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Abstract

By studying platonic crystals based on lattices of cavities containing N-beam
resonators, we conclude that crystals made of 1-beam resonators easily pro-
duce low-frequency omnidirectional bandgaps. Based on this favorable proper-
ty, hardly obtained for resonant cavities containing a higher number of beams
N > 2, we have designed single-phase metamaterial plates for the suppression
of low frequency flexural waves in a broad range of frequencies. These meta-
materials are obtained by using resonant cavities containing a multiple number
M of identical 1-beam resonators uniformly distributed in the cavity. Square
lattices of this type of resonators have been studied by using the impedance ma-
trix approach and the multiple scattering method. This semi-analytical method
has been employed to show the existence of complete bandgaps whose width
can be optimized by increasing M. For the case M = 4, the largest number of
resonators studied here, three complete bandgaps separated by two narrow pass-
bands appear in the band structure. The formation of these complete bandgaps
originates from the dynamic interaction between different local resonators as
well as their interaction with the propagating waves in the host plate. By us-
ing composite structures consisting of platonic crystal slabs with complementary
bandgaps, these separated bandgaps easily merge into a broadband wave attenu-
ation region. The normalized width, defined as the percentage of the bandwidth
to its central frequency, reaches 95.3%, representing an enhancement of about
one order of magnitude compared with the absolute bandwidth obtained for the
case of a single 1-beam resonator in the cavity. It is shown that the gaps can be
easily tuned to lower frequencies by changing the geometrical parameters, such
as the length of the beam, the radius and thickness of the smaller circular plate.
Since the metamaterial is made of a single-phase material without attaching
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heavy masses, the work reported here provides a simple approach to construct
low-cost structures with potential applications in aeronautic and astronautic
industries for broadband vibration suppression at low frequencies.

Keywords: Flexural waves in thin plates, Platonic crystals, Metamaterial
plates, Vibration suppression in plates, Resonant bandgaps

1. Introduction

In the past decades, sonic/phononic crystals have been extensively studied
owing to the rich physics associated to the propagation of acoustic/elastic waves
propagating in fluids/solids with periodically arranged scatterers [1, 2]. There
are many options for the scatterers and generally they contain holes, inclusions,
pillars and a variety of well-designed resonators [3]. The lattices of resonators
are termed as metamaterials because they behave like dynamic homogeneous
materials within the long wavelength limit [4-6]. Owing to the out-of-phase
response induced by the locally embedded resonances, the retrieved effective
parameters, such as density, bulk and shear moduli, may achieve negative values
within the resonant bands [4, 7, 8]. The waves propagating in the metamate-
rials show many intriguing phenomena: low-frequency bandgaps [9], negative
refraction [10], super-resolution imaging [11], and directional propagation [12],
just to name a few. These anomalies not only enrich our understanding of wave
physics but also show a bright future in shielding, imaging and lensing.

Fueled by the seminal idea proposed by Liu et al. [9], various kinds of res-
onant structures were designed [13, 14] to create acoustic/elastic crystals with
low-frequency bandgaps, not attainable by traditional scatterers because the
Bragg-type bandgaps fall into frequency regions where the wavelength is com-
parable with the lattice constant. For waves propagating in solids, the magni-
tude of wavelength can be as large as several meters, and thus barriers for sound
and vibration shielding cannot be fabricated in reasonable size unless employing
local resonators. The excellent tunability endows metamaterials significant ad-
vantages in shielding low-frequency waves [15-18]. For airborne acoustics waves,
stacked panels composed of membrane-mass resonant units were demonstrated
with an astonishing sound transmission loss (about 40 dB) over a broad range
from 50 Hz to 1000 Hz [15]. This achievement is extremely challenging for the
mass-law-controlled sound barriers.

Our interest here is centered on reducing the low-frequency vibrations in
thin plates. The motivation originates from the basic reason that vibration
problem needs to be solved urgently because of the bottleneck encountered in
precision machining [19]. Periodic structures in thin plates are named as platonic
crystals [20], and metamaterial plates based on them are likely to be one of the
answers for the tough problem of vibration attenuation at low frequencies. Thus,
imitating the strategy proposed by Liu and coworkers [9], platonic crystals with
coated composite structures were naturally introduced in the early works to
open low-frequency bandgaps [21, 22]. Subsequently, numerous works focused
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their interest on attached resonators vibrating in the out-of-plane direction,
typically including spring-masses [23-27], stubbed pillars [28-31] and beam-like
resonators [32].

The previously mentioned studies suffer from a drawback in practical fab-
rication on account of the high complexity and poor reliability of the attached
structures, albeit the remarkable achievements in manipulating subwavelength
waves. The reasons include three main parts. First, the resonant unit cell is
usually comprised of different constituent materials with highly contrasting ma-
terial properties, making them hardly to be glued together steadily for a long
time. Second, in most cases, heavy masses have to be attached on both sides of
plates for the purpose of lowering bandgaps. Third, extra space is needed for
the arrangement of attached resonators, which might be impracticable under
some special conditions. The problem manifests further if one wants to broaden
resonant bandgaps, and usually it means more complicated platonic structures
have to be introduced [33, 34]. We notice that the nonlinear chaotic mecha-
nism [35] and the dual mechanisms of shear stiffening and rotation softening
[36] were applied to realize ultra-low and ultra-broad bandgaps. They present
elegant physical models for the understanding of wave physics, however, there
is still a lot of work ahead due to the difficulties in practical implementation.

Single-phase metamaterial plates provide a more practical approach and,
generally, they consist of holes with different inner structures easily to be fabri-
cated by cutting machines. The cutting techniques bring favorable benefits in
the aspects of weight reduction and cost control. The aspect has attracted con-
siderable interest in the community in recent years [6, 12, 14, 37-45]. The pre-
vious works reported interesting applications in superlensing [39, 40], focusing
[6, 44], directional wave guiding [12] and vibration shielding [37, 38, 41, 42, 45].
Among these works, most of them were performed within the framework of the
finite element method because of the structural complexity. However, if the
resonant microstructure is specially designed with simple geometries like rect-
angular beams and circular plates, such as the N-beam resonators proposed
in Ref. [46], the theoretical study of the corresponding platonic crystals can
be easily performed by combining the impedance matrix method with the mul-
tiple scattering method [44]. In most cases, the numerical computing based
on the self-developed modeling is much more efficient than the finite-element-
based software when dealing with multiple scattering systems because the latter
requires a huge number of elements to ensure accuracy.

