each step of NHSS

and INHSS schemes is impossible. Since they are stable methods, we only use the optimal α near the solution (for this

example at point u = 0). The optimal α in this example, when the positive definite matrix M is used in Picard-HSS

and nonlinear HSS-like methods, is almost in all cases very near to the optimal α of matrix F ′(0) in NHSS and INHSS

schemes. We investigate the spectral properties of HSS inner iterations in the following part.

4.1. Spectral radius

In this subsection, we investigate the value of spectral radius for different values of experimental optimal parameter α
for NHSS, INHSS, Picard-HSS and nonlinear HSS-like methods.

In Figure 1 we show the spectral radius of the iteration matrix T (α) and its upper bound σ(α) for HSS algorithm. In

[1] authors proved that spectral radius of HSS inner iteration is bounded by ‖T ‖ ≤ σ(α) ≡ max
λi∈λ(H)

|α− λi
α+ λi

| < 1 and

the minimum of this bound is obtained when α = α∗ =
√

λmin(H)λmax(H), being λmin(H) and λmax(H) the smallest

and largest eigenvalues of Hermitian matrix H , respectively. In Table 3, we have written the optimal value of parameter

αopt (tested and optimal α) which has been determined experimentally and calculating the spectral radii of the iteration

matrix T (α), for HSS algorithm. We have used approximating value of the Jacobian matrix to obtain optimal α. These

results show that HSS algorithm always is a convergent method. In HSS scheme, when q or qh/2 are small, σ(α) is close

to ρ(T (α)). So, when q or qh/2 are small, α∗ is close to αopt and α∗ can be a good estimation for αopt. But, when q or

qh/2 are large (the skew-Hermitian part is dominant), σ(α) deviates from ρ(T (α)) very much so, to use α∗ is not useful

(see [1]). In nonlinear HSS-like and Picard-HSS schemes, αopt is, in almost all cases, very close to the αopt of NHSS and

INHSS methods for (40). We observe in Table 3 that when the value of N increases, the spectral radii decrease in some

cases. On the opposite, increasing q also increase the spectral radii.

13

Table 1: Numerical results for η = 0.1 and u
(0)

= e.

