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Abstract: Matrix exponentials are widely used to efficiently tackle systems of linear differential
equations. To be able to solve systems of fractional differential equations, the Caputo matrix
exponential of the index α > 0 was introduced. It generalizes and adapts the conventional matrix
exponential to systems of fractional differential equations with constant coefficients. This paper
analyzes the most significant properties of the Caputo matrix exponential, in particular those related
to its inverse. Several numerical test examples are discussed throughout this exposition in order to
outline our approach. Moreover, we demonstrate that the inverse of a Caputo matrix exponential in
general is not another Caputo matrix exponential.
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1. Introduction and Motivation

Formally a square matrix A ∈ Cr×r can be associated with its exponential matrix function eAt.
The traditional matrix exponential takes a prominent position among all matrix functions—ultimately
due to its relevance in the resolution of systems of first-order ordinary differential equations. However,
in practice its efficient numerical computation poses considerable difficulties, see [1] for details.

At the same time, systems of fractional differential equations, which contain derivatives extending
the standard integer-order derivative to arbitrary order α ≥ 0, play an important role in many other
important applications of science and engineering [2–4]. Although fractional calculus is factually
known since the end of the 17th century [5], only during the recent decades its relevance for practical
modeling and engineering simulations has become evident. Fractional derivatives naturally implement
Volterra’s “principle of the dissipation of hereditary action”, meaning that causality aspects and
memory characteristics of dynamical systems may easily be incorporated. Important applications are
in hydrology, e.g., flow simulations of fluids in porous media, and in civil engineering, e.g., traffic flow
problems on road networks, among many others [6,7].

A great variety of fractional derivatives are proposed and used in the literature. The most
common fractional derivative is the derivative introduced by Caputo [8]. It is defined in terms of the
Riemann–Liouville fractional integral of order α ≥ 0 operating on function f (t):

Jα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ, t > 0.
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Then, provided that f is a locally integrable function, the following operation on f defines its
fractional derivative of Caputo with order α ≥ 0:

Dα f (t) = Jm−αDm f (t), t > 0, m− 1 < α ≤ m, m ∈ N.

Note that, as expected, Dn = dn/dtn agrees with the usual derivative of integer order n ∈ N.
(Our convention is to use N for the set of all positive integer numbers, whereas N0 = N∪ {0}.)

In 2016, Rodrigo [9] introduced the fractional exponential matrix of Caputo of order α ≥ 0.
Similarly, here we are using the following definition for 0 ≤ α ≤ 1:

exp? (t
αA; α) = ∑

n≥0

Antαn

Γ (αn + 1)
, t > 0, (1)

in relation with the Mittag–Leffler matrix function [10].
It is well-known that inverse problems [11] are among the most basic applications for the inverse

of the conventional exponential matrix. Moreover, mathematical optimisation is another area in which
the inverse of the matrix exponential is frequently encountered and of significant relevance, see, e.g.,
(Reference [12], Equations (4.4) and (4.7)). Observe that if in a linear differential system all ordinary
derivatives are replaced by fractional derivatives of Caputo type, then the associated inverse problems
will necessarily involve the inverse of the Caputo matrix exponential.

In the case of the Caputo matrix exponential, (1), there still remains to clarify the existence of its
inverse, in full analogy to the case of the conventional matrix exponential eAt with inverse matrix e−At.
The final objective of this work will be to study the existence and computation of the inverse of the
Caputo matrix exponential.

The present paper is organized as follows. Section 2 first focuses on checking the main properties
of the matrix exponential of Caputo, and also on presenting counterexamples of other questionable
properties which eventually are not satisfied. In Section 3, we will demonstrate that, in general,
the inverse of an exponential matrix of Caputo is not another exponential matrix of Caputo. Finally,
Section 4 concludes with the actual computation of the inverse of the Caputo matrix exponential and
gives examples.

