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ABSTRACT 

The aim of this Thesis was to estimate the direct response and the correlated 

responses in litter size and survival rates in an experiment of selection for ovulation 

rate in rabbits.  

Selection for ovulation rate was performed in a rabbit line during 10 generations. 

Selection was based on the phenotypic value of ovulation rate estimated at d 12 of 

second gestation by laparoscopy. A control line was produced recovering embryos 

from 50 donor females and 18 males, belonging to the base generation of the line 

selected for ovulation rate. Approximately 470 embryos were vitrified and stored in 

liquid N2 until transfer at the end of the selection experiment (10th generation of the 

selected line). 

Traits recorded were: litter size (LS), estimated as total number of rabbits born per 

litter in up to five parities; ovulation rate (OR), estimated as the number of corpora 

lutea in both ovaries; right and the left ovulation rates (ROR and LOR); the number of 

implanted embryos (IE), estimated as the number of implantation sites; the number of 

right and left implanted embryos (RIE and LIE); ovulatory difference (OD), defined as 

the difference between ROR and LOR, expressed as an absolute value; implantatory 

difference (ID), defined as the difference between RIE and LIE, expressed as an 

absolute value; embryonic survival (ES), calculated as IE/OR; fetal survival (FS), 

calculated as LS/IE; prenatal survival (PS), calculated as LS/OR. 

Bayesian methodology was used to analyze the data. The estimated heritabilities of 

OR, LS, ES, FS and PS were 0.16, 0.09, 0.09, 0.24 and 0.14, respectively. The estimated 

phenotypic correlations of OR with LS, ES, FS and PS were 0.09, -0.07, -0.26 and -0.28, 

respectively. The genetic correlation of OR with LS and ES were estimated with low 

accuracy and nothing can be said about their sign. The estimated genetic correlations 

of OR with FS and PS were negative (probability of being negative 1.00 and 0.98, 

respectively). The estimated phenotypic and genetic correlations between LS and 

survival rates were positive (probability of being positive of 1.00). 

Responses to selection were estimated by two methods, genetic trends and 

differences between the selected and the control line, both estimates being similar for 
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most of the traits. Ovulation rate increased with selection (1.3 ova in 10 generations 

estimated with genetic trends; 2.1 ova in 10 generations estimated with the control 

line), but there was no correlated response in litter size, supporting that the genetic 

correlation between ovulation rate and litter size should be close to zero. No clear 

changes were observed in ovulatory difference and implantatory difference. A small 

decrease in embryonic survival expressed as a percentage (around 5% in 10 

generations) was observed when comparing the selected and the control lines, but this 

reduction was not estimated with genetic trends. A decrease in fetal survival expressed 

as a percentage (around 10% in 10 generations) seemed to be the main responsible for 

the lack of correlated response observed in litter size. 
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RESUMEN 

El objetivo de esta tesis ha sido estudiar la respuesta directa a la selección por tasa de 

ovulación en conejo y las respuestas correlacionadas en tamaño de camada y tasas de 

supervivencia.  

Los animales pertenecían a una línea de conejos seleccionada por tasa de ovulación 

durante 10 generaciones. La selección se realizó en base al valor fenotípico de la 

hembra, que se midió el día 12 de la segunda gestación mediante laparoscopia. Se creó 

una línea control a partir de la recuperación de aproximadamente 470 embriones de 

50 hembras donantes de la generación base. Los embriones fueron vitrificados y 

almacenados en nitrógeno líquido hasta su transferencia al final del experimento de 

selección (generación 10 de la línea seleccionada). 

Se midieron los siguientes caracteres: tamaño de camada (LS), estimada como el 

número total de gazapos al parto en un máximo de 5 partos; tasa de ovulación (OR), 

estimada como el número de cuerpos lúteos en los dos ovarios; tasa de ovulación 

derecha y tasa de ovulación izquierda (ROR y LOR); el número de embriones 

implantados totales (IE), en el lado derecho (RIE) y en el lado izquierdo (LIE); la 

diferencia ovulatoria (OD), definida como la diferencia entre ROR y LOR, expresada en 

valor absoluto; la diferencia de implantación (ID), definida como la diferencia entre RIE 

y LIE, expresada en valor absoluto; la supervivencia embrionaria (ES), calculada como 

IE/OR; la supervivencia fetal (FS), calculada como LS/IE; la supervivencia prenatal (PS), 

calculada como LS/OR. 

Se utilizó metodología bayesiana para analizar los datos. Las estimas de las 

heredabilidades de OR, LS, ES, FS y PS fueron 0.16, 0.09, 0.09, 0.24 y 0.14, 

respectivamente. Las estimas de las correlaciones fenotípicas de OR con LS, ES, FS y PS 

fueron 0.09, -0.07, -0.26 and -0.28, respectivamente. Las estimas de las correlaciones 

genéticas de OR con LS y ES tuvieron una baja precisión, y no se pudo concretar su 

signo. Las estimas de las correlaciones genéticas de OR con FS y PS fueron negativas 

(probabilidad de ser negativa de 1.00 y 0.98, respectivamente). Las correlaciones 

fenotípicas y genéticas entre LS y las tasas de supervivencias fueron positivas 

(probabilidad de ser positivas de 1.00). 
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La respuesta a la selección se estimó por dos métodos, tendencias genéticas y 

diferencias entre la línea seleccionada y la línea control, siendo ambas estimas 

similares para la mayoría de los caracteres. La selección aumentó la tasa de ovulación: 

la estima de la tendencia genética para la tasa de ovulación fue de 1.3 óvulos en 10 

generaciones y la respuesta estimada con la población control fue de 2.1 óvulos en 10 

generaciones. Sin embargo, no se produjo respuesta correlacionada en tamaño de 

camada, lo que apoyó una correlación cercana a cero entre tasa de ovulación y tamaño 

de camada. Las respuestas observadas en diferencia ovulatoria y diferencia de 

implantación no fueron concluyentes. Se produjo una ligera reducción de la 

supervivencia embrionaria expresada en porcentaje (alrededor de 5% en 10 

generaciones) al estimar la respuesta con la línea control; este descenso no se observó 

en la estima de la tendencia genética. La disminución de la supervivencia fetal 

expresada en porcentaje (aproximadamente 10% en 10 generaciones) pareció ser la 

principal responsable de la ausencia de respuesta correlacionada en tamaño de 

camada en el experimento de selección por tasa de ovulación. 
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RESUM 

L'objectiu d'aquesta tesi ha sigut estudiar la resposta directa a la selecció per tasa 

d'ovulació en conill i les respostes correlacionades en tamany de la ventrada, embrions 

implantats i tases de supervivència. 

Els animals pertanyien a una línia de conills seleccionada per tasa d'ovulació durant 10 

generacions. La selecció es va realitzar sobre la base del valor fenotípic de la femella, 

que es va mesurar el dia 12 de la segona gestació mitjançant laparoscòpia. Es va crear 

una línia control a partir de la recuperació d'aproximadament 470 embrions de 50 

femelles donants de la generació base. Els embrions van ser vitrificats i 

emmagatzemats en nitrogen líquid fins a la seva transferència, al final de l'experiment 

de selecció (generació 10 de la línia seleccionada). 

Es van mesurar els següents caràcters: tamany de la ventrada (LS), estimada com el 

nombre total de llorigós al part en fins a 5 parts; tasa d'ovulació (OR), estimada com el 

nombre de cossos lutis en els dos ovaris; tasa d'ovulació dreta i tasa d'ovulació 

esquerra (ROR i LOR), el nombre d'embrions implantats totals (IE), al costat dret (RIE) i 

al costat esquerre (LIE), la diferència ovulatòria (OD), definida com la diferència entre 

ROR i LOR, expressada en valor absolut, la diferència d'implantació (ID), definida com 

la diferència entre RIE i LIE, expressada en valor absolut, la supervivència embrionària 

(ES), calculada com IE/OR, la supervivència fetal (FS), calculada com LS/IE, la 

supervivència prenatal (PS), calculada com LS/OR. 

Es va utilitzar metodologia bayesiana per analitzar les dades. Les estimes de les 

heretabilitat d'OR, LS, ES, FS i PS van ser 0,16, 0,09, 0,09, 0,24 i 0,14, respectivament. 

Les estimes de les correlacions fenotípiques d'OR amb LS, ES, FS i PS van ser 0,09, -

0.07, -0.26 and -0.28, respectivament. Les estimes de les correlacions genètiques d'OR 

amb LS i ES van tenir una baixa precisió, i no es va poder concretar el seu signe. Les 

estimes de les correlacions genètiques d'OR amb FS i PS van ser negatives (probabilitat 

de ser negativa de 1.00 i 0,98, respectivament). Les correlacions fenotípiques i 

genètiques entre LS i les tases de supervivències van ser positives (probabilitat de ser 

positives de 1.00). 
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La resposta a la selecció es va estimar per dos mètodes, tendències genètiques i 

diferències entre la línia seleccionada i la línia control, sent ambdues estimes similars 

per a la majoria dels caràcters. La selecció va augmentar la tasa d'ovulació (1.3 òvuls en 

10 generacions mitjançant les estimes de tendències genètiques; 2.1 òvuls en 10 

generacions estimada com la diferència entre les línies seleccionada i control), però no 

es va produir resposta correlacionada en el tamany de la ventrada, la qual cosa va 

recolzar una correlació propera a zero entre tasa d'ovulació i el tamany de la ventrada. 

Les respostes observades en diferència ovulatòria i diferència d'implantació no van ser 

concloents. Es va produir una lleugera reducció de la supervivència embrionària 

expressada en percentatge (al voltant de 5% en 10 generacions) al estimar la resposta 

amb la línia control; aquest descens no es va observar en l'estima de la tendència 

genètica. La disminució de la supervivència fetal expressada en percentatge 

(aproximadament 10% en 10 generacions) va semblar ser la principal responsable de 

l'absència de resposta correlacionada en tamany de la ventrada en l'experiment de 

selecció per tasa d'ovulació. 
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1. General introduction to rabbit production 

Global meat production is around 285 million tonnes (FAO, Food and Agriculture 

Organization, 2011) and rabbit carcass meat production is near 1.2 million tonnes 

(0.4% of the global meat production), which corresponds approximately 857 million 

rabbits (Eady, 2008). The majority is produced in Europe (50%) while Asia 

(predominantly China) produces 41%. In 2010, the main European producers were 

located in Italy (39%), France (27%) and Spain (19%) (Figure 1.1). These three European 

countries produce rabbits mainly under intensive farming conditions, although there 

still does exist a significant level of home production (REGA, Registro General de 

Explotaciones Ganaderas, 2010). 

 

Figure 1.1: Rabbit carcass meat production in Europe in 2010. Developed from: 

http://www.marm.es/app/vocwai/documentos/Adjuntos_AreaPublica/INDICADORES%20ECO

N%C3%93MICOS%20SECTOR%20CUN%C3%8DCOLA%202010.pdf 

 

In Spain, Cataluña stands out as the main producer (30%). Data from 2010 show that a 

high proportion of the rabbits censed in Spain (near 80%) is concentrated in only 5 

communities: Cataluña (1.840.394), Castilla y León (988.866), Galicia (823.898), 

Comunidad Valenciana (653.663) and Castilla La Mancha (537.321), while rabbit 

carcasse meat is mainly produced in Cataluña (19.778), Galicia (11.836), Aragón 
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http://www.marm.es/app/vocwai/documentos/Adjuntos_AreaPublica/INDICADORES%20ECON%C3%93MICOS%20SECTOR%20CUN%C3%8DCOLA%202010.pdf
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(8.549), Castilla y León (8105) and Comunidad Valenciana (5067) (Figures 1.2 and 1.3; 

REGA, Registro General de Explotaciones Ganaderas). 

        

      

Figures 1.2 and 1.3. Rabbit census and rabbit carcass meat production in Spain in 2010. 

Developed from:  

http://www.marm.es/app/vocwai/documentos/Adjuntos_AreaPublica/INDICADORES%20ECO

N%C3%93MICOS%20SECTOR%20CUN%C3%8DCOLA%202010.pdf 

 

Rabbit consumption is stable or slightly decreasing in the European countries. In Spain, 

only 5% of the meat consumed is rabbit (Figure 1.4, INRA SAGA). Efforts are underway 

to increase the consumer appeal of rabbit meat by introducing “quick cook” meals and 

a variety of cuts of meat, rather than rely on the traditional whole carcass presentation 

(including heads) (Eady, 2008).  

 

Figure 1.4. Meat consumption in Spain in 2001 (kg/person; %). Developed from: 

http://www.avicampus.fr/PDF/PDFlapin/selectionlapin1.pdf 

 

http://www.marm.es/app/vocwai/documentos/Adjuntos_AreaPublica/INDICADORES%20ECON%C3%93MICOS%20SECTOR%20CUN%C3%8DCOLA%202010.pdf
http://www.marm.es/app/vocwai/documentos/Adjuntos_AreaPublica/INDICADORES%20ECON%C3%93MICOS%20SECTOR%20CUN%C3%8DCOLA%202010.pdf
http://www.avicampus.fr/PDF/PDFlapin/selectionlapin1.pdf
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In rabbit production, a high proportion of the total costs correspond to feeding (60%; 

Pascual et al., 2011). Feeding costs can be reduced through an improvement in the 

conversion rate. Fixed costs (30%; Pascual et al., 2011) can be reduced by increasing 

female productivity, because costs can be distributed among a higher number of 

animals. Therefore, breeding programs in rabbits include growth rate and reproductive 

efficiency as the most important aspects.  

The genetic improvement programmes in rabbits are organized in a pyramidal 

structure with three levels: nucleus populations on the top of the pyramid, multipliers 

and commercial farms on the bottom. In most nucleus populations, selection is 

performed on three specialized rabbit lines, two maternal lines, selected to increase 

litter size and a paternal line, selected for growth rate. In the multipliers, animals from 

both maternal lines are mated to obtain hybrids. Hybrid females present heterosis in 

reproductive traits, which leads to higher litter sizes in hybrid females than in “pure” 

females. Therefore, three way crosses are usually carried out. Finally, in the 

commercial farms, hybrid females are mated to males from the paternal line, and the 

final product is sent to slaughterhouse. 

 

2. Litter size and its components 

The increase in litter size is the main objective in selection experiments in maternal 

rabbit lines (reviewed by Khalil and Al-Saef, 2008). Litter size can be measured at birth, 

at weaning or at slaughter. The disadvantage of measuring litter size at weaning or at 

slaughter is that these traits depend on survival rate after birth, which depends as well 

on many environmental effects. Therefore, their heritabilities might be lower than that 

of litter size at birth. However, the trait considered in most selection experiments in 

rabbits is litter size at weaning, because it represents both the prolificacy and the 

maternal performance of the female (reviewed by Mocé and Santacreu, 2010). In 

rabbits, litter size at weaning is highly correlated with litter size at birth (0.74 (0.04) in 

García and Baselga 2002a; 0.80 (0.03) in Ragab and Baselga, 2011; 0.85 (0.07) in our 

experiment, data not shown). 
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Litter size at birth in polytocous species is mainly determined by two parameters: 

number of ova shed per estrus and proportion of these ova represented by normal 

fetuses at birth, also called prenatal survival. Fertilization rate is usually high in rabbits 

(Adams, 1960a; Torrès et al., 1984; Santacreu et al., 1990; Theau-Clement et al., 2009), 

pigs (Bazer et al., 1988; Soede et al., 1995; Geisert and Schmitt, 2002) and mice 

(Joakimsen and Baker, 1977; Wilmut et al., 1986) and is therefore not considered as a 

cause of variation of litter size. 

2.1. Ovulation rate 

2.1.1. The process of ovulation 

Ovulation rate is the total number of ova shed by the ovaries at ovulation. In rabbits, 

ovulation is induced by the coitus stimulus. The coitus leads to a nervous stimulus that 

induces release of the gonadotropin-releasing hormone (GnRH) in the hypothalamous. 

This hormone activates the synthesis and secretion of the follicle-stimulating hormone 

(FSH) and the luteinizing hormone (LH) at the anterior pituitary gland. The FSH is 

known to be very important for the terminal growth of the follicles, while an acute rise 

in LH triggers ovulation (Rosell, 2000). Follicular development can determine the 

degree of the oocyte maturation (oocyte quality) and the ovulatory timing. Both 

factors can affect posterior embryonic and fetal development. To our knowledge, 

there is only one study reporting the relationship between oocyte quality and 

ovulation rate (Koenig et al., 1986). In this study in pigs, a higher proportion of 

immature oocytes was found in females selected for ovulation rate and in 

superovulated females compared to unselected females and to naturally ovulated 

ones, respectively. No study has been found relating the ovulatory timing and 

ovulation rate. 

2.1.2. Oocyte quality 

Oocyte quality, or developmental competence, is acquired during folliculogenesis as 

the oocyte grows and during the period of oocyte maturation (Krisher, 2004). Both 

nuclear and cytoplasmic maturation have to be completed successfully to be a 



GENERAL INTRODUCTION        

13 
 

competent oocyte. Oocyte quality affects the establishment and maintenance of 

pregnancy modifying early embryonic survival and fetal development (Krisher, 2004).  