N 30 40 60 70 80 100

q = 100 Jacobian free NHSS αopt 3.8 3.1 2.3 2.0 1.7 1.3

CPU 0.49 1.66 9.24 21.19 38.08 116.43

ITout 10 10 10 12 11 10

ITinn 6.1 7.2 9.6 10.18 10.33 14.6

IT 61 72 96 112 124 146

‖F (x(n))‖ 1.43e-10 1.35e-10 9.78e-11 1.54e-11 1.96e-11 2.86e-11

Jacobian free INHSS αopt 3.8 3.1 2.3 2.0 1.7 1.3

CPU 0.39 1.34 8.05 15.87 31.92 86.87

ITout 5 5 5 5 5 5

IT 1inn 7.80 10 12.20 12.8 13 12.60

IT 2inn 4.40 4.8 8.05 10.4 12.8 17.80

IT 61 74 102 116 129 152

‖F (x(n))‖ 1.37e-10 3.08e-11 1.83e-08 2.79e-10 2.66e-10 3.40e-10

Nonlinear HSS-like αopt 3.8 3.1 2.2 2.0 1.7 1.3

CPU 0.37 0.99 5.20 10.92 19.66 52.90

IT 53 59 69 85 92 106

‖F (x(n))‖ 1.22e-10 1.46e-10 1.51e-10 1.25e-10 1.22e-10 1.91e-10

Picard-HSS αopt 3.8 3.1 2.3 2.0 1.7 1.3

CPU 1.58 5.97 39.16 82.73 173.08 474.92

ITout 12 12 12 12 12 12

ITinn 37.41 42.75 59.34 68.92 85.34 106

IT 449 513 712 827 1024 1272

‖F (x(n))‖ 6.57e-11 9.13e-11 1.45e-10 1.36e-10 1.68e-10 1.85e-10

q = 1000 Jacobian free NHSS αopt 18 16 9 8.5 8 5.5

CPU 1.40 2.70 10.24 20.20 36.77 96.65

ITout 11 11 11 11 11 11

ITinn 10.46 10.64 10.18 11.09 11.45 12

IT 124 117 112 122 126 132

‖F (x(n))‖ 5.76e-10 3.92e-10 2.40e-10 3.23e-10 2.55e-10 2.20e-10

Jacobian free INHSS αopt 18 16 9 8.5 8 5.5

CPU 0.73 1.80 8.50 14.03 28.03 56.07

ITout 5 5 5 5 5 5

IT 1inn 12 12.40 12.20 12.60 13.20 13.40

IT 2inn 11.20 10.80 10.20 10.40 10.20 10

IT 116 116 112 115 117 117

‖F (x(n))‖ 5.04e-09 5.90e-09 3.12e-09 3.27e-09 4.35e-09 3.19e-09

Nonlinear HSS-like αopt 18 16 9 8.5 8 5.5

CPU 0.83 2.05 8.60 15.12 25.33 58.93

IT 121 121 116 119 121 120

‖F (x(n))‖ 1.48e-09 1.29e-09 1.25e-09 8.81e-10 9.32e-10 7.31e-10

Picard-HSS - - - - - - -

q = 2000 Jacobian free NHSS αopt 26 23 12 11 10 8

CPU 1.01 3.04 13.96 25.83 41.91 113.47

ITout 11 11 11 11 11 11

ITinn 17 16.36 15.09 14.36 14.45 14.45

IT 187 180 166 158 159 159

‖F (x(n))‖ 1.48e-09 1.23e-09 9.48e-10 8.00e-10 1.03e-09 7.82e-10

Jacobian free INHSS αopt 18 16 9 8.5 8 5.5

CPU 0.82 2.68 11.71 17.61 34.78 79.15

ITout 5 5 5 5 5 5

IT 1inn 17.60 17 15.80 15.60 15.60 16

IT 2inn 16.20 16.20 15 14 14.20 13.80

IT 169 166 154 148 149 149

‖F (x(n))‖ 1.68e-08 1.37e-08 9.36e-09 9.86e-09 1.12e-08 3.19e-09

Nonlinear HSS-like αopt 18 16 9 8.5 8 5.5

CPU 1.19 2.84 11.62 19.77 33.20 77.20

IT 174 163 156 155 156 156

‖F (x(n))‖ 3.14e-09 2.88e-09 2.07e-09 2.36e-09 1.88e-09 1.78e-09

Picard-HSS - - - - - - -

4.2. Performance profile

In the previous parts we have shown that NHSS and INHSS methods perform better than Picard-HSS and Nonlinear

HSS-like ones. In this section, to analyze the performance of NHSS and INHSS schemes and comparing them more

precisely, we apply the “performance profile ” which is proposed in [19] as an evaluation tool, see also [10, 20]. It is

14

Table 2: Numerical results for q = 1000 and η = 0.1.

N 30 40 60 70 80 100

u(0) = 4.5e Jacobian free NHSS αopt 18 16 9 8.5 8 5.5

CPU 0.82 2.53 11.82 21.19 36.64 87.41

ITout 11 11 11 11 11 11

ITinn 11.18 11.36 10.81 10.63 11.91 11.82

IT 123 125 119 117 131 130

‖F (x(n))‖ 2.85e-09 1.79e-09 1.77e-09 9.09e-10 1.08e-09 1.21e-09

Jacobian free INHSS αopt 18 16 9 8.5 8 5.5

CPU 0.69 1.75 7.50 14.07 23.85 52.73

ITout 5 5 5 5 5 5

IT 1inn 11.6 12.4 12 12.8 15 13

IT 2inn 11.4 11 10.50 10.6 11.4 11.4

IT 115 117 111 117 124 122

‖F (x(n))‖ 2.42e-08 1.77e-08 1.83e-08 5.17e-09 1.50e-08 2.34e-09

Nonlinear HSS-like αopt 18 16 9 8.5 8 5.5

CPU - - - - 25.57 58.69

IT - - - - 121 126

‖F (x(n))‖ - - - - 4.19e-09 3.29e-09

Picard-HSS - - - - - - -

u(0) = 13e Jacobian free NHSS αopt 18 16 9 8.5 8 5.5

CPU 1.45 3.47 14.24 27.86 45.99 108

ITout 17 17 16 16 17 17

ITinn 9.82 8.76 8.50 8.43 8.29 8.12

IT 167 149 136 135 141 138

‖F (x(n))‖ 4.97e-08 2.17e-08 5.52e-08 4.03e-08 4.84e-09 6.83e-09

Jacobian free INHSS αopt 18 16 9 8.5 8 5.5

CPU 1.26 2.96 12.82 23.14 38.93 62.04

ITout 10 10 10 10 10 10

IT 1inn 10 8.9 8.1 8 7.9 7.6

IT 2inn 9.7 7.8 7.1 6.7 6.5 6.3

IT 197 167 152 147 144 139

‖F (x(n))‖ 1.74e-07 1.47e-07 1.24e-07 8.75e-08 3.29e-08 1.41e-08

Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -

Table 3: Numerical results for optimal α in NHSS and INHSS methods.