In the remainder of this work, we will denote by Cp×q the set of rectangular complex matrices.
For a square matrix A ∈ Cr×r, as usual σ(A) denotes the spectrum of matrix A, i.e., the set of its
eigenvalues. Moreover, we will denote by ‖A‖ any multiplicative norm of matrix A. In particular,
‖A‖2 is the 2-norm, defined by

‖A‖2 = sup
z 6=0

‖Az‖2
‖z‖2

,

where for any vector z ∈ Cq, the usual Euclidean norm of z is ‖z‖2 = (ztz)1/2. Additionally, it will
be helpful to remember that for a family of matrices A(k, n) ∈ Cr×r with n and k being positive,
the following identity holds

∑
n≥0

∑
k≥0
A(k, n) = ∑

n≥0

n

∑
k=0
A(k, n− k). (2)

This identity is analogous to the one of the proof for Lemma 11 in (Reference [13], p. 57).

2. Caputo Matrix Exponential

This section first presents some of the fundamental properties of the Caputo matrix exponential
which will be built upon in subsequent parts of this work. Then, the next subsection concentrates on
some striking counterexamples of properties which one could naively intuit but which at the end do
not hold. The final subsection centers on the existence of the inverse of the Caputo matrix exponential
and its conditions.
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2.1. Properties

In the following, we list the most important fundamental properties of the Caputo matrix
exponential which unreservedly have to be fulfilled:

(a) For α = 1, the Caputo matrix exponential coincides with the conventional matrix exponential:

exp? (tA; 1) = eAt. (3)

(b) If 0r×r, Ir×r are the null and identity matrices of Cr×r, respectively, it is clear that

exp? (0r×r; α) = Ir×r. (4)

(c) If A ∈ Cr×r, and σ(A) denotes the set of its eigenvalues, it is well known that A has the Jordan
canonical factorization A = PJP−1, where J is a diagonal block-matrix given by

J = diag {J1, J2, . . . , Jk} , Ji =


λi 1 0

λi
. . .
. . . 1

0 λi

 , λi ∈ σ(A).

Then from Definition (1), it immediately follows that

exp? (t
αA; α) = P diag

{
exp? (t

αJ1; α) , exp? (t
αJ2; α) , . . . , exp? (t

αJk; α)
}

P−1. (5)

(d) Avoiding entirely the Jordan canonical form of A and only knowing σ(A), Putzer’s method
(see e.g., [9]) allows to explicitly obtain exp? (t

αA; α) in fully analytical form.

2.2. Counterexamples

However, there are obvious differences between exp? (t
αA; α) and the matrix exponential eAt,

which are straightforward to detect considering the scalar case r = 1.

(1) The matrix exponential eAt is a periodic function of period T = 2πi Ir×r, where i as usual is the
imaginary unit:

eAt = eAt+2πiIr×r .

However, this is not the case for the Caputo matrix exponential, even in the scalar case (r = 1).
In fact, it easily can be checked that for A = 1, t = 1 and α = 1/2, we have

exp? (1; 1/2) ≈ 5.00898
exp? (1 + 2πi; 1/2) ≈ −0.0144688 + 0.0885799i,

so that
exp? (1; 1/2) 6= exp? (1 + 2πi; 1/2) .

Thus, we generally conclude that

exp? (A; α) 6= exp? (A + 2πiIr×r; α) . (6)

(2) It is well known that if A and B are two commuting matrices, i.e., AB = BA, then

e(A+B)t = eAteBt. (7)



Mathematics 2019, 7, 1137 4 of 11

This relation is generally not true for the fractional exponential matrix of Caputo—even for
the simplest scalar case (r = 1). In fact, we can easily observe that when we take A = B = 1,
t = 1, α = 1/2, we have

exp? (1; 1/2) ≈ 5.00898
exp? (2; 1/2) ≈ 108.941,

so that
exp? (2; 1/2) 6= exp? (1; 1/2) exp? (1; 1/2) .

