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Abstract 30 

 31 

Several loggerhead sea turtle (Caretta caretta) nesting events have been recorded along Spain’s Mediterranean 32 

coast, outside its known nesting range, in recent years. In view of the possible expansion of its nesting range and 33 

considering the conservation status of this species, management measures like nest protection and head-start 34 

programs have been implemented. To study the dispersal behavior and survival of head-started loggerheads, 19 35 

post-hatchlings from three nesting events were satellite-tracked after their release in three consecutive years 36 

(2015-2017). This paper presents the first study of survival probabilities and dispersal movements of loggerhead 37 

post-hatchlings in the Mediterranean basin. Monitored post-hatchlings dispersed over large areas using variable 38 

routes, mainly off the continental shelf. Nonetheless, post-hatchlings dispersed to high productivity warmer areas 39 

during the coldest months of monitoring. These areas might be optimum for their survival and development. We 40 

observed differences regarding dispersal orientation and routes among individuals, even from the same nest, 41 

release date, and location. Our survival models contributed to improving current survival estimates for sea turtle 42 

post-hatchlings. We observed a high probability of survival in head-started individuals during the first months 43 

after release, usually the most critical period after reintroduction. The data did not support an effect of habitat 44 

(neritic or oceanic) in survival, neither an effect of the region (Balearic sea or Alboran sea) in survival probability. 45 

Differences in survival between nests were observed. These differences might be related to parasitic infections 46 

suffered during the head-starting period. This study shows that nest management measures may contribute to the 47 

conservation and range expansion of the loggerhead turtle population in the western Mediterranean.  48 
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Introduction 49 

 50 

In recent years, several loggerhead sea turtle (Caretta caretta) nesting events have been recorded in the western 51 

Mediterranean basin, outside the known nesting range in the Mediterranean Sea (Tomás et al. 2008a; Maffucci et 52 

al. 2016). Western Mediterranean nests may indicate that the species is exploring new locations to expand its 53 

nesting range (Maffucci et al. 2016). However, nothing is known yet about the survival and dispersal of post-54 

hatchlings from these nests. 55 

 56 

There is no evidence of supported nesting events in the past years. Nonetheless, despite the lack of scientific 57 

reports and nesting surveys, loggerhead nesting outside its range was sporadically reported in the western 58 

Mediterranean during the 20th century (Tomás et al. 2008). The increasing occurrence of these nesting events in 59 

the Western Mediterranean may be a consequence of the higher sea temperatures recorded in recent decades (Witt 60 

et al. 2010a; Maffucci et al. 2016). Warmer temperatures during interglacial periods also seem to have facilitated 61 

the expansion of loggerhead turtles into higher latitudes (Bowen et al. 1993; Clusa et al. 2013). The warmer 62 

temperatures may also, hypothetically, imply the disappearance of the traditional nesting areas (Greece, Turkey, 63 

Cyprus, and Libya) in future (Hays 2000; Casale and Margaritoulis 2010). Therefore, colonization of new areas 64 

may be an important outcome for a threatened species (Wyneken and Lolavar 2015; Abella et al. 2016) like the 65 

loggerhead sea turtle, which IUCN considers ‘Vulnerable’ (Casale and Tucker 2015). These new nesting events 66 

may contribute to both the Mediterranean subpopulation, and the North Atlantic subpopulations (Revelles et al. 67 

2007b; Clusa et al. 2014). Previous genetic analysis shows that hatchlings from the Western Mediterranean basin 68 

have Atlantic and Mediterranean genotypes (Carreras et al. 2015). 69 

 70 

Although several western Mediterranean nests have produced successful clutches (Tomás et al. 2008a; Maffucci 71 

et al. 2016) nothing is known about the dispersal behavior and survival rates of the post-hatchlings from these 72 

nests. After hatching, young turtles crawl into the sea and swim offshore and are rarely observed until they return 73 

to coastal waters as larger juveniles. The time gap after young turtles hatch and head to sea, where they remain at 74 

a surface-pelagic or oceanic stage before returning to coastal waters as large juveniles, is referred to as the lost 75 

years (Carr 1987; Bolten 2003), 76 

Few studies have tracked the dispersal movements of sea turtles during the lost years. Recent advances in satellite 77 

tags have allowed research in this area. For the rookeries in the Atlantic (Hays and Marsh 1997; Monzón-Argüello 78 

et al. 2012; Putman et al. 2012a, b, 2015; Putman and He 2013; Mansfield et al. 2014, 2017; Lamont et al. 2015) 79 

and Pacific oceans (Okuyama et al. 2011; Kobayashi et al. 2014; Briscoe et al. 2016; Christiansen et al. 2016) 80 

dispersal routes of young loggerhead post-hatchlings (< 2 years old) are starting to be elucidated by tracking, 81 

modeling or laboratory-based methods. However, for the Mediterranean Sea this information is lacking. There are 82 

some theoretical models for the rookeries at Greece and Italy (Hays et al. 2010; Luschi and Casale 2014; Casale 83 

et al. 2015; Maffucci et al. 2016). Cardona and Hays (2018) analyzed the tracks of young pelagic satellite tagged 84 

loggerheads (straight carapace length (SCL) ranged 41.2 to 68.5 cm) to assess their movements and the influence 85 

of currents in the Mediterranean Sea. Nonetheless, there are no previous studies based on post-hatchling tracked 86 

animals with size below 35 cm SCL, that is to say, younger than 2 years old (Bjorndal et al. 2000; Casale et al. 87 

2009, 2011). Such information is relevant to assess the dispersal routes of loggerhead turtle post-hatchlings in the 88 
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Mediterranean Sea since their routes may take them to unsuitable areas for their survival, that is, areas where low 89 

temperatures persist (Maffucci et al. 2016). Some authors support that directional swimming, even by small 90 

turtles, can influence their oceanic movements and may lead to hatchling distribution patterns that differ from the 91 

models (Putman et al. 2011, 2012a, b; Lohmann et al. 2012; Scott et al. 2012; Kobayashi et al. 2014; Mansfield 92 

et al. 2014, 2017; Christiansen et al. 2016). Thus, assessing the movement patterns of post-hatchlings would help 93 

to understand their behavior and ecology and to design effective conservation strategies (Hays et al. 2016).  94 

 95 

Most nesting events recorded in Spain have been found in touristic beaches, and so consequently, egg development 96 

and hatchling survival are threatened by human activities, as observed in other Mediterranean areas (Venizelos 97 

1989; Demetropoulos 2003). Thus, management measures like nest relocation and head-starting programs were 98 

taken to protect Spanish clutches, as recommended in other areas (Kornaraki et al. 2006; Tuttle and Rostal 2010; 99 

Burke 2015; Revuelta et al. 2015). The head-starting program is an ex-situ conservation strategy that involves the 100 

captive rearing of hatchlings for several months. The objective of this strategy is to avoid the high mortality rates 101 

of sea turtle hatchlings in their first year (Burke 2015). 102 

 103 

The head-starting technique is a frequent way of enhancing wildlife populations (Pritchard 1980; Heppell et al. 104 

