

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/141944

Li, X.; Yang, Z.; Ruiz García, R.; Chen, T.; Sui, S. (07-2). An iterated greedy heuristic for no-
wait flow shops with sequence dependent setup times, learning and forgetting effects.
Information Sciences. 453:408-425. https://doi.org/10.1016/j.ins.2018.04.038

https://doi.org/10.1016/j.ins.2018.04.038

Elsevier

An iterated greedy heuristic for no-wait flow shops with sequence1

dependent setup times, learning and forgetting effects2

Xiaoping Lia,b,∗, Zhi Yanga,b, Rubén Ruizc, Tian Chena,b, Shaochun Suid3

aSchool of Computer Science and Engineering, Southeast University, Nanjing 211189, China4
bKey Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing, 211189,5

China6
cGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Ciudad Politécnica de7

la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de València, Camino de Vera s/n, 46021,8

València, Spain9
dProduction Management, AVIC Chengdu Aircraft Industrial (Group) CO., LTD., Chengdu 610091, China10

Abstract11

In this paper we address the problem of the sequence dependent setup times no-wait flowshop
with learning and forgetting effects to minimize total flowtime. Due to the NP-Hard nature
of this problem, several simple metaheuristic methods are presented in this paper. A position-
based learning and forgetting effects model is constructed where the processing times of
operations vary according to the positions of the jobs in the schedule. An accelerated
neighbourhood construction procedure is presented. Given the the simplicity and excellent
performance shown in flowshop scheduling problems, an iterated greedy heuristic is studied.
To improve the quality of the solutions, the proposed method employs local search heuristics
based on Variable Neighbourhood Descent. The presented procedure is compared with
some existing algorithms for similar problems on an exhaustive computational campaign.
Comprehensive experimental results show that the proposal obtains the best performance
among the compared methods by a wide and statistically significant margin.
Keywords: Scheduling, Sequence dependent setup times, Learning and forgetting effects,12

No-wait Flowshop13

1. Introduction14

There are a lot activities undertaken by humans in many industries, especially in manufac-15

turing environments. Generally, learning occurs when similar tasks are done repeatedly and16

∗Corresponding author: Xiaoping Li, Professor of the School of Computer Science and Engineering,
Southeast University, Nanjing 211189, China. Tel.& Fax: 86-25-52090916.

Email addresses: xpli@seu.edu.cn (Xiaoping Li), yang_1990_zhi@163.com (Zhi Yang),
rruiz@eio.upv.es (Rubén Ruiz), ctnjpub@163.com (Tian Chen), suishaochun@vip.163.com
(Shaochun Sui)

Preprint submitted to Elsevier March 12, 2018

learning effects decrease processing times. At the same time, forgetting occurs when workers17

relearn the process after an interruption for a batch of tasks or machine maintenance, etc. In18

contrast to learning effects, forgetting effects increase processing times. Job deterioration is19

caused by the forgetting effect [WC07b]. In many real-life situations, the phenomena of the20

learning effect and deteriorating jobs occurs simultaneously [WC07a].21

The sequence dependent setup times no-wait flowshop is one of the constrained flowshop22

scheduling problems which has been applied widely in different industries, such as metal,23

plastic, textile, chemical and semiconductor [NZ14, GS88, HS96]. This problem is also24

motivated by concepts such as just-in-time and zero inventory in modern manufacturing25

systems. In no-wait flowshop problems, the different operations of each job have to be26

processed without interruption between consecutive machines, i.e., the start of a job must be27

delayed on the first machine, if necessary, so that the job need not wait for processing on28

subsequent machines. Setup time is the time required to prepare a device, machine, process,29

or system for it to be ready to process a job. Most of the time, setup times are separated30

from processing times because they are non-negligible in real industrial environments.31

In this paper, we consider the no-wait flowshop problem with sequence dependent setup32

times as well as with learning and forgetting effects to minimize the total flowtime. To the33

best of our knowledge, this problem has not been investigated yet. This problem involves34

several challenges: (i) Besides learning effects caused by human activities, forgetting effects35

result from the sequence dependent setup times. Their parameters (the learning index, the36

forgetting index, etc.) have a great influence on the learning and forgetting effects. It is hard37

to design an appropriate learning and forgetting effect model which is suitable for practical38

no-wait flowshop applications with sequence dependent setup times. (ii) Because of learning39

and forgetting effects, the processing times of jobs’ operations do not remain unchanged40

any more as they do in traditional no-wait flowshops [LWW08] and they change with jobs’s41

positions in a schedule. (iii) Because of changing processing times, the existing fast objective42

increment computing methods (such as those in [LWW08]) are not suitable for the problem43

under study, which drives us to derive new objective computing properties and construct new44

accelerate operators. (iv) According to the obtained properties and operators, it is necessary45

to develop effective methods for the considered problem to meet practical requirements. The46

main contributions of this paper are summarized below:47

• We construct a position-based learning and forgetting effects model for no-wait flowshop48

problems with sequence dependent setup times and tune their appropriate parameters.49

• Objective increment properties are deduced for the problem under study. Three50

accelerate neighbourhood construction heuristics are presented.51

• An iterated greedy heuristic framework is proposed. We design and calibrate the52

components and their parameters over a large number of instances.53

The remainder of the paper is organized as follows. The state of the art of the problem54

under study is reviewed in Section 2. Section 3 describes the considered problem, adjacent55

job distances and the learning and forgetting model. In order to calculate solutions faster,56

properties for adjacent job distances and fast neighbourhood construction methods are57

illustrated in Section 4. Section 5 details the proposed iterated greedy heuristic. Experimental58

results are provided and analyzed in Section 6, followed by the conclusion in Section 7.59

2

2. Related Work60

The no-wait flowshop is one of the most studied variants of the regular flowshop problem61

with literally hundreds of papers published in the literature. Recently, [NM16] published a62

review about constructive heuristics. The problem version with the additional consideration of63

sequence dependent setup times has received a lot of recent attention [AJRA14, AS13, NA14].64

There are usually two types of setup times: sequence independent setup times, and sequence65

dependent setup times. Makespan, total flowtime and total tardiness are three commonly66

studied objectives.67

Wright [Wri36] observed that the processing time of a job is shortened if it is scheduled68

later in a sequence. This phenomenon is called the learning effect [Bis99]. There are three69

types of learning effect models commonly used in the literature: position-based, experience-70

based and the sum-of-processing-time based. The position-based learning model is the71

most common, which can be further classified into the job-independent model and the72

job-dependent one. Biskup [Bis99] formulated the processing time of a job as pi,r = pir
α,73

which is a function of the scheduled position r. pi is the normal processing time of job i and74

α is the learning index, which depends on the learning rate LR. Mosheiov [Mos01] extended75

Biskup’s learning model to pi,r = pir
αi where there is a different learning index αi ≤ 0 for job i.76

A position dependent linear learning function pi,r = pi − bi min{r − 1, gi} was given by Cheng77

and Wang [CW00], where bi > 0 is the linear learning rate of job i and gi is the learning78

threshold.79

Many exact methods, heuristics, and meta-heuristics have been proposed for flowshop80

problems with learning effects. Chung and Tong [CT12] adapted two well-known heuristics for81

a bi-criteria scheduling problem in an m-machine permutation flowshop with varied learning82

effects on different machines. Wang et al. [WZZ+13] considered the flowshop scheduling with83

a truncated position-based learning effect to minimize one of the six regular performance84

criteria (total completion time, makespan, total weighted completion time, discounted total85

weighted completion time, sum of the quadratic job completion times, and maximum lateness).86

Heuristics were presented along with the worst-case bound being analyzed. Lee and Chung87

[LC13] proposed a branch-and-bound method and two heuristics for a permutation flowshop88

scheduling problem with learning effect to minimize the total tardiness. Vahedi Nouri, et al.89

