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Abstract The calculation of the smallest number of steps needed to deter-
ministically reach all local states of an nth-order positive 2-D system, which
is called local reachability index (ILR) of that system, was recently tackled
by means of the use of a suitable composition table. The greatest index ILR

obtained in the previous literature was n + 3 (⌊n/2⌋)2 for some appropriated
values of n. Taking as a basis both a combinatorial approach of such systems
and the construction of suitable geometric sets in the plane, an upper bound
on ILR depending on the dimension n for a new family of systems is charac-
terized. The 2-D influence digraph of this family of order n ≥ 6 consists of
two subdigraphs corresponding to a unique source s. The first one is a cy-
cle involving the first n1 vertices and is connected to the another subdigraph
through the 1-arc (2, n1+n2), being the natural numbers n1 and n2 such that
n1 > n2 ≥ 2 and n−n1−n2 ≥ 1. The second one has two main cycles, a cycle
where only the remaining vertices n1 + 1, . . . , n appear and a cycle contain-
ing only the vertices n1 + 1, . . . , n1 + n2 − 1. Moreover, the last vertices are
connected through the 2-arc (n1 + n2 − 1, n). Furthermore, if n ≥ 12 and is
a multiple of 3, for appropriate n1 and n2, the ILR of that family is at least
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cubic, exactly, it must be n3+9n2+45n+108
27 , which shows that some local states

can be deterministically reached much further than initially proposed in the
literature.

Keywords Positive two dimensional (2-D) systems · Fornasini-Marchesini
models · Hurwitz products · Influence digraph · Local reachability index ·
Composition table
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1 Introduction

In this paper, we focus our attention on positive two-dimensional (2-D) systems
described by the Fornasini-Marchesini state-space model (see [1] and [26])
which is as follows:

xi+1,j+1 = A1xi+1,j +A2xi,j+1 +B1ui+1,j +B2ui,j+1 (1)

with local states x·,· ∈ R
n
+, inputs u·,· ∈ R

m
+ , state matrices A1, A2 ∈ R

n×n
+ , in-

put matricesB1, B2 ∈ R
n×m
+ and initial global state χ0 := {xh,k : (h, k) ∈ C0}

being C0 := {(h, k) : h, k ∈ Z, h+ k = 0}. Let us denote these systems by
(A1, A2, B1, B2).

It is well-known that the nonnegativity condition yields a different treat-
ment of these control systems based upon the theory of nonnegative matrices.
In fact, in the last decade has been an increasing interest in the theory of
positive systems (for example, see [4], [7], [8], [14] and [19]), which appear in
many different real situations such as in economics, biological, environmental
and chemical processes, among others (see [25], [33], [37], [38] and [43]). A con-
siderable amount of literature has been published on the analysis of structural
properties and more specifically on the reachability property (see [12], [13],
[17], [23], [24], [32], [42] and [44]). In fact, it is still the subject of a detailed
investigation (see [3], [5], [6], [15], [18], [22], [34], [35], [36], [40], [45] and [46],
among others).

When dealing with positive 2-D discrete state-space models, the structural
property of reachability is introduced both in a local form, which refers to
single local states, and in a global form (see [29], [31] and [41]). Throughout
this work, we pay heed to the study of the smallest number of steps needed
to reach all local states of a system, that is, the local reachability index of
that systems. This index plays an important role because it enables us to
determine in a finite number of steps whether a system is locally reachable or
not as well as to know how many separations sets at most are needed to achieve
the states. Previous studies such as [10], [11], [16] and references therein, [20]
and [21] have studied and reported that the reachability index for positive 1-D
systems is always bounded by the dimension n. However, several attempts in
two dimensional case (see [1], [2] and [9] and references therein) have been
made to obtain a general formula depending on n on the local reachability
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index for any positive 2-D systems. So far, despite the use of graph-theoretic
techniques, to solve this question seems to be a nontrivial goal to accomplish
due to its computational complexity (see [30]). In [39], an alternative method
for determination of a lower reachability index and reachability index space
for a positive second Fornasini-Marchesini model is proposed.

To the best of the authors’ knowledge, the most promising tool used until
now to tackle the study of the local reachability index is the composition table
introduced in [2], which enables us to calculate easily the Hurwitz products
involved in a reachability matrix in k-steps for a positive integer k. Besides
that, from that instrument, it is possible to construct suitable geometric sets
in the plane covering the greatest number of entries possible on such the table.
This new geometrical approach allows us to reduce the positions on the table
where local states can be deterministically reached and therefore, to construct
families of systems with greatest local reachability index, even with a cubic lo-
cal reachable index, as shown in this paper. More specifically, from now on, the
local reachability index for a special class of positive 2-D systems is completely
characterized in terms of the order n ≥ 6 as well as of the natural numbers n1

and n2 determining their corresponding influence digraphs. Additionally, it is
deduced that the absolute maximum value of ILR for the associated system
family F is obtained if n ≥ 12, n2 =

⌊

n+4
3

⌋

and n1 = n2+1. Besides that, if n

is also a multiple of 3, ILR is cubic, exactly n3+9n2+45n+108
27 , that in compar-

ison with the previously suggested greatest upper bound n + 3 (⌊n/2⌋)2 (see
[2]) is considerably larger and it seems to be more much realistic, although
almost surely it can be refined on the whole.