1996; Mestre et al. 2014; Burke 2015). There is evidence that head-started sea turtles can survive to adulthood 105 

and contribute to nesting events (Bell and Parsons 2002; Shaver and Rubio 2008). Nevertheless, head-starting 106 

programs might not always be as successful as expected, since several constraints like behavioral anomalies, lower 107 

growth rates or illness during the captivity period may limit the survival of post-hatchlings before and after release 108 

into the wild (Swingle et al. 1994; Heppell 1998; Addison and Nelson 2000; Cardona et al. 2012). Evaluating the 109 

success of head-starting programs in sea turtles is challenging due to their long age to maturity (Burke 2015). One 110 

approach to assessing the short-term success of these programs is to evaluate the survival rate of reintroduced 111 

post-hatchlings during the first few months after release when their prospects of survival are expected to be the 112 

lowest (Armstrong and Seddon 2008). However, assessing the survival of post-hatchlings directly is challenging, 113 

and one of the major gaps in our knowledge of sea turtle population dynamics (Bolten 2003; Hazen et al. 2012; 114 

Casale et al. 2015).  115 

 116 

In this study, we satellite-tracked head-started loggerhead post-hatchlings to analyze and describe their dispersal 117 

routes and survival for the first time in the Mediterranean basin.  118 

  119 

Methods 120 

 121 

Turtle data and satellite tagging 122 

 123 

Loggerhead post-hatchlings were collected from three nests (Clutch A (n = 8), Clutch B (n = 2), Clutch C (n = 9) 124 

along Spain’s Mediterranean coast (Fig. 1). All hatchlings were reared in a head-starting program (see details in 125 

Table 1). Individuals from Clutch A suffered from a parasitic outbreak of the copepod Balaenophilus manatorum 126 

(Crespo-Picazo et al. 2017; Domènech et al. 2015) and spirorchiid blood fluke Amphiorchis sp. (Cribb et al. 2017) 127 

infections during the head-starting period. After the head-starting period, which lasted from 9 to 22 months, 19 128 
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post-hatchlings were selected based on appropriate size for tagging and their swimming and diving activities. 129 

Appropriate size is that which ensures that experimental tags do not hinder turtle growth movements, or behavior 130 

(Mansfield et al. 2012). Individual sizes ranged between 13.3-29.1 cm straight carapace length (SCL) and weight 131 

between 0.490-4.314 kg (Table 1). 132 

 133 

At-sea movements of 19 post-hatchlings were tracked during 2015-2017 (Table 1). Post-hatchlings were tagged 134 

with small solar-powered platform transmitting terminals (PTT), model SEATAG-TurtleTag, manufactured by 135 

Desert Star S.L, without a duty cycle. We used three tags with similar characteristics but different weights: 18, 21 136 

or 26 g (Fig. 2) and an acrylic-silicone-neoprene attachment method modified from Mansfield et al. (2012). The 137 

durability of the tag attachment on the carapace was tested in captivity with turtles from Clutch A over four weeks. 138 

Tags remained attached for a minimum of 18 days. We also examined the increase in weight of tagged animals 139 

over time relative to a control group to test if the tag affected the turtles’ growth. The total weight added to the 140 

experimental animals ranged 5-12% of the animal weight. There was no significant differences between 141 

experimental and control groups (t test, t = 0.757, df = 11.866, P = 0.4639). Prior to attaching the transmitter, the 142 

carapace was first cleaned with 70% isopropanol to remove natural oils, and allowed to air dry. Then, the carapace 143 

was sanded using mildly abrasive sandpaper (Godley et al. 2003), wiped with 2% chlorhexidine diacetate 144 

disinfectant solution, and air dried. The transmitter was attached between the second and the fourth vertebral scute 145 

with an acrylic base (Technovit 6091), two neoprene strips (7x0.8 cm, 5 mm thick), and finally aquarium silicone. 146 

Aquarium silicone was used in preference to epoxy resin because it is more flexible and allows the carapace to 147 

grow without deformations (Mansfield et al. 2012). Neoprene strips provide buoyancy and, with silicone, also 148 

provides a flexible base for the satellite tag. In most cases, we secured tags to the turtle’s carapace with nylon line 149 

(0.4 mm) through a small hole drilled with a 0.6 mm sterilized needle through the keratin part of the crest of both 150 

second and fourth vertebral dorsal scutes (modified from Nagelkerken et al. 2003). Nylon was tied in a double 151 

knot. Turtles were tagged at least one day before their release so they could get used to the extra weight (except 152 

the turtles with identity numbers (ID) 15 to 19). The behavior (including swimming and diving ability) of the 153 

turtles tagged in advance was observed. Turtles behaved normally at release. Post-hatchlings were released 154 

preferentially on the same beach where the clutch was found. Tag weight was less than 5% of turtle weight, 155 

following previous studies (Mansfield et al. 2014). In methods, Mansfield et al. 2014 specify the tag weight (9.5 156 

g), but do not provide any explicit information on total tag weight or the weight of the acrylic-silicone-neoprene 157 

attachment. The authors only provide information on the epoxy needed to protect the tag from the marine 158 

environment (epoxy added weight ranged from 1.5 – 3.5 g) (Mansfield et al 2012). Nonetheless, we can estimate 159 

the total weight of the attachment they used from the information provided in Mansfield et al 2012. They used 160 

approximately 15-22 mL of aquarium silicone (density = 1.03 g/L) and two neoprene strips (40 x 5 x 5 mm), 161 

approximate weight 1.5 g. Adding all these weights shows the total weight of the attached tag would range 162 

between 27.95 and 37.16 g. If turtle size in Mansfield were between 300 and 700 g, the added tag weight 163 

percentage could range between 3.99 and 12.39 %. This percentage range of total added weight is similar to ours 164 

(Table 1). Our total added weight ranged between 31 and 72 g and our turtle size ranged between 489.9 and 4314 165 

g, so both weights were heavier than in Mansfield et al. (2014). However, in our case the percentage of added tag 166 

weight ranged from 1.29 to 8.81 %. Therefore, our additional weight percentage was similar to Mansfield et al. 167 

(2014).  168 
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 169 

Data acquisition  170 

 171 

Location data (LC) were collected using the Argos system, which classifies seven location classes of decreasing 172 

accuracy (3, 2, 1, 0, A, B, Z). LCs 3, 2, and 1 have Argos estimated errors of less than 250 m, 500 m, and 1500 173 

m, respectively (CLS 2016). Empirical studies by Hays et al. (2001) and Royer and Lutcavage (2008) found 174 

location class A comparable in accuracy to class 1. Witt et al. (2010b) found that LC B had poorer accuracy than 175 