[VNFR13] proposed a hybrid firefly-simulated annealing algorithm for the flowshop problem90

with learning effect and flexible maintenance activities to minimize the sum of tardiness91

and maintenance costs. Wang and Wang [WW14] adapted two well-known heuristics for92

the flowshop scheduling with a general exponential learning effect to minimize makespan,93

total (weighted) completion time, total weighted discounted completion time and sum of the94

quadratic job completion times respectively. In addition, some metaheuristics have been95

proposed for sequence-dependent setup time flowshop problems. Behnamian and Zandieh96

[BZ13] developed a hybrid metaheuristic, which hybrids Particle Swarm Optimization,97

Simulated Annealing and Variable Neighborhood Search, for the sequence-dependent setup98

time hybrid flowshop with the position-based learning effect to minimize earliness and99

tardiness. Pargar and Zandieh [PZ12] considered the sequence-dependent setup time hybrid100

flowshop scheduling with learning effect to minimize the weighted sum of makespan and101

3

total tardiness, for which a meta-heuristic approach WFA (water flow-like algorithm) was102

investigated.103

There are some works focusing on both learning and forgetting effects. Lee [Lee04]104

first considered learning and forgetting effects simultaneously for single-machine scheduling105

problems to minimize makespan, total flowtime and total lateness, and introduced two106

learning and forgetting effects models pi,r = αitr
a and pi,r = (p0 + αit)ra. Wang and Cheng107

[WC07a] proposed two general learning and forgetting effects models pj,r(t) = αj(b+ ct)ra and108

pi,j,r(t) = αi,j(b+ ct)ra for single machine problems and flowshop problems to minimize four109

performance measurements: makespan, total completion time, total weighted completion110

time, and maximum lateness. Wang [Wan06] constructed the model with the learning and111

forgetting effects pj,r = (αj + βt)ra, which was applied to the machine scheduling problems112

for minimizing makespan, the (weighted) sum of completion times and maximum lateness.113

Several single machine and flowshop problems were shown to be polynomially solvable. Wu114

et al. [YC08] considered a two-machine total completion time flowshop problem. Actual115

job processing time functions depend on both the processed jobs and a control parame-116

ter. A branch-and-bound and a genetic heuristic-based algorithm were proposed. Wang117

et al. [WJCW12] considered a two-machine flowshop scheduling problem to minimize the118

makespan with deterioration and learning effects. Dominance properties and two lower119

bounds were derived to speed up the elimination process of the proposed branch-and-bound120

algorithm. Two heuristic algorithms were developed to obtain near-optimal solutions. Yin et121

al. [YLHZ12] introduced a general scheduling model for single-machine scheduling problems,122

which considered the effects of position-dependent learning and time-dependent deterioration123

simultaneously. Some approximation algorithms were presented and the worst case error124

bound was analyzed for the considered single-machine scheduling problems. However, to the125

best of our knowledge, both learning and forgetting effects have neither been considered in126

general flowshops nor in no-wait flowshops as yet.127

128

Many heuristics have been proposed for flowshop scheduling problems. However, the129

Iterated Greedy (IG) proposed by Ruiz and Stützle [RS07] is the most popular because it is130

simple to implement and is highly effective for flowshops. Recently, Pan and Ruiz [PR12]131

showed that IG obtains very good results for the permutation flowshop scheduling problem132

with total flowtime minimization, which is similar to the considered problem. Other authors133

have proposed highly effective IG-based methods for similar flowshop problems. For example,134

Ribas et al. [RCTM11] present an IG for a flowshop problem with blocking constraints. Only135

recently this algorithm was improved by Pan et al. [PWS+13] but also by using elements of136

the IG methodology. Ruiz and Stützle show in [RS08] an IG method for a flowshop with137

sequence dependent setup times. Pan et al. [PWZ08] proposed an IG for a no-wait flowshop.138

All these papers show state-of-the-art IG methods for related variants of the problem we are139

studying in this paper, so it seems a promising venue of research to consider IG methods for140

the problem at hand.141

4

3. SDST-NWFSP with learning and forgetting effects142

The sequence dependent setup times no-wait flowshop problem (SDST-NWFSP) with143

learning and forgetting effects consists of a set of n jobs J = {J1, J2, . . . , Jn} to be processed144

on a set of m machines M = {M1,M2, . . . ,Mm}. Each job Ji is processed successively on the145

m machines in the same order and without interruption. Once a job starts processing on the146

first machine, its successive operations cannot be interrupted before completion, either on or147

between machines. Each job can only be processed on one machine at the same time and148

each machine processes only one operation at any time. The normal processing time of each149

operation Oi,j of Ji on machine Mj is pi,j, which is increased or decreased by the learning or150

forgetting effect. A period of setup time is needed before Oi,j, which depends on the job151

scheduling sequence.152

Let π(n) = (π[0], π[1], . . . , π[n]) be a schedule of the n jobs. π[k] ∈ J is the k-th (k = 1, . . . , n)153

job in π(n) and π[0] is a dummy job with zero processing time and zero setup time. All the154

permutations of the n jobs are denoted as Ω, i.e., Ω = {π(n)}. Let Bi,k,r, Ei,k,r and pi,k,r be the155

start time, finish time and the processing time of Oi,j when Ji is located at the rth position of156

schedule π(n) respectively. si,j,k is the setup time between adjacent operations Oi,k and Oj,k.157

The target is to find the optimum schedule π∗ with TFT (π∗) = min
π∈Ω
{TFT (π)}.158

Similar to the no-wait flowshop with makespan minimization in [LWW08], TFT (π) can159

be calculated by the weighted sum of job-pair distances of all the adjacent jobs because of the160

no-wait characteristic. Let Dπ

i,j,r
be the distance between the completion times of adjacent161

jobs Ji and Jj on the last machine Mm when Ji and Jj are located at the rth and (r + 1)th162

positions of π with learning and forgetting effects respectively. Di,j,r is exemplified in Figure163

1.

Setup time
jJ

jJ
iJ

, ,i j rD , ,i j rL

, ,i m rE
, , 1j m rE 

'

, , 1j m rE 

}{ kj,i,rk,i,
m,1,k

'

1rj,1, sEmaxB 





Figure 1: Distance between two adjacent jobs.
164

To calculate Di,j,r, assume that the setup operation of Jj at position r + 1 is conducted165

immediately after Ji at position r (0 ≤ r < n) and that Jj could start on the first machine only166

after all of its setup operations have finished, i.e. B ′

j,1,r+1 = max
k=1,...,m

{Ei,k,r + si,j,k}. It is necessary167

to shift Jj leftwards until the start time of Jj on any machine (not necessarily on the last168

machine) is equal to the finish time of its setup operation on that machine. Because of the169