This work presents the design of a metamaterial structure for the attenuation
of flexural waves at low frequencies. The design results from a comprehensive
study of the properties of platonic crystals with resonant structures made of V-
beam resonators, which guides our attention to a solution based on a resonant
cavity made of a multiple number M of 1-beam resonators uniformly distribut-
ed in the cavity. Although previous works demonstrated that the number of
beams has a significant influence on the band structures [12, 39, 44, 45], only
cavities with 1-beam [39, 45] and 2-beam [12, 44] resonators have been previ-
ously analyzed. Our present work studies cavities containing up to 4-beams and
shows that cavity lattices made of 1-beam resonators are preferred since they
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easily provide complete bandgaps at low frequencies. Based on this finding, we
have conceived resonant cavities with multiple 1-beam resonators providing si-
multaneously low-frequency broad bandgaps and excellent structural reliability.
The resulting optimized metamaterial consists of a lattice of cavities containing
four identical 1-beam resonators. Further support of this metamaterial plate
has been provided by numerical simulations showing that a crystal slab made
of these cavities produces a total suppression of low-frequency flexural waves.
We have concluded that these metamaterials can be used as light-weight and
low-cost useful solutions in aeronautic and astronautic industries where the sup-
pression of low-frequency vibration is a must.

The paper is organized as follows. After this introduction, Sec. 2 gives a
brief description of the model employed to obtain the band structure of a square
lattice of resonant cavities containing multiple M number of 1-beam resonators
uniformly distributed in the cavities. Next, in Sec. 3, we study the band
structures of cavities containing multiple 1-beam resonators and compare them
with the ones obtained when the resonant cavities contain N-beam resonators.
As a result of the comparison, we conclude that a resonant cavity containing
four 1-beam resonators uniformly distributed is a better option to create broad
bandgaps at low-frequencies. This result is further supported by analyzing the
transmission properties of a metamaterial slab made of this type of cavities.
Finally, the work is summarized in Sec. 4 with an outlook of application in
vibration suppression. Some useful but tedious developments are given in the
Appendices.

2. Modeling of resonant cavities containing M 1-beam resonators

In a previous work [44], the multiple scattering approach was applied to
develop a semi-analytical model allowing the calculation of the band structure
of flexural waves propagating in a thin plate containing a lattice of resonant
cavities. The cavities consist of N-beam resonators, whose corresponding T-
matrix was derived by applying the impedance matrix method [46]. In this
section, we develop a similar procedure but now applied to the case of cavities
containing a certain number M of 1-beam resonators. As shown below, these
type of structures can exhibit complete bandgaps that are tunable in frequency
by changing the geometrical parameters of the resonators. For the sake of
comparison, Fig. 1 shows schematic diagrams of the two kinds of resonant
cavities under study. On the one hand, Fig. 1(a) depicts the case of a cavity with
a 2-beam resonator, which consists of an inner plate centered in the cavity and
connected to the background plate by 2 rectangular beams with equal lengths
{ = Ry — Ry, where Ry and Ry are the radii of the smaller plate and cavity,
respectively. On the other hand, Fig. 1(b) presents, as an example, the case of
two (M = 2) 1-beam resonators inside a circular cavity with same radius Ra.
In this work, we assume that all the resonators are uniformly distributed with
eccentric distance e. The length of the single beams is £ = ry — r1, where r;
and 79 represent the radius of the smaller plates and the length of the segment
O, ¥, 2, respectively. In both cases, all the beams are of equal width b, and 6,
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Fig. 1. (Color online) Schematic diagrams of the two kinds of resonant cavities
under study. (a) Resonant cavity containing a N-beam resonator with N = 2.
The cavity consists of a smaller plate centered at the cavity and connected to
the background plate with a number of N = 2 rectangular beams. (b) Scheme
corresponding to a resonant cavity containing M 1-beam resonators, with M =
2. Now, the cavity contains two 1-beam resonators uniformly distributed inside
it. In both structures, the radius of the circular cavity is Rs, the width of all the
beams is b, and 6,, defines the inclination angle of the nth beam which links the
inner plate and background plate at anchor points ¥,, ; and ¥, 2, respectively.
For the general case of a number M of 1-beam resonators, all the resonators
are radially structured with eccentric distance e. The radii of the inner disks
are equal to ry, different to R, the radius of the central disk of the N-beam
resonators.

defines the inclination angle of the nth beam which links the inner plate and
background plate at anchor points ¥,, ; and V¥, o, respectively. As depicted in
Fig. 1(b), the origins of the Cartesian coordinates O(z,y) and polar coordinates
O(R, ©) are chosen at the center of the cavity. For convenience, the nth smaller
plate is described in a local frame O, (r,8), and the corresponding beam is
expressed in a local system Oz, defined along the axis of the beam.

According to Kirchhoff-Love plate theory [47], the flexural waves propagating
in thin plates are governed by the following equation of motion:

VAW — KW =0, (1)

where k = (phw?/D)'* is the wave number, w is the angular frequency, h
denotes the plate thickness, and D = Eh3/12(1 — 1v/?) is the rigidity with E,
v and p being the Young’s modulus, Poisson’s ratio and mass density of the
plate, respectively. The time harmonic factor exp(—iwt) is implicit in all the
formulation but will be omitted throughout the paper for simplicity.

In polar coordinates, the out-of-plane displacements in the background plate,
W (R, ©), and in the nth circular plate, W™ (r, ), can be expressed as [44, 46]

W = [F)!(k,R,0)Aqy + FI¥(k,R,0)B,] (2)

g=—o0
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wn = i F)!(kir,0)(Crn)g, n € [1,M] (3)

g=—00

where J, H, I and K are the Bessel functions, and the matrix ng’(f,n) =
[Tq(£) ®4(€)]e'" is defined for simplicity. The column matrices A, = [4;] Al]",
B, = [B} BK], and (C,,), = [C; Cl]" contain the expansion coefficients for
the incoming, scattered and internal waves in the nth plate, respectively. The
series summations are truncated in numerical simulations and run from —N,
to Ng. The truncation order is set to N, = 18 for the calculations throughout
the paper. Moreover, k; and k, are wave numbers in the inner and background
plates, respectively.

It is assumed that the structures depicted in Fig. 1 are fabricated by s-
tandard cutting techniques applied to a homogeneous plate and, consequently,
within this single-phase metamaterial, k; equals to k, because all parts are
made of the same material. However, this statement is not true for the case
in which we need to increase the thickness of the circular plates t; a strategy
that is adopted to adjust the fundamental resonance. This can be achieved in a
practical way by pasting disks onto the circular plates (region I) with the same
materials.

Regarding the short bridges connecting to the circular plates, they are con-
sidered as Euler-Bernoulli beams. Then, for one particular beam, its transverse
displacement V™ (z,,) is controlled by the following equation of motion [47]:

4y n
% —kjV" =0, nell,M] (4)

where k, = (mw?/EI)'/* is the wave number in the beam with I = bh3/12
being the second moment of area and m = pbh being the mass per unit length.
Then, the solution within the beam can be expressed as [46]

V™ (x,) = Del*ren 4 Dl keen 4 pnekven 4 pre=koen, (5)

The wave solutions expressed in Egs. (2), (3) and (5) are related through
the continuity conditions at the anchor points ¥,, ; and ¥,, . Their expressions
are

W™ (r1,0,) =V™(r1) and W(Ra,0,) =V"(ra2), (6a)
(r1,0n) n (Rz,0n) nlp,

M|y 0,0 = ]\fij N and Mg, ,) = A}%L . (6c)

Vil o) = %n . and  Vg|(g, 9,) = %: n (6d)
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where M™ and Q" are, respectively, the bending moment and the transverse
shear force in the nth beam. Correspondingly, M and V", Mg and Vg are
the radial moments and Kirchhoff stresses in the inner and background plates,
respectively. In these equations, the quantities associated with the short beams
and inner plates are measured in their own frames.

