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Modeling of decision trees through P systems

José M. Sempere

Abstract In this paper we propose a decision tree modeling in the framework
of membrane computing. We propose an algorithm to obtain a P system that is
equivalent to any decision tree taken as input. In our case, and unlike previous
proposals, we formulate the concepts of decision trees endogenously since there
is no external agent involved in the modeling. The tree structure can be defined
naturally by the topology of the regions in the P system and the decision rules
are defined by communication rules of the P system.

Keywords Decision trees - membrane computing - P systems with commu-
nicating rules - classification methods

1 Introduction

Decision trees are tree-structured classification models that have been widely
used in different application domains such as bioinformatics, pattern recogni-
tion and data mining, among others [14]. This is one of the most used classifiers
in the field of machine learning. Furthermore, it is the base classifier used to
produce random forest in the framework of ensemble classification methods
[16]. Several learning algorithms have been proposed that allow the inference
of representations of decision trees from classification examples [9]. In this pa-
per we propose a modeling of decision trees by using P systems. P systems are
the models that support the computing paradigm known as membrane com-
puting [11]. One of the biggest advantages of using this paradigm to model
decision trees lies in its massive parallelism that allows efficient implementa-
tions to work with a large amount of data that can be classified into complex
decision trees. In fact, it has been possible to show the plausibility of the
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implementation of the P systems through technology based on GPUs which
makes it an affordable technology in most cases [3,8,17].

The definition of P systems to model decision trees has been previously
approached in different works. For example, Diaz-Pernil et al. [4] proposed
recognizer P systems to define decision trees. Their proposal is based on a
non-deterministic search for structures that are compatible with examples of
the classification that the decision tree must carry out. Wang et al [15] pro-
posed the use of tissue-like P systems with tree-like objects. They applied
evolutionary strategies in order to explore a searching space by using nonde-
terministic P systems. In our approach, we model decision trees by using basic
concepts provided by the P systems: on the one hand, the tree structure is
defined immediately through the tree-like structure of the regions of a cell-like
P system and, on the other hand, the definition of the rules of the decision
tree can be defined by communicating rules in the P system in a very simple
way. Therefore, we believe that our proposal is better adapted to the use of
P systems in a more natural way than the proposals referred to above. In
addition, in our approach, the implementation in parallel hardware platforms
is achieved more easily by eliminating the non-determinism and, by using a
more simple and comprehensible encoding of the data to be classified.

The structure of this work is as follows: First, we introduce basic concepts
about decision trees, then we define the main components of the P systems and
we provide a description of how these systems work. We propose an algorithmic
scheme to translate decision trees to cell-like P systems with communicating
rules, and we solve the classification task with the proposed system. Finally,
we describe some works in progress related to this topic.

2 Basic concepts

In this section, we introduce basic concepts of decision trees from [9,14] and
basic concepts about P systems and membrane computing from [10,11].

2.1 Decision trees

In the following, we consider objects with a finite set of discrete value attributes

A ={ai1,aq,...,an,c} where ¢ is a special attribute that designates the class
of the object. Every attribute a; or ¢ can take a value from a finite set. The
set of values that can be assignated for the attribute a; is {v;,,...,v;, }, while

the set of values for the attribute c is defined by {ve,,...,v., }. For the case of
continuous-valued attributes, it is an additional task to define thresholds for
the intervals that allow the discretization of numerical values. So, for example,
if we define two thresholds ¢; and ¢y with ¢; < ¢o and we assign the label ‘low’
for the values lower than ¢y, ‘medium’ for the values greater than ¢; and lower
than co and ‘high’ for the values greater than ¢y, then, we can assign discrete
values (low’, 'medium’ or ’high’) to the integer values to be considered in the
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task. The choice of thresholds should favor the attribute selection criterion in
the construction of decision trees from a machine learning point of view [5].