LC A, and the worst level of accuracy was found in LC 0, such that LC3 < LC2 < LC1 < LCA < LCB < LC0 < 176 

LCZ. Facing shortages of LC 3, 2, and 1 locations, some researchers studying sea turtle movements have also 177 

included locations of LC 0, A, B and Z after extensive data screening (Mansfield et al. 2014; González et al. 178 

2016). Data are stored in Seaturtle.org database. We used all locations except locations that required a high 179 

traveling speed, > 10 km h-1 (González et al. 2016) and land locations (Arendt et al. 2012), which were filtered 180 

with Satellite Tracking and Analysis Tool (STAT) (Coyne and Godley 2005). Then, we used the Douglas Argos-181 

filter algorithm (DAF) (Douglas et al. 2012) as implemented in the Movebank tracking database (Wikelski and 182 

Kays 2017). We used distance-angle rate filter (DAR), which retains spatially redundant locations and locations 183 

that pass movement rate and turning angle tests as the most appropriate approach for studying marine turtle 184 

movements (Douglas et al. 2012). Parameters were KEEP_LC = 2, MAXREDUN = 15, MINRATE = 10, and 185 

RATECOEF = 25. 186 

 187 

Dispersion analyses 188 

 189 

Bathymetry data to analyze the use of neritic and oceanic habitats were obtained from the Satellite Tracking and 190 

Analysis Tool (Coyne and Godley 2005). Trajectories were analyzed using ‘adehabitatLT’ package (Calenge 191 

2006) in R version 3.3.1 (R Development Core Team 2017). To identify movement phases we segmented 192 

trajectory into segments characterized by a homogeneous behavior using the method of Gueguen (2000). 193 

Independence of the residuals of this segmentation was tested using the Wald and Wolfowitz test. Orientation 194 

analyses were performed using turtle bearing with ‘circular’ and ‘CircStats’ R-packages (Agostellini and Lund 195 

2017). The significance of circular mean was tested through Rayleigh’s test. Uniformity of distribution was tested 196 

using Watson’s test. Finally, we compared orientation differences among clutches using Mardia-Wheeler-197 

Watson’s test (Batschelet 1981).  Dispersion maps were produced using Maptool provided online by 198 

SEATURTLE.ORG (www.seaturtle.org/maptool).  199 

 200 

Survival analyses 201 

 202 

We assessed the daily survival probability of sea turtles using capture-recapture models for open populations 203 

based on the Cormack-Jolly-Seber (CJS) model (Lebreton et al. 1992) usingsoftware Mark 7.1 (White and 204 

Burnham 1999). In this way, survival probability (Φ) can be estimated independently of recapture probability (p) 205 

(Lebreton et al. 1992). Capture-recapture data were obtained from Argos messages and tracks information during 206 

90 days from release (day 0).  Days with no Argos message were coded as not captured. The goodness-of-fit test 207 

(GOF) of the CJS model was performed using U-CARE (Choquet et al. 2009). This was done to explore the fit of 208 
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the CJS model to the data, and to identify a general model from which to start a suitable model selection.  Trap 209 

dependence was analyzed following Pradel (1993).  210 

 211 

We used a linear model approach and a logit-link function to evaluate several models. The a priori set of models 212 

included different effects such as time dependence in survival or recapture, several trends (constant, linear, 213 

exponential, logarithmic and half-normal) in survival or recapture, differences in survival between months or trap-214 

dependence effects on recapture. Model selection was based on the corrected Akaike’s Information Criterion 215 

(AICc) (Burnham and Anderson 1998). We considered that models with a difference in AICc of less than two 216 

units were similarly supported by the data (Burnham and Anderson 1998). As we were mainly interested in 217 

survival, we first modeled recapture probabilities. Once we had the best model for recapture probability, we 218 

modeled survival. In order to compare survival among nests, we started from the best model previously selected. 219 

Clutch B was excluded from this analyses due to low sample size (n = 2). Nest origin, use of region (Alboran Sea 220 

or Balearic Sea) and use of habitat (neritic or oceanic) were included as covariates in these models. Finally, we 221 

tested for significant difference in survival estimates between clutches with Contrast software (Hines and Sauer 222 

1989). 223 

  224 

Results 225 

 226 

Turtle movements  227 

 228 

Most locations received were B (32.96%) and Z (25.90%); > 28.80 % of messages received had associated LCs 229 

between 0 and 3 (Fig 3). Turtles were remotely tracked on average for 74.2 ± 35.5 days, n = 19, and travelled a 230 

minimum mean distance of 2,372.45 ± 1,724.24 km, n = 19, with a resultant mean speed of 2.22 ± 0.94 km h-1, n 231 

= 19 (Table 1). Given the low accuracy of locations these swimming values should be considered as estimates. 232 

Individuals with few locations were excluded from further movement analyses (n = 4, turtle IDs: 3, 7, 8 and 19). 233 

On average 75.5 ± 25.1 %, n = 15, of locations were off the continental shelf. However, when excluding turtles 234 

from Clutch A, 88.0 ± 9.5%, n = 15, of locations were off the shelf (>200 m depth). Turtles from Clutch A have 235 

50.4 ± 28.7 %, n = 5, of locations within continental shelf waters. 236 

The track of each turtle (n = 15) showed no directional movement throughout the track duration (Rayleigh’s test, 237 

Z; P > 0.05, in all cases). Nonetheless, in several instances dispersal movement was consistently directional during 238 

certain week periods (Raleigh’s test, Z; P < 0.05). Differences in orientation were significant between nests 239 

(Mardia-Watson-Wheeler test, W = 11.736, d.f = 4, P = 0.019), and individuals (Mardia-Watson-Wheeler test, W 240 

= 64.814, d.f = 28, P < 0.0001). Release date did not affect orientation (Mardia-Watson-Wheeler test, W = 3.291, 241 

d.f = 2, P = 0.193). Overall, post-hatchlings did not disperse following a similar pattern after release, except during 242 

the coldest months. This was true even when considering releases by clutch or date (Fig. 4). The most frequented 243 

areas were the Alboran and Balearic Seas. From Clutch A (n = 5) two turtles (IDs: 1, 2) moved northwards to the 244 

Balearic Islands, Turtle ID 2 traveled south during winter. The other three (IDs: 4, 5, 6) moved southwards to the 245 

Alboran Sea, and Turtle ID 4 traveled possibly taking a North African eddie. Turtles from Clutch B (IDs: 9, 10), 246 

remained in the Balearic Sea, and Turtle ID 9 travelled northwards to the French coast reaching the Gulf of Lion. 247 