Multiple methods have been proposed to assess oocyte quality. The best method is to 

evaluate the fertilization ability of classified oocytes and their developmental 

competence along gestation following embryo transfer. However, this is usually not 

possible because of economic and technical factors. The study of oocyte morphology is 

relatively quick and simple; however, it is unreliable if it is not accompanied by other 

methods (Balaban and Urman, 2006). Other methods to assess oocyte quality that 

have been proposed are: measurement of ATP, an important energy source for 

maintaining protein synthesis and other cellular functions (reviewed by Krisher, 2004); 

measurement of glutathione (GSH), the main compound that protects the cell against 

the oxidative stress (reviewed by Luberda, 2005; Rausell and Tarín, 2005); 

quantification of mitochondrial DNA; quantification of oocyte mRNA and proteins 

(reviewed by Krisher, 2004). Besides, some authors have studied the expression of 

genes in the granulosa cells or in the oocyte itself, looking for specific molecular 

markers of oocyte quality, or have performed polar body biopsy to screen oocytes with 

chromosomal abnormalities deriving from errors in the two meiotic divisions 

(reviewed by Revelli et al., 2009).  

2.1.3. Ovulatory timing 

Approximately 8h post-coitum (p.c.), the ovulatory follicles begin to release the 

oocytes. Most of the follicles ovulate simultaneously in a short period of time, with a 

small proportion of them ovulating later (Fujimoto et al., 1974 in rabbits). Ovulation is 

completed in rabbits 14 h p.c. (Fujimoto et al., 1974). Late ovulating oocytes may be 

fertilized later, leading to lesser developed embryos. The more developed embryos 

advance the uterine secretions (Torres et al., 1984 in rabbits; Pope, 1988 and Xie at al., 

1990 in pigs; Wilmut et al., 1986 and Al-Shorepy et al., 1992 in mice). The lesser 

developed embryos may not tolerate the degree of asynchrony associated with the 

advanced uterine environment, and they may die during the embryonic or the fetal 

period (Peiró et al., 2007 in rabbits; Wilde et al., 1988 and Pope et al., 1990 in pigs). 

Synchrony between the developing embryos and the secretions of the uterus has been 
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recognized as a critical factor to maintain a successful pregnancy (reviewed by Pope, 

1988 and Barnes, 2000).  

2.1.4. Estimation of ovulation rate 

In rabbits, ovulation rate is usually estimated as the number of corpora lutea in both 

ovaries, counted in vivo by laparoscopy or post mortem after dissection of the ovary. 

Both measurements of ovulation rate have shown to have a high regression coefficient 

(0.91; Santacreu et al., 1990). This indicates that laparoscopy is a very accurate 

technique to measure ovulation rate at d 12 of gestation.  

2.2. Prenatal survival  

2.2.1. Embryonic and fetal survival 

Prenatal survival is the proportion of ova represented by neonates. It comprises two 

periods: the embryonic and the fetal period. In rabbits, it has been accepted to call 

embryonic period to the period before implantation (d 7) and fetal period to the 

period from implantation until birth (d 30) (Mocé et al., 2010).  

Prenatal mortality is around 30% in rabbits (Adams, 1960a,b; García and Baselga, 

2002), 10-14% corresponding to the embryonic period, and 20-22% to the fetal period. 

Prenatal mortality in mice is lower, around 20%. This percentage is almost equally 

distributed between the pre- and the postimplantation period (reviewed by Wilmut et 

al., 1986). In pigs, a prenatal loss of 40 to 60% has been reported (reviewed by Foxcroft 

at al., 2006); the largest proportion of it occurs before d 30-35 of gestation of the 114-

day gestation period.  

In rabbits, the nutrition of the embryo relies first upon the yolk sac. The visceral yolk 

sac appears on day nine, and on d 13 it is overlapped on the endometrium. A 

chorioallantoic placenta begins its development at d 8 of gestation, but its 

characteristics are not fully developed until about d 12 (Carney et al., 2004). The 

transition between both placentation types engenders a critical period for the fetus. In 

rabbits, most of the fetal mortality (66%) occurs between d 8 and 17 of gestation 

(Adams 1960a,b), coinciding with the formation of the chorioallantoic placenta (Hafez 

and Tsutsumi, 1966; Carney et al., 2004). There is a second mortality peak in rabbits 
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occurring between d 18 and 23 of gestation, which coincides with the final phase of 

uterine enlargement (Reynolds, 1946 cited by Adams 1960a,b). The blood circulation 

of the endometrium plays an important role in embryonic survival and fetal 

development (Hafez and Tsutsumi, 1966), because rabbits, as mice, develop 

hemochorial placentas. In hemochorial placentas, the fetal vascular endothelium is in 

direct contact with the maternal blood (reviewed by Leiser and Kaufmann, 1994). 

Therefore, fetal development depends on the number of vessels arriving at the 

implantation site (Duncan, 1969; Argente et al., 2003; Mocé et al., 2004 in rabbits; 

Wirth-Dzieciolowska, 1987 in mice). In females with overcrowded uterine horns, the 

blood flow to each fetus could be compromised, decreasing their survival.  

Placentation in pigs is different: pigs develop epitheliochorial placentas and fetal 

development is closely associated to the endometrial space available per embryo at 

implantation. Insufficient placental surface area in females with overcrowded uterine 

horns has negative effects on fetal growth and survival rate (Knight et al., 1977; Geisert 

and Schmitt, 2002; van der Waaij et al., 2010). 

In addition to the mortality associated to uterine overcrowding, there are many factors 

that can reduce prenatal survival during the embryonic or the fetal period: a reduced 

oocyte quality, a greater embryonic diversity leading to embryonic uterine asynchrony, 

hormone levels and protein patterns of uterine and oviductal secretion (Mocé, 2003). 

2.2.2. Estimation of embryonic and fetal survival 

Embryonic survival is calculated as the proportion of implanted embryos from the 

number of corpora lutea and fetal survival is calculated as the proportion of kits born 

from the number of implanted embryos. Besides, prenatal survival is calculated as the 

proportion of kits born from the number of corpora lutea. The number of implanted 

embryos can be counted in rabbits in vivo by laparoscopy or post mortem. Similar to 

ovulation rate, both measurements had a high regression coefficient (0.99; Santacreu 

et al., 1990), highlighting the accuracy of the laparoscopic method. The laparoscopic 

method permits the estimation of embryonic and fetal survival in the same female, 

without affecting litter size. 
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3. Selection for litter size 

3.1. Conventional selection for litter size 

Litter size has a low heritability (around 0.1; reviewed by Rochambeau 1997; Mocé and 

Santacreu, 2010 in rabbits; Haley et al., 1988; Rothschild and Bidanel, 1998 in pigs) and 

the estimated response to selection has been lower than expected in most 

experiments in rabbits and pigs, around 0.1 young per generation (Gómez et al., 1994; 

Rochambeau et al., 1998; García and Baselga, 2002; in rabbits; Ollivier, 1981; Bolet et 

al., 1989; Holl and Robison, 2003 in pigs) (see also Table 1.1 for a review in rabbits). In 

mice, direct selection for litter size has obtained a higher response than in pigs and 

rabbits, 0.15 to 0.20 young per generation (Bradford, 1968, 1969; Falconer, 1971; 

Bakker et al., 1978; Gion et al., 1990). The response observed in rabbits, pigs and mice 

selected for high litter size has been usually associated to an increment in the number 

of ova shed without or with small changes in prenatal survival (Bolet et al., 1989; Haley 

and Lee, 1992 in pigs; Brun et al., 1992; Garcia and Baselga, 2002a in rabbits; Land and 

Falconer 1969; Falconer 1963; Bakker et al., 1978; Gion et al., 1990 in mice).   

 

Table 1.1: Direct responses in number of kits born alive (NBA) or number of kits 

weaned (NW) and correlated responses in ovulation rate (OR) and prenatal survival 

(PS) estimated per generation in rabbits, with their standard errors (in parenthesis).  

     Responses 

 Line G Cr Method NBA/NW  OR  PS  

Gomez et al., 1996 Prat 3 NW BLUP/REML 0.09 /year - - 

Rochambeau et al., 
1998 

1077 18 NW 
BLUP/REML 0.08 0.06* - 

Control 0.08 - - 

2066 18 NBA BLUP/REML 0.13 - - 

García and 
Baselga, 2002a 

V 
0-21 

NW 
BLUP/REML 0.09 (0.01) - - 

15-21 Control 0.09 0.18 0.06% 

García and 
Baselga, 2002b 

A 
1-26 

NW 
BLUP/REML 0.18 (0.01) - - 

17-26 Control 0.09 0.01 0.41% 

G: Generations; Cr: Criterium of selection 

* Response estimated by Brun et al. (1992) after 13 generations of selection. 
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3.2. Selection for hyperprolific lines 

The foundation of hyperprolific lines was proposed by Legault and Gruand (1976) to 

overcome the low efficiency on the experiments of direct selection for litter size in 

pigs. A screening of large populations was carried out to identify females with 

extremely high performance for litter size. The high selection intensities generated 

were used to initiate the hyperprolific population. Females from hyperprolific lines had 

higher ovulation rate and higher litter size in spite of having higher prenatal mortality 

than not hyperprolific females (reviewed by Bidanel et al., 1994). The hyperprolific 

selection experiments carried out in pigs have obtained successful results. During the 

last 15 years approximately, litter size has increased by 2 to 4 piglets in the commercial 

maternal pig lines (for a review see Rothschild and Bidanel, 1998).  

In rabbits, the only hyperprolific line was founded by Cifre et al. (1998) by applying 

hyperprolific criteria and embryo cryopreservation techniques. Selection was 

performed on hyperprolific does from a large commercial population following criteria 

detailed by Cifre et al., (1998). After its constitution, the line was selected for litter size 

at weaning. The hyperprolific line was contrasted to other maternal lines, showing its 

superiority over crossbred females (around 0.5 young weaned more; Cifre et al., 1998) 

and over purebred females (0.70 to 1.40 young weaned more; Cifre et al., 1998; Ragab 

and Baselga, 2011). 

 

4. Selection for the components of litter size 

Selection experiments for components of litter size are scarce in the literature. There is 

also little information of the heritabilities of these traits and their correlations (Tables 

1.2a,b). The heritability of ovulation rate is moderate, and the heritability of prenatal 

survival is low in most experiments in mice, pigs and rabbits. Phenotypic and genetic 

correlations between ovulation rate and litter size range from 0 to 1. Phenotypic and 

genetic correlations between prenatal survival and litter size have been usually 

positive and moderate to high. 



CHAPTER 1        

18 
 

The experiments of selection for components of litter size were proposed as a mean of 

improving indirectly litter size. Selection for ovulation rate, prenatal survival, its 

combination in an index and two-stage selection for ovulation rate and litter size have 

been performed in prolific species. 

4.1. Selection for ovulation rate 

The first experiments of selection for ovulation rate were proposed in mice by 

Bradford (1969) and Land and Falconer (1969) and in pigs by Zimmerman and 

Cunningham (1975). Selection for ovulation rate was proposed as an indirect way of 

increasing litter size, assuming that both traits were correlated and that the heritability 

of ovulation rate was higher than that of litter size. Moreover, ovulation rate sets the 

upper limit for litter size and it could be easily counted after slaughter or by 

laparotomy. 

There are five selection experiments for ovulation rate in prolific species, three in pigs 

(Cunningham et al., 1979; Leymaster and Christenson, 2000; Rosendo et al., 2007) and 

two in mice (Bradford, 1969 and Land and Falconer, 1969). The estimated responses to 

selection in these experiments are summarized in Table 1.3. Ovulation rate responded 

to selection, but it did not lead to a correlated response in litter size showing a 

decrease in prenatal survival. There is little information about the timing of prenatal 

mortality in the experiments of selection for ovulation rate, probably due to the 

difficulties in measuring the number of fetuses in live animals. In pigs, the number of 

fetuses can only be counted by laparotomy in live animals, because fetuses cannot be 

individualized by observation of its external surface. However, laparotomy and 

manipulation of fetuses has been proved to increase prenatal mortality (Neal et al., 

1989; Johnson et al., 1999). In mice, fetuses can be safely counted by laparoscopy 

(Hirsch et al., 1999), but to our knowledge there is no experiment of selection for 

reproductive traits where this technique has been used. 
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Table 1.2a: Estimated heritabilities of ovulation rate (OR) and prenatal survival (PS) and phenotypic and genetic correlations between these 

traits and litter size (LS) at the day of gestation indicated (DG) in mice, pigs and rabbits.  

   Heritability Phenotypic correlation Genetic correlation 

 Species DG OR PS OR, LS OR, PS PS, LS OR, LS OR, PS PS, LS 

Land and Falconer, 1969 Mice - 0.31 - - - - - - - 

Bradford, 1969 Mice - 0.10 - - - - - - - 

Clutter et al., 1990 a Mice 17 0.33 0.15 0.45 -0.04 0.86 0.81 0.06 0.60 

Long et al., 1991 Mice Birth 0.18 
(0.07) 

- - - - 0.62 (0.24) - - 

Young et al., 1977 Pigs 30 0.21 
(0.20) 

- - - - - -0.26 - 

Young et al., 1978 Pigs Birth 0.59 
(0.12) 

- 0.06 - - -0.01 (0.46) - - 

Cunningham et al., 1979 Pigs Birth 0.42 
(0.06) 

- - - - 0.07 - - 

Bolet et al., 1989 Pigs Birth 0.21 
(0.12) 

- - - - 0.85 - - 

Bidanel et al. 1992 Pigs 30 0.11 
(0.02) 

0.03 
(0.03) 

0.41 
(0.04) 

-0.13 
(0.04) 

0.87   
(0.01) 

0.98 (0.33) -0.13 0.99 

Haley and Lee, 1992 Pigs Birth 0.30 
(0.10) 

0.00 0.21 
(0.05) 

-0.28 
(0.05) 

0.87   
(0.01) 

0.98 (1.00) * * 
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Table 1.2b: Estimated heritabilities of ovulation rate (OR) and prenatal survival (PS) and phenotypic and genetic correlations between these 

traits and litter size (LS) at the day of gestation indicated (DG) in mice, pigs and rabbits (continuation of Table 1.2a). 

* Not estimated because the estimate of the heritability of PS was zero. 

a Standard errors range from 0.05 to 0.06 for the heritabilities and from 0.06 to 0.66 for the genetic correlations. Litter size was estimated as the number of 

fetuses at d 17 of gestation. 

b They measure prenatal loss instead of prenatal survival. 

c Standard errors range from 0.01 to 0.03 for the heritabilities and from 0.03 to 0.13 for the correlation. 

 

   Heritability Phenotypic correlation Genetic correlation 

 Species DG OR PS OR, LS OR, PS PS, LS OR, LS OR, PS PS, LS 

Bidanel et al., 1996 Pigs 30 0.27 
(0.02) 

0.08 
(0.03) 

- -0.12 
(0.04) 

- - -0.11 (0.15) - 

Johnson et al., 1999 Pigs 50 0.24 0.14 0.03 -0.47 0.48 0.24 -0.86 0.36 

Ruíz-Flores and Johnson, 
2001 b 

Pigs Birth 0.42 
(0.06) 

0.12 
(0.09) 

0.16 0.59 -0.69 0.52 0.83 -0.04 

Rosendo et al., 2007 c Pigs Birth 0.34 0.14 0.06 -0.18 0.82 0.41 -0.26 0.66 

Blasco et al., 1993a Rabbits Birth 0.21 
(0.11) 

0.23 
(0.10) 

0.25 
(0.06) 

-0.30 
(0.05) 

0.84   
(0.02) 

0.36    
(0.31) 

-0.14 (0.35) 0.87   
(0.08) 

Bolet et al., 1994 Rabbits - 0.24 
(0.04) 

- - - - - - - 
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Table 1.3: Direct response in ovulation rate (OR) and correlated responses in total number born (TNB) and prenatal survival (PS) with their 

standard errors (SE) estimated per generation in the experiments of selection for OR in mice and pigs.  