For every set of attributes A = {ay,az, - , am, c} we can define the regular
expression ' A,.q as follows

('Ull +’l)12+...+’l)11'1)(1}21+’U22+...+’U2i2)"'(vm1 +vm2+...+vmim)

A decision tree over A is a tree where every node is either a leaf (with a
value for the attribute ¢) or an internal node with a label from {ai,...,amn}.
Every internal node, with label a;, denotes a test over the attribute, and every
descending branch from node a; means that the attribute fulfills a logical
statement constructed by the relational operators over the attribute values.
We consider the set of relational operators {=,>,<,#,>,<}. Let us see the
following example that illustrates this concept.

Ezxample 1 Let us consider the following set of attributes with their respective
values that corresponds to an adaptation of the protein-protein interaction
prediction problem taken from [6]. The attribute Interaction is the class at-
tribute.

Attribute Values
Ezpression correlation (EC) | {0.1,0.3,0.7,0.9}
Shared location (SL) {Yes, No}
Genomic Distance (GD) {Yes, No}

Shared function (SF) {Yes, No}
Interaction {Yes, No}

Let us consider the threshold value {0.7} for the attribute EC. In this case,
this threshold produces the discrete values {EC<g.7, ECs0.7}. The regular
expression defined from the set of attributes and values is the following one:

(EC§0A7 + EO>0_7)(SLY + SLN)(GDY + GDN)(SFY + SFN)

In Fig. 1 we show a decision tree over the set of attributes previously
defined. We have drawn the nodes of the class attribute as ellipses and the
rest of attributes as boxes

Any decision tree for a given classification object receives as input a tuple
of values for the attributes, and outputs a value for the class attribute. The
main problem from the point of view of machine learning is to find the best
decision tree that fits the input data according to a pre-established criterion
(which is usually established in terms of information measures or benefits in
the classification of new examples). Over time, various learning algorithms on

L A regular expression is a classical concept from formal language theory that, in this
case, represents a sequence of values obtained by selecting a value of each set defined for
the sum of values within a pair of parentheses.
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Expression
correlation

<0.7 g b > 0.7
Shared Shared
localization function
N YES NO . YES
Interactlon— No Genom'c Interaction= No Interaction= Yes
dlstance
. YES

Interactlon— No Interactlon Yes

Fig. 1 A decision tree for the set of attributes adapted from [6].

decision trees have been proposed. From our point of view, the best known
algorithms are Quinlan’s ID3 and C4.5 [12] and the CART algorithm for clas-
sification and regression trees [1].

2.2 P systems with evolution and communication rules

In the following, we introduce basic concepts about P systems from [10] and
[11], and we define cell-like P systems with communication rules.

First, we define multisets as follows: Let D be a set. A multiset over D is
a pair (D, f) where f: D — N is a function. The size of a multiset M is the
number of elements that it contains and it is denoted by |M], that is

M| =" f(a)

a€D

Any multiset (D, f) where D = {ay,...,a,} can be represented by the
finite sequence a{(al) e afl(a”) that is the representative string of the multiset.

Basically, a P system is defined as a finite set of regions separated by
membranes and organized hierarchically, so that it can be defined by a tree-like
structure. Within each region there is a multiset of objects over a previously
defined alphabet. In each region there is a finite set of rules that transform
objects (evolution rules) or rules that send objects from one region to an
adjacent region (communication rules). The whole system is encompassed in
a special region delimited by a skin membrane and the outside environment
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provides new objects to the system and picks up the objects that the system
expels outside the region of the skin.
We provide a formal definition of the P systems as follows.

Definition 1 A P system with evolution and communication rules of degree
m > 1 is defined by the tuple IT = (O, H, i, w1, wa, . .., Wy, R,ig) where