N 20 30 40 50 60 70 80 90 100

q = 100 αopt 4.3 3.8 3.1 2.6 2.2 20 1.7 1.5 1.3

ρ(T (αopt)) 0.4887 0.4672 0.4687 0.4480 0.4733 0.5089 0.5395 0.5815 0.6131

α∗ 0.3554 0.1638 0.0938 0.0606 0.0424 0.0313 0.0241 0.0191 0.0155

ρ(T (α∗)) 0.8920 0.9480 0.9695 0.9800 0.9858 0.9894 0.9918 0.9935 0.9947
qh

2
2.3810 1.6129 1.2195 0.9804 0.8197 0.7042 0.6173 0.5495 0.4950

ρ(T (
qh

2
)) 0.6003 0.6653 0.7127 0.7498 0.7799 0.8038 0.8229 0.8384 0.8513

q = 1000 αopt 22 18 16 13 9 8.5 8 6.5 5.5

ρ(T (αopt)) 0.7596 0.7223 0.6925 0.6738 0.6617 0.6526 0.6470 0.6483 0.6467

α∗ 0.5962 0.4047 0.3062 0.2462 0.2059 0.1769 0.1551 0.1381 0.1244

ρ(T (α∗)) 0.8518 0.8971 0.9211 0.9360 0.9461 0.9535 0.9590 0.9634 0.9669
qh

2
23.8095 16.1290 12.1951 9.8039 8.1967 7.0423 6.1728 5.4945 4.9505

ρ(T (
qh

2
)) 0.7608 0.7236 0.6974 0.6783 0.6674 0.6608 0.6574 0.6562 0.6560

q = 2000 αopt 30 26 23 17 12 11 10 9 8

ρ(T (αopt)) 0.8216 0.7911 0.7662 0.7503 0.7419 0.7349 0.7297 0.7233 0.7213

α∗ 0.3554 0.1638 0.0938 0.0606 0.0424 0.0313 0.0241 0.0191 0.0155

ρ(T (α∗)) 0.9103 0.9579 0.9757 0.9842 0.9889 0.9918 0.9937 0.9950 0.9959
qh

2
47.6190 32.2581 24.3902 19.6078 16.3934 14.0845 12.3457 10.9890 9.9010

ρ(T (
qh

2
)) 0.8452 0.7953 0.7674 0.7535 0.7770 0.7366 0.7345 0.7302 0.7279

briefly described as follows.

“Let us assume that we have a solver set S with ns solvers and a problem set P with np problems. Let µ be a performance

measure of solvers, e.g., the CPU time of a solver to solve a problem, and let µp,s be the measure result for the problem p

15

0 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

sp
ec

tr
al

 r
ad

iu
s

N=30

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

sp
ec

tr
al

 r
ad

iu
s

N=40

σ(α)
ρ(T(α))

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

sp
ec

tr
al

 r
ad

iu
s

N=60

σ(α)
ρ(T(α))

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

sp
ec

tr
al

 r
ad

iu
s

N=80

σ(α)
ρ(T(α))

Figure 1: Plots of ρ(T (α)) versus α with q = 1000 and different values of N for HSS inner iterations.

when the solver s is used. For each problem p, let

µp,min = min{µp,s | s ∈ S, and p can be solved by s},

which is the best performance result for all solvers on problem p. Based on the profile ratio µ, the performance ratio [20]

is defined as

rp,s =

{ µp,s

µp,min

, if p can be solved by s,

r∞, if p can not be solved by s,

where r∞ > eξ is a given sufficiently large number, and

ξ ≡ max{ln(rp,s)|s ∈ S, p ∈ P , and p can be solved by s}. (42)

Note that rp,s reflects the ratio of the performance of solver s to the best performance on problem p. Now, the performance

profile (see [20]) is defined as,

vs(τ) =
|Ωτ

s |
np

, τ ∈ [0, ln(r∞)], (43)

where Ωτ
s = {p ∈ P| ln(rp,s) 6 τ} and |Ωτ

s | represents the number of elements contained in Ωτ
s . Note that vs(τ) denotes

the probability for solver s that a log-scale performance ratio is not greater than factor τ . Besides,

(i) υs(0) represents the probability that solver s can solve a problem with the best performance, and

(ii) vs(ξ) represents the probability that solver s can solve a problem successfully. ”

In this study, the performance profiles based on the CPU time of NHSS and INHSS algorithms are shown in Figure 2.