The paper has been structured as follows: Section II introduces some nota-
tions and basic definitions. In Section III, a new family of positive 2-D systems
whose local reachability index largely exceeds the last upper bound given in
the literature is provided. Finally, in Section IV, a bound on that local reacha-
bility index is studied, which even turn to be cubic under suitable conditions.

2 Preliminaries

For the convenience of the reader, we repeat the relevant material from [2],
thus making our exposition self-contained.

We denote by ⌊z⌋ the lower integer-part of z ∈ R and by cj(A) the jth
column of A ∈ R

n×n.

Definition 1 (see [27]) The Hurwitz products of the n × n matrices A1 and
A2 are defined as follows:

– A1
i⊔⊔jA2 = 0, when either i or j is negative,

– A1
i⊔⊔0A2 = Ai

1, if i ≥ 0, A1
0⊔⊔jA2 = Aj

2, if j ≥ 0,
– A1

i⊔⊔jA2 = A1(A1
i−1⊔⊔jA2) +A2(A1

i⊔⊔j−1A2), if i, j > 0.

Observe that
∑

i+j=ℓ

A1
i⊔⊔jA2 = (A1 +A2)

ℓ.
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Definition 2 (see [29]) A 2-D state-space model (1) is (positively) locally
reachable if, upon assuming χ0 = 0, for every state x∗ ∈ R

n
+, there exists

(h, k) ∈ Z × Z, h + k > 0, and a nonnegative input sequence u·,· such that
xh,k = x∗. When so, the state is said to be (positively) reachable in h + k
steps. The smallest number of steps allowing to reach all nonnegative local
states represents the local reachability index ILR of such a system.

Characterizations of the local reachability of a positive 2-D system (A1, A2,
B1, B2) can be established in terms of its reachability matrix. The reachability
matrix in k-steps is given by

Rk =
[

B1 B2 A1B1 A1B2 +A2B1 A2B2 A2
1B1 · · · Ak−1

2 B2

]

=
[

(A1
i−1⊔⊔jA2)B1 + (A1

i⊔⊔j−1A2)B2

]

i,j≥0, 0<i+j≤k

where k ∈ N. It is known (see [29]) that the local reachability property holds
if and only if there are n pairs (hi, ki) ∈ N×N, i = 1, . . . , n, and n indices j =
j(i) ∈ {1, 2, . . . ,m} such that (A1

hi−1⊔⊔kiA2)cj(B1) + (A1
hi⊔⊔ki−1A2)cj(B2)

is a positive ith monomial vector, that is, there exists k ∈ N such that Rk

contains an n× n monomial matrix. If so,

ILR = max
i

min
hi,ki

{hi + ki | (A1
hi−1⊔⊔kiA2)cj(B1) + (A1

hi⊔⊔ki−1A2)cj(B2)

is an i−monomial vector for some j = j(i)}

We recall that a positive ith monomial vector (or simply i-monomial vector
throughout this paper) is a positive multiple of the ith unit vector ei of R

n.
Similarly, a monomial matrix is a nonsingular matrix having a unique positive
entry in each row and column.

From now on, we consider a family of colored digraphs constructed from
the matrices of the system (A1, A2, B1, B2) as follows:

Definition 3 (see [29]) Associated with system (1), a directed digraph called
2-D influence digraph is defined. It is denoted by D(2)(A1, A2, B1, B2) and it is
given by (S, V,A1,A2,B1,B2), where S = {s1, s2, . . . , sm} is the set of sources,
V = {v1, v2, . . . , vn} is the set of vertices, A1 and A2 are subsets of V × V
whose elements are named A1-arcs and A2-arcs (or simply 1-arcs and 2-arcs),
respectively, while B1 and B2 are subsets of S × V whose elements are tagged
B1-arcs and B2-arcs (or simply 1-arcs and 2-arcs), respectively. There is an
A1-arc (A2-arc) from vj to vi if and only if the (i, j)th entry of A1 (A2) is
nonzero. There is a B1-arc (B2-arc) from sℓ to vi if and only if the (i, ℓ)th entry
of B1 (B2) is nonzero.

Definition 4 A path in D(2)(A1, A2, B1, B2) from vi1 to vip is an alternating
sequence of vertices and arcs {vi1 , (vi1 , vi2), vi2 , . . . , (vip−1

, vip), vip} such that
(vi1 , vi2) ∈ A1∪A2∪B1∪B2 and (vik , vik+1

) ∈ A1∪A2 for all k = 2, . . . , p−1.
A path is termed closed if the initial and final vertices coincide. In accordance
with reference [29], an sℓ-path is a path where vi1 = sℓ. The path length is
defined to be equal to the number of arcs it contains, that is, p+ q being p (q)
the number of 1-arcs (2-arcs) occurring in the path P. Furthermore, the pair
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(p, q) is called the composition of P, a circuit is a closed path and finally, if
each vertex appears exactly once as the first vertex of an arc, then the circuit
is said to be a cycle.