2.1. T-matrix solution

The coefficients of the incoming waves, A,, and scattered waves by the
resonant cavity, B, are related through the T-matrix as follows:

Bq: Z quA57 (7)

§=—00

where the transfer matrix T has dimension 2(2N, + 1) x 2(2N, + 1), with N,
being the truncation order employed for the summations in Egs. (2) and (3).
According to the impedance method, it is expressed as [46, 48]

T = [MHK(kp, R2)}—1[Zscat + Ztot]—l[zinc o ZtOt][M‘H(/{p, Rz)], (8)

where the additional matrix M contains some algebraic operations for Bessel
functions, and the three impedance matrices Z™¢, Z3* and Z*°* are evaluated at
the boundary R = R, for the incoming, scattered and total waves, respectively.
In Eq. (8), Z*" is the only one to be determined because it depends on the
resonant structures. Following the procedures introduced in Refs. [46, 48], we
obtain the remaining impedance matrix (see Appendix A)

M i(57Q)6n
tot __ €
qu - Z 27 R (9)
n=1

where Z is an auxiliary impedance matrix introduced to simplify the expression.

Once the T-matrix is determined, the total displacement field in the back-
ground plate is easily available according to Egs. (2) and (7). On this basis, the
displacements in the inner plates and beams are determined by the following
procedures:

- W
(Cn)q = ; (Thn) g [W,RL’ (10)
where the sub-matrix (T,),, is one element of the transfer matrix for internal

waves localized in the nth plate T,, = L, I'R,,. To be specific, L,, and R,, are
block matrices with elements

(L) gy = 27100s N (kiy 1) — Kia M (ki vy )el =90, (11)

(Rn),s = DKy, (12)
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where § and K are the Kronecker symbol and beam stiffness matrix, respec-
tively. According to the boundary conditions in Egs. (6a) and (6b), finally, the
scattering problem is completely solved with

3 My (kiy71)(Cp) |
D, = H! qq \"Vi> n)q i90n 13
q;oo [M;zlql(kpv RQ)Aq + MgK(kp» RZ)Bq ¢ ( )
where the column matrix D,, = [D} D% D% D7]* contains the coefficients

determining the flexural waves in the nth beam, and H is one auxiliary matrix
employed in expressing the beam stiffness matrix. The reader is addressed to
Refs. [44, 46, 48] to get the explicit expressions of the auxiliary functions H
as well as for any more details about the impedance method and the multiple
scattering theory applied to flexural waves.

2.2. Finite element simulations

The accuracy of the semi-analytical method described above has been ana-
lyzed by studying the interaction of flexural waves with a cavity containing a
single 1-beam resonator. A series of full wave simulations are performed within
the framework of the finite element method. We have employed the solid me-
chanics module of the commercial package COMSOL Multiphysics, which solves
the full elastic equations in three-dimensions (3D). Therefore, both in-plane and
out-of-plane motions are provided by the finite element solutions.

We have considered three different resonant cavities drilled in an aluminum
plate with thickness A = 1 mm. For the numerical simulation, we have employed
the following values as the material parameters of aluminum: Young’s modulus
E = 69 GPa, Poisson’s ratio v = 0.33, and density p = 2.7 x 103kg m~3. As
the radius of the cavities [see Fig. 1(b)] we assume that Ry = 10mm. As
the values of the geometrical parameters of the 1-beam resonators we consider
that: 71 = 5mm and b = 2mm. The beam length ¢ and the thickness of
the circular plate t vary with resonators. To be specific, we have studied the
following three cases: (i) £ = 8mm, ¢ = 1mm; (ii) ¢ = 8 mm, ¢ = 3mm; and
(iii) £ = 1mm, t = 3mm. Each resonant cavity is placed at the center of an
infinite aluminum plate and it is excited by a punctual source located at (—2,
2), where the coordinates are normalized to Rs.

Fig. 2 shows the snapshots of the out-of-plane displacements obtained from
the 3D full wave simulations (left panels) and our 2D semi-analytical algorithm
(right panels). The top, middle and bottom displacement patterns correspond to
results of the three resonators with parameters specified in cases (i), (ii) and (iii),
respectively. The resonant structures are excited by a punctual source emitting
cylindrical waves with k,Rs = 0.2 in cases (i) and (ii), and k,Ry = 0.26m
in case (iii). The comparison of the displacements patterns at the left and
right panels in Fig. 2 demonstrates that the scattering patterns obtained from
the 3D finite-element solver are fairly good reproduced by our semi-analytical
algorithm even in the extreme case illustrated in Figs. 2(e) and 2(f), where the
resonator consists of an extremely short beam and a heavy mass. Therefore, we
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can conclude that our semi-analytic method is accurate enough to describe the
behavior of 1-beam resonators with different parameter values.

The plots in Fig. 2 deserve more additional discussion. For example, the
scattering patterns corresponding to resonators specified in cases (i) and (ii)
exhibit appreciable differences, where the thickness of the inner plate is the only
variable being changed. It is observed that for case (i), corresponding to the
resonator with lighter mass, the displacement pattern displays features typical
of a strong local resonance where the resonator vibrates much more heavily than
the background plate. On the contrary, for case (ii), when the mass of the inner
plate is heavier, Figs. 2(c) and 2(d) indicate that no resonant response seems
to be excited. In this case, the resonant frequency shifts to a lower value (see
Appendix B) and the inner structure vibrates with the background plate.

The plots in Figs. 2(e) and 2(f), corresponding to a resonator with an
extremely short beam, show an interesting behavior not observed for longer
beams. From the 3D full wave simulation shown in Fig. 2(e), we infer that the
beam is twisted in accordance with the rotation motion observed in the inner
plate. This effect, not reproduced in Fig. 2(f), is associated to the fact that
the Euler-Bernoulli theory is unable to describe any type of torsional deforma-
tions. Therefore, our semi-analytical model might exhibit small discrepancies
compared with full wave simulations for the case of 1-beam resonators with an
extremely short beam.

3. Results and discussion

Our purpose here is showing that single-phase metamaterial plates based
on lattices of resonant cavities containing a certain number M of 1-beam res-
onators produce complete and broad resonant bandgaps at low frequencies. The
flexural band structure of these metamaterials is obtained by using the 2D semi-
analytical model developed in Sec. 2.1 and the multiple scattering algorithm
developed in Ref. [44]. To start with, we thoroughly investigate the band
structure of cavity lattices containing N-beam resonators in order to show that
1-beam resonators are the right choice to get low frequency omnidirectional
bandgaps. In a second step, it is shown that an increasing number M of 1-beam
resonators inside the cavity produce additional complete bandgaps. For the
case of cavities containing four uniformly distributed 1-beam resonators, three
complete bandgaps are opened at extremely low frequencies with two narrow
pass-bands between them. As the final step, finite metamaterial slabs are s-
tudied to prove that they can be used as attenuation devices providing total
suppression of flexural waves in certain broadband frequency ranges.