 Species G Selection 
criterium 

Mean OR 
(SD) 

Parity Mean LS Response in OR 
(SE) 

Response in TNB 
(SE) 

Response in PS 
(SE) 

Land and Falconer, 
1969 

Mice 12 OR at 2nd estrus 16.2 1 9.6 0.40 b no clear changes 

b 
- 

Bradford, 1969 Mice 11 OR at 1st estrus 10.1 (2.6) 1 8 

0.26 (0.11) a 0.07 (0.05) a - 

0.12 b 0.02 b -0.7% b 

Cunningham et al., 
1979 

Pigs 91 OR at 2nd estrus 14.4 (2.9) 2,3,4 8.5 

0.38 (0.08) a,1 0.15 (0.13) a - 

0.49 (0.10) b,1 0.06 (0.07) b -1.6% (0.5%) b,2 

Leymaster and 
Christenson, 2000 

Pigs 10 OR at estrus of 
conception 

- - - 0.29 b 0.06 b - 

Rosendo et al., 2007 Pigs 6 OR at puberty 14.1 (2.8) 1,2 10.3 (2.9) 

0.49 (0.10) c 0.08 (0.11) c -1.0% (0.9%) c 

0.51 (0.10) b 0.06 (0.11) b -1.6% (0.9%) b 

G: number of generations; Parity: parity number for litter size 

a Regression of line means on generation number;  b Response estimated with a control population; c REML estimate 

1 Johnson et al., 1984, responses estimated at generation 10. 

2 Geisert et al., 1978: response per generation in survival at d 30 and at d 70, 0.5% and 1.1%, respectively.
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4.2. Selection for prenatal survival 

There are two experiments of selection for prenatal survival in polytocous species, one 

in pigs (Rosendo et al., 2007) and the other one in mice (Bradford, 1969). In pigs, the 

selection criterion was the average prenatal survival over the first two parities 

corrected for ovulation rate (prenatal survival + 0.018 x ovulation rate). In mice, the 

number of normal fetuses at d 16 was used as an estimator of litter size at birth, and 

selection was based on [(number of normal fetuses at d 16 / ovulation rate) x number 

of normal fetuses at d 16]. The objective in both experiments was to select for prenatal 

survival avoiding selection against ovulation rate. Responses to selection in pigs and 

mice are presented in Table 1.4. Selection for prenatal survival increased litter size 

both in pigs and mice compared to a control line, and a correlated response in 

ovulation rate was observed in mice. In mice, the increases in ovulation rate and litter 

size in the line selected for prenatal survival nearly equalled those of two 

contemporarily lines directly selected for ovulation rate and for litter size, respectively. 

In pigs, it is not possible to determine if the estimated response was higher than 

response to direct selection for litter size due to the high standard error of the 

estimate and to the absence of a contemporary line selected for litter size, as in mice. 

Summarizing, selection for prenatal survival increased litter size, but it was not more 

effective than direct selection for litter size. 

Table 1.4: Responses in prenatal survival (PS), ovulation rate (OR) and litter size (LS) estimated 

per generation in pigs and mice selected for prenatal survival, with their standard errors (in 

parenthesis). 

Species Pigs Mice 

Generations 6 11 

Method  
Control 

population 1 
REML 1 

Control 
population 2 

Regression 2* 

R
ES

P
O

N
SE

 PS (%) 1.0 (0.9) 0.8 (0.9) 0.8 0.4 (0.4) 

OR (ova) 0.04 (0.11) 0.11 (0.11) 0.15 0.23 (0.09) 

LS (kits) 0.21 (0.11) 0.24 (0.11) 0.20 0.25 (0.06) 

1 Rosendo et al., 2007; 2 Bradford, 1969 

* Regression of generation mean on generation number 
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4.3. Selection for uterine capacity 

Selection for increased uterine capacity was proposed as an indirect way of improving 

litter size changing prenatal survival (Bennett and Leymaster, 1989). Christenson et al. 

(1987) defined uterine capacity as the maximum number of fetuses a dam can support 

at birth when the number of ova shed is not a limiting factor. They suggested that litter 

size of unilaterally ovariectomized-hysterectomized females could measure uterine 

capacity, because the remaining ovary nearly doubled its ovulation rate and the 

remaining uterine horn would be overcrowded by fetuses. In mice and rabbits, the 

number of total born from unilaterally ovariectomized females represented their 

uterine capacity (Clutter et al., 1990 in mice; Blasco et al., 1994 in rabbits), because 

their duplex uterus does not allow uterine transmigration. In these species, litter size 

of unilaterally ovariectomized females was approximately 80% of the size of intact 

does, indicating that the uterine horn capacity in intact females could still increase 

through selection (Blasco et al., 1994 in rabbits; Lamberson et al., 1989 in mice).  

 

Table 1.5: Responses to selection to increase uterine capacity (UC) and correlated responses in 

ovulation rate (OR), litter size (LS) and prenatal survival (PS) estimated per generation. 

Species Rabbits                      
(1st exp.) 

Rabbits         
(2nd exp.) 

Pigs Mice 

Generations 10 4 11 13 6, 21 7 

Method 
Control 

Population 
1,2 

Genetic 
Trends 3 

Genetic 
Trends 4 

Control 
population 

5 

Control 
population 

R
ES

P
O

N
SE

 

UC (kits) -0.01 1 0.08 -0.15 0.11 0.10 (0.02) 6* 

OR (ova) -0.03 2 0.03 -0.3 0.00 0.03 6 

LS (kits) 0.05 2 - - 0.08 0.00 7 

PS (%) 0.5 2 0.4 0 - 0.3 6 

1 Mocé et al., 2005; 2 Santacreu et al., 2005; 3 Blasco et al., 2005; 4 data calculated from results 

presented in Santacreu et al., 1994, assuming a symmetric response; 5 Leymaster and 

Christenson, 2000; 6 Gion et al., 1990; 7 Kirby and Nielsen, 1993;  

*Standard errors (SE) in parenthesis 

 

There is one experiment of selection for uterine capacity in pigs (Leymaster and 

Christenson, 2000) and their results have not been fully published yet. There are three 
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more experiments of selection for uterine capacity: two experiments of divergent 

selection in rabbits (first experiment: Blasco et al., 2005; Mocé et al., 2005; Santacreu 

et al., 2005; second experiment: Bolet et al., 1994; Santacreu et al., 1994) and one 

experiment in mice (Clutter et al., 1990; Gion et al., 1990; Kirby and Nielsen, 1993).  

In short, direct responses to increase uterine capacity and correlated responses in 

litter size were low or close to zero in rabbits, pigs and mice. 

 

4.4. Selection for an index of ovulation rate and prenatal survival  

The indexes of ovulation rate and prenatal survival were constructed to maximize the 

expected change in litter size at birth using adequate economic weights for each trait 

(Johnson et al., 1984). To our knowledge, there are two experiments of selection for an 

index of ovulation rate and prenatal survival, one in pigs (Johnson et al., 1984; Neal et 

al., 1989; Casey et al., 1994; Johnson et al., 1999) and the other in mice (Clutter et al., 

1990; Gion et al., 1990; Kirby and Nielsen, 1993). In pigs, the index was recalculated 

during the experiment to optimize response to selection. Selection was efficient in 

increasing litter size when compared to the control line (Table 1.6). This response was 

similar to the observed response to direct selection for litter size in other experiments. 

In mice, response to selection was estimated by comparison with a control line and 

with a line selected for litter size (Gion et al., 1990). As in pigs, litter size increased with 

selection compared with the control line (Table 1.6), but it increased at a similar rate 

to the line selected for litter size. The increase in litter size in the line selected for the 

index was due to a higher ovulation rate and prenatal survival in the selected line than 

in the control line. The index was used along the selection experiment without 

reweighting their components. The authors suggested that selection for the index 

could have been even more effective than selection for litter size using optimally 

weighted components.  
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Table 1.6: Responses to selection in ovulation rate (OR), litter size (LS) and prenatal survival 

(PS) estimated per generation in pigs and mice selected for an index of ovulation rate and 

prenatal survival, with their standard errors (in parenthesis). 

Species Pigs Mice 

Generations 10 1, 11 2 133 

Method  Control population 1 REML 2 Control population 3 

R
ES

P
O

N
SE

 OR (ova) 0.78 (0.04) 0.67 (0.12) 0.15 3 

LS (kits) 0.11 (0.05) 0.21 (0.04) 0.17 (0.01) 3 

PS (%) -0.9 (0.1) -0.01 (0.01) 0.15 3 

1 Casey et al., 1996; 2 Johnson et al., 1999; 3 Gion et al., 1990. 

 

4.5. Two-step selection for ovulation rate and litter size 

Two-step selection was performed in pigs to increase indirectly litter size (Ruíz-Flores 

and Johnson, 2001): first, females born in litters with highest litter size at birth were 

selected. Secondly, these females underwent laparotomy to count their ovulation rate 

at second estrus, and they were selected on their ovulation rate. Response to 8 

generations of selection, estimated as the regression of estimated breeding value line 

differences, was greater than expected for the number total born (0.33 ± 0.06 pigs per 

generation). The correlated response in number of born alive was 0.21 ± 0.06 pigs per 

generation. These responses are higher than the responses observed in other 

experiments of selection for litter size in pigs. 

In rabbits, an experiment of two-step selection of ovulation rate and litter size is 

currently being carried out in the Universidad Politécnica de Valencia (UPV). No results 

from this experiment have been published yet. 

 

Taking results together, in rabbits, selection for uterine capacity had not been 

successful and there was no previous experiment of selection for ovulation rate. At the 

beginning of our experiment, there was only one experiment in pigs (Cunningham et 

al., 1979) and two in mice (Bradford, 1969 and Land and Falconer, 1969), and 

generalizations from only 3 experiments should be made carefully. Selection for 
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ovulation rate was proposed in rabbits, expecting different results than in the 

experiments in pigs and mice. 

In our population, 85-90% of the females had a different number of corpora lutea in 

the right and the left ovary. The absence of uterine transmigration in rabbits (Adams, 

1960b) can cause an overcrowded uterine horn, while the other one is less occupied. 

The following hypothesis was formulated: if ovulation rate increased with selection in 

both ovaries, the ovary with higher ovulation rate could already have its uterine horn 

overcrowded, while the ovary with less ovulation rate could shed more ova able to 

implant. Therefore, the number of implanted embryos would possibly increase as an 

average, and that would possibly lead to a higher litter size. Indeed, in an experiment 

comparing intact rabbit females with unilaterally ovariectomized females showed that 

the latter nearly doubled the ovulation rate and uterine capacity in the remaining horn 

(Blasco et al., 1994). This might indicate that selection for ovulation rate could increase 

litter size, because the maximum uterine horn capacity has not been reached. 
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Selection for litter size has obtained a lower than expected response to selection. 

Therefore, alternative methods have been developed to increase litter size. Selection 

for ovulation rate was proposed as an indirect method to improve litter size. The 

objectives of this Thesis are: 

 

1. To study the phenotypic and genetic parameters of ovulation rate, litter size, 

number of implanted embryos and embryonic, fetal and prenatal survival rates 

in a rabbit population selected for ten generations for ovulation rate. 

 

2. To estimate direct response to selection for ovulation rate and correlated 

responses in litter size, number of implanted embryos and survival rates in the 

same rabbit line. Direct and correlated responses will be estimated by genetic 

trends and by comparison of the selected line with a vitrified control 

population. 
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Abstract 

The aim of this work was to evaluate the response to ten generations of selection for 

ovulation rate. Selection was based on phenotypic value of ovulation rate estimated at 

day 12 of second gestation by laparoscopy. Selection pressure was about 30%. Line 

size was approximately 20 males and 80 females per generation. Traits recorded were: 

ovulation rate at second gestation (OR2), estimated by laparoscopy as the number of 

corpora lutea in both ovaries; ovulation rate at last gestation (ORS), estimated post 

mortem; ovulation rate (OR), analyzed as a single trait including OR2 and ORS; right 

and the left ovulation rates (ROR and LOR); ovulatory difference (OD), estimated as the 

difference between ROR and LOR; litter size (LS), estimated as total number of rabbits 

born and the number of kits born alive (NBA), both of them recorded at each parity. A 

total of 1,477 and 3,031 records from 900 females were used to analyze OR and LS, 

respectively, while 1,471 records were used to analyze OD, ROR and LOR. Data were 

analyzed using Bayesian methodology. Heritabilities of OR, LS, NBA, ROR, LOR and OD 

were 0.16, 0.09, 0.08, 0.09, 0.04 and 0.03, respectively. Phenotypic correlations of OR 

with LS, NBA and OD were 0.09, 0.01 and 0.14, respectively. Genetic correlations of OR 

with LS and with NBA were estimated with low accuracy and there was not much 

evidence of the sign of the correlation. The genetic correlation between OR and OD 

was positive (P = 0.91). In 10 generations of selection, OR increased 1.3 ova, most of 

the response taking place in the right ovary (1.1 ova), but there was no correlated 

response on LS (-0.2 kits). In summary, direct response to selection for ovulation rate 

was relevant, but it did not modify litter size, due to an increase in prenatal mortality. 

 

Introduction 

Litter size is the most significant reproductive trait in polytocous species. It has a low 

heritability and response to selection has been consequently low. The response 

observed in rabbits, pigs and mice selected for litter size has been usually associated to 

an increment in the number of ova shed (Bolet et al., 1989 in pigs; Brun et al., 1992; 

Garcia and Baselga, 2002 in rabbits; Bakker et al., 1978; Gion et al., 1990 in mice). 

Ovulation rate is, together with prenatal survival, the foremost component of litter 

size, being also a limiting factor for its improvement. Ovulation rate is correlated with 
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litter size and it has a higher heritability (see review in Blasco et al., 1993b). For these 

reasons, selection for ovulation rate has been proposed to indirectly increase litter size 

(Zimmerman and Cunningham, 1975). There are several selection experiments for 

ovulation rate in pigs (Cunningham et al., 1979 and Rosendo et al., 2007) and mice 

(Land and Falconer, 1969 and Bradford, 1969), but, to our knowledge no selection for 

ovulation rate has hitherto been performed in rabbits. In these experiments, ovulation 

rate increased, but no correlated response in litter size occurred owing to a greater 

prenatal loss in the selected line. 

In rabbits there is no embryo uterine transmigration (Adams, 1960) unlike in pigs. 

Rabbit does can have an overcrowded uterine horn, while the other one is less 

occupied. If ovulation rate increased with selection in both ovaries, females would be 

able to implant more embryos in the less occupied uterine horn, leading to a higher 

litter size. 

The aim of this study is to evaluate direct response and correlated response in litter 

size in a rabbit line selected for ovulation rate for 10 generations.  

 

Materials and Methods 

Animals 

All experimental procedures involving animals were approved by the Polytechnic 

University of Valencia Research Ethics Committee. Animals belonged to a rabbit line 

selected for ovulation rate for 10 generations. Then, selection was relaxed for 1 

generation. This line derived from a synthetic line (V) selected for litter size at weaning 

for 12 generations (Estany et al., 1989), and then for high uterine capacity for 10 

generations (Blasco et al., 2005). After that, selection was relaxed for 6 generations. 

Selection was based on the phenotypic value of ovulation rate estimated at day 12 of 

second gestation by laparoscopy. Selection pressure was about 30% in females. Males 

were selected from litters of selected does within male families. The base population 

consisted of 85 females and 21 males. In the following generations the number of 

females and males was 75-30, 92-20, 80-15, 65-19, 59-16, 102-20, 80-13, 89-13, 65-13 

and 108-29, respectively. Animals were housed at the experimental farm of the 



RESPONSES ON OVULATION RATE AND LITTER SIZE 

45 
 

Universidad Politécnica de Valencia in individual cages. They were kept under 

controlled 16-h light: 8-h dark photoperiods and fed a commercial diet. 

Traits 

Ovulation rate at second gestation (OR2) was estimated as the number of corpora 

lutea in both ovaries by laparoscopy (n = 839). Ovulation rate at last gestation (ORS) 

was estimated post mortem at parities 3rd (n = 86), 4th (n = 115) and 5th (n = 437). 

Ovulation rate (OR) was also analyzed as a single trait including both ovulation rates 

(OR2 and ORS). Both ovulation rate in the right ovary (ROR) and ovulation rate in the 

left ovary (LOR) were measured. Ovulatory difference (OD) was estimated as the 

difference between ROR and LOR, expressed as an absolute value. Litter size (LS), 

measured as the total number of kits born per litter, and the number of kits born alive 

per litter (NBA) were measured in a maximum of 5 parities in each female. A total of 

1,477 and 3,031 records from 900 females were used to analyze OR and LS, 

respectively, while 1,471 records were used to analyze OD, ROR and LOR. 

Statistical Analyses  

In order to estimate the heritabilities and the correlations between OR2 and ORS the 

following bivariate animal model was fitted: 

yijk = YSi + Lj + aijk + eijk 

where YSi is the effect of year-season (29 levels for OR2 and 27 levels for ORS), Lj is the 

effect of lactation state of the doe (2 levels: multiparous lactating does and 

multiparous not lactating does when mated), aijk is the additive value of the animal and 

eijk is the residual of the model. The model assumed for ORS included also the parity 

effect P, with 3 levels.  

Bayesian inference was used. Data augmentation was carried out in order to fill the 

data vector and have the same design matrices for all traits. Augmented data were not 

used for inferences, but permitted to simplify computing (Sorensen and Gianola, 

2002). The traits were assumed to be conditionally normally distributed as follows: 
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where b1 and b2 were random vectors including the effects of YS, L and P; a1 and a2 

were vectors of individual additive genetic effects; X and Z were known incidence 

matrices; R was the residual (co)variance matrix. Between individuals only the additive 

random effects were assumed correlated. Within individuals and between traits, the 

additive and the residual effects were assumed correlated. The residual (co)-variance 

matrix can be written as R0   In with R0 being the 2 × 2 residual (co)variance matrix 

between the traits analyzed and In an identity matrix of appropriate order. Bounded 

uniform priors were used to represent vague previous knowledge of b1 and b2. Prior 

knowledge concerning additive effects was represented by assuming that they were 

normally distributed, conditionally on the associated (co)variance components, as 

follows: 

~  

where 0 was a vector of zeroes and G was the genetic (co)variance matrix. This matrix 

could be written as G0   A, where G0 was the 2 × 2 genetic (co)variance matrix 

between the traits and A was the known additive genetic relationship matrix, including 

all the animals involved in the selection process and the parents of the base 

generation. Bounded uniform priors were used for the components of the (co)variance 

matrixes R0 and G0.  