Remark 1 Given P ≡ {vi1 , (vi1 , vi2), vi2 , . . . , vip} and Q ≡ {vj1 , (vj1 , vj2), . . .,
(vjq−1, vjq ), viq} two paths such that vip = vj1 , we denote the path from vi1
to vjq obtained by concatenating P and Q briefly by P ⊔Q. Besides that, if C
is a cycle, from now on, ηC stands for the circuit resulting from doing η laps
around the cycle, η being a positive integer.

Remark 2 In the sequel, we will write an 1-arc (2-arc) connecting two consec-
utive vertices vk and vk+1 simply as k −→ k+1 (k 99K k+1) where v1, . . . , vn
are relabeled as their subscripts.

Definition 5 (see [29]) If there exists an sℓ-path in D(2)(A1, A2, B1, B2) from
the source sℓ to the vertex vi, then vi is said to be reachable from sℓ. Besides
that, if for any ℓ ∈ {1, . . . ,m}, all sℓ-paths of composition (p, q) end in the
same vertex v ∈ V , then v is said to be deterministically reachable from the
source sℓ with composition (p, q).

The shortest length of the sℓ-paths deterministically reaching v is called
the ℓ-index of v, i.e. Iℓ(v) = min{p + q | (p, q) is the composition of an sℓ −
path deterministically reaching v}. Moreover, ID(v) = min{Iℓ(v) | ℓ = 1, . . . ,m}
is named the determinant index of v. Hence, ILR = max{ID(v) | v ∈ V }.

To facilitate the analysis of the local reachability index, a new tool was
introduced in [2]. Exactly, from an algebraic point of view, a double-entry
table generated just entering at each table entry (i, j), i, j ∈ Z+, the corre-
sponding Hurwitz product

(

A1
j−1⊔⊔iA2

)

B1 +
(

A1
j⊔⊔i−1A2

)

B2 involved in
the reachability matrix in k-steps for a large enough k. This composition table
is illustrated in Fig. 1.

Obviously, the aforementioned table can be interpreted from a combina-
torial point of view. In fact, for every ℓ ∈ {1, . . . ,m}, the list of vertices
obtained by a sℓ-path for a composition (i, j) coincide with the subindices cor-
responding to the nonzero components of the ℓth column of (A1

i−1⊔⊔jA2)B1+
(A1

i⊔⊔j−1A2)B2, which is placed in the table entry (j, i). Hence, for each source
sℓ, the vertices located in cell (0, 1) ((1, 0)) are associated with the nonzero
components of the corresponding column of the matrix B1 (B2). For the re-
maining table entries, a vertex v can appear in the position (j, i) on the table
only if there exists at least either an 1-arc directed toward v from a vertex in
cell (j, i− 1) or a 2-arc directed toward v from a vertex in position (j − 1, i).

Remark 3 Note that a vertex is deterministically reached if and only if it can
be located on an table entry without no other vertices.

Applying the theory of either positive 1-D systems or nonnegative matrices,
let us deduce the following simple lemmas, which link the analysis of the
reachability property of positive 1-D systems to that of positive 2-D systems:
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p

q
0 1 2 3 · · ·

0 B1 A1B1 A2
1B1 · · ·

1 B2 A2B1 + A1B2

A2A1B1

+
A1(A1B2 + A2B1)

(A1
2
⊔⊔

1A2)B1

+
(A1

3
⊔⊔

0A2)B2

· · ·

2 A2B2

A1A2B2

+
A2(A2B1 + A1B2)

(A1
1
⊔⊔

2A2)B1

+
(A1

2
⊔⊔

1A2)B2

(A1
2
⊔⊔

2A2)B1

+
(A1

3
⊔⊔

1A2)B2

· · ·

3 A2
2B2

(A1
0
⊔⊔

3A2)B1

+
(A1

1
⊔⊔

2A2)B2

(A1
1
⊔⊔

3A2)B1

+
(A1

2
⊔⊔

2A2)B2

(A1
2
⊔⊔

3A2)B1

+
(A1

3
⊔⊔

2A2)B2

· · ·

...
...

...
...

...
. . .

Fig. 1 Composition Table.

Lemma 1 (see Theorem 1 in [21]) If an ℓ-monomial vector appears in the
position (0, i) ((j, 0)) on the table where i > n (j > n), then such an ℓ-
monomial vector must necessarily be found on the preceding positions (0, ℓ)
((ℓ, 0)) for some ℓ ∈ {1, . . . , n}.

Lemma 2 (see Lemma 2 in [44]) If an ℓ-monomial vector appears in the
position (j, i) on the table where j · i ≥ 1, then such an ℓ-monomial vector
must be necessarily an ℓ-monomial column of the matrix [A1|A2]. Besides that,
if an ℓ-monomial vector comes up in the position (0, i) ((j, 0)) on the table
where i > 1 (j > 1), then such an ℓ-monomial vector must be necessarily an
ℓ-monomial column of the matrix A1 (A2).