8.1. Low frequency resonant bandgaps produced by lattices of N -beam resonators

For its own interest and for comprehensiveness, this section is devoted to
discuss the properties of the flexural band structures corresponding to square
lattices of N-beam resonators. Fig. 3(a) depicts, as a typical example, the
scheme of a square lattice of 2-beam resonators in real space together with the
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definitions of the high symmetry directions in the reciprocal space, where the
shadowed region represents the irreducible Brillouin zone. In the lattice, all
the resonators are structured with one beam pointing to the high symmetry
direction OA. In the calculations, we have considered the following values of the
parameters described in Fig. 1(a): R; = 5mm, Ry = 10mm and b = 2mm.
Regarding the period of the square lattice, it is d = 25 mm.

Fig. 4 shows the calculated band structures for cavity lattices containing N-
beam resonators, with N taking values from one (a) to four (d). The dispersion
relations obtained from the 3D finite element solver (hollow circles) and the
2D multiple scattering algorithm (solid circles) are depicted for the sake of
comparison. Let us point out that in the framework of the finite element method,
full elastic equations are solved in 3D and, therefore, both in-plane and out-of-
plane dispersion relations are obtained from the calculations. However, in Fig.
4, bands corresponding to pure in-plane modes are not represented for simplicity.

It is observed that, in general, the bands obtained with our 2D model agree
fairly well with those obtained with the finite element solver. Nevertheless,
some discrepancies are observed at certain frequencies, as for the case of the
bands labeled with points a to d. Since the truncation order employed in the
summations is large enough to guaranty adequate accuracy, the origin of these
discrepancies lies in the intrinsic limitation of our modeling. A calculation of the
eigenmodes at points a to d indicates that at least one beam of the corresponding
N-beam resonator is twisted in order to coordinate with the rotation motion
of the inner plates. As pointed out earlier, our model is based on the Euler-
Bernoulli theory, which is unable to describe any torsional deformation and,
consequently, observable discrepancies are expected within bands containing
modes of such type of deformations. For a comprehensive discussion of this
effect, the reader is addressed to Ref. [44] where a 3D plot of mode labeled as b
in Fig. 4(b) is given for the case of 2-beam resonators. Despite a few drawbacks,
it must be stressed that our modeling is accurate enough to predict flexural-
related resonant bandgaps because they have no concern with the torsional
deformation.

Let us discuss now the properties of the bands associated to pure out-of-plane
(flexural) modes, which are obtained by our 2D algorithm and are described by
solid circles in Fig. 4. Complete and partial bandgaps are opened because
of the interaction between the local resonances and the propagating waves in
the host plate. Figure 4(a) provides a direct evidence that a narrow complete
bandgap (normalized width =~ 14.0%) is opened because of the interaction of
the flexural waves propagating in the plate with the fundamental mode of the
1-beam resonator, which is associated to the flat band passing through the point
e. To be specific, the bottom and upper edges of this complete low frequency
resonant bandgap are 1.40 and 1.61 kHz, respectively. The fundamental mode of
the 1-beam resonator is schematically described in Appendix B and its frequency
can be obtained by using a simple model based on the spring-mass oscillator.
It is observed from Fig. 4 that platonic crystals containing N-beam resonators
with N > 2 do not exhibit complete bandgaps. We must emphasize that this
statement is not always to be true if the geometric symmetry is broken or
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the resonant frequency is tuned to much lower frequencies at the cost of using
extremely heavy masses.

To obtain a physical insight of the reason explaining why lattices of 1-beam
resonators produce complete bandgaps, the reader is addressed to Appendix
C. In brief, a study of the interaction of a single N-beam resonator with im-
pinging waves coming from different directions lets conclude that the structural
anisotropy of the resonator suppresses its omnidirectional excitation for values
N > 2. In addition, let us remark that the eigenfrequencies of the modes at the
points e to h in Fig. 4 are 1.40, 6.08, 8.71 and 10.19 kHz. These values are in
good agreement with those extracted from Fig. C.1.

8.2. Omnidirectional bandgaps produced by cavities containing multiple 1-beam
resonators

Inspired by the omnidirectional resonant bandgap created by the lattice of
1-beam resonators [see Fig. 4(a)], we foresee that additional 1-beam resonators
into the cavity could produce a broadening of the bandgap or produce new
complete gaps due to the increasing of degree-of-freedom (DOF) of the reso-
nant system [26, 49-52]. However, restricted by the available space inside the
circular cavity, a comprehensive analysis should be made regarding the depen-
dence of the fundamental frequency with respect to the resonator parameters.
Particularly, its dependence on the length of the beam (¢) and the radius (r1)
and thickness of the circular plate (¢) has been comprehensively reported in
Appendix D. The results of such dependence have been employed to choose the
parameters providing the lowest resonant modes and keeping simultaneously
a good structural reliability. Here, it should be pointed out that the lowest
resonant frequency hardly changes with the lattice period and the DOF of the
resonant system, so the parametric study performed in Appendix D would make
sense for the multi-DOF resonant system as well. Thus, the selected parameter
values are: Ry, = 10mm, ry = 2.5mm, e = 4mm and b = 2mm. The geomet-
rical meaning of these parameters is described in Fig. 1(b) for the case of two
1-beam resonators (M = 2). In addition, we have considered that the thickness
of the smaller plates is ¢ = 3mm and that the resonant cavities are arranged in
a square lattice with period d = 25 mm.

Fig. 5 depicts the band structures obtained for lattices of cavities containing
multiple 1-beam resonators with M taking values from one (a) to four (d). Note
that M = 4 is the maximum number of 1-beam resonators that can be embedded
in the cavity with the geometrical parameters chosen above. The irreducible
Brillouin zone and the high symmetry directions in reciprocal space are shown
in Fig. 3(b) for cavities containing two 1-beam resonators, as an example. All
the bands are calculated within the framework of the multiple scattering method
[44]. They are obtained at frequencies below 10 kHz, where the accuracy of the
method has been demonstrated. For comparison purposes, the hollow circles
in Fig. 5(a) describe the band structure of flexural waves propagating in a
platonic crystal made of free holes without embedded resonators. The dispersion
relations show interesting features that deserve a detailed discussion.

11
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On the one hand, Fig. 5(a) shows that a square lattice of cavities with a
single 1-beam resonator produces a dispersion relation (solid circles) strongly
different to the case in which the cavities have no resonators (hollow circles).
The differences can be easily explained in terms of the cavity-embedded reso-
nance, which strongly interacts with the flexural waves propagating in the host
plate. The cavity resonance produces a completely new band in the band struc-
ture (labeled as 1) and generates an omnidirectional bandgap. The frequencies
determining this complete bandgap, with normalized width ~ 16.5%, are 2.61
kHz and 3.08 kHz for the lower and upper edges, respectively.