Consequently, we generally have

exp? (t
α(A + B); α) 6= exp? (t

αA; α) exp? (t
αB; α) , (8)

and the Caputo matrix exponential therefore does not satisfy the semigroup property.

(3) If we denote by Det(A) the determinant of the square matrix A and by Tr(A) its trace, i.e.,
the sum of the elements on the main diagonal, it is well known that the matrix exponential
satisfies

Det
(
eA) = eTr(A). (9)

In this way, it becomes obvious that the usual exponential matrix eA is always invertible, since
its determinant is always non-zero. Observe that the analogous identity for the Caputo matrix
exponential is not true, i.e., Det(exp? (A; α)) 6= exp? (Tr(A); α). To prove that this property is
not true, it is easy to check that

exp?

(
tα

(
2 −1
4 −3

)
; α

)
=

 4
3 Eα (tα)− 1

3 Eα (−2tα) 1
3 Eα (−2tα)− 1

3 Eα (tα)

4
3 Eα (tα)− 4

3 Eα (−2tα) 4
3 Eα (−2tα)− 1

3 Eα (tα)

 ,

where Eα(z) is the Mittag-Leffler function defined by

Eα(z) = ∑
j≥0

zj

Γ (αj + 1)
. (10)

Now, taking t = 1, α = 1/2 and Tr

(
2 −1
4 −3

)
= −1, one gets that

Det

(
exp?

((
2 −1
4 −3

)
; 1/2

))
≈ 1.27927 , exp? (−1; 1/2) ≈ 0.427584,

so that in general
Det(exp? (A; α)) 6= exp? (Tr(A); α) .

(4) As a consequence of (7), it follows that for A ∈ Cr×r it is

eAte−At = Ir×r. (11)

For this reason the exponential matrix eAt is always invertible, and its inverse is precisely e−At.
On the other hand, for the inverse of the Caputo matrix exponential, it is easy to verify that
property (11) is not fulfilled.

As an example, we consider the two matrix exponentials

exp?

(
tα

(
2 −1
4 −3

)
; α

)
=

 4
3 Eα (tα)− 1

3 Eα (−2tα) 1
3 Eα (−2tα)− 1

3 Eα (tα)

4
3 Eα (tα)− 4

3 Eα (−2tα) 4
3 Eα (−2tα)− 1

3 Eα (tα)


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and

exp?

(
−tα

(
2 −1
4 −3

)
; α

)
=

 4
3 Eα (−tα)− 1

3 Eα (2tα) 1
3 Eα (2tα)− 1

3 Eα (−tα)

4
3 Eα (−tα)− 4

3 Eα (2tα) 4
3 Eα (2tα)− 1

3 Eα (−tα)

 .

For the choice α = 1/2 with t = 1, we obtain

exp?

((
2 −1
4 −3

)
; 1/2

)
exp?

(
−
(

2 −1
4 −3

)
; 1/2

)
≈
(
−6.41867 8.56043
−34.2417 36.3835

)
6= I2×2,

and it clearly is
exp? (t

αA; α) exp? (−tαA; α) 6= Ir×r.

2.3. Existence

In order to guarantee the existence of the inverse of the Caputo matrix exponential exp? (t
αA; α)

for A ∈ Cr×r, observe that from definition (1), for α > 0, t ≥ 0, it follows that

∥∥Ir×r − exp? (t
αA; α)

∥∥ =

∥∥∥∥∥∑
n≥1

Antαn

Γ (αn + 1)

∥∥∥∥∥ ≤ ∑
n≥1

(
‖A‖ tα

)n

Γ (αn + 1)
= Eα

(
‖A‖ tα

)
− 1.