Given any positive 2-D system (A1, A2, B1, B2), let us define (A1, A2, B1, O)
(similarly, (A1, A2, O,B2)) as the 2-D system derived from the initial system
maintaining the same state and control matrices except for B2 (B1) that is
replaced by the zero matrix O of an appropriate size. Clearly, taking into ac-
count the definition of the Hurwitz Products, the following elementary lemma
can be formulated:

Lemma 3 The composition table pertaining to the system (A1, A2, B1, B2) is
the overlapping, entry by entry, of the composition tables associated with the
systems (A1, A2, B1, O) and (A1, A2, O,B2).

In order to get families with a greater local reachability index, let us es-
tablish connections between ILR of a system (A1, A2, B1, B2) and the related
indices of the associated systems (A1, A2, B1, O) and (A1, A2, O,B2).

Lemma 4 Suppose that (A1, A2, B1, B2), (A1, A2, B1, O) and (A1, A2, O,B2)
are locally reachable positive 2-D systems then, ILR of (A1, A2, B1, B2) is
greater than or equal to the corresponding indices of both remaining systems.
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s2 1

3

0 1 2 3 4 5 6

0 1,2,3 2,3 2 2 2 2

1 1,2,3 1,2,3 1,2,3 2,3 2 2

2 1 1,3 1,3 1,3 3

3 1 1,3 1,3 1,3

4 1 1,3 1,3

5 1 1,3

6 1

Fig. 2 Digraph and composition table in connection with example 1.

0 1 2 3 4 5 6

0

1    1

2

 3

4

5

6

21,2,3 2,3 2 2 2

1,3

1,3

1,3

1,3

1,3

1,3

   3

   1

   1

   1

   1

   3

0 1 2 3 4 5 6

0

1 1,2,3   2,3 2 2 2

2 1 1,3  3

3 1 1,3 1,3   3

4 1 1,3 1,3

5 1 1,3

6 1

2

Fig. 3 Composition table as regard to (A1, A2, B1, O) and (A1, A2, O,B2), respectively.

s

1 2 43

5 6 7 8 9

Fig. 4 Digraph as regards to the system examined in example 2.

However, it is worth pointing out an instance where strict inequality holds.

Example 1 Let us take the matricesA1 = [e3 | e2 | 0] ∈ R
3×3
+ ,A2 = [e1 | 0 | e1] ∈

R
3×3
+ and B1 = B2 = [e1 + e2 + e3] ∈ R

3×1
+ which define a system (1) whose

2-D influence digraph and composition table are represented in Fig. 2.
Now, we construct the composition tables of (A1, A2, B1, O) and (A1, A2, O,B2)

from the initial one, which are given in Fig. 3. We remark that both systems
are locally reachable and their associated local reachability indices are equal
to 4 while the original system is also locally reachable but ILR = 6, which is
strictly greater than the previous ones.

In order to illustrate the way of analyzing the local reachability property
for positive 2-D systems through their composition table, let us present the
following example.

Example 2 The positive 2-D system (A1, A2, B1, B2) of order n = 9 described
by the quadruple

([e2 | e7 | 0 | 0 | e6 | e5 | e8 | e9 | e5] , [0 | e3 | e4 | e1 | e6 | e7 + e9 | 0 | 0 | 0] , [e1 + e5] , [e5])

has a 2-D influence digraph as given in Fig. 4 as well as a composition table
as partially displayed in Fig. 5.
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0 1 2 3 4 5 6 7

0 1,5   2,6   5,7  6,8  5,9  5,6  5,6

1   5 6
3,5,7

   9
5,6,8

5,6,7

  9
5,6,8

5,6,7

  9

5,6,7

 8,9

2     6
5,7

 9

4,5,6

   8

5,6,7

   9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

3  7,9
5,6

 8

1,5,6

 7,9

2,5,6

7,8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

4
6,7

 9

5,6,7

 8,9

3,5,6

7,8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

5 7,9
5,6,7

 8,9

4,5,6

7,8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

6 6,7,9
1,5,6

7,8,9

2,5,6

7,8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

7  7,9
5,6,7

8,9

3,5,6

7,8,9

5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

13 14 15 16 17 18 19 20

36 2   7 8  6,7,9

37 3
5,6,7

 8,9

38 4
5,6,7

 8,9

5,6,7

 8,9

39
5,6,7

 8,9

5,6,7

 8,9

40
5,6,7

 8,9

41
5,6,7

 8,9

42
5,6,7

 8,9

1
5,6,7

 8,9

5,6,7

 8,9

5,6,7

 8,9

2   7 81

2   7 81

3

4

 6,7,9

   7,9

5,6,7

 8,9

 6,7,9

   7,9

5,6,7

 8,9

     9

Fig. 5 Composition table associated with example 2.

In short, let us represent the cycles C1 ≡ {1 −→ 2 99K 3 99K 4 99K 1},
C2 ≡ {5 99K 6 99K 9 −→ 5}, C3 ≡ {5 −→ 6 −→ 5} and the path P1 ≡ {7 −→
8 −→ 9}.