The behavior explained above is basically reproduced for the cavities con-
taining a higher number of 1-beam resonators. For M = 2, Fig. 5(b) shows that
two additional bands (labeled as 1 and 2) appear in comparison with the case
of non-resonant cavities. Three and four additional bands appear for the cases
M = 3 and M = 4 in Figs. 5(c) and 5(d), respectively. On the other hand,
it is also noticeable that the band structures exhibit additional omnidirectional
bandgaps because of the increasing number of 1-beam resonators inside the cav-
ity. Two omnidirectional bandgaps are observed for the case M = 3 and three
appear for the case M = 4. However, the case M = 2 is singular since only one
omnidirectional bandgap is observed and it is narrower than that obtained for
the case M = 1.

The band structure in Fig. 5(d), corresponding to M = 4, is more relevant
because of its potential application in designing structures for broadband at-
tenuation of flexural waves in plates. Notice that three complete bandgaps are
shown: the 1st covers the frequency range from 2.76 kHz to 3.01 kHz (normalized
width ~ 8.7%), the 2nd goes from 3.21 kHz to 4.55 kHz (normalized width =~
34.5%), and the third extends from 5.30 kHz till 6.87 kHz (normalized width ~
25.8%). Since the bandwidths of the 2nd gap and the 3rd gap are, respectively,
one-half of octave band and one-third of octave band, they can be considered as
broad bandgaps according to engineering acoustics. More recently, it has been
demonstrated that the resonant bandgaps induced by multi-DOF resonators can
be combined into a broadband wave attenuation region by employing intrinsic
damping of the constitutive materials [52]. This strategy cannot be introduced
directly in this design because of the negligible damping of metal plates. How-
ever, as shall be shown later (see Fig. 11), it is expected that the transmitted
waves in the narrow passbands, which are associated to the local resonances,
would be strongly suppressed by using composite platonic crystal slab, con-
sisting of several slabs with complementary bandgaps by slightly changing the
geometrical parameters.

Now, let us discuss in brief the resonant features of the cavities containing
multiple 1-beam resonators. Fig. 6 displays the eigenmodes for two and four
1-beam resonators at selected points of the band structure; i.e., at the points a
to f in Fig. 5. Obviously, all of them are closely related with the fundamental
resonance of the 1-beam resonator; they can be considered as combinations of
the fundamental resonance. Thus, for the case M = 2, Fig. 6(a) depicts the
low frequency mode, with frequency 2.71 kHz. It is labeled as a in Fig. 5(a),
and the eigenmode presents two 1-beam resonators oscillating out of phase.
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On the contrary, the two resonators oscillate in phase for the mode shown in
Fig. 6(b), which has frequency 3.91 kHz and defines the high frequency mode.
Unfortunately, the interaction of these resonances with the flexural waves in
the plate produces an extremely narrow bandgap (normalized width ~ 5.3%),
extending from 2.76 to 2.91 kHz. However, when another two resonators are
added in each cavity, the band structure in Fig. 5(d) shows three almost adjacent
complete bandgaps.

The eigenmodes at points ¢ to f in the band structure are depicted in Figs.
6(c) to 6(f). It is observed that the modes differ in the phase of the oscillations
of the individual 1-beam resonators. These modes are helpful to create complete
gaps with broad bandwidth, as it is shown in the band structure. As a summary
of the discussion above, we can say that resonant cavities containing four 1-beam
resonators (M = 4) are the proper choice for implementing devices to attenuate
flexural waves in a broad frequency range.

Based on the previous analysis, a parametric study has been performed for
the case M = 4 to investigate the influence of the geometrical parameters on the
resonant bandgaps. The results are shown in Fig. 7 where the left, middle and
right panels provide the evolution process (upper panels) and the normalized
width (lower panels) of the complete bandgaps changing with the lattice period
d, the beam length ¢ and the thickness of the smaller plates ¢, respectively. Only
one parameter is set as variable in each plot, and the other parameter values
are the same as those employed in the calculation of Fig. 5.

From Figs. 7(a) and 7(d), we observe that the 2nd and 3rd bandgaps get
narrower and narrower with the increasing of lattice period. During this pro-
cess, only slightly variation is observed for the lower edges of the 1st and 2nd
bandgaps, nevertheless, it decreases a lot for the 3rd bandgap. This indicates
that, except the geometrical parameters of the resonators, the spacing between
them will also influence the splitting of resonant frequencies for multiple 1-beam
resonators. With the increasing of the lattice period, the interaction between
the local resonators coming from different unit cells gets weaker, and then the
resonant frequencies tend to be the values of a multiple 1-beam resonator embed-
ded in an infinite plate, approaching the resonant frequency of a single 1-beam
resonator. We conclude from the analysis that smaller unit cell dimension is
preferred in order to get wider bandgaps.

In the last two cases [see Figs. 7(b) and 7(c)], corresponding to resonators
varied in the beam length ¢ and mass thickness ¢, it is seen that both the
positions and bandwidths of the gaps are influenced by the geometrical size. In
the variation range, the width of 1st bandgap is almost unchanged (normalized
width & 8% to 10%), nevertheless, by selecting proper geometrical parameters
we are able to enlarge the 2nd and 3rd bandgaps. For example, the normalized
width reaches 36.4% and 35.9%, respectively, for the 2nd and 3rd bandgaps
when ¢/ R5 taking value 0.275.
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8.8. Broadband attenuation by metamaterial slabs made of cavities with multiple
1-beam resonators

To support the previous results relative to the complete bandgap forma-
tion by lattices of resonant cavities, we have performed numerical experiments
analyzing the vibration transmission through different finite metamaterial slab-
s. The simulations are performed in the framework of the multiple scattering
method described in Ref. [44] together with the T-matrix introduced in Sec.
2.1. We have studied metamaterial slabs with a fix number of 12 rows in the
direction perpendicular to the impinging waves. The parameter values used
here are the same as those employed in the calculation of Fig. 5. Moreover, the
thickness of the slab along the propagation direction has been increased until
obtaining total suppression of the transmitted waves at the frequency regions
where omnidirectional bandgaps are predicted. For the case of metamaterials
based on cavities containing 1-beam resonators, a complete suppression has been
obtained on the slab back side when its thickness reaches 8 layers. However, for
the case of four 1-beam resonators in each cavity, only 5 layers are needed.

As an example, Fig. 8 shows snapshots of the out-of-plane displacements
calculated by considering cylindrical waves interacting with a metamaterial slab
made of 5 x 12 resonant cavities. Each cavity contains four 1-beam resonators.
The cylindrical waves are generated by a punctual source located at (—2, 0) in
units normalized to the lattice period, d. The displacement patterns shown in
Fig. 8(a) correspond to impinging waves with frequency 1.8 kHz [i.e., within a
pseudogap in Fig. 5(d)], while those in Fig. 8(b) correspond to a frequency of
3.6 kHz, within a complete bandgap. For the last frequency, it is observed that
incident waves are fully reflected by the slab. However, for the frequency in the
pseudogap, waves are partially transmitted, producing a complex displacement
pattern on the slab back side.