no-wait characteristic, Bi,k,r = Bi,1,r+
∑k

j=1 pi,j,r−pi,k,r and Ei,k,r = Bi,k,r+pi,k,r = Bi,1,r+
∑k

j=1 pi,j,r,170

we obtain:171

B
′

j,k,r+1 = B
′

j,1,r+1 +
k∑
h=1

pj,h,r+1 − pj,k,r+1 = max
h=1,...,m

{
Ei,h,r + si,j,h

}
+

k∑
h=1

pj,h,r+1 − pj,k,r+1

5

= max
h=1,...,m

{
Bi,1,r +

h∑
u=1

pi,u,r + si,j,h
}

+
k∑
h=1

pj,h,r+1 − pj,k,r+1

E
′

j,k,r+1 = B
′

j,k,r+1 + pj,k,r+1 = max
h=1,...,m

{
Bi,1,r +

h∑
u=1

pi,u,r + si,j,h
}

+
k∑
h=1

pj,h,r+1

Then the maximum shifting distance Li,j,r is172

Li,j,r = min
k=1,...,m

{
B

′

j,k,r+1 − (Ei,k,r + si,j,k)
}

= min
k=1,...,m

{
max

h=1,...,m

{ h∑
u=1

pi,u,r + si,j,h
}}

+
k∑
h=1

pj,h,r+1 − pj,k,r+1 − (
k∑
h=1

pi,h,r + si,j,k)
}

Di,j,r can be computed as follows:173

Di,j,r = Ej,m,r+1 − Ei,m,r = E
′

j,m,r+1 − Li,j,r − Ei,m,r = max
h=1,...,m

{ h∑
u=1

pi,u,r + si,j,h
}

+
m∑
h=1

pj,h,r+1−

min
k=1,...,m

{
max

h=1,...,m

{ h∑
u=1

pi,u,r + si,j,h
}

+
k∑
h=1

pj,h,r+1 − pj,k,r+1 − (
k∑
h=1

pi,h,r + si,j,k)
}
−

m∑
h=1

pi,h,r

= max
k=1,...,m

{ m∑
h=k

(pj,h,r+1 − pi,h,r) + pi,k,r + si,j,k
}

(1)

Equation (1) implies that Di,j,r depends on the processing time of Ji and Jj as well as174

on the setup time si,j,k. In other words, Di,j,r is unrelated to either the processing times175

or setup times of the other jobs in the sequence. Di,j,r can be calculated in O(m) steps.176

However, because of the learning and forgetting effects, pj,h,r+1 and pi,h,r are closely related177

to the positions of jobs Jj and Ji. This is completely different from the traditional no-wait178

flowshops without learning or forgetting effects, e.g., in [LWW08]. The total flowtime of π179

now can be computed as follows:180

TFT (π) =
n−1∑
i=0

(n− i)Dπ

[i],[i+1],i (2)

In this paper, we construct a position-based learning and forgetting effects model. If job181

Ji is scheduled at the rth position in a sequence, then the actual processing time of operation182

Oi,j is determined by183

pi,j,r =pi,j − pi,j{1− (r + 1)−α}µ + γ{1− (βr + 1)e−βr} × pi,j{1− (r + 1)−α}µ

where α (0 ≤ α ≤ 1) is the learning index, β (0 ≤ β ≤ 1) the forgetting index, γ the control184

coefficient and µ the inflection point respectively.185

Different learning and forgetting parameter values are suitable for different applications186

[LWS04, WJCW12, YC08, TCW11]. In order to obtain appropriate parameter values187

to the application concerned in this paper, we experiment with the values of the four188

parameters in the learning and forgetting effects model with α = {0.45, 0.55, 0.65, 0.75, 0.85},189

6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 20 40 60 80 100 120 140 160 180 200

α=0.45 α=0.55 α=0.65
α=0.75 α=0.85 Normal

Position

Time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 20 40 60 80 100 120 140 160 180 200

β=0.01 β=0.02 β=0.05
β=0.1 β=0.5 Normal

Position

Time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 20 40 60 80 100 120 140 160 180 200

γ=1/4 γ=1/3 γ=1/2
γ=2/3 Normal

Position

Time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 20 40 60 80 100 120 140 160 180 200

μ=3 μ=8 μ=15 μ=20 Normal

Position

Time

Figure 2: The four parameters of the learning and forgetting effects model.

β = {0.01, 0.02, 0.05, 0.1, 0.5}, γ = { 1
4
, 1

3
, 1

2
, 2

3
}, µ = {3, 8, 15, 20} respectively. To clearly show the190

learning and forgetting effects, we demonstrate the ratio of the actual processing time to the191

normal processing time for each parameter tested. In the experiments, 200 jobs are processed192

on 20 machines. To evaluate the effects of each parameter on the processing times, the other193

three parameters are fixed. For example, β = 0.01, γ = 2
3
and d = 8 are combined when we194

test α. The behavior of the four parameters of the learning and forgetting effects model are195

depicted in Figure 2.196

From Figure 2, it can be observed that the larger the α, the smaller the processing time,197

i.e., α exerts a great influence on the learning effect of the processing time. Likewise, the198

greater the β, the smaller the processing time. A bigger µ demonstrates a later position of the199

inflection point. The processing time decreases quickly when the position is small. However,200

it increases slowly when the position becomes bigger. Therefore, the best combination of the201

four parameters are α = 0.65, β = 0.01, γ = 2/3 and µ = 8 for the constructed position-based202

learning and forgetting effect model in terms of Figure 2.203

4. Fast Neighbourhood Construction Methods204

4.1. Objective Increment Property205

Among all the components of a search algorithm for a combinatorial optimization problem,206

the objective evaluation operator is usually the most time-consuming. The efficiency of the207

search process could be improved considerably by reducing the evaluation time of objective208

7

values. In this paper, we introduce the objective increment property for the considered209

problem. For simplicity, we denote ξπ(i,j) =Dπ

[i−1],[j],i−1 + Dπ

[j],[i+1],i − Dπ

[i−1],[i],i−1 − Dπ

[i],[i+1],i and210

ηπ(i,j) =Dπ

[j−1],[i],j−1 +Dπ

[i],[j+1],j −Dπ

[j−1],[j],j−1 −Dπ

[j],[j+1],j.211

Theorem 1 By swapping π[i] and π[j] (0 < i < j ≤ n), the total flowtime increment

δ(π)
(i,j) =

(n− i)ξπ(i,j) + (n− j)ηπ(i,j) +Dπ

[i−1],[j],i−1 −Dπ

[i−1],[i],i−1 +Dπ

[j−1],[i],j−1 −Dπ

[j−1],[j],j−1 j > i+ 1
(n− i)ξπ(i,j) + (n− j)ηπ(i,j) + (n− i)(Dπ

[i+1],[i],i +Dπ

[i],[i+1],i) j = i+ 1

Proof (i) If 0 < i < i+ 1 < j ≤ n, there is at least one job between π[i] and π[j]. The sequence212

obtained is π′ = (π[0], π[1], . . .,π[i−1], π[j], π[i+1], . . ., π[j−1], π[i], π[j+1], . . ., π[n]) by swapping π[i]213

and π[j]. Because of the no-wait characteristic and the learning and forgetting effects, Di,j,r214

depends not only on the processing times and setup times of Ji and Jj but also on the215

position r of Ji in the schedule, i.e., the same pairs of jobs located at the same position216

have identical distances. Therefore, Dπ
′

[k],[k+1],k=Dπ

[k],[k+1],k for all k = 0, . . . , n − 1 except that217

Dπ
′

[i−1],[i],i−1=Dπ

[i−1],[j],i−1, Dπ
′

[i],[i+1],i=Dπ

[j],[i+1],i, Dπ
′

[j−1],[j],j−1=Dπ

[j−1],[i],j−1 and Dπ
′

[j],[j+1],j=Dπ

[i],[j+1],j.218

According to Equation (2), we obtain the total flowtime increment:219

δπ(i,j) = TFT (π′)− TFT (π)

=
{

(n− i+ 1)Dπ

[i−1],[j],i−1 + (n− i)Dπ

[j],[i+1],i + (n− j + 1)Dπ

[j−1],[i],j−1 + (n− j)Dπ

[i],[j+1],j

}
−{

(n− i+ 1)Dπ

[i−1],[i],i−1 + (n− i)Dπ

[i],[i+1],i + (n− j + 1)Dπ

[j−1],[j],j−1 + (n− j)Dπ

[j],[j+1],j

}
= (n− i)ξπ(i,j) + (n− j)ηπ(i,j) +Dπ

[i−1],[j],i−1 −Dπ

[i−1],[i],i−1 +Dπ

[j−1],[i],j−1 −Dπ

[j−1],[j],j−1

(ii) If 0 < i < j ≤ n and j = i+ 1, the obtained sequence is π′=(π[0], π[1], . . ., π[i−1], π[j], π[i],220