Then, according to Lemma 2.3.3 in (Ref. [14], p. 58), matrix exp? (t
αA; α) is invertible in the interval

I = [0, t?], where
Eα (‖A‖ tα) < 2. (12)

Taking into account that the Mittag–Leffler function g(t) = Eα (‖A‖ tα) satisfies g(0) = 1, and it
is a strictly increasing function for t ∈ (0,+∞), we can conclude that there always exists t? so that
inequality (12) holds in I = [0, t?]. Therefore, exp? (t

αA; α)−1 also exists, at least for t ∈ I.

Example 1. For the particular case A =

(
2 −1
4 −3

)
and also index α = 1/4, it is easy to check that

‖A‖2 ≈ 5.46499. Then, it holds

E0.25

(
5.46499 t1/4

)
< 2 ⇔ t ∈ [0, 0.0000594].

Thus, if t ∈ [0, 0.0000594], the inverse exp?

(
t1/4

(
2 −1
4 −3

)
; 1/4

)−1

exists.

3. A New Inversion Property of the Caputo Matrix Exponential

In Section 2.3, we proved the existence of the inverse of the Caputo matrix exponential. It is
well-known that the inverse of the conventional matrix exponential eAt is again an exponential of
the matrix −At, or simply

(
eAt)−1

= e−At. So can we arrive at a similar property for the Caputo
matrix exponential?

For this purpose, let us consider the matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 . (13)
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The square matrix A is a nilpotent matrix of index 3, meaning that A3 6= 04×4 but An = 04×4 for
n ≥ 4. Thus, applying Definition (1), it is easy to establish

exp? (t
αA; α) =

3

∑
n=0

Antαn

Γ(nα + 1)
=


1 tα

Γ(α+1)
t2α

Γ(2α+1)
t3α

Γ(3α+1)

0 1 tα

Γ(α+1)
t2α

Γ(2α+1)
0 0 1 tα

Γ(α+1)
0 0 0 1

 .

Now, we proceed to calculate its inverse and obtain

exp? (t
αA; α)−1 =


1 − tα

Γ(α+1)
t2α

Γ(α+1)2 − t2α

Γ(2α+1) − t3α

Γ(α+1)3 +
2t3α

Γ(α+1)Γ(2α+1) −
t3α

Γ(3α+1)

0 1 − tα

Γ(α+1)
t2α

Γ(α+1)2 − t2α

Γ(2α+1)

0 0 1 − tα

Γ(α+1)
0 0 0 1

 . (14)

Suppose that there exists a matrix B ∈ C4×4 such that

exp? (t
αA; α)−1 = exp? (t

αB; α) = ∑
n≥0

Bntαn

Γ(nα + 1)
. (15)

Then, we may recast the expression for the inverse given by (14) in the form

exp? (t
αA; α)−1 = I4×4− 1

Γ(α+1)


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 tα+
(

1
Γ(α+1)2− 1

Γ(2α+1)

)
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 t2α

+
(
− 1

Γ(α+1)3 +
2

Γ(α+1)Γ(2α+1) −
1

Γ(3α+1)

)
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 t3α

= I4×4 −
1

Γ(α + 1)
Atα +

(
1

Γ(α + 1)2 −
1

Γ(2α + 1)

)
A2t2α

+

(
− 1

Γ(α + 1)3 +
2

Γ(α + 1)Γ(2α + 1)
− 1

Γ(3α + 1)

)
A3t3α.

(16)

Equating the powers of tα in (15) and (16), we observe that matrix B must satisfy the
following system

B = −A

B2 = Γ(2α + 1)
(

1
Γ(α + 1)2 −

1
Γ(2α + 1)

)
A2

B3 = Γ(3α + 1)
(
− 1

Γ(α + 1)3 +
2

Γ(α + 1)Γ(2α + 1)
− 1

Γ(3α + 1)

)
A3

 . (17)

Eliminating recursively all matrices of the previous system yields

Γ(2α + 1)
(

1
Γ(α + 1)2 −

1
Γ(2α + 1)

)
= 1

Γ(3α + 1)
(
− 1

Γ(α + 1)3 +
2

Γ(α + 1)Γ(2α + 1)
− 1

Γ(3α + 1)

)
= −1

 . (18)

If the first equation of (18) holds, i.e., α > 0 satisfies

Γ(2α + 1)
Γ(α + 1)2 = 2, (19)
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then the second equation of (18) also holds. Equation (19) has the unique solution α = 1, and therefore
also system (17). In consequence—except for the trivial case α = 1—we affirm that the inverse of the
Caputo matrix exponential generally is not another Caputo matrix exponential.