Bivariate repeatability animal models were fitted in order to estimate genetic 

parameters and genetic trends for OR, LS, NBA, OD, ROR and LOR. The model assumed 

was: 

yijklmn = YSi + Lj + Pk + al + pm + eijklmn 

where YSi has 32 levels for LS and NBA and 31 levels for OR, OD, ROR and LOR; Lj has 2 

levels; Pk has 5 levels for LS and NBA and 4 levels for OR, OD, ROR and LOR and where 

pijkl is the permanent environmental effect of the doe.  

For the bivariate repeatability model, the traits were assumed to be conditionally 

normally distributed as follows: 

1

2
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~  

where b1, b2, a1 and a2 were distributed as before; p1 and p2 were vectors of 

permanent environmental effects and W was its known incidence matrix. As before, 

only the additive random effects were assumed correlated between individuals. 

Between traits, the additive, the permanent environmental and the residual effects 

were assumed correlated. Prior knowledge concerning permanent effects was 

represented by assuming that they were normally distributed, conditionally on the 

associated (co)variance components, as follows: 

~  

where 0 was a vector of zeroes and P was the (co)variance matrix of the non additive 

genetic plus permanent environmental effects of the doe. This matrix could be written 

as P0   Is, where P0 was the 2 × 2 permanent effects (co)variance matrix and Is the 

identity matrix of the same order as the number of levels of permanent effects. 

Bounded uniform priors were used for the components of the (co)variance matrix P0. 

For trivariate repeatability analyses the order of R, G and P matrices was 3 x 3.  

Marginal posterior distributions of all unknowns were estimated by using the Gibbs 

sampling algorithm. The program TM by Legarra et al. (2008) was used for all Gibbs 

sampling procedures. Chains of 1,000,000 samples each were used, with a burning 

period of 200,000. One sample each 50 was saved to avoid high correlations between 

consecutive samples. Convergence was tested using the Z criterion of Geweke.  

  

Results and Discussion 

Means and standard deviations for all traits in generations 0 to 10 are presented in 

Table 1. Values are in agreement with the ones published by other authors in maternal 

rabbit lines (Brun et al., 1992; Piles et al., 2006; Theau-Clement, 2009). 
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Table 1. Means and SD (in parenthesis) for ovulation rate at second gestation (OR2), ovulation 

rate at the last gestation (ORS), ovulation rate (OR), right ovulation rate (ROR), left ovulation 

rate (LOR), ovulatory difference (OD), litter size (LS) and number of kits born alive (NBA) in 

generations 0 to 10.  

Generation 

 0 1 2 3 4 5 6 7 8 9 10 

S a 1.91 2.67 3.50 2.63 3.49 1.45 2.39 1.99 2.56 2.56 - 

OR2 a 15.3 

(2.1) 

15.4 

(2.5) 

15.5 

(2.5) 

16.2 

(2.5) 

15.5 

(3.0) 

15.2 

(2.3) 

16.6 

(2.2) 

16.0 

(2.1) 

16.4 

(2.4) 

16.4 

(2.5) 

16.3 

(2.6) 

ORS a 14.3 

(2.3) 

15.4 

(2.9) 

16.0 

(2.8) 

16.7 

(2.3) 

16.0 

(2.4) 

15.9 

(2.6) 

15.8 

(2.4) 

15.2 

(2.5) 

15.0 

(2.4) 

14.8 

(2.1) 

16.5 

(2.4) 

OR a 14.9 

(2.2) 

15.5 

(2.7) 

15.8 

(2.6) 

16.4 

(2.4) 

15.8 

(2.7) 

15.5 

(2.4) 

16.3 

(2.3) 

15.7 

(2.3) 

15.9 

(2.5) 

15.8 

(2.4) 

16.4 

(2.5) 

ROR a 7.9 

(2.5) 

7.8 

(2.8) 

8.3 

(2.4) 

8.9 

(2.7) 

8.4 

(2.5) 

8.0 

(2.4) 

8.5 

(2.5) 

8.4 

(2.5) 

7.9 

(2.6) 

8.5 

(2.1) 

8.6 

(2.2) 

LOR a 7.0 

(2.2) 

7.6 

(2.7) 

7.4 

(2.4) 

7.5 

(2.6) 

7.4 

(2.2) 

7.6 

(2.3) 

7.7 

(2.2) 

7.3 

(2.6) 

8.0 

(2.3) 

7.3 

(2.1) 

7.8 

(2.4) 

OD a 3.5 

(2.6) 

4.0 

(2.6) 

3.4 

(2.3) 

3.8 

(3.0) 

3.2 

(2.3) 

3.3 

(3.7) 

3.2 

(2.7) 

3.7 

(2.8) 

3.4 

(2.5) 

2.9 

(2.3) 

3.1 

(2.4) 

LS b 8.1 

(3.0) 

8.5 

(2.6) 

9.1 

(2.8) 

9.1 

(3.0) 

8.7 

(2.9) 

8.7 

(3.1) 

9.3 

(2.9) 

8.8 

(3.1) 

9.1 

(3.5) 

8.6 

(3.1) 

8.9 

(3.3) 

NBA b 7.3 

(3.4) 

8.0 

(2.8) 

8.6 

(3.1) 

8.3 

(3.4) 

8.0 

(3.2) 

8.1 

(3.4) 

8.6 

(3.1) 

8.0 

(3.3) 

7.9 

(3.9) 

7.6 

(3.5) 

8.1 

(3.5) 

S: Selection differential applied to animals at generation 0 and consecutively to the other generations. 

a 
Unit = ova. 

b 
Unit = kits.  

 
 

Ovulation rate 

The genetic correlation between OR2 and ORS was high and positive, with a probability 

of 95% of being higher than 0.87 (value k; Table 4). Thus, ovulation rate was analyzed 

as a single trait (OR), taking together both measures of ovulation rate, OR2 and ORS. 

Rosendo et al. (2007) obtained a similar genetic correlation in an experiment of 

selection for ovulation rate in pigs (rg = 0.89).  
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Heritability estimate for OR was moderately low (0.16; Table 2), having a probability of 

90% of being higher than 0.10, and it was similar to other estimates obtained in intact 

rabbits by Blasco et al. (1993a) (0.21) and Bolet et al. (1994) (0.24). Our estimate was 

also consistent with the ones of Neal et al. (1989) (0.17) in pigs and Long et al. (1991) 

(0.18) in a combined data set of intact and unilaterally ovariectomized mice. However, 

other estimates published in pigs and mice were higher; in pigs, Cunningham et al. 

(1979) and Rosendo et al. (2007) obtained heritabilities for OR of 0.33 and 0.42. In 

mice, Land and Falconer (1969) had a realized heritabilitiy of 0.31. 

 

Table 2. Features of the marginal posterior distributions of the heritability for ovulation rate at 

second gestation (OR2), ovulation rate at the last gestation (ORS), ovulation rate (OR), right 

ovulation rate (ROR), left ovulation rate (LOR), ovulatory difference (OD), litter size (LS) and 

number of kits born alive (NBA). 

Traits mean median HPD95% P0.10 k 

OR2 0.23 0.23 0.10, 0.36 0.98 0.12 

ORS 0.27 0.26 0.15, 0.38 1.00 0.17 

OR 0.16 0.16 0.07 , 0.25 0.90 0.08 

ROR 0.09 0.09 0.04, 0.15 0.40 0.05 

LOR 0.04 0.04 0.00, 0.09 0.02 0.01 

OD 0.03 0.03 0.00, 0.07 0.01 0.01 

LS 0.09 0.08 0.03 , 0.14 0.29 0.04 

NBA 0.08 0.08 0.03, 0.14 0.26 0.04 

HPD95%: high posterior density interval at 95%. P0.10: probability of the heritability being higher than 0.10. 

k: limit for the interval [k, +∞) having a probability of 95%. 

 

Right ovulation rate and LOR had lower heritability estimates than OR, being higher for 

ROR than for LOR (0.09 and 0.04, respectively; Table 2) The probability of this 

difference being higher than zero is 87% (data not shown). In rabbits, Blasco et al. 

(1993a) obtained heritability estimates for ROR and LOR of 0.22 and 0.10, respectively, 

but the estimates had large standard errors. Nielsen et al. (1996) in mice and Rosendo 

et al. (2007) in pigs observed different heritability estimates for the right and the left 

ovary, this time in favor of the left side. Right ovulation rate and LOR had a moderate 

and negative phenotypic correlation (high posterior density interval at 95% [-0.56, -
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0.41]; Table 3) but the genetic correlation between them was moderately low and 

positive (P = 0.79; Table 4). This difference in the sign of the correlation was also 

observed in mice by Clutter et al. (1990) (rp = -0.51; rg = 0.72) and in pigs by Haley and 

Lee (1992) (rp = -0.52; rg = 0.94) and Rosendo et al. (2007) (rp = -0.30; rg = 0.99). In 

order to explain the negative phenotypic correlation (rp) between ROR and LOR, Haley 

and Lee (1992) suggested a negative feedback mechanism between the ovaries. Blasco 

et al. (1993a) did not observe differences in the sign of the correlation, being both 

negative, however the genetic correlations in both studies in rabbits were estimated 

with low accuracy. 

 

Table 3. Features of the marginal posterior distributions of the phenotypic correlations 

between the traits analyzed: ovulation rate at second gestation (OR2), ovulation rate at the 

last gestation (ORS), ovulation rate (OR), right ovulation rate (ROR), left ovulation rate (LOR), 

ovulatory difference (OD), litter size (LS) and number of kits born alive (NBA). 

Traits mean median HPD95% HPD90% P k 

OR2, ORS  0.23 0.23 0.16, 0.31 0.17, 0.30 1.00
a
 0.17

a
 

OR, ROR 0.51 0.51 0.44, 0.57 0.45, 0.57 1.00
a
 0.45

a
 

OR, LOR 0.40 0.40 0.33, 0.48 0.34, 0.47 1.00
a
 0.34

a
 

ROR, LOR -0.49 -0.49 -0.56, -0.41 -0.54, -0.42 1.00
b
 -0.55

b
 

OR, OD 0.14 0.14 0.06, 0.22 0.08, 0.21 1.00
a
 0.07

a
 

OR, LS 0.09 0.09 0.00, 0.17 0.02, 0.17 0.98
a
 0.02

a
 

OR, NBA 0.01 0.01 -0.08, 0.10 -0.07, 0.08 0.59
a
 -0.07

a
 

HPD95%: high posterior density interval at 95%; HPD90%: high posterior density interval at 90%; P: probability 

of the phenotypic correlation being greater than zero (superscript a), or less than zero (superscript b); k: 

limit for the interval [k, +∞) (superscript a), or (-∞, k] (superscript b), having a probability of 95%. 

 

In rabbits, unlike pigs, there is no embryo uterine transmigration (Adams, 1960). Thus, 

there is no compensatory effect between uterine horns, and ovulatory difference is 

associated to uneven fetal distribution through both uterine horns. This could lead to 

overcrowding of one uterine horn and to higher mortality rate on that side, while the 

other uterine horn remains less occupied being unable to express its uterine capacity. 

Ovulatory difference had a low heritability (0.03) and it was phenotypically and 

genetically positively correlated with OR (Tables 2, 3 and 4). The genetic correlation 
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was moderate, with a probability of 91% of being positive. The phenotypic correlation 

was low and it was positive. These positive correlations indicate that females with high 

ovulation rate tend to have more ovulatory difference and thus their prenatal 

mortality could increase.  

 

Table 4. Features of the marginal posterior distributions of the genetic correlations between 

the traits analyzed: ovulation rate at second gestation (OR2), ovulation rate at the last 

gestation (ORS), ovulation rate (OR), right ovulation rate (ROR), left ovulation rate (LOR), 

ovulatory difference (OD), litter size (LS) and number of kits born alive (NBA). 

Traits mean median HPD95% HPD90% P k 

OR2, ORS 0.96 0.98 0.87, 1.00 0.90, 1.00 1.00a 0.87a 

OR, ROR 0.93 0.96 0.77, 1.00 0.82, 1.00 1.00a 0.77a 

OR, LOR 0.72 0.77 0.23, 1.00 0.38, 1.00 0.98a 0.23a 

ROR, LOR 0.38 0.40 -0.35, 1.00 -0.21, 1.00 0.79a -0.35a 

OR, OD 0.55 0.64 -0.18, 1.00 0.02, 1.00 0.91a -0.18a 

OR, LS -0.20 -0.19 -0.77, 0.30 -0.63, 0.26 0.76b 0.23b 

OR, NBA -0.29 -0.27 -0.99, 0.18 -0.80, 0.21 0.84b 0.17b 

HPD95%: high posterior density interval at 95%; HPD90%: high posterior density interval at 90%; P: probability 

of the genetic correlation being greater than zero (superscript a), or less than zero (superscript b); k: limit for 

the interval [k, +∞) (superscript a), or (-∞, k] (superscript b), having a probability of 95%. 

 

Litter size 

Heritability estimates for LS and for NBA were low (0.09 and 0.08, respectively; Table 

2). These estimates are similar to other estimates reported in rabbits (Blasco, 1996; 

García and Baselga, 2002), pigs (review in Pérez-Enciso, 1997; Canario et al., 2006) and 

mice (Clutter et al., 1990). The phenotypic correlation between OR and LS was positive 

(P = 98%, Table 3) but low, having a probability of 99% of being lower than 0.30. The 

phenotypic correlation between OR and NBA was almost zero, with a probability of 

96% of being in the interval [-0.10, 0.10]. The genetic correlation of OR with LS has a 

large high posterior density interval at 95% ([-0.77, 0.30], Table 4). Hence, there was 

not much evidence about the sign of the correlation. Other estimates of genetic 

correlations between OR and LS in intact females were higher and positive (Blasco et 



CHAPTER 3 

52 
 

al., 1993a (0.36) in rabbits; Johnson et al., 1999 (0.24) and Rosendo et al., 2007 (0.41) 

in pigs; Clutter et al., 1990 (0.81) and Long et al., 1991 (0.62) in mice), although the 

range of the standard errors for the genetic correlations was wide for all of them. 

However, based in our estimates, we cannot sustain that selection for ovulation rate 

will improve litter size. 

Response to selection 

The response to selection for ovulation rate and the correlated responses in ROR, LOR, 

OD, LS and NBA are shown in Figures 1 and 2. After 10 generations of selection, 

ovulation rate increased in 1.3 ova, near 1% per generation (0.13 ova /generation); 

Most of the response took place in the right ovary; ROR and LOR increased in 1.1 and 

0.5 ova, respectively. Ovulatory difference increased 0.3 ova in 10 generations; 

however the increase in OD seems to be due to a scale effect related to the increase of 

the mean of OR. This was corroborated after analyzing OD fitting OR as a covariate     

(b OR OD = 0.08), where no response to selection was observed. Direct response in 

ovulation rate has been relevant, but lower than expected, although selection 

differential was relatively high, between 1.75 and 3.50 throughout the experiment 

(Table 1).  

 

 

Figures 1 and 2: Genetic trends for ovulation rate (OR), litter size (LS) and number of kits born 

alive (NBA) (Figure 1). Genetic trends for ovulation rate (OR), right ovulation rate (ROR), left 

ovulation rate (LOR) and ovulatory difference (OD) (Figure 2). 
a Unit = ova; b Unit = kits. 
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In pigs, Cunningham et al. (1979) and Rosendo et al. (2007) obtained higher responses 

(3.7 ova in 9 generations and approximately 2 ova in 7 generations, respectively). In 

rabbits, response in litter size after direct selection has been usually close to 1% per 

generation (see review in Mocé and Santacreu, 2010). In our study, selection for 

ovulation rate has not modified litter size; correlated responses in LS and NBA were 

not relevant (-0.2 total born and -0.2 kits born alive in 10 generations). Possible causes 

for the lacking correlated response in LS will be discussed below. 

Selection for ovulation rate was proposed as a promising way of indirectly increasing 

litter size. As Pérez-Enciso and Bidanel (1997) showed in their review, when selection 

was carried out for LS in rabbits, pigs and mice, changes were basically due to an 

increase in OR. Conversely, when selection was performed on OR, correlated response 

on LS was close to zero (in pigs: Cunningham et al., 1979; Rosendo et al., 2007; in mice: 

Bradford, 1969; Land and Falconer, 1969). In the present study, a positive correlated 

response in LS was expected, because in rabbits there is no uterine transmigration. If 

OR increased in both ovaries, the ovary with higher ovulation rate would already have 

its uterine horn overcrowded; but the ovary with less ovulation rate would shed more 

ova able to implant, therefore the number of implanted embryos would possibly 

increase as an average and that would possibly lead to a higher litter size. However, a 

not correlated response in LS and in NBA was observed; thus, prenatal mortality 

should have increased. A possible explanation for our results would be ovulation of 

immature oocytes. It is possible that some oocytes are released in an early state, not 

having acquired developmental competence, in agreement with Koenig et al. (1986), 

who suggested that selection for high ovulation rate could induce ovulation of 

immature oocytes. Another explanation could be the ovulatory timing, which lasts 

about 14 hours in rabbits (Fujimoto et al., 1974). In females with extremely high 

ovulation rates, the duration of the ovulatory process could increase. Pope et al. 