π[j+1], . . ., π[n]) by swapping π[i] and π[j]. Dπ
′

[k],[k+1],k=Dπ

[k],[k+1],k for all k = 0, . . . , n− 1 except that221

Dπ
′

[i−1],[i],i−1=Dπ

[i−1],[j],i−1, Dπ
′

[i],[i+1],i=Dπ

[j],[i],i and Dπ
′

[j],[j+1],j=Dπ

[i],[j+1],j. According to Equation (2), we222

obtain the total flowtime increment223

δπ(i,j) = TFT (π′)− TFT (π)

=
{

(n− i+ 1)Dπ

[i−1],[j],i−1 + (n− i)Dπ

[j],[i],i + (n− j)Dπ

[i],[j+1],j

}
−

{
(n− i+ 1)Dπ

[i−1],[i],i−1+

(n− i)Dπ

[i],[j],i + (n− j)Dπ

[j],[j+1],j

}
= (n− i)ξπ(i,j) + (n− j)ηπ(i,j) + (n− i)(Dπ

[i+1],[i],i +Dπ

[i],[i+1],i) �

The time complexity of computing total flowtime with the objective increment is only224

O(m) while without the objective increment it is O(mn) according to Equation (2).225

4.2. Neighbourhood Construction226

NEH [NEH83] insertion is an effective local search operator which is usually used to227

construct the neighbourhood of a sequence. However, adjacent job distances are sequence228

dependent for the considered problem. The objective function value of a newly constructed229

8

sequence (a neighbour) needs to be recalculated. The time complexity of the insertion230

operator can be decreased using the above objective increment property. In this paper231

we propose accelerated heuristics for constructing the neighbourhood of a sequence. The232

computation time of local search operators with the objective increment property is therefore233

widely reduced.234

4.2.1. Accelerated Forward Swap235

After a new sequence π(0) is constructed by inserting job Jk into the first position of an236

n-job sequence π, the neighbourhood of π(0) is constructed by sequentially swapping Jk with237

the job to the right. Among the n + 1 sequences, the best is returned. In the swaps, the238

above objective increment property is applied to accelerate the objective calculation for each239

sequence. The process is called Accelerated Forward Swap (AFS), and the function value is240

illustrated as follows.241

• π(0) is constructed by inserting job Jk between π[0] and π[1] of π, i.e., π(0)
[1] = Jk, π(0)

[2] = π[1],. . . ,242

π(0)
[n+1] = π[n]. Distances Dπ(0)

[i],[i+1],i (0 ≤ i ≤ n) are computed by Equation (1) with time243

complexity O(nm) for all the jobs. Therefore TFT (π(0)) is obtained by Equation (2)244

with time complexity O(nm).245

• Based on π(0), π(1) is constructed by swapping π(0)
[1] (or Jk) with π(0)

[2] . According to246

Theorem 1, TFT (π(1)) can be obtained directly by TFT (π(0))+δπ
(0)

(1,2) with time complexity247

O(m).248

• Based on π(i−1) (2 ≤ i ≤ n), sequence π(i) is constructed by swapping π(i−1)
[i] (or Jk) with249

π(i−1)
[i+1] . The time complexity of computing TFT (π(i)) = TFT (π(i−1)) + δπ

(i−1)

(i,i+1) is O(m).250

Among the n+ 1 constructed sequences, the best is returned. AFS is formally described251

in Algorithm 1.252

Algorithm 1: Accelerated Forward Swap (AFS)
Input: Sequence π and job Jk
Output: The best sequence π∗ among the n+ 1 neighbours

1 begin
2 Generate π(0) by inserting Jk between π[0] and π[1];
3 for i = 0 to n do
4 Calculate Dπ(0)

[i],[i+1],i by Equation (1);
5 Compute TFT (π(0)) by Equation (2);
6 for i = 1 to n do
7 Construct π(i) from π(i−1) by swapping π(i−1)

[i] and π(i−1)
[i+1] ;

8 Compute TFT (π(i)) by TFT (π(i−1)) + δπ
(i−1)

(i,i+1);
9 return π∗ = arg min

i=0,...,n
{TFT (π(i))}.

The time complexity of AFS is mainly determined by Steps 3 and 6, both of which have253

a time complexity of O(nm). Therefore the time complexity of AFS is also O(nm).254

9

4.2.2. Accelerated Backward Swap255

Accelerated Backward Swap (ABS) is the opposite of AFS. A new sequence π(0) is256

constructed by appending job Jk to an n-job sequence π. The neighbourhood of π(0) is257

constructed by sequentially swapping Jk with the job to the left. Among the n+ 1 sequences,258

the best is returned. The process of ABS is briefly demonstrated as follows.259

• π(0) is constructed by appending Jk to the end of π. Since there is no job-position260

change between π and π(0) for the first n jobs, Dπ(0)

[i],[i+1],i = Dπ

[i],[i+1],i for all i = 0, . . . , n− 1.261

We just calculate Dπ(0)

[n],k,n using Equation (1) with time complexity O(m).262

• π(j) (j = 1, . . . , n) is constructed from π(j−1) by just swapping π(j−1)
[n+2−j] (or Jk) with its left263

job π(j−1)
[n−j+1].264

Among the constructed n + 1 sequences, the best one π∗ is returned. ABS is formally265

described in Algorithm 2.266

Algorithm 2: Accelerated Backward Swap (ABS)
Input: Sequence π and job Jk
Output: The best sequence π∗ among the n+ 1 neighbours

1 begin
2 Generate π(0) by appending Jk to π;
3 Calculate Dπ(0)

[n],k,n using Equation (1);
4 Compute TFT (π(0)) by Equation (2);
5 for j = 1 to n do
6 Construct π(j) from π(j−1) by swapping π(j−1)

[n+2−j] and π(j−1)
[n−j+1];

7 Compute TFT (π(j)) by TFT (π(j−1))+δπ(j−1)

(n−j+1,n−j+2);
8 return π∗ = arg min

i=0,...,n
TFT (π(i)).

The time complexity of ABS is mainly determined by Step 5, which is O(nm). Therefore267

the time complexity of ABS is again O(nm) which is equal to that of AFS. However, the268

computation time of ABS is roughly much less than that of AFS because ABS only needs269

one distance computation (with time complexity O(m)) while AFS calculates n+ 1 distances270

(with time complexity O(nm)).271

4.2.3. Insertion-based Neighbourhood Construction272

The traditional insertion method (used in NEH [NEH83] and in RZ [RZ97]) can also273

be applied to construct the neighbourhood of a sequence. This is called Insertion-based274

Neighbourhood Construction (INC). A job is inserted into all possible slots and the best275

sequence is selected. When job Jk is inserted into the jth (j = 1, . . . , n) slot of π, all the276

processing times of the jobs π[`] (` = j, . . . , n) will change because of the learning and forgetting277

effects. Therefore, ∑n

j=0

∑n

`=jm computations are needed to obtain the objective function278

values of the newly constructed sequences, i.e., the time complexity of INC is O(mn2).279

10

Therefore, ABS is the fastest heuristic among the three proposed methods, which will be280

adopted in the following algorithms. Note that all formulas to calculate the total flowtime in281

the sequence dependent setup times no-wait flowshop with learning and forgetting effects,282

as well as all shown computational improvements have been incorporated in the developed283

algorithm, which, as a result, considers learning and forgetting effects.284

5. The Proposed Algorithm285

As mentioned in Section 2, we adopt the IG framework, which consists of three basic286

phases: Initial Sequence Construction, Local Search, Destruction and Reconstruction (D&R).287

Based on the IG framework, Iterated Greedy heuristics are developed for the considered288

problem. The framework of the proposed IG is depicted in Algorithm 3. The different289

operators are explained in the following sections.290

Algorithm 3: Iterated Greedy (IG)
1 begin
2 π0 ← Initial Sequence Construction (ISC);
3 π0 ← LocalSearch(π0);
4 π∗ ← π0;
5 Temp = T ×

∑n

i=1

∑m

j=1
pi,j

n×m×10
/* Parameter T will be calibrated later. */

6 while (Termination condition not satisfied) do
7 π ← MDR(π0); /* Modified Destruction & Reconstruction */
8 πc ← LocalSearch(π);
9 π ← AcceptanceCriterion(ν, π0, π, π

c, π∗);
10 π0 ← π;
11 return π.