4. On the Computation of the Inverse of the Caputo Matrix Exponential

We now propose to determine the inverse of the Caputo matrix exponential. For this, we introduce
the following definition:

Definition 1. Let A ∈ Cr×r be an arbitrary square matrix and α > 0. We define the sequence of matrices
{Dn(α)}n≥0 as

D0(α) = Ir×r, Dn(α) = −
n−1

∑
k=0

An−kDk(α)

Γ[(n− k)α + 1]
, n ≥ 1. (20)

We are now in the position to proceed with the following theorem, which is a refinement of the
arguments already presented in Section 2.3, explaining why the inverse of exp? (t

αA; α) exists for t > 0,
though sufficiently small, and satisfying inequality (12).

Theorem 1. Let A ∈ Cr×r be a square matrix and 0 < α ≤ 1. Let t > 0 be such that the fractional matrix
function f (t, α), defined by

f (t, α) = ∑
n≥0

Dn(α)tnα, (21)

converges. Then, it holds

(a) exp? (t
αA; α) f (t, α) = Ir×r,

(b) f (t, α) exp? (t
αA; α) = Ir×r.

Proof of Theorem 1. For the proof of convergence of f (t, α), recall that asymptotically

Γ (nα + 1) ∼
√

2π e−αn(αn
)αn+ 1

2 , n→ ∞,

so that we conclude

lim
n→∞

Γ (nα + 1)1/n

nα
= e−ααα.

Hence, the series

∑
n≥1

zn An

Γ (nα + 1)

converges for all z ∈ C. This convergence occurs uniformly on compact subsets of C. Therefore, the set{
z ∈ C : sup

λ∈σ(A)

∣∣∣∣∣∑n≥1

znλn

Γ (nα + 1)

∣∣∣∣∣ < 1

}

contains a circular disc centered at the origin, D
(
0, r(A, α)

)
, with radius r(A, α) > 0. This radius can be

determined by considering the Mittag-Leffler function already introduced in (10), specifically Eα

(
zλ
)

for z, λ ∈ C, which is analytic.
By the spectral mapping theorem, if A ∈ Cr×r, the spectrum σ

(
Eα(zA)

)
of Eα

(
zA
)
∈ Cr×r satisfies

σ
(
Eα(zA)

)
= {Eα(zλ) : λ ∈ σ (A)} .
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If A is not a nilpotent matrix, then sup
{
|λ| : λ ∈ σ (A)

}
> 0. In this case, we choose

r
(

A, α
)
= inf

{
|z| : Eα(zλ) = 0 for some λ ∈ σ (A)

}
= inf

{
|w|
|λ| : Eα(w) = 0, w ∈ C, λ ∈ σ (A)

}
=

inf {|w| : Eα(w) = 0, w ∈ C}
sup

{
|λ| : λ ∈ σ (A)

} > 0

because Eα(0) = 1. Moreover, the series ∑n≥0 Dn(α)zn converges for |z| < r
(

A, α
)
, because on the disc

D
(
0, r(A, α)

)
the matrix function Eα

(
zA
)

is invertible and analytic in C.
If A is a nilpotent matrix, i.e., σ (A) = {0}, and has index k ∈ N, then Dn(α) defined in (20)

vanishes when n ≥ k. Thus, series (21) only has a finite number of terms and apparently converges.
Now, we proceed with the remainder of the Theorem 1, proving part (a).