From the displacement patterns shown in Fig. 8, it is observed that the
waves diffracted by the borders of the slab might interfere with the waves trans-
mitted through the slab, resulting in a reduction of the attenuation by the slab.
To evaluate this effect we have considered the amplitude of the excited and
response signals, which are expressed as W, and W, respectively. Therefore,
the total vibration transmission at a given point can be obtained by calculating
the ratio T = |W,./W,|, which is a frequency dependent function. This ratio
may reach values greater than unity since the response signal contains the pos-
sible interference with diffracted waves. It has been calculated at three different
observation points behind the slab, as it is schematically explained in Fig. 9.

Fig. 10 plots the frequency dependence of the vibration transmission T'(w)
for two types of resonant cavities. The transmission spectra are calculated at
the three selected points; i.e., at the positions labeled as 1, 2 and 3 in Fig. 9.
Fig. 10(a) represents results obtained for the case of resonant cavities contain-
ing just a single 1-beam resonator. It is observed that, for certain frequencies,
the transmission takes values higher than unity. This effect is mostly due to
interference effect, in which the signal crossing directly through the slab inter-
feres constructively at the observational point with the waves diffracted by its
borders.
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For the case of resonant cavities containing four 1-beam resonators, the
transmission spectra in Fig. 10(b) clearly show three valleys with zero trans-
mission. As in the previous case, the bandwidths of the valleys are in good
agreement with the three complete bandgaps predicted in Fig. 5(d). The
bandgaps seem to be completely formed since their transmission bandwidths
don’t depend on the observational point. However, the profile of the valley cor-
responding to the bandgap with largest frequencies shows a slight dependence
with the observational points and, therefore, an interference with the diffracted
waves seem to play a non negligible effect. For frequencies around the valleys
with zero transmission, the interference effect seems to be particularly strong,
giving transmission values larger than unity. This constructive effect is remark-
able at position 1, where the diffracted waves arrive in phase.

The results shown in Fig. 10 prove the existence of complete bandgaps. How-
ever, for the case of cavities containing four 1-beam resonators, a more practical
question is that can we combine these separated bandgaps into a broadband
wave attenuation region. More recently, Barnhart and co-workers [52] provided
a solution by using dissipative multi-resonators. This mechanism fails in our
scheme because the damping of aluminum plate is negligible to make difference.
By combining two or more metamaterial slabs together, however, the goal might
be achieved if their multi-bandgaps are complementary to each other. To prove
this, we consider a composite slab composed of three metamaterial slabs made of
resonant cavities differing in their beam length ¢. To be specific, the composite
slab consists of a fix number of 12 rows in the y-direction, and it totally con-
tains 9 layers in the x-direction. From left to right, the resonators in each three
layers have the same geometrical parameters and the beam length, ¢/Rs, takes
values 0.35, 0.3 and 0.25, respectively. Fig. 11 plots the frequency dependence
of the vibration transmission for flexural waves through the composite slab. As
expected, the multiple bandgaps effectively merge into a broadband valley with
zero transmission. More specific, the transmission valley extends from 2.80 kHz
to 7.91 kHz with normalized width ~ 95.3%, representing an enhancement of
about one order of magnitude compared with the absolute bandwidth obtained
for the case of a single 1-beam resonator in the cavity. These results are encour-
aging and support our claim of proposing this type of structures for broadband
vibration suppression at low frequencies.

4. Conclusions

In summary, we have studied the response of metamaterial plates made of
two types of resonant cavities. First, the response of a square lattice of cavities
consisting of N-beam resonators, with 1 < N < 4, leads to conclude that 1-beam
resonators are capable of creating omnidirectional bandgaps. A physical insight
of this result was provided by analyzing the scattering cross-section maps of a
single resonant cavity, reveling that the cavity containing 1-beam resonator is
the easier one giving an omnidirectional resonant response at low frequencies.
This property gives the 1-beam resonators significant advantages in constructing
metamaterial plates for omnidirectional wave shielding. Consequently, in order
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to widen complete bandgaps, we have also studied lattices of resonant cavities
containing a multiple number M of 1-beam resonators. This new type of cavity
lattices were theoretically studied by employing the impedance method, with a
T-matrix here implemented, and the multiple scattering theory [44]. Simula-
tions show that an increasing number of 1-beam resonators in the cavity usually
results in an increasing number of complete bandgaps with broad bandwidth.
Particularly, for M = 4, it is demonstrated that the absolute bandwidth is
broadened by about one order of magnitude compared with the bandgap ob-
tained for the case of a single 1-beam resonator. As a potential application of
this extraordinary effect, we have computed the vibration transmission for finite
metamaterial slabs, showing that the transmission valleys match fairly well with
the complete resonant bandgaps predicted in the band structure. The resonant
bandgaps can be easily tuned to lower frequencies by changing the geometrical
parameters, such as the length of the beams, the radius and thickness of the
inner plates. This work will do a benefit for the fabrication of single-phase struc-
tures providing vibration shielding in plates with low cost and high reliability.
To conclude, we believe that this type of simple and light-weight structured
plates may have potential applications in aeronautic and astronautic industries
for broadband vibration suppression at low frequencies.
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Appendix A. Impedance matrix for total waves: Ztt

Following the procedures developed in Refs. [46, 48], the remaining impedance
matrix Z*°* is derived in this Appendix. For simplicity, the key steps are pro-
vided only, and the reader is addressed to the original papers for a complete
derivation.

The radial moment and Kirchhoff stress can be expressed in multipole ex-
pansion form after introducing the series defined in Eqgs. (2) and (3). At the
boundary of the nth plate r = r1, we obtain the following relationship:

M o |Wn
rlq g
with notations Ygq = Myl (ks,r1)[NJL(ks, 7))t and W7 = OW™/0r. The

matrix N involves complex operations for the Bessel functions. Its expression
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can be found in Ref. [46]. Combining Eq. (A.1) with the boundary conditions
in Egs. (6¢) and (6d) (left column), we have

wnl e il M"(ry)
] = Y ). (A2)

From the boundary conditions in Egs. (6a) and (6b) (left column), the
displacement and slope of the nth beam can be expressed as function of bending
moment and shear force

sl

with notation

1 oo
=5 > Yy (A4)
gq=—00

Substituting the stiffness matrix K [46] into Eq. (A.3), after grouping we obtain
the following equation:

%: (%”

where the auxiliary impedance matrix is

i)

sTn

_ _17—1 _ _
Z= [Ky'-YKuKy'| [K3'Kae+ YK — KK 'Ka)] . (A6)

Expanding the boundary conditions in Egs. (6¢) and (6d) (right column) in
azimuthal order and casting them into Eq. (A.5), we obtain

MR tot M e—iq9n V" (’]"2)
= V4 . A7
IR S (a7

Combining Eq. (A.7) with the remaining boundary conditions in Egs. (6a) and
(6b) (right column), we have

to oi(s—9)0n tot
Mp i(s—q) 1774
. A8
- = Sl a9
q s=—oon=1 s
Finally, the 2x2 blocks of the impedance matrix for the total waves are expressed
as
ei(s_q)gn

Zor = — — 7. A.
p ; T (A.9)

17



540

545

Appendix B. Modeling 1-beam resonator as a spring-mass oscillator

It is demonstrated in Sec. 3 that the fundamental resonance plays an im-
portant role in opening low frequency bandgaps. When the flexural resonance
occurs, the 1-beam resonator behaves like a simple spring-mass oscillator. Its
resonant frequency can be predicted by the well-known formula [44]

1 /K.

as illustrated in Fig. B.1(a), where M and K, represent the mass of the inner
plate and the effective stiffness of the beam, respectively.