5.1. Initial Sequence Construction291

Because of the similarity between the studied problems, we modify the initial solution292

construction method developed by Pan and Ruiz [PR13] and integrate it with the heuristic293

introduced by Rajendran [Raj93] to generate initial sequences of the considered problem.294

Seed πs is generated by sorting all jobs in non-descending order of ∑m

j=1(m− j+ 1)×pi,j, where295

pi,j is the normal processing time of operation Oi,j. A new initial solution is constructed by296

an iterative procedure. An index l starts from 1. A sequence πl is generated by a two-step297

process: (i) an n-job schedule π(n) is constructed recursively from π(1) = (πs[0], π
s

[l]). π(k) is298

constructed by inserting jobs πs[i] (i = 1, . . . , n; i 6= l) to π(k − 1) using the ABS. (ii) πl is299

produced by applying the local search method proposed in Section 4.3 to π(n). The Initial300

Sequence Construction (ISC) is formally described in Algorithm 4.301

Obviously, the differences between the ISC and the NEH insertion lie in two aspects:302

(i) ISC adopts the non-descending order of ∑m

j=1(m− j + 1)× pi,j to generate the seed while303

11

NEH uses the non-ascending order of the total normal processing times of the jobs; (ii)304

ISC conducts the ABS while NEH performs the traditional one-job insertion. In terms of305

Theorem 1, the time complexity of ISC is O(mn3) since at most n sequences are generated306

which is equal to the O(mn3) that would be needed to apply the NEH.307

Algorithm 4: Initial Sequence Construction (ISC)
1 begin
2 Seed πs is generated by sorting all jobs with the non-descending order of∑m

j=1(m− j + 1)× pi,j;
3 l← 1;
4 repeat
5 k ← 1;
6 π(k)← (πs[0], π

s

[l]);
7 for i = 1 to n do
8 if i 6= l then
9 k ← k + 1;

10 Construct π(k) by inserting job πs[i] to π(k − 1) using ABS;

11 πl ← LS(π(n));
12 l← l + 1;
13 until (CPUTime > mn× 10−3seconds) or (l > n);
14 return π∗ = arg min

1≤i≤l
{TFT (πi)}.

5.2. Local Search308

In this paper, a variable neighborhood descent (VND) is presented for the Local Search309

to improve intensification of the proposed IG. The commonly used neighborhood structures310

are Rd(π): π′ is generated by randomly removing a block of d + 1 (in this paper 1 ≤ d ≤ 9)311

consecutive jobs from sequence π and reinserting it into the best slot of π. R1(π) was adopted312

in [LC09, GPSL13]. The variable neighborhood descent (VND) is formally described in313

Algorithm 5. The VND with parameter d is denoted as LSd.314

5.3. Destruction & Reconstruction315

The Local Search process enhances intensification of the search algorithm. However, the316

balance between intensification and diversification is crucial to avoid being trapped into local317

optimum [BR03]. The Destruction & Reconstruction (DR) process is carried out on the318

sequence to improve the diversification of the search process. Sequence π is destructed by319

randomly selecting and removing k different jobs. Two subsequences πR and πD denote the320

removed k jobs and the remaining n− k jobs respectively. The jobs of πR are ordered as they321

were extracted from π. In this paper, a modified Destruction & Reconstruction (MDR) is322

proposed. Both MDR and the DR developed by Ruiz and Stützle [RS07, RS08] have the323

same destruction but different reconstruction. When a new job sequence π′ is reconstructed,324

12

Algorithm 5: Variable Neighborhood Search (VND)
Input :Parameter d

1 begin
2 Set l← 1;
3 while l ≤ d do
4 Find the best solution π

′ by exploring neighbourhood Rl(π);
5 if TFT (π′) < TFT (π) then
6 π ← π

′ , l← 1;
7 else
8 l← l + 1;

9 return π.

all jobs of πR are sequentially reinserted back into πD during the reconstruction process of325

DR. Only one job is tried using NEH in every iteration of the DR reconstruction. However,326

all jobs in πR are tried using ABS in every iteration of the MDR reconstruction. The MDR327

is depicted in Algorithm 6. The time complexity of MDR is O(mnk2).328

Algorithm 6: Modified Destruction & Reconstruction (MDR)
1 begin
2 Construct πR and πD by randomly removing k jobs from π;
3 for j = 1 to k do
4 TFT (πt)←∞;
5 for i = 1 to k − j + 1 do
6 Construct π(i) by inserting job πR[i] to πD using ABS;
7 if TFT (πt) > TFT (π(i)) then
8 πt ← π(i), TFT (πt)← TFT (π(i));
9 `← i;

10 Remove πR[`] from πR, πD ← πt;
11 π ← πD;
12 return π.

5.4. Acceptance Criterion329

Let π0 be the obtained solution by Local Search on the initial solution, π denotes the330

reconstructed solution using MDR and πc represents the solution found by the local search331

on π. There are three cases for the acceptance criterion: (i) ν = 0. π is replaced by π0, i.e., π0332

is compared against πc. (ii) ν = 1. π is compared against πc. (iii)ν = 2. π is replaced by π0 if333

it is worse than π0, i.e., the best between π0 and π is compared against πc. The acceptance334

13

criterion used by Ruiz and Stützle [RS07] is also adopted in this paper. The acceptance335

criterion process is formally described in Algorithm 7.336

Algorithm 7: AcceptanceCriterion(ν, π0, π, π
c, π∗)

1 begin
2 if ν = 0 then
3 π ← π0;
4 if ν = 2 then
5 π ← best solution between π0 and π;
6 if TFT (πc) < TFT (π) then
7 π ← πc;
8 else
9 Generate a random number λ ∈ [0, 1];

10 if λ < e−
(TFT (πc)−TFT (π))

Temp then
11 π ← πc;

12 if TFT (π) < TFT (π∗) then
13 π∗ ← π;
14 return π∗.

In terms of the acceptance criterion, there are three variants of MDR: MDR0, MDR1 and337

MDR2. They are constructed by calling Acceptance Criterion with v = 0, v = 1 and v = 2,338

respectively, after the Local Search.339

The final proposed IG is given in Algorithm 8.340

Algorithm 8: Proposed Iterated Greedy (IG)
1 begin
2 π0 ← Initial Sequence Construction (ISC, Algorithm 4);
3 π0 ← LocalSearchVND(π0), (Algorithm 5);
4 π∗ ← π0;
5 Temp = T ×

∑n

i=1

∑m

j=1
pi,j

n×m×10
while (Termination condition not satisfied) do

6 π ← MDR(π0); Modified Destruction & Reconstruction, (Algorithm 6);
7 πc ← LocalSearchVND(π), (Algorithm 5);
8 π ← AcceptanceCriterion(ν, π0, π, π

c, π∗), (Algorithm 7);
9 π0 ← π;

10 return π.