(a) Applying the respective Definitions (1) and (21), we compute

exp? (t
αA; α) f (t, α) =

(
∑
n≥0

Antnα

Γ (αn + 1)

)(
∑
k≥0

Dk(α)tkα

)

= ∑
n≥0

∑
k≥0

AnDk(α)tkαtαn

Γ (αn + 1)
, taking A(n, k) =

AnDk(α)tkαtαn

Γ (αn + 1)
of (2),

= ∑
n≥0

n

∑
k=0

An−kDk(α)tkαt(n−k)α

Γ [(n− k)α + 1]
= ∑

n≥0

(
n

∑
k=0

An−kDk(α)

Γ [(n− k)α + 1]

)
tnα

= D0(α) + ∑
n≥1

(
n

∑
k=0

An−kDk(α)

Γ [(n− k)α + 1]

)
tnα

= Ir×r + ∑
n≥1

(
n−1

∑
k=0

An−kDk(α)

Γ [(n− k)α + 1]
+ Dn(α)

)
tnα

= Ir×r + ∑
n≥1

(
n−1

∑
k=0

An−kDk(α)

Γ [(n− k)α + 1]
−

n−1

∑
k=0

An−kDk(α)

Γ [(n− k)α + 1]

)
tnα

= Ir×r.

(b) This equality is equivalent to (a), because the matrix operators exp? (t
αA; α) and f (t, α) commute.

In fact, let f (z) and g(z) be holomorphic functions of the complex variable z, both defined on an
open set Ω ⊂ C. Further, let matrix A ∈ Cr×r be such that σ(A) ∈ Ω. Then, from the properties
of the matrix functional calculus ([15], p. 558), it follows f (A)g(A) = g(A) f (A).

Remark 1. Following the same line of argument of this proof, a result similar to that of Theorem 1 is also valid
for bounded operators A acting in a complex Banach space. One requires the well-known fact that σ(A) ∈ C is
non-void and compact together with the equality

sup{|λ| : λ ∈ σ(A)} = lim sup
n→∞

‖An‖1/n .

Then, if A is quasi-nilpotent, it follows sup{|λ| : λ ∈ σ(A)} = 0, and thus r(A, α) = ∞.
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Remark 2. Note that the sequence
{

Dn(α)
}

n∈N0
in Formula (20) may be recast into the following

compact expression

Dn(α) = An
n

∑
`=1

(−1)` ∑
n1+...+n`=n,nj≥1

1
`

∏
j=1

Γ(αnj + 1)
,

providing a closed form and thereby avoiding recurrence relations.

Obviously, for α = 1, we have that (21) is the inverse of the usual matrix exponential:

Theorem 2. Let A ∈ Cr×r be a square matrix and α = 1. Then, the matrix sequence defined by (20) satisfies

Dn(1) =
(−1)n An

n!
, n ≥ 0. (22)

Proof of Theorem 2. We proceed by mathematical induction on. For α = 1, from definition (20),
one obtains for the base case (n = 0):

D0(1) = Ir×r =
(−1)0 A0

0!
.

In the same way, taking n = 1, the definition of sequence Dn(1) immediately yields

D1(1) = −
AD0(1)

1!
= −A

1!
=

(−1)1 A1

1!
.

Finally, in the induction step, we suppose that for k = 0, 1, 2, . . . , n− 1, property (22) is true. Then,
for n, we conclude

Dn(1) = −
n−1

∑
k=0

An−kDk(1)
(n− k)!

= −
n−1

∑
k=0

An−k(−1)k Ak

(n− k)!k!
= −An

n!

n−1

∑
k=0

(−1)kn!
(n− k)!k!

= −An

n!

n−1

∑
k=0

(
n
k

)
(−1)k

= −An

n!

[
n

∑
k=0

(
n
k

)
(−1)k −

(
n
n

)
(−1)n

]
= −An

n!

[
−
(

n
n

)
(−1)n

]
=

(−1)n An

n!
.