From clutch C (n =8), four turtles (IDs: 11, 12, 14, 18) traveled south and moved into the Alboran Sea. One of 248 
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them, Turtle ID 11, traveled at the end of its monitoring period northwards approaching the Balearic Islands. Two 249 

individuals from Clutch C (IDs: 13, 15) traveled northwards from the release point to the Balearic Sea. Finally, 250 

only two turtles from Clutch C (IDs: 16, 17) moved eastwards along the north African coast to the Algerian sub-251 

basin approaching the Sicilian Strait (Fig. 4). None of the turtles crossed the Gibraltar or Sicilian Straits or reached 252 

the Ligurian Sea during the tracking period. We only observed a common dispersal pattern during the coldest 253 

months of monitoring (December and January), when turtle movements were directed southwards to the western 254 

Alboran Sea or southeastwards to Sicilian Strait (Online Resource S1 and S2). 255 

Track segmentation analyses showed that in all analyzed individuals movements during the first days of 256 

monitoring (10-40 days) were slower than in the rest of the trajectory (Fig. 5). Some individuals (IDs: 9, 10, 18) 257 

alternated between faster phase movements and slower ones (Fig. 5B).  In all cases (n = 15) the residuals of these 258 

segmentations were independent (Wald and Wolfowitz test P > 0.05), confirming the validity of the approach. 259 

 260 

Survival analyses 261 

 262 

All post-hatchlings were included to assess survival. We obtained 6235 locations and 887 transmissions without 263 

location. Two out of 19 satellite-tagged individuals were recaptured alive. The first one (ID 1), from Clutch A, 264 

was found 99 days after release stranded on a beach in Murcia (Spain). The second one from Clutch C (ID 12) 265 

was recaptured stranded on a beach in Málaga (Spain) after 83 days from release with its satellite transmitter 266 

attached. This individual was found with a high epibiotic colonization, and was taken to a rehabilitation center 267 

(CMAOT Junta de Andalucia, unpubl data) and its satellite tag was removed. Both these post-hatchlings died a 268 

few weeks later at a rehabilitation center. Necropsy revealed plastic debris in the gastrointestinal track of both 269 

animals, but no clear cause of death was found. Therefore, the minimum estimated mortality was 11% after three 270 

months of tracking but at least 25% of monitored post-hatchlings were alive three months after release. 271 

 272 

Our starting model to estimate survival was the CJS model which has survival and capture probabilities that vary 273 

with time (t; model Φ (t) p (t)). The overall GOF-test for daily survival was significant (χ2 = 191.20, P < 0.01). 274 

There was evidence for a significant trap dependence effect as revealed by the trap-dependence signed statistic (z 275 

= -11.37, P < 0.01). The negative sign of the statistic z indicated a trap-happiness effect, that is, recapture was 276 

more likely when a sea turtle had been located the day before. As we did not ‘capture’ our turtles, this effect might 277 

be due to the likelihood of locating a tag by Argos or due to permanent tag loss or tag malfunction. Therefore, we 278 

fitted a model with capture probabilities dependent on time elapsed since last encounter (‘m’) and survival 279 

probability dependent on time (Ф(t) p(m*t); model 10, Table 2). 280 

 281 

In the survival analysis, the model that best fitted the data considered constant survival and trap-dependence in 282 

recapture (Table 2, model 11). Model selection supported recapture probabilities being dependent on time elapsed 283 

since last encounter, considering three periods: whether capture occurred the day before, two days ago or three or 284 

more days ago (model 1, Table 2). The model suggested that recapture probability declined with time since last 285 

encounter (Table 2). Models including a trend in survival were not supported (models 12, 14, 15, Table 2).  Other 286 

competing models had an AICc with a difference of more than two units compared with the selected model. 287 

Estimated mean daily probabilities of recapture and survival are shown in Table 4. Extrapolating these minimum 288 
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survival estimates (Ф days), minimum monthly survival probability was 0.78 (95% CI: 0.63 – 0.87) and minimum 289 

survival for the study period was 0.59 (95% CI:  0.40 – 0.76). Similarly, minimum annual survival probability 290 

was estimated as 0.05 (95% CI: 0.003 – 0.20).  291 

Models where survival differed between nests, habitat association and/or region (models 18, 19, 21, 22, 23 and 292 

25, Table 2) were fitted. In models 18 to 26, the two individuals from Clutch B were not included because the 293 

clutch size (n = 2) was insufficient to compute an adequate estimate for survival rate. In this case, model 294 

assessment was started considering trap-dependence in recapture (model 25, Table 2). Thus, model 25 (Table 2) 295 

was used as the starting model to compare survival between clutches A and C. Models considering the region, 296 

Alboran Sea or Balearic Sea, were fitted (models 19 and 22, Table 2). Model 19 considered the influence of both 297 

nest and region. The influence of the region in survival was not clear, since the slope (B) of the linear model 298 

included zero (B = 0.76 ± 0.83; 95% Confidence interval (CI): -0.88 – 2.39). Models considering the habitat 299 

association, neritic or oceanic habitat, were fitted (models 21 and 25, Table 2). Model 21 considered the influence 300 

of both nest and habitat association. The influence of the habitat in survival was not clear, since the slope (B) of 301 

the linear model included zero (B = 1.06 ± 0.67; 95% Confidence interval (CI): -0.26 – 2.37). The best model in 302 

these analyses included a nest effect (model 18, Table 2). The effect, as determined by the slope (B) of the linear 303 

model for the covariate nest, was different from zero (B = 6.17 ± 0.95; 95% Confidence interval (CI): 4.32 - 8.03). 304 

Daily survival probabilities were significantly different between nests (χ2 = 5.3011, P =0.0213). Minimum mean 305 

daily survival probability was 0.57 (95% CI: 0.30 – 0.76) for Clutch A and 0.94 (95% CI: 0.67 – 0.99) for Clutch 306 

C. Extrapolating these values, minimum annual survival estimates were 0.001 (95% CI: 5*10-7 – 0.04) for clutch 307 

A and 0.47 (95% CI: 0.01 - 0.89) for clutch C. 308 

  309 

Discussion 310 

 311 

Turtle movements 312 

 313 

This study provides the first successful satellite tracks for post-hatchlings in the Mediterranean. It is also the first 314 

tracking of post-hatchlings from nesting events in the Western Mediterranean, outside the loggerhead sea turtle’s 315 

known breeding range (Tomás et al. 2008a). 316 

 317 

Monitoring the tracks of post-hatchlings was not easy because 59% of Argos LCs we obtained were B and Z, 318 

unlike other studies where > 70% of Argos LCs obtained where between 3 and 0 (Mansfield et al., 2014; 2017). 319 

Given the lower accuracy of Argos LCs we obtained we should consider swim values as estimates. This 320 

highlighted that there remains a need to develop more accurate devices to assess sea turtle post-hatchlings 321 

movements. 322 

Assessing turtles’ movements is challenging due to the relative contributions of the unique oceanic conditions 323 

encountered by each individual during the monitoring period, such as ocean currents; and the swimming behavior 324 

of each turtle, that may influence their fate to passive drift or active dispersal (Putman et al. 2016). Overall, post-325 

hatchlings spent much more time in oceanic zones and, generally avoided neritic areas supporting the loggerhead 326 

oceanic nursery paradigm (Carr 1987; Revelles et al. 2007a; Mansfield et al. 2014). Most turtles from Clutch A 327 

were an exception because they used the continental shelf extensively. Differences in behavior observed between 328 