(1988) described differences in ovulatory timing affecting early embryonic 

development in pigs: 68% of the follicles ovulated simultaneously in a short period of 

time, while the remaining ruptured later. These late ovulated oocytes were fertilized 

later and became small and less competent blastocysts, which were more susceptible 

to die (Xie et al., 1990). A third explanation for our results would be a decrease in fetal 
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survival due to an asynchrony between the development of fetus and maternal uterus 

or due to a higher fetal competence for space and nutrients in overcrowded uterine 

horns. 

 

Implications 

Our results show that ovulation rate responded to selection but no correlated 

response on litter size was found. There are possible explanations for the lacking 

correlated response observed in litter size; these include poor quality oocytes, high 

variability in embryonic development or competence among fetuses after 

implantation. Further analyses are needed in order to elucidate whether embryonic 

mortality or fetal mortality are responsible for the lacking correlated response on litter 

size.  
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Abstract 

The aim of this work was to evaluate the correlated responses on survival rates after 

ten generations of selection for ovulation rate. Selection was based on the phenotypic 

value of ovulation rate estimated at d 12 of second gestation by laparoscopy. Traits 

recorded were: litter size (LS), estimated as total number of rabbits born per litter in 

up to five parities; ovulation rate (OR), estimated as the number of corpora lutea in 

both ovaries; the number of implanted embryos (IE), estimated as the number of 

implantation sites; the number of right and left implanted embryos (RIE and LIE); 

ovulatory difference (OD), defined as the difference between the right and the left 

ovulation rate, expressed as an absolute value; implantatory difference (ID), defined as 

the difference between RIE and LIE, expressed as an absolute value; embryonic survival 

(ES), calculated as IE/OR; fetal survival (FS), calculated as LS/IE; prenatal survival (PS), 

calculated as LS/OR. A total of 1,081 records were used to analyze ES and 770 were 

used to analyze FS and PS. The number of records used to analyze the other traits 

ranged from 1,079 for ID to 3,031 for LS. Data were analyzed using Bayesian 

methodology. Genetic parameters of OR, OD and LS were estimated in a previous 

paper. Estimated heritabilities of IE, ID, ES, FS and PS were 0.11, 0.03, 0.09, 0.24 and 

0.14, respectively. Estimated repeatabilities of IE, ID and ES were 0.22, 0.12 and 0.20. 

Estimated phenotypic correlations of OR with ES, FS and PS were -0.07, -0.26 and -

0.28, respectively. Their estimated genetic correlations with FS and PS were negative 

(probability of being negative 1.00 and 0.98, respectively). Nothing can be said about 

the sign of the genetic correlation between OR and ES. Ovulation rate was 

phenotypically uncorrelated with ID. Their estimated genetic correlation was positive 

(probability of being positive 0.91). The estimated genetic correlations of ID with PS 

and LS were imprecise. Phenotypic and genetic correlations between LS and survival 

rates were positive (probability of being positive 1.00). In 10 generations of selection, 

FS decreased around 1% per generation. No correlated response in ES was observed. In 

summary, the decrease in fetal survival in rabbits selected for ovulation rate seemed 

to be responsible for the lack of correlated response observed in litter size. 
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Introduction 

Selection for ovulation rate has been proposed as an indirect way of increasing litter 

size (Zimmerman and Cunningham, 1975); ovulation rate is the upper limit of litter size 

and it has a higher heritability. Laborda et al. (2010) have shown that selection for 

ovulation rate has been successful in rabbits, but there has been no correlated 

response in litter size. The same phenomenon has been observed in the experiments 

of selection for ovulation rate in pigs (Cunningham et al., 1979; Rosendo et al., 2007; 

Leymaster and Christenson, 2000) and mice (Land and Falconer, 1969; Bradford, 1969). 

In these selection experiments, the lacking correlated response in litter size was 

associated to an increase in prenatal mortality. There is little information about the 

timing of prenatal mortality in experiments of selection for ovulation rate in pigs and 

mice, due to the difficulties in measuring the number of fetuses without altering litter 

size. In mice, Bradford (1969) observed that most prenatal mortality occurred after 

implantation. In pigs, the main difference in prenatal mortality in a line selected for 

ovulation rate was observed during the early fetal development between d 25 and 45 

of gestation (Freking et al., 2007). This difference was associated to less endometrial 

space for the fetuses at implantation in the selected females. Although pigs and mice 

have a different uterine architecture and different types of placentation, fetal survival 

has decreased with selection for ovulation rate in both species.  

In rabbits, unlike pigs and mice, it is possible to easily measure the number of 

implanted embryos by laparoscopy in live females, and thus it is possible to calculate 

embryonic and fetal survival in the same doe, without altering litter size (Santacreu et 

al., 1990). The aim of this study was to evaluate the correlated responses on 

embryonic, fetal and prenatal survival in a rabbit line selected for ovulation rate during 

10 generations. 

 

Material and methods 

Animals 

All experimental procedures involving animals were approved by the Polytechnic 

University of Valencia Research Ethics Committee. Animals belonged to a 10 
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generation selection experiment for ovulation rate, described in a companion paper by 

Laborda et al. (2011), which began in February 2002 and continued until February 

2010. Selection was based on the phenotypic value of ovulation rate estimated at day 

12 of second gestation by laparoscopy. Implantation in rabbits takes place at d 7 and 

laparoscopy permits to count implantation sites at d 12 (Santacreu et al. 1990). 

Traits 

Litter size (LS) was measured as the total number of kits born per litter; it was 

measured in a maximum of 5 parities in each female. Ovulation rate (OR), estimated as 

the number of corpora lutea in both ovaries, and the number of implanted embryos 

(IE), estimated as the number of implantation sites, were measured by laparoscopy at 

d 12 of second gestation. Both the number of implanted embryos in the right (RIE) and 

the left uterine horn (LIE) were measured. Ovulatory difference (OD) was defined as 

the difference between the ovulation rates in the right and the left ovaries, expressed 

as an absolute value; implantatory difference (ID), was defined as the difference 

between RIE and LIE, expressed as an absolute value. Embryonic survival (ES) was 

calculated as IE/OR, fetal survival (FS) was calculated as LS/IE and prenatal survival (PS) 

was calculated as LS/OR. Females from all generations had a second post mortem 

measurement of OR and OD; further, females from the 1st to the 5th generation had a 

second post mortem measurement of IE, RIE, LIE, ID and ES. 

A total of 3,031 and 1,477 records from 900 females were used to analyze LS and OR, 

respectively, while 1,081 records were used to analyze IE and ES. A total of 1,471 

records were used for OD, 1,079 for ID, RIE and LIE and 770 for FS and PS. The number 

of animals in the pedigree was 1107. 

Statistical Analyses 

Bayesian inference was used. Data augmentation was carried out to fill the data vector 

and have the same design matrices for all traits. Augmented data were not used for 

inferences, but permitted to simplify computing (Sorensen and Gianola, 2002). 

Bivariate and trivariate repeatability animal models were fitted to estimate genetic 

parameters and genetic trends. Ovulation rate was included in each analysis, both 

bivariates and trivariates. Correlations with OR were estimated using bivariate models. 
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Trivariate analyses were used to estimate genetic parameters between traits different 

from OR.  The model assumed for OR, OD, LS, IE, RIE, LIE, ID and ES was: 

yijklmn= YSi + Lj + Pk + al + pm + eijklmn 

where YSi is the effect of year-season (one year season every three months: 32 levels 

for LS, 31 levels for OR and OD, 30 levels for IE, RIE, LIE, ID and ES), Lj is the effect of 

lactation state of the doe (2 levels: 1 for lactating and 2 for not lactating does when 

mated), Pk is the effect of parity (5 levels for LS, 4 levels for the other traits), al is the 

additive value of the animal, pm is the permanent environmental effect of the doe and 

eijklmn is the residual of the model. The model for FS and PS did neither have the parity 

effect nor the permanent environmental effect, because records came only from the 

second parity, and the year-season effect had 30 levels.  

For the bivariate repeatability model, the traits were assumed to be conditionally 

normally distributed as follows: 
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where b1 and b2 were random vectors including the effects of YS, L and P; a1 and a2 

were vectors of individual additive genetic effects; p1 and p2 were vectors of 

permanent environmental effects. X, Z and W were known incidence matrices; R was 

the residual (co)variance matrix. Between individuals, only the additive random effects 

were assumed correlated. Between traits, the additive, the permanent environmental 

and the residual effects were assumed correlated. The residual (co)variance matrix can 

be written as R0   In, with R0 being the 2 × 2 residual (co)variance matrix between the 

traits analyzed and In an identity matrix of appropriate order. Bounded uniform priors 

were used to represent vague previous knowledge of distributions of b1 and b2. Prior 

knowledge concerning additive and permanent effects was represented by assuming 

that they were normally distributed, conditionally on the associated (co)variance 

components, as follows: 
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where 0 was a vector of zeroes, G was the genetic (co)variance matrix and P was the 

(co)variance matrix of the non additive genetic plus permanent environmental effects 

of the doe. Matrices G and P could be written as G0   A and P0   Is, respectively, 

where G0 and P0 were the 2 × 2 genetic and permanent (co)variance matrices, A was 

the known additive genetic relationship matrix and Is the identity matrix of the same 

order as the number of levels of permanent effects. Bounded uniform priors were 

used for the components of the (co)variance matrices R0 and G0 and P0. For trivariate 

repeatability analyses the order of R, G and P matrices was 3 x 3.  

Marginal posterior distributions of all unknowns were estimated by using the Gibbs 

sampling algorithm. The programs TM by Legarra et al. (2008) and GIBBS2F90 by 

Misztal et al. (2002) were used for all Gibbs sampling procedures. Chains of 1,000,000 

samples each were used, with a burning period of 200,000. One sample each 50 was 

saved to avoid high correlations between consecutive samples. Convergence was 

tested using the Z criterion of Geweke.  

 

Results and discussion 

Means and standard deviations of the traits IE, RIE, LIE, ID and survival rates in the 

base generation are presented in Table 1; values of IE and survival rates are in 

agreement with values published by other authors in maternal rabbit lines (Brun et al., 

1992; García and Baselga, 2002). Means and standard deviations for OR, OD and LS can 

be found in Laborda et al. (2011).  

 

Table 1. Means and SD for number of implanted embryos (IE), number of implanted embryos 

on the right and on the left uterine horn (RIE and LIE), implantatory difference (ID=|RIE–LIE|), 

embryonic survival (ES), fetal survival (FS) and prenatal survival (PS) in the base generation. 

Trait IE RIE LIE ID ES FS PS 

mean 12.5 6.6 5.9 3.2 0.82 0.73 0.59 

SD 3.2 2.6 2.5 2.5 0.18 0.19 0.20 
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In our experiment, prenatal mortality (1-PS) expressed as a percentage was 

approximately 40% in the base generation, in agreement with results previously 

reported in rabbits (Adams, 1960a,b), 18% corresponding to the embryonic period 

(preimplantation), and 22% to the fetal period (postimplantation). In pigs, a prenatal 

loss of 40% to 60% has been reported (reviewed by Foxcroft at al., 2006); most of it 

has been observed before d 30-35 of gestation. Prenatal mortality in mice is around 

20% (Bradford, 1969; Clutter et al., 1990). This percentage is almost equally distributed 

between the pre- and the postimplantation period (reviewed by Wilmut et al., 1986). 

In our experiment, we have differentiated between pre- and postimplantation 

mortality (1-ES and 1-FS, respectively). This difference was not applied in most 

selection experiments involving ovulation rate in pigs and mice. Thus, comparisons 

with our data have to be taken with caution. In pigs, fetuses cannot be individualized 

by observation of its external surface by laparoscopy; therefore, the number of fetuses 

was counted in vivo by laparotomy at d 50, which in this species corresponds to the 

middle gestation, reducing fetal survival and litter size (Neal et al., 1989; Johnson et al., 

1999). In mice, the number of fetuses was measured after slaughtering the female 

near the end of gestation (d 17, Clutter et al., 1990) or at d 7-8 and d 16 of gestation 

(Bradford, 1969). 

The features of the marginal posterior distributions of the heritabilities of IE, RIE, LIE, 

ID and survival rates and the repeatabilities of IE, RIE, LIE, ID and ES are shown in Table 

2. Heritabilities of OR (0.16; HPD95% [0.07, 0.25]), OD (0.03; HPD95% [0.00, 0.07]) and LS 

(0.09; HPD95% [0.03, 0.14]) were presented in Laborda et al. (2011). Their 

repeatabilities were 0.25 (HPD95% [0.17, 0.32]), 0.09 (HPD95% [0.03, 0.15]) and 0.19 

(HPD95% [0.15, 0.23]), respectively. Tables 3 and 4 present the features of the marginal 

posterior distributions of the phenotypic correlations between traits, and Tables 5 and 

6 present the features of the marginal posterior distributions of the genetic 

correlations between traits. In general, genetic correlations were estimated with low 

accuracy, and often it was only possible to draw conclusions about their sign. 
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Number of implanted embryos 

The IE had a low heritability (Table 2). This was of the same magnitude as heritability of 

IE in rabbits (Bolet et al., 1994; Argente et al., 2000) and heritabilities of the number of 

fetuses at different moments of gestation in rabbits (d 12), pigs (d 50) and mice (d 17) 

(Blasco et al., 1993a; Johnson et al., 1999; Clutter et al., 1990, respectively). The 

estimated phenotypic correlation of IE with OR (Table 3) had similar magnitude and 

sign than the ones obtained in these species. The posterior mean of the genetic 

correlation between IE and OR had a large HPD95% interval (Table 5), but it was positive 

with a high probability (P=0.99). Our result is in accordance with the ones obtained in 

pigs and mice, where a positive genetic correlation between IE and OR was estimated: 

0.44 in pigs (Johnson et al., 1999) and 0.81 in mice (Clutter et al., 1990). Both estimates 

were also imprecise. The repeatability estimate of IE was 0.22 with HPD95% [0.13, 0.31] 

(Table 2). This repeatability estimate leads to an estimated ratio of the permanent 

environmental variance to the phenotypic variance (p2) of 0.11. No repeatability or p2 

estimates of the traits IE, ID or ES have been found in the literature. However, our 

estimate of p2 is within the range reported in the literature for litter size in rabbits 

(reviewed by Garreau et al., 2004).  

 

Table 2. Features of the marginal posterior distributions of the heritability (h2) and the 

repeatability (r) of number of implanted embryos (IE), number of implanted embryos on the 

right and on the left uterine horn (RIE and LIE), implantatory difference (ID=|RIE–LIE|), and 

embryonic survival (ES) and the heritability of fetal survival (FS) and prenatal survival (PS). 

Traits h2 HPD95% (h2) P0.10 k r HPD95% (r) 

IE 0.11 0.04, 0.19 0.58 0.05 0.22 0.13, 0.31 

RIE 0.08 0.01, 0.14 0.24 0.03 0.22 0.11, 0.31 

LIE 0.06 0.01, 0.13 0.13 0.02 0.14 0.05, 0.23 

ID 0.03 0.00, 0.08 0.01 0.01 0.12 0.05, 0.20 

ES 0.09 0.02, 0.17 0.39 0.04 0.20 0.11, 0.29 

FS 0.24 0.10, 0.38 0.98 0.13 - - 

PS 0.14 0.04, 0.25 0.75 0.06 - - 

HPD95%: high posterior density interval at 95%. P0.10: probability of the heritability being higher than 0.10. k: 

limit for the interval [k, +∞) of the heritability having a probability of 95%. 
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Estimated phenotypic and genetic correlations between LS and IE were 0.57 (Table 4) 

and 0.46 (Table 6). Their probabilities of being positive were 100% and 98%, 

respectively. Similar phenotypic correlations but apparently higher genetic correlations 

were obtained in rabbits and pigs, possibly because the number of fetuses was 

measured at a later point of gestation (Blasco et al., 1993a in rabbits; Johnson et al., 

1999 in pigs) or because genetic correlations were estimated with low accuracy. 

Taking all together, IE is not a good candidate to improve LS by indirect selection, due 

to its low heritability (Table 2) and its moderately low genetic correlation with litter 

size (Table 6).  

 

Table 3. Features of the marginal posterior distributions of the phenotypic correlation 

between the traits analyzed: ovulation rate (OR), ovulatory difference (OD), number of 

implanted embryos (IE), number of implanted embryos on the right and on the left uterine 

horn (RIE and LIE), implantatory difference (ID=|RIE–LIE|), embryonic survival (ES), fetal 

survival (FS) and prenatal survival (PS). 

HPD95%: high posterior density interval at 95%; P: probability of the phenotypic correlation being greater 

than zero (superscript a), or less than zero (superscript b); k: limit for the interval [k, +∞) (superscript a), 

or (-∞, k] (superscript b), having a probability of 95%. 