Now, we move on to the numerical computation of the inverse of the Caputo matrix exponential
evaluated in the previous example.

Example 2. In Example 1, we have shown that the matrix inverse of the Caputo matrix exponential

exp? (t
αA; α) for A =

(
2 −1
4 −3

)
and α = 1/4 exists at least for t within the interval I = [0, 0.0000594].

It is easy to verify that t = 4× 10−5 ∈ I produces the following numerical result

exp?

((
4× 10−5

)1/4
(

2 −1
4 −3

)
; 1/4

)
=

(
1.177537946538906 −0.08207192162719279

0.32828768650877116 0.767178338402942

)
,

and then

exp?

((
4× 10−5

)1/4
(

2 −1
4 −3

)
; 1/4

)−1

=

(
0.8246349372113879 0.08821856737867267
−0.3528742695146907 1.2657277741047512

)
.



Mathematics 2019, 7, 1137 10 of 11

Evaluating only the first 13 terms of the series (21) with f (0.00004, 0.25), we obtain

f13(4× 10−5, 1/4) =
13

∑
k=0

Dk(1/4)(4× 10−5)k/4 =

(
0.8246349372113879 0.08821856737867273
−0.3528742695146909 1.2657277741047515

)
,

with an approximation error∥∥∥∥∥∥exp?

((
4× 10−5

)1/4
(

2 −1
4 −3

)
; 1/4

)−1

− f13(4× 10−5, 1/4)

∥∥∥∥∥∥
2

= 3.1650× 10−16.

Example 3. Consider again the matrix A given in (13). In this case, the elements of the matrix sequence
{Dn(α)}n≥0 can be calculated explicitly:

D0(α) = I4×4,

D1(α) = − A
Γ(α + 1)

,

D2(α) = A2
(

1
Γ(α + 1)2 −

1
Γ(2α + 1)

)
,

D3(α) = A3
(
− 1

Γ(α + 1)3 +
2

Γ(2α + 1)Γ(α + 1)
− 1

Γ(3α + 1)

)
,

Dn(α) = 0 for n ≥ 4.

Taking into account Definition (21), one simplifies

f (t, α) = ∑
n≥0

Dn(α)tnα =
3

∑
n=0

Dn(α)tnα = D0(α) + D1(α)tα + D2(α)t2α + D3(α)t3α

= I4×4 −
A

Γ(α + 1)
tα + A2

(
1

Γ(α + 1)2 −
1

Γ(2α + 1)

)
t2α

+ A3
(
− 1

Γ(α + 1)3 +
2

Γ(2α + 1)Γ(α + 1)
− 1

Γ(3α + 1)

)
t3α

=


1 − tα

Γ(α+1)
t2α

Γ(α+1)2 − t2α

Γ(2α+1) − t3α

Γ(α+1)3 +
2t3α

Γ(α+1)Γ(2α+1) −
t3α

Γ(3α+1)

0 1 − tα

Γ(α+1)
t2α

Γ(α+1)2 − t2α

Γ(2α+1)

0 0 1 − tα

Γ(α+1)
0 0 0 1

 ,

which gives the same result as the matrix inverse already calculated in (14).

5. Conclusions

The starting point of this discussion was the observation and well-known fact that the conventional
matrix exponential always possesses an inverse due to its semigroup property. On the other hand,
Caputo’s matrix exponential carries a leading role in fractional calculus.

In this work, we have shown that for the Caputo matrix exponential the inverse does not
necessarily exist per se. Nevertheless, its existence is guaranteed in a specific interval, which we
have determined to relate to an uncomplicated inequality, viz. Equation (12). Furthermore, we have
established that this inverse is generally not again a Caputo matrix exponential.

Additionally, several explicit procedures have been outlined to calculate the inverse of the Caputo
matrix exponential, and it is hoped that they will open up novel pathways for the development of
future numerical methods for its efficient computation.
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