 

10 
 

clutches could be caused by parasitic infections suffered at the rehabilitation center (Cribb et al. 2017). A 329 

weakened immune system and secondary lesions and infections caused by parasites could have affected their 330 

growing rate and individual size and, therefore, their behavior. Smaller or weaker individuals might not confront 331 

coastal currents to reach oceanic zones. 332 

 333 

It has been generally assumed that the distribution of sea turtle hatchlings and small juveniles is the result of 334 

passive drifting along prevailing currents, due to their limited swimming capacity (Witherington 2002; Bolten 335 

2003). Nevertheless, recent studies also with head-started loggerhead sea turtles, have shown that post-hatchlings 336 

dispersal differed from what was predicted by passive drift alone (Mansfield et al. 2014, 2017). In previous studies 337 

head-started post-hatchlings were able to disperse over large areas, could travel long distances (Bowen and Karl 338 

2007; Mansfield et al. 2014) and exhibited highly variable routes (Okuyama et al. 2010), similarly to our results 339 

with loggerhead turtles in the western Mediterranean. In our study, monitored turtles did not show directional 340 

movement over the entire track, whether they were from the same nest, release date or location. However, in 341 

several instances dispersal movement was consistently directional during certain weeks. This could be explained 342 

by the turbulent current system in the Mediterranean Sea (MAGRAMA 2012; Balbín et al. 2014).  Consequently, 343 

turtles may exhibit more convoluted routes and frequent changes in bearing (Cardona et al. 2009; Cardona and 344 

Hays 2018), in contrast to dispersal orientation of small loggerhead juveniles in the North and South Atlantic 345 

(Mansfield et al. 2014, 2017) and North Pacific oceans (Briscoe et al. 2016) where strong currents are present. 346 

Moreover, some turtles dispersed northwards along the western shore of the Balearic Archipelago, a direction 347 

opposite the average surface currents in this area (Balbín et al. 2012). This finding may suggest therefore that 348 

active dispersal is more relevant than expected in the at-sea movements of young loggerheads in the Western 349 

Mediterranean, as was observed in recent studies in the Atlantic and Pacific oceans (Mansfield et al. 2014, 2017; 350 

Putman and Mansfield 2015; Briscoe et al. 2016). Nonetheless, Cardona and Hays (2018) compared drifters and 351 

turtles’ movements concluding that ocean flows profoundly impact the movements of juvenile loggerhead turtles 352 

(40-60 cm SCL), suggesting that surface advection is dominant in determining the trajectories of turtles in the 353 

Mediterranean Sea. Our hypothesis is that Mediterranean small juvenile sea turtles present behavioral plasticity, 354 

with passive drifting or directional swimming being tuned to local conditions as observed in other studies 355 

(Mansfield et al. 2014, 2017; Briscoe et al. 2016). Larger amounts of directional swimming may be required to 356 

avoid the less optimum areas as the northernmost part of the western Mediterranean basin during winter. Ongoing 357 

studies might confirm this hypothesis.  358 

 359 

Post-hatchling movements appear to have been constrained by environmental variables such as sea surface 360 

temperature. Overall, we observed that during the coldest months of monitoring (December and January) turtles 361 

moved in two directions: (1) southwards to the western Alboran Sea where the surface temperature is warmer due 362 

to the inflow of Atlantic waters (Skliris and Beckers 2009), or (2) southeastwards probably on the Algerian Current 363 

with its frontal systems of enhanced productivity (Pinardi and Masetti 2000; MAGRAMA 2012). This fact may 364 

be related to the habitat selection hypothesis (Christiansen et al. 2016), probably in order to avoid zones with low 365 

temperatures (Coles and Musick 2000). Furthermore, we observed that individuals from Clutch B moved 366 

northwards to the Gulf of Lion during the strong upwelling season in October (MAGRAMA 2012). Track 367 

segmentation analyses suggest that phases of lower speed at the beginning of the monitoring period may be related 368 
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to an adjustment period to the new environment. Although oceanographic information was not assessed, 369 

alternation of faster and slower velocity phases may illustrate migration phases (direct swimming) and foraging 370 

phases (convoluted swimming), respectively (Cardona et al. 2005), or they might be a consequence of different 371 

speed currents. 372 

 373 

None of the tagged individuals crossed the Gibraltar Strait during the monitoring period, even though three of the 374 

turtles spent most of the tracked time near the Strait area. This fact agrees with previous studies which suggest 375 

that small loggerheads (< 36 cm) are unable to pass the Gibraltar Strait from the Mediterranean basin towards the 376 

Atlantic basin (Revelles et al. 2007b). It is assumed that most of small juvenile loggerheads found in this area 377 

come from the Atlantic Ocean (Bolten 2003; Revelles et al. 2007b), because transport of small juvenile turtles 378 

from eastern to western Mediterranean seems to be very unlikely (Putman and Naro-Maciel 2013; Casale and 379 

Mariani 2014; Maffucci et al. 2016). Our results suggested that the small juveniles frequenting the surrounding 380 

area of Gibraltar Strait might also come from western Mediterranean nests laid in Spain, France, Italy (Delaugerre 381 

and Cesarini 2004; Sénégas et al. 2009; Maffucci et al. 2016) and even from Algeria and the western 382 

Mediterranean coast of Morocco and Tunisia, though there were no recorded nesting events (Casale and 383 

Margaritoulis 2010). If we observe the prevailing currents in agreement with Millot (1999) we can notice that the 384 

Algerian current moves eastwards but its convoluted as well, presenting a large number of gyres. This might 385 

permit hatchlings from north African coast to travel to the Alboran Sea by shifting passive drift and active 386 

swimming behavior. The lack of recent studies in the southern part of the western Mediterranean Sea impeded to 387 

confirm this hypothesis. We did not observe any tracked loggerhead crossing the Sicilian Strait from western 388 

Mediterranean to eastern Mediterranean during the monitoring period but we lost satellite transmission when two 389 

turtles were moving towards the Sicilian Strait, probably directed by the Algerian current.  There is evidence of 390 

two southward conveyors connecting the south Tyrrhenian Sea with the Strait of Sicily, and therefore, with the 391 

favorable Eastern Mediterranean developmental habitat (Casale and Mariani 2014; Maffucci et al. 2016).   392 

 393 

We did not observe a common dispersal pattern, however; two confluence areas in the Western Mediterranean 394 

were distinguished: The Balearic and Alboran Seas. The Alboran Sea is a high-productivity area in comparison 395 

with the rest of the oligotrophic Western Mediterranean basin due to the input of rich Atlantic waters (Pinardi and 396 