1. O is the alphabet of objects. O* denotes the set of all the strings defined
over O.
2. H is the alphabet of labels for membranes.
3. u is the membrane structure, of degree m, with all membrane labels from
H. A membrane with label h is represented by [ |5,
4. wy,ws, ..., w, are strings over O that define the multisets of objects in
every region of y
5. R is a finite set of rules of the following types
(a) [v— w]p, with v,w € O* (evolution rules)
The objects denoted by the multiset v are transformed into the objects
denoted by the multiset w in the region delimited by the membrane
with label h.
(b) v[ | — [w]p with v,w € O* (Vin’ communication rules)
The objects denoted by the multiset v are transformed into the objects
denoted by the multiset w and they are sent into the internal region
bounded by the membrane with label h.
(¢) [v]n = w[ |n with v,w € O* (out’ communication rules)
The objects denoted by the multiset v are transformed into the objects
denoted by the multiset w and they are sent out the region bounded by
the membrane with label h. If the membrane h is the skin membrane,
the objects denoted by w are sent out to the environment, otherwise
the objects are sent out to the region that contains the membrane with
label h.
6. ip € {0,1,...,m} is the region where the result of a computation is ob-
tained (0 represents the environment).

The rules of the P system are applied in a non-deterministic maximally
parallel manner. Maximal parallelism means that the rules should be used in
parallel to the maximum degree possible. That is, for any rule that can be ap-
plied more than once simultaneously, the rule is applied the maximum number
of times that allows the objects that enable the execution. Non-determinism
is a classic concept in computability theory which, in this case, means that if
several rules can be applied over the same objects, the selection of the rule
to apply is non-deterministic. That is, in several identical situations, the rules
that are applied may be different. The computation of the system finishes
whenever no rule can be applied.

A system configuration at time ¢ is defined by the multisets in each region
of the structure defined by p. The initial configuration of the system is defined
by the multisets wi,ws, ..., w,. The configuration during a computation at

time ¢ is defined by the multisets w!, w}, ..., wt,.
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3 From decision trees to P systems

In this section, we propose an algorithm that obtains P systems with commu-
nication rules from decision trees.

Let T be a decision tree defined for a set of attributes, and let A = {ay, as,
..., ap,c} be the set of atributes in a preorder enumeration according to the
tree structure, with ¢ as the class attribute. Let A = A—{c}, and .Zreg denotes
the regular expression associated to A.

We propose a P system I = (Or, Hr, pr,wi,wa, . .. ,w| 4—1, R, 0), where

1. The alphabet of objects is defined from the set of values for every attribute
in A. So, a;; € Or if the attribute a; can take the value v;. Observe that, for
any numerical attribute, we define a set of values according to a previously
defined set of intervals according to the decision tree. Every value for the
class attribute defines an object in O.

2. The set of membrane labels is the set of attributes with the exception of
the class attribute, that is Hy = A.

3. The membrane structure pr is defined to be equivalent to the decision tree
structure. If the attribute a; is a son of the attribute a; in the tree 7', then
the substructure [ [ ]; ]; is defined in pp.

4. Initially, all the multisets of objects are empty, w; = A for 1 <1i < m.

5. The set of rules R are defined from the decision tree T' by using the algo-

rithms of Fig. 2.
The algorithm CreateInternalRules(T,A) deals with the creation of
rules corresponding to the branches of the decision tree. In this way, based
on the fact that the set of values to be evaluated are those of the attribute
a;, which are found in the region with membrane a;, we replicate the be-
havior of the decision tree by moving the remains of attribute values to
the region b which will correspond to the next attribute to be evaluated
according to the decision tree. Note that the rules defined in point (2.1.1)
allow to obtain the value of the class attribute according to the decision
tree. The algorithm CreateClassificationRules(A) deals with the cre-
ation of the rules that move the class attribute through the system regions
and, finally, send it to the environment.