We have obtained these results in 50 tests by changingN from 11 to 60 for both methods. From Figure 2 we can observe

16

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν s(τ
)=

|Ω
sτ |/n

s

τ

INHSS
NHSS

Figure 2: Performance profile based on CPU time for Jacobian free INHSS and NHSS algorithms (ξ = 2).

that the performance profile of INHSS algorithm is greater than NHSS one. Therefore, our new algorithm, that is, INHSS

is the winner in the test. Observing the values of the performance profiles at point 0, we find that the probability that the

INHSS method can give the best performance is nearly 0.96, while that of the NHSS is 0.04. By analyzing the highest

parts of the two graphs in Figure 2, one see that INHSS method succeeds in solving about of the tests in the problem set,

100%, while that of the NHSS method is about 98%. This shows that INHSS scheme is more effective and robust than

NHSS method.

5. Concluding Remarks

In this paper, a fast HSS-based algorithm has been proposed and applied to solve systems of nonlinear equations.

The new scheme is an outer/inner iteration method. In our numerical example, the number of outer iterations in the new

algorithm is less than or equal to half of outer iterations in the NHSS scheme. Therefore, our scheme in the sense of CPU-

time and number of outer iterations is better than the NHSS method. As the computation of elements of Jacobian matrix

is the most consumable part in any outer iteration step, hence reducing these computations can reduce the total CPU-time.

Thus a Jacobian-free INHSS algorithm is presented which its application reduces the CPU-time. The obtained numerical

results are compared with the existing numerical solutions. It is concluded that the presented algorithms, namely Jacobian-

free INHSS, give better accuracy in comparison to Jacobian-free NHSS, Picard-HSS and nonlinear HSS-like methods.

Also, spectral properties of our method are investigated. Finally, performance profiles of our algorithm is better than

performance profiles of NHSS algorithm.

From these advantages, our algorithm might become a suitable method in finding the numerical solutions of nonlinear

systems.

Acknowledgement: The authors would like to thank the anonymous reviewers for their comments and suggestions that

have improved this manuscript.

References

[1] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive defi-

nite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003) 603–626.

[2] D. Bertaccini, G.H. Golub, S.S. Capizzano, C.T. Possio, Preconditioned HSS methods for the solution of non-

Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation, Numer.

Math., 99(3) (2005) 441-484.

17

[3] Z.-Z. Bai, G.H. Golub, J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian

positive semidefinite linear systems, Numer. Math., 98(1)(2004) 1–32.

[4] Z.-Z. Bai, G.H. Golub, M.K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian

splitting iterations, Numer. Linear Algebra Appl., 14(4) (2007) 319–335.

[5] M. Benzi, M.K. Ng, Preconditioned iterative method for weighted Toeplitz least squares problems, SIAM J. Matrix

Anal. Appl., 27 (2006) 1106–1124.

[6] L. Li, T.-Z. Huang, X.-P. Liu, Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite

linear systems, Comput. Math. Appl., 54 (2007) 147–159.

[7] L. Li, T.-Z. Huang, X.-P. Liu, Modified Hermitian and skew/Hermitian splitting methods for non-Hermitian positive-

definite linear systems, Numer. Linear Algebra Appl., 14 (2007) 217–235.

[8] Z.-Z. Bai, A class of two-stage iterative methods for systems of weakly nonlinear equations, Numer. Algor., 14(4)

(1997) 295–319.

[9] Z.-Z. Bai, On the convergence of parallel chaotic nonlinear multisplitting Newton-type methods, J. Comput. Appl.

Math., 80(2) (1997) 317–334.

[10] Z.-Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009)

2923–2936.

[11] M.-Z. Zhu, Modified iteration based on the asymmetric HSS for weakly nonlinear systems, Comput. Anal. Appl.,

15 (1) (2013) 188–195.

[12] Z.-Z. Bai, X.-P. Guo, The Newton-HSS methods for systems of nonlinear equations with positive-definite Jacobian

matrices, J. Comput. Math., 28 (2010) 235–260.

[13] Z.-Z. Bai, G.H. Golub, M.K. Ng, On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian

positive definite linear systems, Linear Algebra Appl., 428 (2008) 413–440.

[14] J.F. Traub, Iterative Methods for the solution of equations, Prentice-Hall, Englewood Cliffs 1964.

[15] C.-X. Li, S.-L. Wu, A modified GHSS method for non-Hermitian positive definite linear systems, Japan J. Indust.

Appl. Math., 29 (2012) 253–268.

[16] J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New

York 1970.

[17] D.A. Knoll, D.A. Keyes, Jacobian-free Newton-Krylov methods, a survey of approaches and applications, J. Comput.

Phys., 193 (2004) 357–397.

[18] X.-P. Guo, I.S. Duff, Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equa-

tions, Linear Algebra Appl., 18 (2010) 299–315.

[19] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. Ser. A, 91

(2002) 201–213.

[20] H.-B. An, Z.-Z. Bai, A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations,

Appl. Numer. Math., 57 (2007) 235–252.

18