Masetti 2000; MAGRAMA 2012) and the permanent upwelling zone in the northwestern part of the Alboran Sea 397 

along the Spanish coast (Skliris and Beckers 2009). We observed that our post-hatchlings do not frequent the 398 

Ebro’s Delta area, in contrast to previous studies on juveniles (Cardona et al. 2009), although our tracked 399 

individuals were younger, head-started and from a different rookery. Distribution in more productive areas like 400 

the Balearic and Alboran Seas may be related to directional swimming in young sea turtles to select more favorable 401 

habitats based on ambient temperatures, foraging conditions, decreased predation or other reasons (Christiansen 402 

et al. 2016; Gaube et al. 2017).  403 

 404 

Survival analyses 405 

 406 

Estimating survival in the wild it is a difficult task, particularly when studying marine animals as it is not easy to 407 

find recoveries. One approach is the use of satellite locations to obtain capture and recapture data. Previous studies 408 
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have suggested that head-started marine turtles may present low survival probabilities (Cardona et al. 2012) as 409 

has been observed in other species of turtles, especially during the first weeks after release (Burke 2015). Our 410 

results show that the minimum daily survival probability of head-started turtles during the first three months after 411 

release is high (0.98 - 0.99). Additionally, we need to consider that we may have underestimated survival due to 412 

tag loss or tag malfunction (Lebreton et al. 1992). Therefore, if a tagged post-hatchling stopped transmitting we 413 

did not know whether it had lost the tag or died. Regarding our results, we can assume that at least within the first 414 

month, the likelihood of tags remaining attached was high, with decreasing likelihood in the next months of 415 

monitoring. Consequently, our estimates might be upper biased and should be considered conservative estimates 416 

due to an unknown, though not negligible, tag loss and failure rate, which increases substantially from the second 417 

month of monitoring after release. Nonetheless, estimated survival using capture-recapture methods is less biased 418 

than only using return rates.  419 

 420 

We did not find real survival estimates for loggerhead turtle post-hatchlings to compare with. The only available 421 

estimates are found in status reviews and are broadly applied to all post-hatchlings worldwide. Hence, there is a 422 

need to assess the survival of loggerhead turtle post-hatchlings specifically. Conant et al. (2009) assumed that the 423 

oceanic survival rate during the first year was 0.4, however; this value was used for another species (Lepidochelys 424 

kempii) and, moreover, it was not empirically estimated. This assumed survival value is lower than the reported 425 

in our results when considering just Clutch C. Mansfield et al. (2014) present tracking data for satellite tagged 426 

post-hatchlings in the North Atlantic. Although they did not analyze survival particularly, they tracked neonates 427 

for more than 80 days on average, which was similar to our results. Additionally, we need to consider whether 428 

tagging could have an effect on post-hatchling survival due the added weight or increase in drag.  We used a 429 

similar attaching method and the proportional added weight was within the range used by Mansfield et al. (2012, 430 

2014). These studies showed that the tagging method did not affect the growth of monitored individuals 431 

(Mansfield et al. 2012). We obtained the same results for differences in growing between captive tagged 432 

individuals and a control group. Moreover, our turtles were tagged in advance to the release and behavior observed 433 

was normal for all individuals after a habituation period (usually 24 hours). In any case, even considering this 434 

possible effect of tagging on survival or behavior, our survival estimates support that reintroduced head-started 435 

loggerhead turtle post-hatchlings were able to survive in the wild, at least during the most critical period after 436 

release (Armstrong and Seddon 2008).  Although we cannot evaluate the long-term success of head-started turtles, 437 

our results support the short-term success of reintroduction into the wild (Armstrong and Seddon 2008). 438 

 439 

Casale et al. (2007, 2015) estimate annual survival probability of juvenile loggerheads in the Mediterranean Sea 440 

using the capture-mark-recapture and the catch-curve method, respectively. They obtained survival estimates that 441 

ranged between 0.71-0.86. Sasso and Epperly (2007) estimate monthly and annual loggerhead survival rates (SCL 442 

ranged 43-60 cm) with the known-fate model, which upper biases survival estimates when fate is unknown. 443 

Although our minimum mean estimates are lower than these previous studies, our range of estimates include these 444 

values. These previous studies focused on older individuals (> two years), whereas our study focuses mainly on 445 

younger individuals which are expected to have a lower survival probability. Additionally, Sasso and Epperly use 446 

a known-fate model instead of a Comarck-Jolly-Sebel model. This implies that they did not consider tag 447 

detachment probability, and therefore, the survival estimate was upper biased. The method we used to extrapolate 448 
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minimum annual survival estimates is highly sensitive to small variations in daily survival. Our estimates, 449 

however; only cover a period between June to January, but do not include survival during the period of the year 450 

with the lowest sea surface temperature (March) in the Western Mediterranean, when the survival of small 451 

loggerheads may be compromised (Maffucci et al. 2016). Further studies covering this cold period should be 452 

conducted to obtain annual survival probabilities for one-year-old individuals. Moreover, annual changes in 453 

oceanic circulation could impact post-hatchling survival rates (Putman et al. 2013). Therefore, possible annual 454 

changes in oceanic circulation should be considered in next studies in order to elucidate the more favorable periods 455 

and places to release head-started post-hatchlings, as this may influence their dispersal and survival. 456 

 457 

Survival differences between clutches were most likely due to the condition of individuals. Lower survival 458 

probability of Clutch A was probably a consequence of parasitic infections caused by Amphiorchis spp. at the 459 

rehabilitation center (Cribb et al. 2017), although all infected individuals received proper veterinary treatment. 460 

Head-starting programs may have some constraints that limit their success (Burke 2015), especially during the 461 

initial years of implementation. Another condition that would contribute to different survival rates between 462 

clutches would be caused by a potential genetic bias, since turtles came from three different clutches. We did not 463 

observe any effect of the influence of region (Alboran Sea or Balearic Sea) or habitat association (oceanic or 464 

neritic habitat) on survival estimates. 465 

 466 

Although fisheries by-catch is considered a major threat for juvenile and adult sea turtles in the Mediterranean 467 

Sea (Casale 2011; Baez et al. 2013; Casale and Heppell 2016), we have no evidence of interaction with fisheries 468 

of our monitored individuals during the monitoring period. Mortality induced by pelagic longline and bottom 469 

trawling gears is the most significant in the Mediterranean Sea (Casale 2011; Echwikhi et al. 2012). This threat 470 

becomes greater for larger juveniles (> 30 cm) because larger juveniles in the Western Mediterranean exploit 471 

neritic habitats, therefore their main threat are the fishing gears typically deployed in this habitat (bottom trawls, 472 

set nets, demersal longlines). Pelagic longline is also a threat for larger juveniles because hooks used by longlines 473 

are smaller than turtles’ mouth, increasing their chances of accidental capture. In contrast, the hooks are too big 474 

for small juvenile loggerheads, preventing their capture (Echwikhi et al. 2012; Casale et al. 2015). Several authors 475 

highlight the ingestion of debris and plastics as a major threat for immature turtles (Margaritoulis et al. 2003; 476 