Ezample 2 Let us consider the classification task of Example 1 and the decision
tree of Fig. 1. Initially A,.q is defined as follows

(ECSOJ + EO>0_7)(SLY + SLN)(GDY =+ GDN)(SFY + SFN)
We define the following P system
It = (Or, Hr, pr, wy, wa, . .. ,wj4—1, R, 0)
that is equivalent to the referred decision tree, where

— Or ={EC<0.7,EC50.7,SLy,SLn,GDy,GDy,SFy,SFn,YES,NO}
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CreatelnternalRules(T, .A)

/* Let a; € A be the (internal) attribute of the root of T */

(1)  For every branch with value v; that goes to (internal) attribute b in
preorder traversal
(1.1) For every string = € (A — {a;})reg
(1.1.1) add the rule [a;;z[ p]a; = [ [#]p]a;

/* Let T}, be the subtree of T rooted in the attribute b */

(1.2) CreateRules(T5, 4 — {a;})
(2) For every branch with value v; that goes to class attribute ¢ with
value cj,
(2.1) For every string z € (A — {a;})reg
(2.1.1) add the rule [a;;z]a; = [ a;ck

CreateClassificationRules(.A)

(1) For every attribute a € A

(1.1) For every value ¢, of the class attribute ¢
(1.1.1) add the rule [cgla; = [ ]a;ck

Fig. 2 Two algorithms to obtain P system rules from the decision trees and the set of
attributes.

Hy ={EC,SL,GD,SF}

—ur=[[[]lep )st [ ]sF |Ec. The structure is showed in Fig.3.
— wge = wgr, = wsp = wgp = A (the empty multiset)

R is defined as follows

For the case that EC is less than or equals to 0.7, we must evaluate the
SL attribute first, and then the rest of attributes. It is carried out by using
the following rules

1. [ECS()jSLyGDySFy[ ]SL ]EC — [ [SLyGDySFy]SL ]EC
2. [EC<07SLyGDy SFN[|sL |lec = [ [SLyGDy SEN]sL |EC
3. [ECS()]SLyGDNSFy[ }SL ]EC — [ [SLyGDNSFy]SL ]EC
4. [ECSOJSLyGDNSFN[ ]SL }EC — [ [SLyGDNSFN]SL ]EC
5. [EC§0,7SLNGDySFy[ }SL ]EC — [ [SLNGDySFy]SL ]EC
6. [EC§0,7SLNGDySFN[ ]SL }EC — [ [SLNGDySFN]SL ]EC
7. [ECSO,'zSLNGDNSFy[ ]SL }EC — [ [SLNGDNSFy]SL ]EC
8. [ECS()]SLNGDNSFN[ ]SL ]EC — [ [SLNGDNSFN]SL ]EC

Once we have evaluated the attribute EC, for the case that the attribute
SL is positive we must evaluate the GD attribute. It is carried out by using
the following rules
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9. [SLySFyGDy[ ]GD ]SL — [SFyGDy]GD }SL
10. [SLySFyGDN[ ]GD ]SL — [ [SFyGDN]GD ]SL
11. [SLySFNGDy[ ]GD ]SL — [ [SFNGDy]GD ]SL
12. [SLySFNGDN[ }GD ]SL — [ [SFNGDN]GD }SL

The rules needed to evaluate the attribute GD, and set the value for the
class of the object are the following, according to the decision tree

13. [SFyGDy ]GD — []GDYES
14. [SFNGDY }GD — HGDYES
15. [SFyGDN }GD — HGDNO
16. [SFNGDN ]GD — HGDNO

For the case that EC' is greather than 0.7, we must evaluate the SF at-
tribute first, and then the rest of attributes. It is carried out by using the
following rules

17. [EC>0_7SLySFyGDy[ ]SF ]EC — [ [SLySFyGDy}SF ]EC
18. [EC>047SLySFyGDN[ }SF }EC — [ [SLySFyGDN]SF ]E’C
19. [EC>0,7SLySFNGDy[ }SF }EC — [ [SLySFNGDy]SF ]EC
20. [EC>0,7SLySFNGDN[ ]SF ]EC — [ [SLySFNGDN}SF ]EC
21. [EC>Q‘7SLNSFyGDy[ }S’F }EC — [ [SLNSFyGDy]SF ]EC
22. [EC>0.7SLNSFyGDN[ ]SF ]EC — [ [SLNSFyGDN}SF ]EC
23. [EC>0_7SLNSFNGDy[ ]SF ]EC — [ [SLNSFNGDy}SF ]EC
24. [EC>0.7SLNSFNGDN[ ]SF ]EC — [ [SLNSFNGDN]SF ]EC