14

6. Experimental evaluations341

We calibrate the parameters and components of the proposed IG, which are experimentally342

determined, before comparing the proposed IG with existing IG methods and heuristics343

for similar scheduling problems. All algorithms are coded in Java and run on an Intel(R)344

Core(TM) i7-4770 CPU @3.40GHz computer with 8GB RAM on Windows Server 2008 R2345

standard. The termination criterion is set to a maximum computation time of (n×m÷ 2)× t346

milliseconds as is now usual in the flowshop scheduling literature where t is a parameter.347

6.1. Parameter and Component Calibration348

The termination condition parameter is t = 20, i.e., the computation time is limited to349

(n×m÷ 2)× 20 milliseconds for all combinations in the calibration experiment. Once the350

tests have been conducted, we calculate the effectiveness of an algorithm on an instance by351

the relative percentage deviation (RPD). Let Vi(H) be the solution of instance i obtained by352

algorithm H and V ∗
i
be the best solution for i. RPD is defined as353

RPD = Vi(H)− V ∗
i

V ∗
i

× 100% (3)

In a similar way to the experiments given in [RS07], we use a total of 17× 4=68 groups354

of randomly generated calibration instances with non-controllable factors n and m, where355

n has 17 levels {20, 50, 80, 110, . . . , 470, 500} and m has 4 levels {5,10,15,20}. For every356

combination of n and m, we have five replicates. Therefore, there are 5× 68 = 340 calibration357

instances in total. The processing times and setup times of jobs are uniformly distributed in358

the interval [1,99]. There are two parameters k and T in the proposed IG. Analogously to359

the tested integer values in [RS07], k is tested at 7 levels {2, 3, 4, 5, 6, 7, 8}. There are three360

values for T ∈ {0, 0.25, 0.5}. For the four components of the proposed IG, there are three361

variants for constructing the initial solution, four for the D&R strategy, and 11 for the local362

search (9 new constructed local searches LSd (d = 1, 2, . . . , 9), IG_RSLS of [RS07] and the363

no local search case). Since the D&R strategy MDR0 is identical to MDR2 for the no local364

search case, we only test one of the two combinations, i.e., we only test 43, not 4× 11 = 44365

combinations of the two components. Therefore, there are 7× 3× 3× 43 = 2709 combinations366

in total. However, it is too time-consuming to test all 2709× 340 = 921060 treatments. We367

observe that the 9 newly constructed local search methods (LS1 ∼ LS9) interact mainly with368

MDRs in the IGs and we calibrate them separately.369

We analyze the results by the Analysis of Variance technique (ANOVA) which is a370

very robust parametric technique. A number of hypotheses should be ideally met by the371

experimental data. Among these, the main three are (in order of importance): independence372

of the residuals, homoscedasticity or homogeneity of the factor’s levels variance and normality373

in the residuals of the model. Apart from a slight non-normality in the residuals, we can374

accept all hypotheses easily. The response variable in the experiments is the RPD for each375

algorithm in every instance.376

15

6.1.1. Local Search Determination377

According to the experiments, we perform 5 replicates for each combination of non-378

controllable factors n and m (340 instances in total), and fix k = 4, T = 0.5, ISC to construct379

initial solutions and MDR1 for the destruction and reconstruction. The means plot and 95%380

confidence level Tukey HSD (honest significant difference) intervals for d is depicted in Figure381

3. HSD is a single-step multiple comparison statistical test, usually used in conjunction with382

ANOVA to find which averages are actually statistically different from one another.383

1 2 3 4 5 6 7 8 9

d

0

0.3

0.6

0.9

1.2

1.5

A
v

er
ag

e
R

el
a
ti

v
e
 P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Figure 3: Means plot and 95% confidence level Tukey HSD intervals for d.

Figure 3 illustrates that the observed differences are statistically significant when d < 6384

and no statistically significant differences are observed when d ≥ 6 with 95% confidence level385

Tukey HSD intervals. Therefore, LS6 is adopted in the following experiments.386

6.1.2. Parameters and components387

Based on the determined LS6, there are three local search variants at present: LS6,388

IG_RSLS and NoLS (no local search). Since the D&R strategy MDR0 is identical to MDR2389

for the NoLS case, we just test one of the two combinations, i.e., we only test 11, not 4×3 = 12390

combinations of the two components. Therefore, there are only 7×3×3×11 = 693 treatments391

and 693× 340 = 235620 results for calibrating parameters and components. The means plots392

and 95% confidence level Tukey HSD intervals for k and T are depicted in Figures 4 and 5393

respectively.394

From Figure 4, it can be observed that the differences are statistically significant when395

k ≤ 5 and there is no statistically significant difference when k=6,7,8. It follows that the396

proposed IG has the minimal ARPD when k = 5. Therefore, we use k = 5 in the following397

experiments. Figure 5 implies that the differences are statistically significant for T = 0 and398

T 6= 0. There is a tendency towards the difference becoming smaller with higher values of399

T , e.g., the difference is less than 0.1% between T = 0.25 and T = 0.5. In other words, the400

difference is not statistically significant and the algorithm obtains less RPD when T = 0.5.401

Therefore, we set T to 0.5 for the IG proposed in this paper.402

Since there is no existing algorithm for the problem under study, we compare the proposed403

IG heuristic against some algorithms for similar flowshop scheduling problems. In this paper,404

IG_RSLS [RS07] and IGX [XZL12] are adapted to the problem being studied. There are also405

16

2 3 4 5 6 7 8

Means and 95.0 Percent Tukey HSD Intervals

k

2.3

2.5

2.7

2.9

3.1

3.3

3.5

3.7

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Figure 4: Means plot and 95% confidence level Tukey HSD intervals for various settings of
parameter k on random instances with termination criterion set to t = 20.

0 .25 .5

T

2.6

2.85

3.1

3.35

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Figure 5: Means plot and 95% confidence level Tukey HSD intervals for various settings of
parameter T on random instances with termination criterion set to t = 20.

some parameters in the two adapted algorithms. Therefore we calibrate the parameters k and406

T of the adapted IG_RSLS and IGX for the coming comparisons. The interactions between407

the calibrated algorithms and the number of jobs destroyed k on calibration instances with408

termination criterion set to t = 20 are shown in Figure 6.409

Figure 6 shows that there are no statistically significant differences for all k values,410

which is different from the permutation flowshop scheduling situation [RS07], where no411

statistically significant difference exists only for k ∈{3,4,5}. We just take k = 3 in the412

following experiments for IG_RSLS. In addition, there is no statistically significant difference413

for all k ∈ {2,3,4,5,6,7} of the IGX [XZL12]. Since the lowest value occurs when k = 5, we set414

k = 5 in the following experiments for IGX. In concordance with the process used to obtain415

the results given by Ruiz and Stützle [RS07], we tested T of all the compared algorithms416

(IG_RSLS, IGX and IG) using the above instances. We found that there is no statistically417

significant difference with all T for each of the three algorithms. This is similar to the results418

of IG shown in Figure 5 and also in line with the original experiments shown in [RS07].419

Therefore, T takes 0.5 for all three algorithms in the following experiments.420

17

k

0.32

0.42

0.52

0.62

0.72

R
el

at
iv

e
P

er
ce

nt
ag

e
D

ev
ia

ti
on

 (
%

)

2 3 4 5 6 7 8

Algorithm
IGX

IG_RSLS

Figure 6: Interaction between the two calibrated existing algorithms and the number of
jobs destroyed k. Analysis on random calibration instances with termination criterion set to
t = 20.

6.1.3. Component Calibration421

For each of the components of IG there are several variants. The initial solution can be422

constructed by Random (which constructs the initial solution randomly), the proposed ISC423

and NEH [NEH83]. The means plot and 95% Tukey HSD intervals of the three methods on424

the random calibration instances are shown in Figure 7. From Figure 7, it can be observed425

that the RPDs of the three initial solution construction methods show statistically significant426

differences. ISC has the lowest RPD. Though NEH is worse than ISC, it is much better than427

the Random construction.428

ISC NEH Random

Initial Solution Construction strategy

1

2

3

4

5

6

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Figure 7: Means plot and 95% Tukey HSD intervals of the three initial solution construction
methods on random calibration instances with termination criterion set to t = 20.