A quick glance at Fig. 5 reveals the determinant index for each one of
the vertices along with the composition for which the corresponding s-path
deterministically reaches it, that is,

ID(v5) = 1, ID(v6) = 2, ID(v1) = 25
ID(v4) = 28, ID(v3) = 31, ID(v2) = 34
ID(v7) = 43, ID(v8) = 52, ID(v9) = 61.

Besides that, the system (A1, A2, B1, B2) is locally reachable and ILR = 61.

However, to entirely construct the composition table is not useful from a
computational point of view. Thus, let us significantly reduce the number of
vertices appearing in the entries on the table. Focusing on the structure of
the digraph given in Fig. 4, we emphasize that if there is some table position
(q, p) involving at least one vertex in C3 then all cells (q, p2) with p2 ≥ p are
occupied by at least vertex 5 or 6. Hence, we can assure that if there is some
position on the composition table involving at least one vertex in C3, all entries
to its right-hand side in that same row also contains at least vertex 5 or vertex
6. In addition, no new vertices can be deterministically reached in all these
entries. Thus, let us omit vertices 5 and 6 in the corresponding positions on the
table and let us blue paint such entries to mark this restricted zone associated
with vertices in C3. Therefore, clearly, no vertices forming the cycle C1 can
be deterministically reached while appear in entries inside the blue zone. As
a consequence, let us use a schematic representation of the composition table
(see Fig. 6) where only some vertices belonging to C1, C2 and P1 are indicated.
Obviously, this new visual model is simpler than the previous one.

Furthermore, this new approach allows us to limit the set of entries on
the table where a vertex can be deterministically reached or alternatively, to
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1

1

1

2

2

2

3

3

3

4

4

7

7

7

8

8

8

9

9

9

5

6

79 5

6

79

36

37

38

39

40

41

42

43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

1

1

1

1

1

1

1

2

2

2
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Fig. 6 A sketch for the composition table of example 2.

define broad regions with all their cells completely filled with vertices and in
this way, to study how far, as a maximum, we have to go to deduce ILR.

3 Local reachability index for a special class of systems

From the sketch given in example 2, let us construct a new family of positive 2-
D systems whose local reachability index largely exceeds the last upper bound
given in the literature (see [2]), that is, n + 3 (⌊n/2⌋)2 for some odd natural
number n ≥ 5. Namely, we consider a family F of nth-order systems with
n ≥ 6 and whose influence digraph associated is depicted in Fig. 7, being the
natural numbers n1 and n2 such that n1 > n2 ≥ 2 and n− n1 − n2 ≥ 1.

Theorem 1 Every nth-order system of family F with n ≥ 6, the natural num-
bers n1 and n2 such that n1 > n2 ≥ 2 and n−n1−n2 ≥ 1 and whose influence
digraph associated is depicted in Fig. 7 is (positively) locally reachable, and
furthermore,

ILR ≤ (3 + k)n2(n1 − 1) + n2
1

n1 − n2
, with k = n− n1 − n2. (2)
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s

1 2

1 2n n  +1+ n

1n

1n +2
1n +1 1 2n n+

1 2n n  -1+

Fig. 7 Digraph for family F .

Proof To reduce notation, we denote the path {n1 + n2 −→ n1 + n2 + 1 −→
· · · −→ n} of composition (k, 0) (see Fig. 7) by P1 and also, we define the cycles
C1 ≡ {1 −→ 2 99K · · · 99K n1 99K 1}, C2 ≡ {n1 + 1 99K · · · 99K n1 + n2 − 1 99K

n −→ n1 + 1} and C3 ≡ {n1 + 1 −→ · · · −→ n1 + n2 − 1 −→ n1 + 1} whose
compositions are (1, n1 − 1), (1, n2 − 1), (n2 − 1, 0), respectively.

By its composition table (see Fig. 8), we can notice the following facts:

– All the possible s-paths of composition (0, j), with 1 ≤ j ≤ n2−1, terminate
at vertex n1+j, and therefore, we can affirm that n1+j is deterministically
reachable with composition (0, j). Thus, the vertices n1+1, n1+2, . . . , n1+
n2−1 are deterministically reachable and their determinant index is smaller
than or equal to n2 − 1. Note that C3 is made up of those vertices, which
have been represented as a white ellipse inside a shady rectangle on the
composition table (see Fig. 8).

– Taking into account that C3 consist only of 1-arcs, we can assure that if
there is some position on the composition table involving at least one vertex
in C3 then, the remaining cells to its right-hand side in that same row are
also occupied by vertices in C3 (although omitted on the table, see step
2, Fig. 8). Moreover, as C3 is accessible from the source s by using an 1-
arc, it is clear that, without utilizing 2-arcs, there are no deterministically
reachable vertices out of C3.