The rules needed to evaluate the attribute SF, and to set the value for the
class of the object are the following, according to the decision tree

25. [SLySFNGDN ]SF — []SFNO
26. [SLy SENGDy Jsp — []srNO
27. [SLy SFyGDy |sp — [ ]srYES
28. [SLySFyGDy |sr — [|srY ES
29. [SLNSFNGDy |sr — []sFrNO
30. [SLySFNGDy |sr — [|srNO
31. [SLNSFyGDN ]SF — []SFYES
32. [SLNSFyGDy Jsr — [ |srYES

Finally, the necessary rules to expel to the environment the value of the
classification attribute are showed. Observe that rules (37) to (40) are
useless given that the object configuration required to execute the rule will
never appear during the computation time.

33
34
35
36

NO]EC — [ ]EcNO
YES]EC — []E0YES
NO]SL — [ ]SLNO

-
|
: [YES]SL — HSLYES



Modeling of decision trees through P systems 9
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SF
GD
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o e

Fig. 3 A membrane structure for the decision tree of Fig.1.

37. [NO]GD — [ ]GDNO
38. [YES]GD — [ }GDYES
39. [NO]SF—>HSFNO
40. [YES]SF — [ ]SFYES

4 Objects classification

Suppose that we have a finite set of objects to be classified by using a decision
tree. For each object, we have the values of its attributes and we want to
obtain the value of the class attribute that is the only one that is unknown. The
classification of objects according to a decision tree specified in a P system can
be carried out in two ways: First, we can carry out a sequential classification,
that is, we provide the P system with only one example each time, and the
P system returns the value for the class attribute through the environment.
Alternatively, we can carry out a classification in parallel, where we provide
the P system with all the objects to be classified, and the P system returns a
value of the class attribute for each object through the environment.
We will describe each of these possibilities separately.

4.1 Sequential classification

We consider the classification of only one object every time. In this case, we
have a value for each attribute of the object and, initially, we place them
in the skin region of the P system. In this way, we consider a set of at-

tributes A, and a set of attribute values X = {x1,2,...,74)-1} where we do
not include a value for the class attribute. Then, the P system is defined as
It = (OT> HT7 HT, W1, W2, . .-, W A|-1, Ra 0)) where wy = z1w2 - - - TIA|-1s and

the rest of the elements are defined according to the proposal explained in the
previous section.
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Fig. 4 Sequential classification of objects.

The classification is carried out by means of the execution of the rules
of the P system. Note that, in this case, only one rule is executed in each
computation step, and we can consider that the system is sequential. The
object that is received in the environment of the system is the classification
value for the object whose attributes we have initially placed in the skin region.

Next, we will see an example that illustrates the mechanism of action that
we have just described.

Ezxample 3 Let us consider the P system defined in Example 2 for the clas-
sification task of Example 1, according to the decision tree of Fig. 1. Let us
classify an object with the set of attribute values {EC<¢.7,SLy, SFn,GDy }.

The sequence of rules to be applied in the P system are the following: Let
us consider the rule enumeration of Example 2. First we apply rule number
(3), and the objects SLy, SFy and GDy are sent to the region SL. Then,
inside region SL, rule number (11) is applied and the objects SFy and GDy
are sent to the region GD. In region GD, the rule number (14) is applied, and
the classification of the object is carried out as the object YES. This object
is moved through the system by using rules (36) and (34) and, finally, it is
expelled from the system to the environment.