 

The number of right and left implanted embryos had low heritabilities (0.08 and 0.06 

for RIE and LIE, respectively; Table 2), in accordance with the ones obtained by Blasco 

et al. (1993a). In mice, different results were obtained: Clutter et al. (1990) showed 

Traits mean HPD95% P k 

IE, OR 0.38 0.29, 0.47 1.00 a 0.30 a 

RIE, OR 0.28 0.19, 0.38 1.00 a 0.20 a 

LIE, OR 0.30 0.20, 0.38 1.00 a 0.22 a 

ID, OR 0.00 -0.08, 0.09 0.55 a -0.07 a 

ES, OR -0.07 -0.17, 0.03 0.92 b -0.15 b 

FS, OR -0.26 -0.33, -0.19 1.00 b -0.20 b 

PS, OR -0.28 -0.35, -0.21 1.00 b -0.22 b 

ID, OD 0.59 0.51, 0.65 1.00 a 0.53 a 

RIE, LIE -0.04 -0.12, 0.04 0.83 b 0.03 b 
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different heritability estimates for the number of fetuses in the right and the left 

uterine horns at d 17 of gestation, being higher for the right side than for the left side 

(0.18 and 0.03, respectively). In our study, the phenotypic and the genetic correlations 

of OR with RIE and LIE were positive with a high probability (P≥87%; Tables 3 and 5), 

indicating that RIE and LIE tend to increase with selection for OR. The phenotypic 

correlation between RIE and LIE was very low (Table 3), whereas the genetic 

correlation was positive with a high probability (P=96%; Table 5). In mice, the estimate 

of the phenotypic correlation between fetuses in the right and left uterine horn was 

close to zero (-0.01), and the estimated genetic correlation between them was 

imprecise (Clutter et al., 1990).  

 

Table 4. Features of the marginal posterior distributions of the phenotypic correlation 

between the traits analyzed: litter size (LS), number of implanted embryos (IE), 

implantatory difference (ID=|RIE–LIE|), embryonic survival (ES), fetal survival (FS) and 

prenatal survival (PS). 

Traits mean HPD95% P k 

IE, LS 0.57 0.51, 0.62 1.00 a 0.52 a 

ID, LS 0.00 -0.09, 0.09 0.53 a -0.08 a 

ES, LS 0.52 0.47, 0.59 1.00 a 0.48 a 

FS, LS 0.56 0.52, 0.60 1.00 a 0.53 a 

PS, LS 0.89 0.88, 0.90 1.00 a 0.88 a 

ID, PS -0.06 -0.13, 0.02 0.93 b 0.00 b 

ES, FS -0.07 -0.15, 0.01 0.96b 0.00 b 

HPD95%: high posterior density interval at 95%; P: probability of the phenotypic correlation being greater 

than zero (superscript a), or less than zero (superscript b); k: limit for the interval [k, +∞) (superscript a), 

or (-∞, k] (superscript b), having a probability of 95%. 

 

Implantatory difference (ID) refers to uneven embryo distribution through both 

uterine horns, where one uterine horn remains less occupied than the other one. 

Implantatory difference had a close to zero heritability, having only a probability of 1% 

of being higher than 0.10 (P0.10; Table 2). As there is no embryo uterine transmigration 

in rabbits (Adams, 1960b), ID may be associated to ovulatory difference (OD). The 
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estimate of the phenotypic correlation between OD and ID was 0.59, having a 

probability of 95% of being at least 0.53 (Table 3). The genetic correlation was positive 

(P=0.92; Table 5). These positive correlations suggest that OD and ID may increase 

together. Implantatory difference was phenotypically uncorrelated with OR (Table 3). 

However, the genetic correlation with OR was positive with a probability of 91% (Table 

5), indicating that ID could increase with OR. These different phenotypic and genetic 

correlations are due to a negative permanent environmental correlation between the 

OR and ID (-0.50; HPD95% [-1.00, 0.29]). Implantatory difference was suggested by 

Laborda et al. (2011) to cause higher prenatal mortality in overcrowded uterine horns, 

contributing to the lacking correlated response in LS in rabbits selected for ovulation 

rate. However, this hypothesis could not be tested, because the phenotypic 

correlations of ID with PS and LS were close to zero (Tables 4) and the genetic 

correlations were estimated with low accuracy (Table 6). 

 

Table 5. Features of the marginal posterior distributions of the genetic correlation between 

the traits analyzed: ovulation rate (OR), number of implanted embryos (IE), number of 

implanted embryos on the right and on the left uterine horn (RIE and LIE), implantatory 

difference (ID=|RIE–LIE|), embryonic survival (ES), fetal survival (FS) and prenatal survival (PS). 

Traits mean HPD95% P k 

IE, OR 0.58 0.16, 0.93 0.99 a 0.20 a 

RIE, OR 0.74 0.33, 1.00 0.99 a 0.33 a 

LIE, OR 0.41 -0.29, 1.00 0.87 a -0.29 a 

ID, OR 0.56 -0.17, 1.00 0.91 a -0.17 a 

ES, OR 0.02 -0.57, 0.64 0.53 a -0.49 a 

FS, OR -0.58 -1.00, -0.26 1.00 b -0.26 b 

PS, OR -0.55 -1.00, -0.11 0.98 b -0.11 b 

ID, OD 0.69 -0.33, 1.00 0.92 a -0.33 a 

RIE, LIE 0.44 -0.03, 0.89 0.96 a 0.01 a 

HPD95%: high posterior density interval at 95%; P: probability of the genetic correlation being greater 

than zero (superscript a), or less than zero (superscript b); k: limit for the interval [k, +∞) (superscript a), 

or (-∞, k] (superscript b), having a probability of 95%. 
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Survival rates 

Heritabilities were low for ES and PS (Table 2). Heritability of FS was moderate, with a 

probability of 98% of being higher than 0.10 (Table 2). Heritability estimates were 

similar to the estimates presented by Blasco et al. (1993a) in rabbits. The heritability 

estimate of PS also agrees with the estimates in pigs (Rosendo et al., 2007) and mice 

(Clutter et al., 1990). Estimated phenotypic correlations between OR and survival rates 

were negative with a probability of at least 92% (Table 3); however, they were of low 

magnitude, especially the phenotypic correlation between OR and ES that had a 

probability near 100% of being in the interval from -0.20 to 0.20. The estimated 

genetic correlation between OR and ES was imprecise and nothing can be said about 

its sign (Table 5). The estimated genetic correlation of OR with FS was negative, having 

a probability of 95% of being lower than -0.26 (k, Table 5). The genetic correlation of 

OR with PS was negative, too (P=98%; Table 5). In previous studies in rabbits and pigs, 

correlations between ovulation rate and prenatal survival ranged from -0.14 to -0.45 

(Blasco et al., 1993a in rabbits; Rosendo et al., 2007 in pigs). In mice, the genetic 

correlation between ovulation rate and survival at d 17 of gestation was low, but it was 

estimated with low accuracy (Clutter et al., 1990). Phenotypic and genetic correlations 

of ovulation rate with the components of prenatal survival, embryonic and fetal 

survival, are scarce in the literature. Our results agree with the ones published 

previously in rabbits (Blasco et al., 1993a). In pigs, Neal et al. (1989) had a negative 

genetic correlation (-0.56), estimated with a high standard error, between ovulation 

rate and survival at d 50 in a line selected for an index of these two traits during 5 

generations. Johnson et al. (1999) obtained a high and negative genetic correlation       

(-0.86) in the same line of pigs after 11 generations of selection for the same index 

followed by 3 generations of selection for litter size. 

Litter size was positively correlated with ES, FS and PS, being phenotypic and genetic 

correlations of similar magnitude (Tables 4 and 6). Genetic correlations were moderate 

with ES and FS and high with PS, which had a probability of 95% of being at least 0.85. 

The genetic correlation of LS with ES and FS had probabilities of 89% and 91% of being 

higher than 0.5. The positive correlations between LS and survival rates agree with the 
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estimates found in the literature (Blasco et al., 1993b for a review; Blasco et al., 1993a 

in rabbits; Johnson et al., 1999 and Rosendo et al., 2007 in pigs).  

The moderate heritability of FS together with its positive and moderately high genetic 

correlation with LS, convert FS into an interesting trait to select for in rabbits, being a 

better candidate than OR. No selection experiment for FS has been found in the 

literature. In rabbits, there is one experiment of selection for the number of dead 

fetuses from implantation until birth in unilateral ovariectomized females (Bolet et al., 

1994). This trait had a very low heritability and variability, and no correlated response 

in litter size was observed. 

 

Table 6. Features of the marginal posterior distributions of the genetic correlation between 

the traits analyzed: litter size (LS), number of implanted embryos (IE), implantatory difference 

(ID=|RIE–LIE|), embryonic survival (ES), fetal survival (FS) and prenatal survival (PS). 

Traits mean HPD95% P k 

IE, LS 0.46 0.06, 0.78 0.98 a 0.12 a 

ID, LS 0.05 -0.60, 0.69 0.57 a -0.53 a 

ES, LS 0.69 0.39, 0.94 1.00 a 0.40 a 

FS, LS 0.65 0.39, 0.90 1.00 a 0.41 a 

PS, LS 0.91 0.85, 0.97 1.00 a 0.85 a 

ID, PS -0.15 -0.86, 0.53 0.65 b 0.49 b 

ES, FS 0.02 -0.55, 0.59 0.53 a -0.46 a 

HPD95%: high posterior density interval at 95%; P: probability of the genetic correlation being greater 

than zero (superscript a), or less than zero (superscript b); k: limit for the interval [k, +∞) (superscript a), 

or (-∞, k] (superscript b), having a probability of 95%. 

 

Response to selection 

The response to selection for OR (1.3 ova in 10 generations) and the correlated 

responses in OD (0.3 ova in 10 generations) and in LS (-0.2 kits in 10 generations) were 

already presented in a previous paper (Laborda et al., 2011). The correlated responses 

in IE, RIE, LIE, ID and survival rates are shown in Figures 1 and 2. After 10 generations 

of selection, the correlated response in IE was 0.9 embryos, most of it taking place in 
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the right side (0.8 embryos). The low response in ID (0.1 embryo), less than 0.5% per 

generation, was apparently not responsible for the lacking correlated response in LS 

(Laborda et al. 2011). Moreover, the small increase in ID seems to be due to a scale 

effect related to the increase in IE, similar to what happens with OD (Laborda et al., 

2011). This was confirmed after analyzing ID fitting IE as a covariate, where no 

response to selection was observed (-0.036 in 10 generations).  
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Figures 1 and 2: Genetic trends for number of implanted embryos (IE), right and left implanted 

embryos (RIE and LIE) and implantatory difference (ID=|RIE–LIE|). Unit=embryos (Fig. 1). 

Genetic trends for embryonic survival (ES), fetal survival (FS) and prenatal survival (PS) (Fig. 2). 

 

To our knowledge, this is the first experiment of selection for ovulation rate where the 

responses in the two components of prenatal survival have been studied in the same 

animal, since in pigs and mice fetuses cannot be easily counted in vivo without 

increasing their mortality. In our experiment, PS decreased 0.07 in 10 generations, 

around 1% per generation. Leymaster and Christenson (2000) obtained a similar 

response in a line of pigs selected for ovulation rate for 11 generations. We did not 

observe any response in ES, but FS decreased 0.08 in 10 generations, around 1% per 

generation. Thus, this decrease in FS was responsible for the lack of correlated 

response observed in LS. As in this experiment, Freking et al. (2007) did not observe 

any changes in embryonic survival in unilateral hysterectomy-ovariectomy females in 

the line of pigs described by Leymaster and Christenson (2000); the main changes were 

observed during the early fetal development between days 25 and 45 of gestation 
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associated to less endometrial space for the fetuses at implantation in the 

overcrowded uterine horns. Similarly, Bradford (1969) observed that postimplantation 

losses were the main cause for the uncorrelated response in litter size in the line 

selected for ovulation rate by comparing it with a control line and a line selected for 

litter size. 

Most prenatal mortality in rabbits selected for ovulation rate occured during the fetal 

period. A critical moment for fetal survival in rabbits is between d 8 and 17 of 

gestation, when the development of the placenta takes place (Adams, 1960a,b; Hafez, 

1966). Placental development in rabbits, as in mice, has been associated to the 

number of blood vessels arriving to the implantation site (Duncan, 1969; Argente et al., 

2003; Mocé et al., 2004 in rabbits; Wirth-Dzieciolowska, 1987 in mice). Fetuses and 

fetal placentas are more developed when they receive more blood vessels, while 

fetuses with poor blood supply have a higher probability to die. In females with 

extremely high OR and overcrowded uterine horns, the blood flow to each fetus could 

be reduced, decreasing their survival. 

Other explanations for the decreased FS could be immature oocytes or less developed 

embryos, which would not be able to survive in later states of gestation. The 

proportion of females with extremely high OR (more than 20 ova; i.e., twice the 

standard deviation over the mean) increased with selection from 4% to 23%. These 

females could ovulate immature oocytes. A higher proportion of immature ova in pig 

females selected for ovulation rate compared to females from a control line was found 

by Koenig et al. (1986), who suggested that prenatal mortality could increase due to 

this, either before or after implantation. On the other hand, as follicles ovulate 

sequentially (Fujimoto et al., 1974), in females with high ovulation rate the ovulatory 

process could take longer than usual. A long ovulatory duration could lead to an 

increased variability in embryonic development (Torres et al., 1984). In rabbits, pigs 

and mice, it was observed that the uterine environment was synchronic with the more 

developed embryos, which had a better chance to survive (Torres et al., 1984 in 

rabbits; Pope, 1988 and Xie at al., 1990 in pigs; Wilmut et al., 1986 and Al-Shorepy et 

al., 1992 in mice). Lesser developed embryos have been related to a lower embryonic 

and fetal survival in rabbits (Mocé et al., 2004 and Peiró et al., 2007 in rabbits). In pigs, 
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it has been demonstrated that lesser-developed embryos were able to survive beyond 

implantation (Wilde et al., 1988; Pope et al., 1990); however they would probably die 

soon after that due to fetal competence for space, contributing to the decrease in fetal 

survival (Geisert and Schmitt, 2002).  

In conclusion, the results show that selection for ovulation rate has increased fetal 

mortality, while embryo mortality does not seem to have been modified. This fetal 

mortality has been the main cause for the lacking correlated response observed in 

litter size. Some possible explanations would be a decreased blood flow arriving to 

each fetus or even immature oocytes or less developed embryos that die after 

implantation. Further studies are needed to explain the mechanism that has caused 

fetal mortality in rabbits selected for high ovulation rate. 
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Abstract 

The aim of this work was to evaluate the response in 10 generations of selection for 

ovulation rate using a cryopreserved control population. Selection was based on the 

phenotypic value of ovulation rate estimated at day 12 of second gestation by 

laparoscopy. To produce the control line, embryos from 50 donor females and 18 

males, belonging to the base generation of the line selected for ovulation rate, were 

recovered. A total of 467 embryos (72 hours embryos) were vitrified and stored in 

liquid N2 for 10 generations. The size of both lines was approximately 10 males and 50 

females. The number of records used to analyse the different traits ranged from 99 to 

340. Data were analysed using Bayesian methodology. A difference between the 

selected and the control line of 2.1 ova (HPD95% [1.3, 2.9]) was observed in ovulation 

rate (OR), but it was not accompanied by a correlated response in litter size (LS) (-0.3; 

HPD95% [-1.1, 0.5]). The number of implanted embryos (IE) increased with selection in 

1.0 embryo (HPD95% [-0.6, 2.0]), but this increase was not relevant. Prenatal survival 

(PS), embryonic survival (ES) and fetal survival (FS) were calculated as LS/OR, IE/OR and 

LS/IE, respectively. Prenatal survival was reduced with selection (-0.12; HPD95% [-0.20, -

0.04]), basically due to a decrease in FS (-0.12; HPD95% [-0.19, -0.06]). Embryonic 

survival (ES) showed a slight decrease (-0.05; HPD95% [-0.12, 0.02]). In summary, 

comparison with a control line showed that ovulation rate in rabbits increased with 

selection without any correlated response in litter size, basically due to a decrease in 

fetal survival. 

 

Introduction 

Selection for ovulation rate has been unsuccessful, as a means of improving indirectly 

litter size, in pigs and mice, despite the increase in ovulation rate (Cunningham et al., 

1979; Rosendo et al., 2007; Leymaster and Christenson, 2000 in pigs; Land and 

Falconer, 1969; Bradford, 1969 in mice). The lack of correlated response in litter size 

has been associated with an increase in the post-implantation mortality (Freking et al., 

2007 in pigs; Bradford et al., 1969 in mice). Response to selection for ovulation rate in 

rabbits was assessed in previous studies using predicted genetic trends (Laborda et al., 

2011a,b). Predicted genetic trends have the disadvantage of being dependent on the 
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model and on the genetic parameters of the traits analysed (Sorensen and Johansson, 

1992). The limited number of data in this type of experiments and the scarce number 

of experiments lead to estimation of genetic parameters with high standard errors, 

especially genetic correlations; therefore the correlated responses estimated with 

genetic trends have low accuracy. Response to selection estimated with genetic trends 

can be complemented using control populations. Control populations are less model-

dependent, but they depend on the limited experimental facilities that should be shared 

by the selected and the control lines. Cryopreserved control populations are less 

common in selection experiments, although they present lower genetic drift and 

absence of unintended selection, allowing a better use of the facilities (Hill, 1972). 