– At first, the vertices in C1 (illustrated in Fig. 8 by white stars except for
vertex 2, which is black, inside a lined rectangle) are reachable by s-paths
needing more 1-arcs than those in cycle C2, that is, they are placed on
the composition table further to the right than those in C2. However, they
are not deterministically reached since there are more vertices in the cells
containing such vertices. Observe that if a vertex in C1 is placed on positions
(j, i) then it appears again in (j+n1−1, i+1), in (j+2(n1−1), i+2), and so
on (depending on the number of laps done around the cycle C1). Moreover,
all these positions on the table can be connected through a straight line (for
instance, see Fig. 8, line r3 associated with vertex 2). Similar reasonings
can be applied to derive straight lines for vertices in C2 (see Fig. 8, line r2
corresponding to vertex n1 + n2 − 1), and for those in P1 (combining this
path with the cycle C1, (see Fig. 8, line r1 corresponding to vertex n)).
Obviously (see step 3, Fig. 8), taking into account that the number of 2-
arcs involved to cover the laps done around C2 (n1 > n2) is greater than
around C1, the lines r2 and r3 intersect, then, for a large enough number
of laps, the vertices in C1 go out of the region of entries cover by vertices
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1
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n

1 ⋯32pq 0

0
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1
r
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r

⋯

⋯
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n
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n

1 ⋯32pq 0

0

3k +

1
r

2
r

3
r

⋯

⋯

3
r

2
r

3
r

1
r

⋯

⋯

⋯

2
r

1
r

3
r

⋯

⋯

Step 1

Step 4Step 3

Step 2

Fig. 8 Step 1:A sketch for the composition table of any system belonging to F . Step 2: C3
fills the cell rows with vertices in C3. Step 3: Precise moment in which the last vertex in C1 is
deterministically reached. Step 4: Instant in which the last vertex in P1 is deterministically
reached.

in C3. Thus, we can deterministically reach all vertices in C1. Furthermore,
clearly, the last vertex deterministically reached in C1 is 2.

– Clearly, using line r1 instead of r3 and reasoning as before, the vertices in
P1 (shown by white diamonds) can be deterministically reached (in fact,
after doing it the vertices in C1).

– Finally, analyzing the slope of each lines for vertices in C1 and P1, the last
vertex deterministically reached is n (see step 4, Fig. 8) and this event
occurs after doing one more lap around cycle C1 subsequently to the inter-
section of lines r1 and r2.

Therefore, to determine the local reachability index for any system of this
family, we can analyze the determinant index of vertex n. Namely, by seeing
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how the cycles C1 and C2 appear on the composition table, we have to reckon
up the intersection point of the line r1 that has slope (n1 − 1) and passes
through the point (3+ k, 0) and the line r2 that has slope (n2 − 1) and passes
through the point (0, n2). Such a intersection point (x, y) is the solution of the
system

y = (n1 − 1)(x− (3 + k)) ,
y = n2 + (n2 − 1)x ,

that is,

x =
(3 + k)(n1 − 1) + n2

n1 − n2
,

y = n2 + (n2 − 1)
(3 + k)(n1 − 1) + n2

n1 − n2
.

Since the only valid solutions are those that provide a composition, we must
impose that x, y ∈ N0. Thus, doing one more lap around the cycle C1, we
choose

x0 =

⌊

(3 + k)(n1 − 1) + n1

n1 − n2

⌋

,

y0 = (n1 − 1)(x0 − (k + 3)) ,

and we can write ID(n) = x0 + y0, that is,

ID(n) =

⌊

(3 + k)(n1 − 1) + n1

n1 − n2

⌋

+ (n1 − 1)

⌊

(3 + k)(n2 − 1) + n1

n1 − n2

⌋

. (3)

If λ1 and λ2 stand for the lower integer-parts appearing in equation (3)
then

(3 + k)(n1 − 1) + n1 = λ1(n1 − n2) + t1 ;
(3 + k)(n2 − 1) + n1 = λ2(n1 − n2) + t2

with t1 and t2 ∈ [0, n1 − n2) ∩ Z+.
Subtracting these two equations, (3 + k)(n1 − n2) = (λ1 − λ2)(n1 − n2) +

(t1− t2). Hence, t1 = t2 and (3+k) = (λ1−λ2). Plugging these equalities into
(3), ID(n) = λ1 + (n1 − 1)λ2, then

ID(n) = (3 + k) + n1

⌊

(3 + k)(n2 − 1) + n1

n1 − n2

⌋

.

Consequently, using that ⌊x⌋ ≤ x and simplifying, we deduce the desired
formula

ID(n) ≤ (3 + k)n2(n1 − 1) + n2
1

n1 − n2
.

Alternatively, for n = n1 + n2 + k, (2) is rewritten as

ILR ≤ (3 + n− n1 − n2)n2(n1 − 1) + n2
1

n1 − n2
. (4)
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4 Maximum value of ILR for F

The bound given in (4) depends on n1 and n2 with the aforementioned re-
strictions. Now, for every n ≥ 6 let us find the values of these variables that
maximize such a index. With this aim, we define the following function

f(n1, n2) :=
(3 + n− n1 − n2)n2(n1 − 1) + n2

1

n1 − n2
. (5)

To analyze its behaviour, we make a change of variables u = n1 + n2, v =

n1 − n2. Let us denote g(u, v) := f

(

u+ v

2
,
u− v

2

)

and from (5), it follows

that

g(u, v) =
1

4v

[

(3 + n− u)(u− v)(u+ v − 2) + (u+ v)2
]

.