Once the resonator is excited, the beam bends up and down under the action
of the inner plate. In our modeling, the bending effect caused by the distributed
inertia force is equivalent to a concentrated force applied at an equivalent point
located on the segment AB [see Fig. B.1(b)]. A Cartesian coordinates O-zyz is
built at the anchor point connected to the background plate. The out-of-plane
displacement of the beam is governed by the following equation of motion:

d?w

El—
dz?

=F(zo—z), z€]0,{ (B.2)
where z( defines the location of the equivalent point within the range ro < 29 <
r1 4+ ro. For longer beams, the anchor point connected to the background plate
is reasonable to be considered as clamped because the resonator vibrates much
more heavily than the background plate when the resonance occurs. On this
assumption, we have the following boundary conditions:

w| =0 and d—w

= . B.
=0 dx 0 ( 3)

=0

Combining Egs. (B.2) and (B.3), we obtain the displacement of the equivalent
point

F |1 1 1
*.2?052 — 663 + (1‘0 - f)(.ﬁog - 2€2):| . (B4)

YO= BT |2

Finally, the resonant frequency is available by substituting the following effective
parameters into Eq. (B.1):

K, = £l and M = mptri. (B.5)
Wo

Notice that the position of the equivalent point is not well defined, therefore
no specific value can be obtained from Eq. (B.1). Nevertheless, it bounds
the upper and lower limits of the resonant frequency when the minimum and
maximum displacements are taken into consideration, respectively. In numerical
calculations, we prefer to use the averaged displacements to get the approximate

solutions.
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Appendix C. Resonant response of a cavity with a N-beam resonator

Consider a N-beam resonator located in an infinite plate like in Fig. 1(a).
Let us consider that the resonant structure interacts with a plane wave prop-
agating along the horizontal axis, which defines the positive x-direction. The
scattering cross-section oy, which is defined as the ratio of the energy flux s-
cattered to the incoming one, is employed here to characterize the resonant
response of a cavity containing a N-beam resonator. The expression is [46]

TuelbyRofm,0) =~ > Re[(-)*BY] (C.1)

P gm0

where Bf is the expansion coefficient for the scattered propagating waves.

The color maps depicted in Fig. C.1 represent the scattering cross-section
obtained for a single cavity containing a N-beam resonator, with N going from
one to four. The horizontal and vertical axes represent the two variables involved
in Eq. (C.1), i.e., the reduced frequency k,Rs/m and the inclination angle of
one particular beam 6,,, respectively. In each plot, the tilt angle of the first
beam 6; is annotated in the inset for illustration. It is observed that a series of
narrow ridges come into being with the increasing of the excitation frequency,
indicating the occurrence of some kinds of local resonances. This feature is
apparently seen in Fig. C.1 where most of the ridges do not cover the whole
angular range. Consider the case of a 2-beam resonator as an example. In
this case, Fig. C.1(b) indicates that the fundamental resonance is excited when
both beams are aligned perpendicularly to the incident direction (i.e., #; = 90°),
corresponding to label b. However, the result is just the opposite in the parallel
case (1 = 0°). If one wants to excite the higher-order resonance, however, it
is better to place the 2-beam resonator with an inclination angle 6, = 45°, as
described by label f in the figure.

From Fig. C.1 we observe that the number of beams has a significant in-
fluence on the frequency of the fundamental resonance. In reduced units, the
fundamental frequencies of the N-beam resonators are 0.247 (a), 0.504 (b), 0.599
(c) and 0.648 (d), respectively. The corresponding values in absolute units are
1.48, 6.18, 8.71 and 10.20 kHz for the points a to d, respectively. The observed
blue shift is expected by analogy to a simple spring-mass oscillator whose effec-
tive stiffness increases with the number of beams. In addition, the number of
beams influences the intensity of the resonant response as well. Based on the
previous results, we conclude that the 1-beam resonator provides an omnidirec-
tional resonant response at low frequencies. As a consequence, metamaterials
based on lattices of 1-beam resonators will produce complete resonant bandgaps
in the dispersion relation.

Appendix D. Tunability of the fundamental resonance of the 1-beam
resonators

This appendix is devoted to show that the fundamental frequency of the
1-beam resonator can be tuned into low-frequency regions by changing the ge-
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ometrical parameters, such as the beam length (¢), the thickness (¢) and radius
(r1) of the inner plate. These parameters are used as variables in the calcula-
tion. For the rest of parameters, their values are equal to those employed in Sec.
2.2. It should be stressed that, for multiple 1-beam resonators, the resonant fre-
quencies also depend on the spacing and DOF of the resonators [see Figs. 5 and
7(a)]. Nevertheless, the lowest one, approaching the resonant frequency of a sin-
gle 1-beam resonator, can hardly be changed and thus the following parametric
study would make sense for the multi-DOF resonant system as well.

Fig. D.1 shows maps describing the dependence of the fundamental resonant
frequency (in reduced units) on ¢ and r; for three thickness values: (a) t = h,
(b) t = 3h, and (c) t = 5h. The results are extracted from the maps of scattering
cross-section, similar to those depicted in Fig. C.1, for a single 1-beam resonator
with given values for ¢ and ry. Since ¢ and r; are subjected to the size of
the circular hole, only the lower-left panels are occupied with results. The
design space shrinks dramatically if more resonators are introduced into the
hole, see the boundaries annotated with the number of 1-beam resonators 2,
3 and 4. It is concluded from Fig. D.1 that there is a negative correlation
between the resonant frequency and the parameters studied. As demonstrated in
Appendix B, the 1-beam resonator shows a feature of spring-mass like oscillation
in which the beam and inner plate serve as the spring and mass, respectively.
Therefore, the increasing of ¢ reduces the effective stiffness K. ; the increasing of
r1 and t adds the mass M of the inner plate and, finally, the resonant frequency
lowers. The lowest frequency achieved in Fig. D.1 is about 0.1 in reduced units,
corresponding to A = 20R5 and reaching the deep-subwavelength scale.

By modeling the 1-beam resonator as a spring-mass oscillator, a simple for-
mula can be derived to predict the resonant frequency (see Appendix B). The
formula given by Eq. (B.1) is here verified by changing the beam length and
the thickness of the inner plate independently. The radius r; has little interest
because of its poor tunability in controlling the frequency. Its value has been
fixed to r1 = 4 mm.