The aim of this study was to estimate direct response to selection for ovulation rate 

and correlated responses on litter size and its components by contrasting the selected 

line to a cryopreserved control population. 

 

Material and Methods 

Animals 

All experimental procedures involving animals were approved by the Polytechnic 

University of Valencia Research Ethics Committee. Animals came from an experiment 

of selection for ovulation rate described by Laborda et al. (2011a) and from a 

cryopreserved control population, detailed below. The ovulation rate line was selected 

for 10 generations; then, selection was relaxed for one generation. Females from 

generation 11 of the selected line and females from the control line were used to 

assess direct and correlated responses. Animals of both lines were housed at the 

experimental farm of the Universidad Politécnica de Valencia in individual cages. They 

were kept under controlled 16-h light: 8-h dark photoperiods and fed a commercial 

diet. Matings were planned to avoid inbreeding. Laparoscopies were performed on all 

does at d 12 of their second gestation. Details of the technique are given by Santacreu 

et al. (1990). 
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Embryo transfer and control line 

To produce the control line, embryos from 50 donor females and 18 males, belonging 

to the base generation of the line selected for ovulation rate, were recovered. Details 

of the process of embryo recovery are available in Mocé et al. (2009). A total of 467 

embryos (72 hours embryos) were vitrified and stored in liquid N2 until transfer. 

Embryos were vitrified and thawed according to the method described by Vicente et 

al. (1999). Recipient females (n= 40) were nulliparous females of 19 to 20wk of age, 

synchronized by intramuscular administration of 1 mg buserelin acetate (Hoechst, 

Marion Roussel, Madrid, Spain) twenty-one days before the transfer. Only females that 

presented vulva colour associated with receptive status were induced to ovulate with a 

second administration of buserelin acetate. The second administration was 

administered 60 to 63 h before transfer (Vicente et al., 1999). To perform the 

transfers, rabbits were anesthetized with an im administration of xylazine (Rompun 

2%; Bayer AG, Leverkusen, Germany) at a rate of 4 mg/ kg body weight; 5 min later an 

iv dose of ketamine HCL and clorbutol (Imalgène 500; Merial S.A., Lyon, France), at a 

rate of 15-30 mg/ kg body weight was administered in the marginal ear vein. Embryo 

transfers were performed by using the laparoscopic technique described by 

Besenfelder and Brem (1993).  

After parturitions, 1-2 daughters from each recipient female were randomly selected. 

Males were selected within each male family, i.e. one son of each male was selected. 

The control line consisted of 45 does and 10 males. This control line was contemporary 

to the 10th generation of the line selected for ovulation rate. In order to eliminate the 

possible effects of cryopreservation, the control does were mated to produce the next 

generation; 1-2 daughters from each female were randomly selected and a total of 54 

control females contemporary to generation 11 of the selected line were obtained. 

Males were selected within each male family. Animals from the control line 

contemporary to generation 11 of the selected line were used to assess direct and 

correlated responses. 
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Traits 

Litter size (LS) was estimated as the number of total born per litter; the number of kits 

born alive per litter (NBA) and the number of kits weaned per litter (NW), together 

with LS, were measured in a maximum of 4 parities in each females. Ovulation rate 

(OR), estimated as the number of corpora lutea in both ovaries and the number of 

implanted embryos (IE), estimated as the number of implantation sites were measured 

by laparoscopy at d 12 of second gestation. Both the right and the left ovulation rates 

(ROR and LOR) and implanted embryos (RIE and LIE) were measured. Ovulatory 

difference (OD) was defined as the difference between the ROR and LOR, expressed as 

an absolute value; implantatory difference (ID), was defined as the difference between 

RIE and LIE, expressed as an absolute value. Embryonic survival (ES) was calculated as 

IE/OR, fetal survival (FS) was calculated as LS/IE and prenatal survival (PS) was 

calculated as LS/OR. Females had a second post mortem measurement of OR, ROR, 

LOR and OD. The weight of the female was measured at d 12 of second gestation, at 

laparoscopy time (WOR). The number of females and number of records used to 

analyze the traits LS, NBA, NW, OR, ROR, LOR, OD, IE, RIE, LIE, ID, ES, FS, PS and WOR in 

the selected and the control line are shown in Table 1. 

 

Table 1. Number of records used to analyze the traits ovulation rate (OR), right and left 

ovulation rate (ROR and LOR), ovulatory difference (OD= |ROR-LOR|), litter size (LS), number 

of kits born alive (NBA), number of kits weaned (NW), number of implanted embryos (IE), right 

and left implanted embryos (RIE and LIE), implantatory difference (ID=|RIE-LIE|), embryonic 

survival (ES), fetal survival (FS), prenatal survival (PS) and weight at second gestation (WOR) in 

the selected and the control line. 

Trait OR 
OD, 

ROR, 

LOR 

LS, 

NBA 
NW IE 

ID, 

RIE, 

LIE 

ES FS PS WOR 

Control (n=54) 91 88 162 162 48 46 48 47 48 48 

Selected (n=56) 92 92 178 177 53 53 53 52 52 53 

n: number of females 
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Statistical Analysis  

Bayesian inference was used. The model assumed for OR, ROR, LOR, OD, LS, NBA and 

NW was: 

yijklmn=  Linei + Lj + Pk + YSl+ pim + eijklmn 

where Linei is the effect of the line (2 levels: control and selected), Lj is the effect of 

lactation state of the doe (2 levels: lactating and not lactating does when mated), Pk is 

the effect of parity (4 levels for LS, NBA and NW; 2 levels for OR and OD), YSl is the 

effect of year-season (3 levels), pim is the permanent environmental effect of doe and 

eijklmn is the residual of the model. The model for IE, RIE, LIE, ID, ES, FS, PS and WOR did 

neither have the parity effect nor the permanent environmental effect of doe, because 

records came only from the second parity, and the year-season effect had only 2 

levels. Bounded uniform priors were used for all unknowns with the exception of the 

permanent effect, which was considered normally distributed with mean 0 and 

variance Iσ2
p, where I is a unity matrix, and σ2

p is the permanent effect variance of the 

trait. Residuals were normally distributed with mean 0 and variance Iσ2
e. The priors for 

the variances also were bounded uniform positive.   

Features of the marginal posterior distribution of differences between line means were 

estimated by using the Gibbs sampling algorithm. Chains of 1,000,000 samples each 

were used, with a burning period of 200,000. One sample each 50 was saved to avoid 

high correlations between consecutive samples. Convergence was tested using the Z 

criterion of Geweke. 

 

Results and discussion 

Table 2 shows raw means and standard deviations for the traits measured in the 

control line; the values of the traits OR, LS, NBA, NW, IE and survival rates are in 

agreement with values published by other authors in maternal rabbit lines (Brun et al., 

1992; García et al., 2001; García and Baselga, 2002; Piles et al., 2006; Theau-Clement et 

al., 2009; Ragab and Baselga, 2011). The value of WOR agrees with other estimates of 

pregnant female weights in commercial rabbit lines (for example see Feugier and 

Fortun-Lamothe, 2006; Martínez-Vallespín et al., 2011). No values for the traits OD and 

ID have been found in the literature. 
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Table 2. Control line: means, SD, standard errors (SE), coefficients of variation (CV) and units of 

ovulation rate (OR), right and left ovulation rate (ROR and LOR), litter size (LS), number of kits 

born alive (NBA), number of kits weaned (NW), number of implanted embryos (IE), right and 

left implanted embryos (RIE and LIE), ovulatory difference (OD=|ROR-LOR|), implantatory 

difference (ID=|RIE-LIE|), embryonic survival (ES), fetal survival (FS), prenatal survival (PS) and 

adult weight at second gestation (WOR). 

 

Features of the marginal posterior distributions of the differences between the 

selected and the control line for the traits measured are presented in Tables 3, 4, 5 and 

6. We considered a relevant response to selection (value R) when the difference 

between lines (value D) was at least 10% of the mean of the control line, i.e. an 

increase of 1% per generation (10 generations). Using Bayesian inference, we can 

calculate the probability of the difference between lines being higher or lower than 

Trait mean SD SE CV unit 

OR 14.4 2.2 0.2 15.3 ovum 

ROR 7.6 2.4 0.3 32.9 ovum 

LOR 6.7 2.3 0.2 33.1 ovum 

OD 3.5 2.6 0.3 74.0 ovum 

      

LS 9.2 2.9 0.2 31.2 kit 

NBA 8.3 3.3 0.3 40.1 kit 

NW 6.8 3.3 0.3 47.6 kit 

      

IE 11.8 3.1 0.5 26.4 embryo 

RIE 6.0 2.3 0.4 42.7 embryo 

LIE 5.9 2.5 0.4 44.9 embryo 

ID 3.4 2.6 0.4 77.4 embryo 

      

ES 0.84 0.18 0.03 21.0 embryos/ova 

FS 0.85 0.15 0.02 17.1 kits/embryos 

PS 0.70 0.17 0.02 24.8 kits/ova 

      

WOR 4211 494 72.5 12.0 g 
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zero (P0), the probability of having a relevant response to selection (PR), which is the 

probability of the difference being higher than the value R when D is positive or lower 

than R when D is negative, and the probability of not having a relevant response to 

selection (PNR=1-PR), which is the probability of the difference lying in the interval        

[–R, +R]. 

Ovulation rate 

As it is shown in Table 2, OR was 14.4 in the control line. A difference between the 

selected and the control line of at least 1.4 ova (value R, Table 3) was expected in 

order to assess that response to selection had been successful. There was a difference 

of 2.1 ova between the selected and the control line (value D, Table 3), which 

represents an increase of 1.5% per generation. The probability of this difference being 

higher than R was 0.95 (Table 3). This was a relevant response, at least 1.4 ova (k=1.4, 

Table 3). The response estimated with genetic trends (1.3 ova) in Laborda et al. 

(2011a). A small response to selection was observed in ROR (D=0.8 ova, P0=0.98; Table 

3). In LOR, the difference between lines was 1.4 ova (k=0.8 ova, Table 3), showing a 

relevant response in the left ovary (PR = 0.98, Table 3). The response in ROR is similar 

to the response estimated by Laborda et al. (2011a) (1.1 ova), but the response in LOR 

is in disagreement with the genetic trend. The genetic trend estimated by Laborda et 

al. (2011a) showed a correlated response to selection of 0.5 ova in the left ovary, but 

the genetic correlation between OR and LOR was estimated with low accuracy (HPD95% 

[0.23, 1.00]). Then, no conclusions regarding the response in LOR can be drawn. 

Adult weight at second gestation increased 267 g with selection (Table 3). However, 

this difference was not relevant (PNR=0.96, Table 3). Moreover, when the variable WOR 

was used as a covariate to analyse OR, the difference between lines in OR practically 

did not change (from 2.1 to 1.8). Quirino et al. (2009) reported a genetic correlation 

between OR and WOR of 0.49 in the same rabbit line, however no other study has 

been found dealing with genetic correlations between ovulation rate and body weight 

of the adult rabbit female. In mice, ovulation rate has been found to be positively 

correlated with weight of the female at mating, especially in experiments where litter 

size had been standardized (reviewed by Bünger et al., 2005). In pigs, results are wide 
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ranging (from -0.30 to 0.30 approximately) and in general they were estimated with 

high standard errors (Young et al., 1978; Bidanel et al., 1996; Rosendo et al., 2007).  

 

Table 3. Features of the estimated marginal posterior distributions of the differences between 

the selected and the control line for ovulation rate (OR), right and left ovulation rate (ROR and 

LOR), ovulatory difference (OD=|ROR-LOR|) and weight at second gestation (WOR). 

Trait D HPD95% R P0 PR PNR k 

OR (ova) 2.1 1.3, 2.9 1.4 1.00 a 0.95 a 0.05 1.4 a 

ROR (ova) 0.8 -0.1, 1.4 0.8 0.98 a 0.49 a 0.51 0.1 a 

LOR (ova) 1.4 0.6, 2.0 0.7 1.00 a 0.98 a 0.02 0.8 a 

OD (ova) -0.6 -1.4, 0.1 -0.3 0.94 b 0.76 b 0.23 0.0 b 

WOR (g) 267 101, 441 420 1.00 a 0.04 a 0.96 115 a 

 
 D: posterior mean of the difference between the selected and the control line. HPD95%: highest 

posterior density interval of the difference at 95%. R: 10% of the mean of the control line (1% per 

generation, 10 generations). P0: probability of D being 
a 

higher than zero 
b
 lower than zero. PR: 

probability of response (probability of D being 
a
 higher than R, 

b
 lower than R). PNR: probability of no-

response (probability of D lying in the interval [-R, +R]). k: limit for the interval 
a
 [k, +∞), 

b
 (-∞, k], having a 

probability of 95%. 

 

The number of implanted embryos 

The IE increased with selection (1.0 embryo, Table 4), but the probability of this 

difference being higher than R was low (0.36, Table 4), showing no relevant correlated 

response in IE. Little can be said about the correlated responses in RIE and LIE (see PR 

and PNR, Table 4) due to their large HPD95% interval. It seems that the correlated 

response in RIE agrees with the genetic trend (0.8 embryos; Laborda et al., 2011b). The 

correlated response in LIE should be taken with caution as it happens with the 

response in LOR. 

Laborda et al., (2011a,b) suggested that an increase in OD could have been related to 

the lacking correlated response in LS in the line selected for ovulation rate. This and 

the absence of embryo uterine transmigration could have caused an associated 

increase in ID, disfavouring FS and therefore PS in the overcrowded uterine horn. The 
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estimated genetic correlation of OR with ID was positive, however no correlated 

response was observed on ID after 10 generations (Laborda et al., 2011b). Moreover, 

the genetic correlation of ID with PS and LS were estimated with low accuracy and 

nothing could be concluded. Contrary to what was expected, in this experiment, OD 

and ID were lower in the selected line than in the control line (P0=0.94 and P0=0.97, 

Tables 3 and 4, respectively). The differences between lines in OD and ID had a 

probability of obtaining a relevant response against the selected line of 0.76 and 0.89, 

respectively. These results should be taken with caution, due to the large HPD95% 

intervals and because OD and ID are highly variable traits (Table 2).  

 

Table 4. Features of the estimated marginal posterior distributions of the differences between 

the selected and the control line for the number of implanted embryos (IE), right and left 

implanted embryos (RIE and LIE) and implantatory difference (ID=|RIE-LIE|). 

Trait D HPD95% R P0 PR PNR 

IE (embryo) 1.0 -0.6, 2.0 1.2 0.92 a 0.36 a 0.64 

RIE (embryo) 0.5 -0.4, 1.5 0.6 0.86 a 0.42 a 0.57 

LIE (embryo) 0.4 -0.6, 1.5 0.6 0.80 a 0.37 a 0.60 

ID (embryo) -0.8 -1.8, 0.0 -0.3 0.97 b 0.89 b 0.11 

 
D: posterior mean of the difference between the selected and the control line. HPD95%: highest posterior 

density interval of the difference at 95%. R: 10% of the mean of the control line (1% per generation, 10 

generations). P0: probability of D being 
a 

higher than zero 
b
 lower than zero. PR: probability of response 

(probability of D being 
a
 higher than R, 

b
 lower than R). PNR: probability of no-response (probability of D 

lying in the interval [-R, +R]).  

 

Survival rates 

Prenatal survival was lower in the selected line than in the control line (D= -0.12 ova, 

P0=1.00, Table 5). It had a probability of 87% of being lower than -0.07 (value R, Table 

5), indicating a relevant correlated response in PS against the selected line. Most of the 

response in PS was due to a decrease in FS. There was a difference of -0.12 between 

lines (value D, Table 5), having a probability of 0.86 of being relevant. Embryonic 

survival had a probability of 91% of being lower in the selected line than in the control 
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line (D=-0.05; Table 5) and was responsible for the low correlated response observed 

in IE. However, this correlated response was not relevant (PNR=0.83, Table 5). Laborda 

et al. (2011b) observed no correlated response estimated with genetic trends in ES, 

because the genetic correlation between OR and ES was close to zero; however, this 

correlation was estimated with low accuracy. Responses in FS and PS estimated with 

the cryopreserved control population were similar to the responses estimated with 

genetic trends. The possible causes for the decrease in prenatal survival were 

discussed by Laborda et al. (2011a,b). 

 

Table 5. Features of the estimated marginal posterior distributions of the differences between 

the selected and the control line for embryonic survival (ES), fetal survival (FS) and prenatal 

survival (PS). 

Trait D HPD95% R P0 PR PNR k 

ES -0.05 -0.12, 0.02 -0.08 0.91  0.17  0.83 0.01  

FS -0.12 -0.19, -0.06 -0.08 1.00  0.86  0.14 -0.06  

PS -0.12 -0.20, -0.04 -0.07 1.00  0.87  0.13 -0.05  

 
D: posterior mean of the difference between the selected and the control line. HPD95%: highest posterior 

density interval of the difference at 95%. R: 10% of the mean of the control line (1% per generation, 10 

generations). P0: probability of D being lower than zero. PR: probability of response (probability of D 

being lower than R). PNR: probability of no-response (probability of D lying in the interval [-R, +R]). k: limit 

for the interval (-∞, k], having a probability of 95%. 