Carreras et al. 2004; Cardona et al. 2009). Indeed, two of our satellite tagged turtles were found stranded after 477 

almost three months of tracking with several plastic items in their gastrointestinal track, but in these cases the 478 

significance remains unknown. One of these turtles also had a severe colonization of epibiotic barnacles in the 479 

Alboran Sea (CMAOT Junta de Andalucia, unpubl data). Epibiotic colonization have been described in the 480 

Adriatic basin, Aegean basin and, particularly, in the Alboran Sea (Vallini et al. 2011; Domènech et al. 2015). 481 

This phenomenon may be significant in certain areas and years, but this remains unclear. Further studies may 482 

highlight the importance of these threats for small loggerhead juveniles.  483 

 484 

In conclusion, the present study provides the first results on dispersal areas of head-started loggerhead post-485 

hatchlings in the Mediterranean Sea and contributes to a better understanding of loggerhead post-hatchling 486 

survival and habitat use. These results are relevant for the management of potential new breeding areas in the 487 

Western Mediterranean. Our survival estimates could be applied to model loggerhead sea turtle populations 488 
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(Richards et al. 2011) or anthropogenic impacts (Putman et al. 2015). Management measures like nest 489 

translocation and head-starting programs for loggerhead hatchlings were successful when considered in terms of 490 

short-term survival. There was a high probability of survival of head-started individuals in the wild, and probably 491 

head-started turtles had the ability to forage natural prey and growth normally in its natural environment. 492 

Furthermore, post-hatchlings from the Western Mediterranean may contribute not only to the Mediterranean 493 

subpopulation stock but also to the North Atlantic’s, which are endangered. Further understanding of the 494 

movement ecology of post-hatchling loggerheads in the Western Mediterranean is crucial for more effective 495 

conservation strategies. Nonetheless, as we said before, there remains a need for smaller, lighter and more accurate 496 

devices to help drive the science forward, especially about the monitoring of sea turtle post-hatchlings. 497 
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Figures 823 

  
Fig 1. Nesting locations. Clutch A, n = 8, (Alacant, Spain) [38.37 ° N, 0.41 ° W], Clutch B, n = 2, (Tarragona, Spain) [41.13 824 

º N, 1.30 º E] and Clutch C, n = 9, (Almería, Spain) [37.38 º N, 1.64 º W]. Map obtained with SeaTurtle Maptool 825 

(www.seaturtle.org/maptool)  826 
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Fig. 2 Post-hatchling identity number (ID): 21 satellite-tagged with a solar-powered platform transmitter terminal (PTT) by 827 
Desert Star S.L. a few moments after release 828 
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Fig. 3 Frequency (%) of Argos location codes reported with satellite track locations from loggerhead sea turtle post-829 
hatchlings released in the Western Mediterranean.  830 
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a. 

 

b. 

 

c. 

 

 

Fig. 4 Dispersion patterns for loggerhead sea turtle (Caretta caretta) post-hatchlings in the Western Mediterranean. Release 831 

point is marked by clutch letter (A, B or C). Therefore, figures 4a, 4b, and 4c represent the dispersion routes for clutches A (n 832 

= 8), B (n = 2) and C (n = 9), respectively. Track colors represent different turtles. In 4c green colors represent post-hatchlings 833 

released in September and the other colors represent post-hatchlings released in June. Maps obtained with SeaTurtle Maptool 834 

(www.seaturtle.org/maptool)  835 
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a. 

 

b. 

 

Fig. 5 Movement segmentation analyses. Straight lines indicate mean travel distance through time, red (slower travel 836 

distance), green (low medium travel distance), blue (high medium travel distance), yellow (higher travel distance). Different 837 

mean travel distances point to different types of movement. Figure 5a: Turtle identity number (ID): 14; Figure 5b: Turtle ID: 838 

18  839 
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Table 1 Post-hatchling loggerhead data information. Hatchlings were kept in a head-starting program. Head-starting locations were: ARCA del mar (Área de Recuperación y Conservación de 840 

Animales del mar, Oceanogràfic de València, Spain); CRAM (Centro de Recuperación de Animales Marinos, Tarragona, Spain); CEGMA (Andalusian Marine Environment Management Center, 841 

Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Algeciras, Spain); and Aquarium of Sevilla (Spain). Several post-hatchlings from Clutch A were head-started at 842 

ARCA (8 months) and at CEGMA (5 months). Clutch C was incubated at Doñana Biological Station (EBD-CSIC, Sevilla, Spain). Total tag weight includes both the Platform Transmitter Terminal 843 

(PTT) tag and attachment material. Days transmitted include all transmissions received with or without location. Distance traveled is the sum of the minimum distance between all consecutive 844 

locations of each turtle. Release location was on the beach: Clutch A in Elx, Alacant (38.234 N, 0.513 W), Clutch B in Tarragona, Barcelona (41.129 N, 1.302 E) and Clutch C in Pulpí, Almería 845 

(37.375 N, 1.636 W). 846 

Clutch Name 
Turtle identity 

number (ID) 

Weight 

(g) 

SCL 

(cm) 

% Total tag 

weight 

PTT tag 

weight (g) 

Total tag 

weight (g) 

Head-starting 

locations 

Age at release 

(months) 

Release 

date 

Days 

transmitted 

Distance traveled 

(km) ± s.d. 

Mean speed 

(km/h) ± s.d. 

A 

Sali 1 970.6 17.5 4.07 26.0 39.5 ARCA / CEGMA 13 14/09/2015 98 2076.53 ± 17.97 1.91 ± 2.48 

Daniel 2 854.2 15.8 4.73 26.0 40.4 ARCA / CEGMA 13 14/09/2015 91 1429.58 ± 32.57 1.37 ± 1.83 

Espaikel 3 867.1 16.3 4.26 26.0 37.0 ARCA / CEGMA 13 14/09/2015 23 313.92 ± 2.94 1.28 ± 1.95 

Maya 4 718.3 15.3 5.35 21.0 38.5 ARCA / CEGMA 13 14/09/2015 43 1173.98 ± 11.18 1.50 ± 1.76 

Contxi 5 716.8 15.1 5.34 21.0 38.3 ARCA / CEGMA 13 14/09/2015 54 993.99 ± 31.58 1.70 ± 2.03 

Samy 6 700.4 15.0 5.18 21.0 36.3 ARCA 13 14/09/2015 42 262.73 ± 9.95 0.84 ± 1.13 

Lusi 7 489.9 13.6 8.81 21.0 42.2 ARCA 13 14/09/2015 34 383.86 ± 18.90 1.60 ± 1.62 

Carla 8 496.2 13.3 7.19 21.0 35.7 ARCA 13 14/09/2015 11 117.49 ± 15.26 1.23 ± 2.20 