Fig. D.2 shows the dependence of the frequency (in reduced units) on £ (a)
and ¢ (b). The fixed parameters employed in the calculations are ¢ = 1 mm
in Fig. D.2(a) and ¢ = 10mm in Fig. D.2(b). The solid lines represent the
frequencies obtained from the semi-analytical algorithm while the other lines
are obtained with the simple spring-mass model. As explained in Appendix B,
the position of the equivalent point is not well defined, and its extreme positions
bound the limits of the resonant frequency. The dashed lines correspond to
the approximate solutions when the averaged displacement is employed in the
calculation. It is observed from Fig. D.2(a) that, if ¢ is greater than 0.4Rs,
the frequency predicted by the spring-mass model agrees fairly well with the
semi-analytical model described in Sec. 2. This statement is also supported by
results in Fig. D.2(b) where the dashed and solid lines coincide for any value
of t. For shorter beams, however, appreciable discrepancies appear because the
end of the beam cannot be simply treated as clamped. The reader is addressed
to Figs. 2(a) and 2(e) for the comparison where the fundamental resonance is
excited for both cases.
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Fig. 2. (Color online) Snapshots of the out-of-plane displacements obtained
from the scattering of a cylindrical wave with a resonant cavity containing a
1-beam resonator. The left and right panels represent results obtained from 3D
full wave simulations [(a), (¢) and (e)] and the 2D semi-analytical algorithm [(b),
(d) and (f)], respectively. The resonators in the top [(a) and (b)] and middle
panels [(c) and (d)] differ in the mass of the inner plate, while the resonators in
the middle [(c) and (d)] and bottom panels [(e) and (f)] differ in the length of
the rectangular beam. The cylindrical waves are excited by a punctual source
placed at (—2, 2) with wavenumber k,Rs = 0.207 for the patterns shown in
the top and middle panels, and k, Ry = 0.267 for the case shown in the bottom

panels.
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Fig. 3. (Color online) Schemes of the lattices in real space together with
the definitions of the high symmetry directions in reciprocal space, where the
irreducible Brillouin zones are depicted in gray. There is always one beam
structured along the OA direction for each resonator in the square lattice. For
illustration, only two beams are drawn for (a) the N-beam resonator and (b)
the multiple 1-beam resonators.
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Frequency (kHz)

Fig. 4. (Color online) Band structures for lattices of N-beam resonators cal-
culated with the commercial finite element package (hollow circles) and the
multiple scattering algorithm (solid circles). From top to bottom panels, the
colored regions bound the resonant bandgaps in lattices of (a) 1-, (b) 2-, (c) 3-
and (d) 4-beam resonators, respectively. Bands of interest are marked out at
selected points a-h.
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Fig. 5. (Color online) Flexural band structures (solid circles) for square lattices
of cavities containing multiple (M) 1-beam resonators. Results are shown for
(a) M =1, (b) M =2, (¢c) M = 3 and (d) M = 4. The hollow circles in
(a) represent the dispersion relation obtained for a lattice of cavities without
resonators. Results are obtained by using a multiple scattering algorithm. The
colored regions define the complete bandgaps. In each plot, the resonance in-
duced bands are labeled with increasing numbers, and eigenmodes of interest
are labeled from a to f at the origin of the reciprocal space.
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Fig. 6. (Color online) Eigenmodes calculated at the center of Brillouin zone.
The figure numbers (a) to (f) correspond, respectively, to the points labeled
from a to f in Fig. 5.
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Fig. 7. (Color online) Parametric study on the resonant bandgaps for lattices
of cavities containing four 1-beam resonators. Edges of the complete bandgaps
are plotted as a function of (a) lattice period d, (b) beam length ¢ and (c) mass
thickness t. Their normalized widths correspond to (d), (e) and (f), respectively.
Except the variables, other parameter values used here are the same as those
employed in the calculation of Fig. 5.
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Fig. 8. (Color online) Snapshots of the out-of-plane displacements obtained
when cylindrical waves interact with a metamaterial slab made of five rows of
cavities containing four 1-beam resonators. Results are obtained in the frame-
work of the multiple scattering method for a punctual sound source emitting
waves with frequency (a) 1.8 kHz and (b) 3.6 kHz. These frequencies fall in a
partial and a complete bandgaps, respectively.
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Fig. 9. (Color online) Schematic diagram of a platonic crystal slab consisting
of 5 x 12 cavities containing four 1-beam resonators. For simplicity, only the
upper half of the slab is depicted. A punctual source is placed in front of the
slab to excite cylindrical waves. The vibration behind the slab is calculated at
three different positions: 1, 2 and 3, respectively.
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Fig. 10. (Color online) Vibration transmission for flexural waves passing
through a metamaterial slab made of resonant cavities containing: (a) a sin-
gle 1-beam resonator and (b) four 1-beam resonators. They are calculated at
the three observation points described in Fig. 9. The valleys with zero trans-
mission agree fairly well with the complete bandgaps predicted in Figs. 5(a)

and 5(d), respectively.
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Fig. 11. (Color online) Vibration transmission for flexural waves passing
through a composite slab composed of three metamaterial slabs made of reso-
nant cavities differing in their beam length ¢. They are calculated at the three

observation points described in Fig. 9.
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Fig. B.1. (color online) Analogous spring-mass oscillator representation of a
1-beam resonator. (a) Scheme of a simple spring-mass oscillator. (b) Scheme of
a 1-beam resonator, its analogue in a thin plate.
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Fig. C.1. (Color online) Scattering cross-section for different N-beam res-
onators: (a) N =1, (b) N =2, (¢) N =3 and (d) N = 4. The results are
obtained by considering the interaction of a plane wave propagating along the
positive x-axis with the corresponding N-beam resonator. In each plot, the ex-
citation frequency, k,Ra /7, is given in reduced units. The vertical axis denotes
the tilt angle (in degrees) of one particular beam, which is defined as the first,
01 (see the insets). The 0 degree corresponds to the situation in which the first
beam is aligned along the positive z-axis, while the other beams are uniformly
distributed inside the cavity. Some regions of interest are marked out at points
a-h.
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Fig. D.1. (Color online) Influence of the geometrical parameters on the fre-
quency (in reduced units) of the fundamental resonance of a single 1-beam
resonator. Results are obtained by extracting the lowest resonance in the maps
of the scattering cross-section, as illustrated in Fig. C.1(a). From top to bottom
panels, the thickness of the inner plate (¢) increases from (a) h to (b) 3h and
(¢) 5h. The colored regions define the available design spaces of the 1-beam
resonator. Correspondingly, the lines marked with 2, 3 and 4 bound the design
spaces of the multiple 1-beam resonators.
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Fig. D.2. (Color online) Comparison between the resonant frequency in re-
duced units, k, Ry /7, predicted by the semi-analytical model (solid lines) and
the simple spring-mass model described in Appendix B (dashed and dotted
lines). The dependence on ¢ and ¢ is reported in (a) and (b), respectively.
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