 

Litter size 

In rabbits, direct response to selection for litter size has been usually close to 1% per 

generation (see review in Mocé and Santacreu, 2010). Selection for ovulation rate 

should have a higher response than direct selection for litter size to be considered as 

an alternative. Litter size, NBA and NW presented no relevant differences between the 

selected and the control line; the difference between lines had a high probability of 

lying in the intervals [–R, +R] (0.94, 0.86 and 0.88, respectively; Table 6). These results 

corroborate the results obtained by Laborda et al. (2011a) with genetic trends, where 

no correlated response to selection was observed in LS.  
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Table 6. Features of the estimated marginal posterior distributions of the differences between 

the selected and the control line for litter size (LS), number of kits born alive (NBA) and 

number of kits weaned (NW). 

Trait D HPD95% R P0 PR PNR 

LS (kit) -0.3 -1.1, 0.5 -0.9 0.74 0.06  0.94 

NBA (kit) -0.3 -1.2, 0.6 -0.8 0.74  0.13  0.86 

NW (kit) -0.2 -0.9, 0.6 -0.7 0.68  0.10  0.88 

 
D: posterior mean of the difference between the selected and the control line. HPD95%: highest posterior 

density interval of the difference at 95%. R: 10% of the mean of the control line (1% per generation, 10 

generations). P0: probability of D being lower than zero. PR: probability of response (probability of D 

being lower than R). PNR: probability of no-response (probability of D lying in the interval [-R, +R]). 

 

In rabbits selected for ovulation rate, the genetic correlation between ovulation rate 

and litter size was estimated with low accuracy, as in the experiments of selection for 

ovulation rate in other polytocous species (Cunningham et al., 1979; Rosendo et al., 

2007 in pigs; Bradford, 1969; Land and Falconer, 1969 in mice). Therefore, conclusions 

about its value should be taken with caution. However, the correlated response in 

litter size estimated with the control line support that the correlation between 

ovulation rate and litter size should be close to zero; the use of a control population 

strengthens the results obtained with genetic trends for most of the traits, giving 

evidence of the adequacy of the model and the genetic parameters estimated. 

In conclusion, comparison with a control line shows that 10 generations of selection 

for ovulation rate in rabbits has increased ovulation rate by about 2 ova, but it has not 

been accompanied by a correlated response in litter size, mainly due to a decrease in 

fetal survival.  
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1. Experiments of selection for litter size and its components 
1.1. Selection for ovulation rate and correlated response in litter size 

Selection for ovulation rate was proposed in mice as an indirect way of increasing litter 

size (Bradford, 1969; Land and Falconer, 1969). Based on the assumption that 

ovulation rate and litter size were correlated (Falconer, 1963), they suggested that, if 

the heritability of ovulation rate was higher than that of litter size, selection for 

ovulation rate would be more efficient than direct selection for litter size. Other 

experiments of selection for ovulation rate were proposed in pigs with similar 

expectations (Cunningham et al., 1979; Leymaster and Christenson, 2000; Rosendo et 

al., 2007). However, selection for ovulation rate in these five experiments did not 

improve litter size. In spite of this, an experiment of selection for ovulation rate was 

performed in rabbits expecting different results than in the other species. In rabbits 

there is no uterine transmigration, unlike in pigs, and increasing ovulation rate in both 

ovaries could lead to a higher number of fetuses in the less overcrowded uterine horn, 

probably leading to an increase in litter size. In mice, there is no uterine transmigration 

either; however, selection for ovulation rate was not successful improving litter size. 

There are only two experiments of selection for ovulation rate in mice, and 

generalizations from these experiments to other species should be made carefully. 

Besides, the results obtained in the experiments of selection for ovulation rate in mice 

are somewhat confusing: response to selection estimated with the control lines were 

presented without standard errors in both studies, and the correlated response in 

litter size in one of the experiments did not follow any clear pattern (Land and 

Falconer, 1969).  

In our experiment, the response in ovulation rate estimated with genetic trends was 

1.3 ova in 10 generations (chapter 3), and it was 2.1 ova (HPD95% [1.3, 2.9]) when 

comparing the selected and the control lines (chapter 5). Direct response to selection 

represented an increase of approximately 1 to 1.4% per generation. In mice and pigs 

selected for high ovulation rate, the increase of direct response per generation ranged 

from 1.2 to 2.6% in mice and from 2.6 to 3.6% in pigs. In all experiments of selection 

for ovulation rate, the correlated response in litter size was close to zero showing a 

decrease in prenatal survival.  
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The nature of this kind of experiments, which need laparoscopies, laparotomies or 

slaughtering the female to measure ovulation rate, prevents from collecting a large 

number of data, making the estimation of accurate genetic correlations difficult. The 

estimated genetic correlations between ovulation rate and litter size were 0.07 

(Cunningham et al., 1979), 0.41 (Rosendo et al., 2007) and -0.20 (Chapter 3 of this 

Thesis), but they were estimated with low accuracy. Other estimated genetic 

correlations found in the literature range from -0.8 to 0.8 (reviewed by Blasco et al., 

1993a), having also high standard errors. Therefore, it is not possible to draw 

conclusions about their value. However, the lack of correlated response in litter size 

estimated with control populations in pigs (Cunningham et al., 1979; Leymaster and 

Christenson, 2000; Rosendo et al., 2007), mice (Bradford, 1969; Land and Falconer, 

1969) and chapter 5 of this Thesis corroborated that the correlation found between 

ovulation rate and litter size should be close to zero. 

 

1.2. Selection for litter size and its correlated response in ovulation rate 

Selection to improve litter size in pigs, rabbits and mice lead to correlated responses in 

ovulation rate without or with small changes in prenatal survival (Bolet et al., 1989; 

Haley and Lee, 1992 in pigs; Brun et al., 1992; García and Baselga, 2002 in rabbits; 

Falconer 1963; Bakker et al., 1978; Gion et al., 1990 in mice). However, in the 

experiments of selection for high ovulation rate in pigs, rabbits and mice a decreased 

prenatal survival was observed, with no modification in litter size, as explained before. 

The different responses to selection for litter size and for ovulation rate might be 

explained through the gene frequencies of the traits and their pleiotropic effects. It is 

reasonable to suppose that the genes affecting prenatal loss should be at low 

frequencies, because they are unfavourable genes under natural selection (Falconer, 

1963). On the other hand, the genes that increase ovulation rate should be at 

intermediate frequencies, because it should be favoured by natural selection, but still 

able to increase through artificial selection (Falconer, 1963). Under this supposition, 

selection to improve litter size, a natural index of ovulation rate and prenatal survival, 

would decrease little the already low frequencies of the genes that cause prenatal loss, 

while it would increase the frequencies of the genes that improve ovulation rate, 
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overcoming the effects of the pleiotropic genes. On the other hand, when selection is 

performed for ovulation rate, the pleiotropic genes that affect ovulation rate and 

prenatal loss would cause an increment in prenatal loss parallel to the increase in 

ovulation rate, avoiding the expected correlated response in litter size. 

 

2. Physiological causes for the lacking correlated response in litter size 

The lack of correlated response in litter size to selection for ovulation rate may have 

several explanations from a physiological point of view. Prenatal mortality can either 

happen in the embryonic or in the fetal period. In our experiment, a small correlated 

response in embryonic survival, expressed as a percentage, of -5% in 10 generations 

(around 0.6% of the mean per generation) was observed when the selected line was 

compared with the control line (chapter 5 of this Thesis), while no change was 

observed with the genetic trend. Fetal survival, expressed as a percentage, decreased 

approximately 10% in 10 generations (chapters 4 and 5 of this Thesis). This implies a 

decrease of 1 to 1.5% of the mean per generation. There is no much information of the 

timing of prenatal mortality in pigs and mice selected for ovulation rate. In agreement 

with our results, Bradford (1969) in mice and Freking et al. (2007) in pigs observed that 

most prenatal mortality occurred during the fetal period. 

The factors that could increase embryonic or fetal mortality in females with high 

ovulation rate are: a higher proportion of immature oocytes, a greater variability in 

embryonic development and a higher embryonic or fetal competence for resources 

(reviewed by Santacreu, 2006 in rabbits; Geisert and Schmitt, 2002 in pigs). 

2.1. Oocyte maturation 

Similar to superovulated females, which release oocytes that are less competent 

(reviewed by Krisher, 2004), females with extremely high ovulation rates could ovulate 

oocytes in an early stage of development, which may not be fertilized or may lead to 

poor-quality embryos that may die either before or after implantation. For example, in 

one of the experiments of selection for high ovulation rate in pigs, Koenig et al. (1986) 

found a higher proportion of oocytes classified as immature based on a chromosomal 

analysis in the selected females compared to unselected females, and in superovulated 
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females compared to naturally ovulated ones; they suggested that immaturity of ova 

may account for a substantial proportion of prenatal mortality in gilts with high 

ovulation rate. In our experiment, the proportion of females with extremely high OR 

(more than 20 ova; i.e., twice the standard deviation over the mean) increased with 

selection from 4% to 23%.  

There are many methods to assess oocyte quality. Several authors have proposed the 

measurement of glutathione (GSH) and ATP inside the cell (reviewed by Krisher, 2004). 

ATP and GSH are stored during the follicular maturation of the oocyte, and are 

necessary for its development. Therefore, less developed oocytes have lower levels of 

ATP and GSH than more developed ones, and have a higher probability to die. In the 

experiment of selection for ovulation rate in rabbits, no differences in ATP or GSH 

were found between the oocytes in the selected and the control lines (data not 

shown). 

2.2. Variability in embryonic development 

An increased variability in embryonic development may appear in females with 

extremely high ovulation rates due to an extended ovulation. Oocytes which ovulate 

first are fertilized earlier and advance the uterine secretions (Torres et al., 1984 in 

rabbits; Pope, 1988 and Xie at al., 1990 in pigs; Wilmut et al., 1986 and Al-Shorepy et 

al., 1992 in mice). Asynchrony between embryonic development and uterine 

secretions can cause retarded embryonic development, as shown in asynchronous 

embryo transfer experiments in rabbits (Wintenberger-Torres, 1974; Torres et al., 

1987). It has been suggested that lesser developed embryos are able to implant, and it 

is in the postimplantation period when they probably die (Wintenberger-Torres et al., 

1974 in rabbits; Pope et al., 1988; Wilde et al., 1988 in pigs). In our selection 

experiment, preliminary results of an analysis of embryonic variability at 72h p.c. seem 

to indicate a retarded stage of embryonic development in females from the selected 

line compared to the control line (data not shown). This could imply a greater 

embryonic uterine asynchrony in the selected line, probably contributing to the 

prenatal mortality. 
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2.3. Uterine overcrowding 

In rabbit females with extremely high ovulation rate, uterine overcrowding could 

reduce litter size. Moreover, in females which present high ovulatory difference, the 

absence of embryonic transuterine migration could cause the overcrowding of one 

uterine horn, reducing litter size on that side, while the other uterine horn remained 

less occupied. The phenomenon of the uneven embryo distribution through both 

uterine horns was called implantatory difference in the chapter 4 of this Thesis; a 

possible increase of this trait with selection for ovulation rate was proposed as a cause 

for the lacking correlated response in litter size. In the experiment of selection for 

ovulation rate, prenatal survival was around 10% lower in females with high ID than in 

females without ID (data not shown). However, the correlated response to selection in 

ID did not have a clear pattern: genetic trends showed a small increase of ID with 

selection, but this increase was not confirmed with the control line. It seems that 

implantatory difference is a highly variable trait, and in this experiment it has not been 

possible to determine if an increase in this trait was responsible for the increased fetal 

mortality with selection. 

In females with extremely high ovulation rate and overcrowded uterine horns, the 

reduced blood supply to the fetus might be an important factor decreasing litter size. 

The vascular supply to the fetus is especially important in rabbits due to their 

hemochorial placenta, an invasive placenta where fetal tissues directly contact the 

maternal blood supply (reviewed by Leiser and Kaufmann, 1994). Rabbit fetuses and 

fetal placentas are more developed when they receive more than four blood vessels 

(Argente et al. 2003; Mocé et al., 2004). Fetuses with poor blood supply have a higher 

probability to die. In rabbits, Argente et al. (2003) observed that each additional 

implanted embryo implied a decrease in the blood flow that reached each fetus, 

reducing fetal and placental weight and increasing their probability to die.  

In conclusion, selection for high ovulation rate in rabbits has been effective, but no 

correlated response has been observed in litter size. Females selected for ovulation 

rate seem to be able to implant a large number of embryos; it is during the early fetal 

growth when most prenatal mortality occurs (Bradford 1969 in mice; Freking et al., 

2007 in pigs; Chapter 4 of this Thesis in rabbits). This mortality could be due to a higher 



CHAPTER 6 

104 
 

proportion of immature oocytes, a greater embryonic diversity or a higher embryonic 

or fetal competence for uterine resources. Further research is needed to know 

whether the increased fetal mortality is due to one or more of these causes. 

3. Other selection possibilities 

The experiments of selection for ovulation rate in prolific multiparous species have 

been inefficient increasing litter size. Prenatal survival, the other component of litter 

size, has a moderately low heritability and it is positively correlated with litter size. If 

selection was performed on prenatal survival, the theoretical correlated response in 

litter size, estimated with the parameters of Chapter 3 and 4 of this Thesis, would be 

around 0.35 kits per generation. A similar response would be obtained if selection was 

for fetal survival. However, the negative genetic correlation of fetal and prenatal 

survival with ovulation rate could cause lower than expected responses.  

There are two experiments of selection for prenatal survival, one in mice (Bradford, 

1969) and the other one in pig (Rosendo et al., 2007). In these experiments, selection 

has been effective increasing litter size compared to a control line. However, the 

criterion of selection was prenatal survival corrected for number of fetuses (in mice) or 

for ovulation rate (in pigs) to reduce the effect of selection against ovulation rate. This 

criterion is closer to selection for an index with no optimal economical weights than to 

selection for a single component. Besides, the experiments of selection for uterine 

capacity as a measure of prenatal survival have not been efficient increasing litter size. 

Therefore, selection for an index of ovulation rate and prenatal survival optimally 

weighting each component could be more efficient in increasing litter size than 

selection only for fetal or prenatal survival.  

Several authors predicted greater response in litter size from selection for an index of 

its components than from direct selection for litter size in swine (Johnson et al., 1984; 

Bennett and Leymaster, 1989), rabbits (Blasco et al., 1993b) and mice (Clutter et al., 

1990; Ribeiro et al., 1997a,b). Two experiments of index selection were developed in 

prolific species (Clutter et al., 1990 in mice; Johnson et al., 1999 in pigs). In these 

experiments, response was lower than expected. The reason for the lower than 

expected responses is probably the construction of the index using genetic correlations 
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estimated with low accuracy (Falconer and Mackay, 2001), which is usually a problem 

in this kind of experiments.  

An alternative to selection for an index could be two-step selection, which would be 

less affected by the accuracy of the genetic correlations. There is an experiment of 

two-step selection, performed in pigs (Ruíz-Flores and Johnson, 2001). In this 

experiment, response in litter size was approximately twice the response observed in 

experiments of selection for litter size in pigs. In rabbits, an experiment of two-step 

selection for ovulation rate and litter size is currently being performed. Results have 

not been published yet, but preliminary analyses seem to be encouraging. 
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1. The heritability of ovulation rate was moderately low (0.16). The heritability of 

litter size was low (0.09). The heritabilities of embryonic, fetal and prenatal 

survival were low to moderate (0.09, 0.24 and 0.14, respectively). 

 

2. The phenotypic correlation between ovulation rate and litter size was 0.09. The 

phenotypic correlations of ovulation rate with embryonic, fetal and prenatal 

survival were -0.07, -0.26 and -0.28, respectively. 

 

3. Selection for ovulation rate increased ovulation rate in 1.3 ova (genetic trends) 

to 2.1 ova (control line) in 10 generations. 

 

4. In spite of initial expectations, there was no correlated response in litter size, 

indicating that the genetic correlation should be near zero. Therefore, selecting 

for OR in rabbit populations with the aim to increase litter size cannot be 

recommended. 

 

5. The estimated genetic correlation between ovulation rate and embryonic 

survival had a probability of 95% of being in the interval from -0.57 to 0.64. 

However, the response obtained in embryonic survival indicates that the 

genetic correlation should be low or close to zero. Embryonic survival 

decreased slightly with selection when it was estimated as the difference 

between the selected and the control lines (5% in 10 generations), but the 

genetic trends did not show any change. 

 

6. The estimated genetic correlations of ovulation rate with fetal and prenatal 

survival were negative (probability of being negative 1.00 and 0.98, 

respectively). Prenatal survival decreased with selection. This decrease was 

basically due to the fetal component (8% and 12% in 10 generations estimated 

with genetic trends and with control population, respectively).  
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7. The correlated responses to selection in the ovulatory and implantatory 

differences did not have a clear pattern: genetic trends showed small increases 

with selection, which were not confirmed with the control line. The ovulatory 

and implantatory differences seem to be highly variable traits, and it has not 

been possible to determine if an increase in these traits were responsible for 

the increased fetal mortality with selection. 



 

 
 

 

 



 

 
 

 