Since the local search of the IG_RSLS of [RS07] is a commonly used local search, we429

consider three variants for the local search of IG: LS6, IG_RSLS and NoLS (no local search).430

The means plot and 95% confidence level Tukey HSD intervals for the three local searches431

on random instances with termination criterion set to t = 20 is depicted in Figure 8. The432

result implies that the differences between any pair of the three cases are significant. LS6433

has the lowest RPD. The RPD of LS6 is much smaller than those of IG_RSLS and NoLS,434

which indicates that LS6 is effective for the considered problem. However, it is strange that435

18

IG_RSLS has the largest RPD, being even worse than the no local search case. The main436

reason lies in that the objective increment property cannot be applied to IG_RSLS which437

leads to a very slow local search. Within the limited computational time, IG_RSLS can carry438

out a few iterations and then it results in the largest RPD. Therefore, it is demonstrated439

that the speed-up formulas that we have presented for the total flowtime minimization in440

the sequence dependent setup times no-wait flowshop with learning and forgetting effects are441

playing a major role in the performance of the proposed local search.442

LS6 NoLS IG_RS

Local Search

1

2

3

4

5

6

7

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Figure 8: Means plot and 95% confidence level Tukey HSD intervals for the three local
searches on random instances with termination criterion set to t = 20.

The Destruction & Reconstruction operator adopted by Ruiz and Stützle [RS07] is called443

DR in this paper, which is similar toMDR0 but with different local researches and destruction444

& reconstruction processes. The three variants of MDR (MDR0, MDR1 and MDR2) are445

compared with DR. The means plot and 95% Tukey HSD intervals of the four methods446

on the random calibration instances are shown in Figure 9. It can be observed that the447

RPD differences are statistically significant among the four operators. MDR1 is significantly448

different from the other three processes. MDR1 has the lowest RPD whereas MDR2 has the449

largest. The fact that the RPD of MDR2 is worse than that of MDR1 demonstrates that450

worse accepted solutions can lead to better final solutions. The reason lies in that π would451

be worse than π0 during the MDR. This is also true as the RPD of MDR0 is worse than that452

of MDR1. Therefore MDR1 is utilized in the proposed IG in the following experiments.453

6.2. Algorithm comparisons454

According to the determined parameters and components, the proposed IG is evaluated455

by comparing it against the existing algorithms for similar scheduling problems. Since the456

considered problem has not been studied before there are no specific algorithms for it. We457

adapt some additional classical algorithms for similar problems. These are BIH [LPS99],458

TRIPS, TRIPS_M, QUARTS [NMA15], in addition to the already mentioned and calibrated459

IG_RSLS [RS07] and IGX [XZL12]. BIH obtains a sequence of n jobs in n iterations. In each460

iteration, a sub-sequence is considered and the best sequence is obtained by inserting an461

unscheduled job into any position of the given sequence. TRIPS selects three jobs sequentially462

from the unscheduled job list. The first job of the best three job combination is removed463

19

ISC NEH Random

Initial Solution Construction strategy

1

2

3

4

5

6

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

MDR1 MDR0 DR MDR2

Destruction & Reconstruction

2

2.4

2.8

3.2

3.6

4

4.4

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Figure 9: Means plot and 95% Tukey HSD intervals of the Destruction & Reconstruction
methods on random instances with termination criterion set to t = 20.

and appended to the scheduled sub-sequence. The process is repeated until there are only464

three jobs remaining. The best sequence of the last three jobs is appended to the scheduled465

sub-sequence. QUARTS is similar to TRIPS but selects four jobs instead of three jobs466

every time and appends the first two jobs to the scheduled sub-sequence. The second job467

is set as the first job of the four jobs of the next iteration. The second job of the new best468

4-job sequence is added to the scheduled sub-sequence. The process is repeated until there469

are only three jobs left and the best permutation of the last three jobs is appended to the470

scheduled sub-sequence. The obtained solution is improved by a neighbourhood insertion471

and permutation procedures. TRIPS_M improves the solution obtained by TRIPS using the472

neighbourhood insertion and permutation procedures adopted in QUARTS.473

It has to be noted that BIH, TRIPS, TRIPS_M and QUARTS are one-pass deterministic474

heuristics and have a different termination criterion. The proposed IG, IG_RSLS and IGX are475

nondeterministic algorithms and use the maximum CPU time (n×m÷ 2)× t (t ∈ {30, 60, 90})476

milliseconds as the termination criterion. Therefore, the proposed IG is compared with the477

tested algorithms in different ways. All algorithms are compared on benchmark instance478

sets used in [RS08], i.e., SDST10, SDST50, SDST100 and SDST125 (the ratios of the setup479

times to the processing times are at most 10%, 50%, 100% and 125%, respectively, of the480

maximum possible processing times of Taillard original instances). The instances can be481

downloaded from http://soa.iti.es/.482

6.2.1. Nondeterministic algorithms comparison483

IG is compared with IG_RSLS and IGX on the benchmark instances. k takes 5 in IG, 3484

in IG_RSLS and 5 in IGX as mentioned above. The comparison of the results of the three485

algorithms with (n×m÷ 2)× t (t ∈ {30, 60, 90}) milliseconds on the instance sets SDST10,486

SDST50, SDST100 and SDST125 are shown in Table 1. We use the average RPD (ARPD)487

on five replicates to measure the effectiveness of the compared algorithms.488

Table 1 shows that the proposed IG outperforms IG_RSLS and IGX for all instances489

with all three termination criteria. ARPDs of IG for all cases are 0. IG_RSLS outperforms490

IGX for most n = 20, 50 cases. However, the ARPD of IG_RSLS gets much worse than that491

of IGX as n increases. Therefore, IG_RSLS shows higher ARPD than IGX on average. For492

20

Table 1: ARPD of IG_RSLS, IGX and the proposed IG with (n ×m ÷ 2) × t milliseconds
CPU time stopping criterion (best values in bold).

t n × m

SDST10 SDST50 SDST100 SDST125

IG_RSLS IGX IG IG_RSLS IGX IG IG_RSLS IGX IG IG_RSLS IGX IG

30

20×5 0.03 0.05 0.00 0.00 0.11 0.00 0.00 0.34 0.00 0.00 0.79 0.00
20×10 0.00 0.11 0.00 0.00 0.11 0.00 0.00 0.10 0.00 0.00 0.13 0.00
20×20 0.00 0.02 0.00 0.00 0.11 0.01 0.00 0.02 0.00 0.00 0.11 0.00
50×5 1.18 0.88 0.00 1.25 1.36 0.00 2.36 2.10 0.00 2.97 2.24 0.00
50×10 0.50 0.67 0.00 0.97 1.07 0.00 1.42 1.30 0.00 1.59 1.57 0.01
50×20 0.37 0.81 0.00 0.54 1.15 0.00 0.77 1.29 0.00 1.06 1.22 0.00
100×5 2.25 1.56 0.00 2.89 3.20 0.00 5.21 4.29 0.00 5.48 5.65 0.00
100×10 1.59 1.65 0.00 2.23 2.00 0.00 2.82 2.66 0.00 3.57 3.18 0.00
100×20 1.44 1.23 0.00 1.63 1.37 0.00 2.32 1.74 0.00 1.98 1.86 0.00
200×10 10.87 2.76 0.00 10.37 3.13 0.00 11.95 4.34 0.00 11.43 4.82 0.00
200×20 8.50 2.52 0.00 8.10 2.28 0.00 8.06 2.61 0.00 7.24 2.68 0.00
500×20 7.88 2.30 0.00 7.52 2.68 0.00 6.76 3.03 0.00 6.34 3.06 0.00