In Fig. 4, we can see graphically the computation steps that are carried
out in the P system, and that produce as output the classification object Y ES
that is collected in the environment. It means that, for the object with the
initial attributes, there is a protein-protein interaction.
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4.2 Parallel classification

In this case, by starting from a set of attributes A, we consider that we have a
set of objects X = {z!,22%,..., 2P} where each object has assigned values for
each attribute (except for the class attribute). For example given the object
2" we denote the set of its attributes as {z?, 2%, .. 1} The rules of the P
system are replicated by renaming their objects accor&mg to the object-value
notation that we have just established. For example, if we have two objects
x1 and x2 and the rule ajjasy - - api] | — [a21 - api1]n, then the pair of
rules ajyagy - - ag[Jn = lag, - api]n and afyagy - apy[In — [a3; - - apy]n ave
produced. This allows us to process the attributes of each object in parallel,
although independently, even though the attributes of different objects are
placed in the same region during any computing step.

The P system is defined as Il = (Or, Hr, pr, wy, we, ..., w4 -1, R,0),
where wy = xjxy - x|y, - -afah f4|_1» the objects and the rules of the
system are replicated according to our previous explanation, while the set of
membrane labels and the membrane structure is defined as in the sequential
case. Note that, in this case, different rules can be executed in each computa-
tion step, and the system runs in parallel. The objects that are received in the
environment during the computation time are the classification values for eve-
ry object whose attributes we have initially placed in the skin region. Observe
that we can collect the classification results at different computation steps (de-
pending on the number of rules that are needed to carry out the classification),
and every class attribute is labeled with the object identification.

We will see an example that illustrates the mechanism of action that we
have just described.

Example 4 Let us consider the P system defined in Example 2 for the classifi-
cation task of Example 1, according to the decision tree of Fig. 1. Let us classify
two objects with the set of attribute values z; = {ECL, ., SL-, SFy,, GD},
and zo = {EC2, ;,SL},SF%,GD% }.

In this case, we have replicated all the rules that have defined in Example 2.
The replicated rules that are used for the classification task are the followings

[ECL07SLyGDy SFy[ st |pc — [ [SLy GDy SFy]si |ec
[SLl SFl GD:i [ } ]SL — [ [SF]{,GD%/]GD ]SL
[SFNGDY ]GD — HGDYEsl
[YESI]SL — [ ]SLYE51
[YESI]EC — [ ] cYESl
[
[
[

EC%O 7SL2 SF2 GD [ ] ]EC — [ [SL%SF]%,GD]QV]SF ]EC
SL2 SFQC;D2 ]SF—>[] FN02
NOZ]E0—> []E0N02

The application of the rules is similar as we have described in Example
3. Observe that, in this case, at every computation step, more than one rule
is applied simultaneously, in order to manage each sequence of objects inde-
pendently. In Fig. 5, we can see graphically the computation steps that are
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Fig. 5 Parallel classification of objects.

carried out in the P system, and that produce as output the classification ob-
jects Y ES! for the object w1, and NO? for the object x5. They are collected
in the environment at computation steps 3 and 5. It means that, for the object
x1 with the initial attributes, there is a protein-protein interaction, while for
the object x2 the interaction does not exist.

5 Final comments and future research

In this paper we have proposed a modeling of decision trees through P sys-
tems. The advantage of using this computation model lies basically in its high
parallelism that allows the processing of large volumes of data efficiently. In
addition, its implementation with GPU-based technology makes us believe
that it is a plausible solution for solving problems that are of great strategic
interest in the big data processing framework.

One of the most important aspects when working with decision trees is
how to build them. Usually, this task is approached through machine learning
techniques (i.e. [12]). Although this aspect is outside the scope of this paper,
we would like to point to a solution based on machine learning of decision trees
integrated within the framework of the P systems. Our approach is based on
the design of rules for membranes creation and object communication that
would be executed according to an information theory criterion, such as the
decrease in entropy of the system [13]. This, without a doubt, will be one of
the aspects that we will approach in our future works.

The parallel processing version that we have proposed opens up new sce-
narios to be considered. In this case, we could enable different decision trees
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that operate simultaneously. The decisions of each tree (in this case, of each P
system) would be sent to an additional P system that would evaluate the clas-
sification objects and make a final decision, as it is done in ensemble methods
based in decision trees. The formalization of this type of systems, would be
done in a framework of tissue P systems [7] or multi-environment P systems
[2]. Actually, this is part of our work in progress.
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