Thus, the partial derivative of g(u, v) with respect to u is

∂g(u, v)

∂u
=

−1

4v

[

3u2 − 2(6 + n)u+ 2(3 + n)− v2
]

.

Then, we can state that

∂g(u, v)

∂u
= 0 ⇔ u =

(6 + n)±
√
18 + 6n+ n2 + 3v2

3
.

As u =
(6 + n)−

√
18 + 6n+ n2 + 3v2

3
does not satisfy that u = n1 + n2 ≥ 5

for any suitable number n (under the constraints), the value desired is u0(v) =

(6 + n) +
√
18 + 6n+ n2 + 3v2

3
.

Let us defineG(v) := g(u0(v), v) =
54+27n+9n2+n3+81v+27nv−9nv2+(n2+6n+18+3v2)

3
2

54v ,
then the derivative of G is,

G′(v) = −n3 + 9n2 + 27n+ 9nv2 + 54 + (n2 + 6n+ 18− 6v2)
√
n2 + 6n+ 18 + 3v2

54v2
.

Taking Z(v) the numerator of G′(v) with changed sign, let us check that
Z(v) > 0 for every v ∈ [0, n], equivalently, G(v) is decreasing at v if v ∈ (0, n).

Initially, we calculate Z ′(v) = − 9v[6(3+v2)+n(6+n−2
√
n2+6n+18+3v2)]√

n2+6n+18+3v2
. Notice

that Z ′(v) = 0 has as real solutions, v = ±
√

−3− n+ n
√
12+4n+n2

2
√
3

and v = 0,

and also Z ′′(0) = 9(2n −
√
n2 + 6n+ 18) > 0, ∀n ≥ 4, then, Z(v) has a local

minimum point at v = 0.
On the one hand Z(0) = 54+ 27n+9n2 +n3 + (18+ 6n+n2)(3/2) > 0, on

the other hand

Z(n) = 10n3 + 9n2 + 27n+ 54 + (6n+ 18− 5n2)
√

6n+ 18 + 4n2

and for every n ≥ 3, (6n+ 18− 5n2) < 0, thus, we can affirm that (6n+ 18−
5n2)

√
6n+ 18 + 4n2 is greater than (6n + 18 − 5n2)(2n + 4). Hence, Z(n) is
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=

1

2

n

n

n

+

=

2 2n =

Fig. 9 Feasible region.

bounded from below by n2 + 87n+ 126 > 0 since Z(n) > 10n3 + 9n2 + 27n+
54 + (6n+ 18− 5n2)(2n+ 4) = n2 + 87n+ 126 > 0.

In short, Z(v) > 0 for every n ≥ 4 and v ∈ [0, n], so we deduce that
G′(v) < 0 and G(v) is decreasing at (0, n). Consequently, the maximum value
of G(v) is obtained for the minimum possible value of v, i.e., v = 1. Thus,
n1 − n2 = 1, n1 = n2 + 1, k = n − 1 − 2n2 and plugging this equalities into
(5), f(n2 + 1, n2) = (3 + n− 2n2)n

2
2 + 2n2 + 1.

Now, its derivative with respect to n2 is
∂f(n2+1,n2)

∂n2
= 2+6n2+2nn2−6n2

2.

As a consequence, ∂f(n2+1,n2)
∂n2

= 0 iff n2 =
3 + n±

√
n2 + 6n+ 21

6
.

By the evaluation of the second derivate, f(n2 +1, n2) has a relative max-

imum point at n′
2 = 1

6

[

3 + n+
√

n2 + 6n+ 21
]

and a local minimum point 1

at n′′
2 = 1

6

[

3 + n−
√

n2 + 6n+ 21
]

. In search of absolute maximum points, we

must know when the local maximum point is a feasible solution since our solu-
tions must belong to the region D = {(n1, n2) ∈ N

2 | n1+n2 < n, n1 > n2 ≥ 2}
whose illustration is given in Fig. 9.

To determine whether the relative maximum point is in the aforementioned
region, we bound from below and from above n′

2, if possible, by using values
in D. Observe that n2 +6n+21 can be expressed either as (n+3)2 +12 or as
(n+ 4)2 − 2n+ 5 then,

n

3
+ 1 < n′

2 =
3 + n+

√
n2 + 6n+ 21

6
<

n

3
+

7

6
. (6)

Let us analyze this inequality depending on the possible values of n. Namely,
for the sake of brevity, we study only if n = 3p − 1 with p ∈ N since similar
reasoning as in this case can be applied to the cases n = 3p and n = 3p+ 1.

If n = 3p−1, the inequalities given in (6) are reduced to p+ 2
3 < n′

2 < p+ 5
6 .

Hence, either n2 = p or n2 = p + 1 provides the maximum point. Thus, it is

1 Note that n′′

2
< 1 for every n and so, it would always be out of D.
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sufficient to evaluate f for such values,

f(p+ 1, p) = (p+ 2)p2 + 2p+ 1,

f(p+ 2, p+ 1) = p(p+ 1)2 + 2(p+ 1) + 1.