B 
Seis 9 4314 25.6 1.29 26.0 72.0 CRAM 22 31/08/2016 123 3916.68 ± 12.15 2.23 ± 1.97 

Nueve 10 3381 29.1 2.17 26.0 56.0 CRAM 22 31/08/2016 37 1908.18 ± 15.99 3.51 ± 2.55 

C 

Cocedora 11 1012.8 17.5 NA 26.0 26+ CSIC / CEGMA 9 16/06/2016 82 3626.64 ± 22.68 3.27 ± 2.67 

Rabiosa 12 1096.7 17.5 NA 26.0 26+ CSIC / CEGMA 9 16/06/2016 83 3743.38 ± 13.84 3.34 ± 2.68 

Pichirichi 13 952.6 16.6 NA 26.0 26+ CSIC / CEGMA 9 16/06/2016 79 4107.8 ± 17.64 3.85 ± 2.72 

Serena 14 879.2 16.8 NA 26.0 26+ CSIC / CEGMA 9 16/06/2016 102 4163.46 ± 24.82 2.84 ± 2.59 

Toby 15 940 16.97 3.72 18.0 35.0 CSIC / Aq. of Sevilla 12 28/09/2016 106 4381.07 ± 52.49 3.18 ± 2.91 

Dora 16 1000 17.52 3.10 18.0 31.0 CSIC / Aq. of Sevilla 12 28/09/2016 115 2574.49 ± 85.76 1.70 ± 1.82 

Vendetta 17 1102 18.11 3.72 26.0 41.0 CSIC / Aq. of Sevilla 12 28/09/2016 108 5580.33 ± 48.00 3.31 ± 2.80 

Bonita 18 1030 17.47 3.79 26.0 39.0 CSIC / Aq. of Sevilla 12 28/09/2016 123 3981.24 ± 43.66 1.85 ± 1.69 

Morla 19 1308 18.65 3.29 26.0 43.0 CSIC / Aq. of Sevilla 12 28/09/2016 105 341.25 ± 38.20 1.58 ± 1.76 
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Table 2 Model selection for recapture and survival probabilities of loggerhead post-hatchlings. For each model, the values for deviance, the number of estimable parameters (Np), corrected 847 

Akaike’s Information Criterion (AICc), differences between the first model and the model with the lowest AICc (ΔAICc) and AICc weights are shown. Model notation is as follows: Phi: post-848 

hatchlings survival probability; p: recapture probability; c: constant; t: time dependence (days); linear trend: linear dependency, month: monthly dependency, ln trend: logarithmic dependency, 849 

exp trend: exponential dependency (positive or negative), half normal trend: half-normal dependency, age model for recapture (m2: considering two ages or m3: considering three ages), m*t: 850 

interaction recapture probability and time. Bold face denotes the selected models. 851 

 Models  AICc ΔAICc AICc weight Np Deviance 

Modeling Recapture probability 

1. {Phi(t) p(m3)} 1125.53 0.00 1.00 92 382.06 

2. {Phi(t) p(m2)} 1146.21 20.68 0.00 91 405.16 

3. {Phi(t) p lineal trend} 1343.82 218.29 0.00 91 602.77 

4. {Phi(t) p ln trend} 1349.36 223.83 0.00 91 608.30 

5. {Phi(t) p(c)} 1352.28 226.75 0.00 90 613.63 

6. {Phi(t) p exp positive trend} 1353.25 227.72 0.00 91 612.19 

7. {Phi(t) p exp negative trend} 1354.33 228.80 0.00 91 613.28 

8. {Phi(t) p half normal trend} 1354.33 228.80 0.00 91 613.28 

9. {Phi(t) p(m*t)} 1418.76 293.23 0.00 264 166.66 

10. {Phi(t) p(t)  1479.36 353.83 0.00 177 510.20 

Modeling Survival probability  

(considering all clutches) 

11. {Phi(c) p(m3)} 974.10 0.00 0.88 4 424.86 

12. {Phi(month) p(m3)} 978.14 4.04 0.11 6 424.85 

13. {Phi(c) p(m)} 996.02 21.92 0.00 3 448.79 

14. {Phi(linear trend) p(m2)} 996.73 22.63 0.00 4 447.49 

15. {Phi(month) p(m2)} 1000.05 25.95 0.00 5 448.79 

16. {Phi(t) p(m3)} 1125.53 151.43 0.00 92 382.06 

 17. {Phi (c) p(c)} 1199.44 225.35 0.00 2 654.23 

Modeling Survival probability 

(considering nest origin and or 

region) 

18. {Phi(nest) p(m3)} 918.52 0.00 0.60 5 908.46 

19.{Phi(region+nest) p(m3)} 919.62 1.10 0.35 6 907.53 

20. {Phi(c) p(m3)} 924.15 5.62 0.04 4 916.10 

21. {Phi (nest+habitat association) p(m3)} 925.24 6.71 0.02 6 913.15 

22.{Phi(region) p(m3)} 925.98 7.46 0.01 5 915.92 

23. {Phi(nest) p(m2)} 942.60 24.07 0.00 4 934.55 

24. {Phi(c) p(m2)} 947.14 28.62 0.00 3 941.11 

25. {Phi (habitat association) p(m3)} 948.89 30.37 0.00 5 938.83 
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25. {Phi(t) p(m3)} 1081.05 162.52 0.00 92 876.00 

26. {Phi(c) p(c)} 1131.51 212.99 0.00 2 1127.50 

 

  852 
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Table 3 Real estimate of daily survival parameters and 95% confidence intervals (CI), in brackets, for all covariates of the selected model. Model notation is as follows: Phi: post-hatchling 853 

loggerhead survival probability; c: constant, p: recapture probability (note that recapture probabilities are dependent on time elapsed since last encounter, thus, we considered three periods and 854 

therefore three recapture probabilities: capture the day before (p1), two days ago (p2) or three or more days (p3), nest: nest intrinsic influence on survival rates, m3: model age for recapture for 855 

three ages. Regarding nest influence, we show real estimate parameters for clutches A and C. 856 

Model Daily survival p1 p2 p3 

All clutches 

{Phi(c) p(m3)} 

0.991 ±     0.003 

  (0.984   --    0.996) 

0.911    ±   0.009 

   (0.892    --    0.928) 

0.625   ±    0.052      

(0.519  --    0.719) 

0.280    ±   0.044        

(0.201  --    0.375) 

Considering nest influence for Clutch A 

{Phi(nest) p(m3)} 

0.981   ±    0.007 

(0.961   --   0.991) 0.901   ±    0.010 

 (0.879  --   0.919) 

0.622    ±   0.052       

(0.516   --   0.718) 

0.264   ±    0.0428        

(0.189   --   0.356) 
Considering nest influence for Clutch C 

{Phi(nest) p(m3)} 

0.998    ±   0.002 

 (0.987  --    1.000) 

 