As f(p + 2, p + 1) − f(p + 1, p) = p + 2 > 0, we choose n2 = p + 1 (in the
remaining cases too).

Summarising, for every n ∈ [3p− 1, 3p+ 1] the natural number leading to
the maximum value of f(n2 + 1, n2) is n2 = p + 1 and it can be written as
n2 =

⌊

n+1
3

⌋

+ 1 =
⌊

n+4
3

⌋

.
Clearly, this number n2 (f takes its maximum value only if n1 = n2 + 1)

must meet the condition (n2+1, n2) ∈ D. Hence, we must impose that 2n2+1 ≤
n− 1 and therefore,

2

⌊

n+ 4

3

⌋

≤ n− 2 ⇔
⌊

n+ 4

3

⌋

≤ n

2
− 1 ,

which holds for every n ≥ 12. Besides that if 6 ≤ n ≤ 11, the maximum
values of f(n1, n2) for n1 = n2 + 1 are attained at the boundary of D and so,
n2 =

⌊

n
2

⌋

− 1.
As a result, the bound obtained for the local reachability index of systems

in F is given by

ILR ≤
{

f(
⌊

n
2

⌋

,
⌊

n
2

⌋

− 1) if 6 ≤ n ≤ 11 ;

f(
⌊

n+7
3

⌋

,
⌊

n+4
3

⌋

) if n ≥ 12 ,

that is,

ILR ≤
{

(4 + n− 2
⌊

n
2

⌋

)(
⌊

n
2

⌋

− 1)2 +
⌊

n
2

⌋2
if 6 ≤ n ≤ 11 ;

(n+ 3)
⌊

n+4
3

⌋2 − 2
⌊

n+4
3

⌋3
+ 2

⌊

n+4
3

⌋

+ 1 if n ≥ 12 .

Proposition 1 For every system of F with n ≥ 12, its local reachability index
is bounded by

ILR ≤ 1

27
(n3 + 9n2 + 45n+ 108) . (7)

Furthermore, the equality is achieved for those systems satisfying that n is a
multiple of 3, n1 = ⌊n+7

3 ⌋ and n2 = ⌊n+4
3 ⌋.

Proof Let us study the expression

(n+ 3)

⌊

n+ 4

3

⌋2

− 2

⌊

n+ 4

3

⌋3

+ 2

⌊

n+ 4

3

⌋

+ 1 (8)

depending on the values of n. Thus,

– If n+4 = 3p, (8) is transformed into (3p−1)p2−2p3+2p+1 = p3−p2+2p+1.
– If n + 4 = 3p − 1, (8) is (3p − 2)(p − 1)2 − 2(p − 1)3 + 2(p − 1) + 1 =

p3 − 2p2 + 3p− 1.
– If n+ 4 = 3p+ 1, (8) is equal to (3p)p2 − 2p3 + 2p+ 1 = p3 + 2p+ 1.
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s

1 2 43

8 9 10 11 12

6 75

13 14 15

Fig. 10 Digraph as regards to the system examined in example 3.

From above items, their maximum value is p3 + 2p + 1, independently of

p whenever p > 0. In this event, p = (n+3)
3 and by substitution, we obtain the

inequality given in (7).

n = n1 + n2 + k 10 15 17 20 25 32 35 36
n1 5 7 8 9 10 13 14 14
n2 4 6 7 8 9 12 13 13

ILR for F 89 229 309 465 829 1609 2055 2224

In the following example, let us illustrate a positive 2-D systems of or-
der n = 15 whose ILR is exactly the maximum possible value according to
Proposition 1.

Example 3 The positive 2-D system (A1, A2, B1, B2) of order n = 15 described
by 2-D influence digraph given in Fig. 10 and with a composition table as
displayed in Fig. 11 has a locally reachable index ILR = 229, which is achieved
for n1 = ⌊ 21

3 ⌋ = 7, and n2 = ⌊ 19
3 ⌋ = 6.

5 Conclusion

The analysis of local reachability index for positive two-dimensional systems
described by the Fornasini-Marchesini state-space model is a complex task
from the mathematical point of view. Different quadratic upper bounds on
ILR have been consecutively derived in the literature (see [1] and the references

therein, [9] and [28]), but being at most (n+ 3 (⌊n/2⌋)2 in the greatest event
(see [2]). In this contribution, using the composition table introduced in [2] and
limiting the set of entries on the table where a vertex can be deterministically
reached, a new family of systems is constructed whose local reachability index
can be cubic under suitable conditions, and largely exceeds the aforementioned
upper bounds. These results does not clarify the conjectures on ILR = 17 and
ILR = 34 posed in [2], since they are stated for n = 5 and n = 7, respectively,
but pointing out once again the mathematical difficulty of the general problem,
which is still an open problem. However, the authors are firmly convinced that
the composition table can be used to solve the study of an upper bound on the
whole, by means of the optimal choice of new influence digraphs that define
broad regions of cells in the composition table completely filled with vertices,
whose solution is closer to be obtained.
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Fig. 11 Composition table associated with example 3.
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