Average 2.88 1.21 0.00 2.96 1.55 0.00 3.47 1.99 0.00 3.47 2.28 0.00

60

20×5 0.00 0.13 0.00 0.01 0.14 0.00 0.00 0.18 0.00 0.00 0.18 0.00
20×10 0.00 0.01 0.00 0.00 0.06 0.00 0.00 0.03 0.00 0.00 0.18 0.00
20×20 0.00 0.02 0.00 0.00 0.09 0.01 0.00 0.03 0.00 0.00 0.19 0.00
50×5 0.88 0.98 0.00 1.31 1.41 0.00 2.44 2.12 0.00 3.35 2.78 0.00
50×10 0.62 0.70 0.00 0.88 0.77 0.00 1.42 1.12 0.00 1.64 1.49 0.00
50×20 0.43 0.88 0.00 0.42 0.97 0.00 0.87 1.00 0.00 0.86 1.12 0.00
100×5 2.27 1.66 0.00 3.16 2.77 0.00 5.32 4.16 0.00 5.89 4.91 0.00
100×10 1.54 1.76 0.00 2.11 1.74 0.00 3.12 2.72 0.00 3.31 3.06 0.00
100×20 1.37 1.33 0.00 1.68 1.50 0.00 1.98 1.96 0.00 2.12 1.88 0.00
200×10 9.82 2.40 0.00 10.65 3.11 0.00 11.62 4.36 0.00 11.53 4.89 0.00
200×20 9.00 2.41 0.00 8.50 2.29 0.00 7.94 2.76 0.00 7.65 2.80 0.00
500×20 8.26 2.58 0.00 7.58 2.66 0.00 6.84 3.08 0.00 6.76 3.35 0.00

Average 2.85 1.24 0.00 3.02 1.46 0.00 3.46 1.96 0.00 3.59 2.24 0.00

90

20×5 0.00 0.12 0.00 0.00 0.04 0.00 0.00 0.17 0.00 0.00 0.47 0.00
20×10 0.00 0.24 0.00 0.00 0.10 0.00 0.00 0.01 0.00 0.00 0.16 0.00
20×20 0.00 0.02 0.00 0.00 0.04 0.01 0.00 0.09 0.00 0.00 0.12 0.00
50×5 1.16 0.80 0.00 1.15 1.13 0.00 2.38 1.67 0.00 2.81 2.59 0.00
50×10 0.50 0.62 0.00 0.98 0.86 0.00 1.33 1.26 0.00 1.78 1.32 0.00
50×20 0.38 0.53 0.00 0.46 0.84 0.00 0.82 1.12 0.00 0.88 0.95 0.00
100×5 2.44 1.84 0.00 3.27 2.63 0.00 4.73 3.81 0.00 5.88 4.68 0.00
100×10 1.73 1.61 0.00 2.15 1.70 0.00 3.02 2.73 0.00 3.15 2.76 0.00
100×20 1.29 1.29 0.00 1.59 1.38 0.00 1.90 1.80 0.00 1.96 1.84 0.00
200×10 10.68 2.52 0.00 10.74 3.32 0.00 11.50 4.13 0.00 12.45 4.73 0.00
200×20 8.91 2.12 0.00 7.74 2.14 0.00 8.10 2.61 0.00 7.75 2.62 0.00
500×20 8.25 2.68 0.00 7.83 2.80 0.00 7.10 3.24 0.00 7.04 3.68 0.00

Average 2.95 1.20 0.00 2.99 1.42 0.00 3.41 1.89 0.00 3.64 2.16 0.00

example, the ARPDs of IG_RSLS are 0 for the three n = 20 cases and t = 30 on the instance493

set SDST50. However, the ARPD of IG_RSLS becomes 10.37% for the 200×10 case, which is494

much worse than that of IGX which is only 3.13%. The average ARPD of IG_RSLS is 2.96%495

and that of IGX is 1.55%. In other words, the proposed IG is the most robust algorithm for496

the considered problem and IGX is more robust than IG_RSLS. As the ratio of the setup497

times to the processing times increases, the ARPDs of both IG_RSLS and IGX increase. For498

example, when t = 30, the average ARPDs of IG_RSLS and IGX are 2.88% and 1.21% for499

the SDST10 set while they become 3.47% and 2.28% as the ratio increases to 125%, i.e.,500

21

Interactions and 95.0 Percent Tukey HSD Intervals

Algorithm

-.3

.7

1.7

2.7

3.7

A
v
er

ag
e

re
la

ti
v
e

p
er

ce
n
ta

g
e

d
ev

ia
ti

o
n

 (
%

)

IG IGX IG_RSLS

t

30

60
90

Figure 10: Interaction plot between the
tested algorithms and the termination cri-
terion t ∈ {30, 60, 90} with 95% Tukey
HSD intervals on instance set SDST125.

Type of Instance

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

A
v
er

ag
e

re
la

ti
v
e

p
er

ce
n
ta

g
e

d
ev

ia
ti

o
n

 (
%

)

Algorithm

IG

IGX
IG_RSLS

Figure 11: Interaction plot between the
tested algorithms and the type of instances
with 95% Tukey HSD intervals on instance
set SDST125 with t = 90.

SDST125. However, the termination criterion has little influence on the performance of501

IG_RSLS and IGX (which is also verified in Figure 10).502

Though a large number of tests have been carried out, comparing algorithms on the basis503

of means is potentially misleading. The ANOVA technique is used to analyze the results in a504

sound and statistical way. Figure 10 shows the interaction plot between the tested algorithms505

and the termination criterion t ∈ {30, 60, 90} with 95% Tukey HSD intervals on the instance506

set SDST125. Figure 11 shows the interaction plot between the tested algorithms and the507

type of instance with 95% Tukey HSD intervals on the instance set SDST125 with t = 90.508

From Figure 10, we can observe that t has little impact on the performance of all three509

algorithms. In addition, IG_RSLS is the worst among the three and IGX is worse than the510

proposed IG, which implies that IG is the most suitable for the considered problem. For511

a better insight into the performance of the three algorithms on the 12 instance groups512

(the 9 combinations of n ∈ {20, 50, 100} and m ∈ {5, 10, 20}, 200× 10, 200× 20, and 500× 20)513

of SDST125, Figure 11 illustrates that the proposed IG is the best in ARPD. Though the514

performance of IG_RSLS and IGX is similar to that of the proposed IG when the type is less515

than 4, it becomes worse for the larger types. In addition, it can be observed that IG_RSLS516

and IGX perform worse for the same n and smaller m. For example, the ARPD of IG_RSLS517

is 12.45% when t = 90 for the 200× 10 group on SDST125 while it is 7.75% for the 200× 20518

group; for the n = 100 groups, the ARPD of IG_RSLS is 5.88% when m = 5 while those are519

3.15% and 1.96% when m = 10 and m = 20 respectively.520

6.2.2. Comparison with heuristics521

The proposed IG is compared with BIH, TRIPS, TRIPS_M and QUARTS on the522

benchmark instances. Because the maximum iteration number N is the termination criterion523

for the deterministic heuristics, N is examined first. For this we revert again to the 340524

calibration instances. The means plot of the ARPD and 95% Tukey HSD intervals for N is525

shown in Figure 12.526

Figure 12 shows that there is no statistically significant difference in the ARPD for every527

22

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N

0.39

0.59

0.79

0.99

1.19

1.39

R
e
la

ti
v

e
P

e
rc

e
n
ta

g
e

D
ev

ia
ti

o
n
 (

%
)

×100

Figure 12: Means plot of ARPD and 95% Tukey HSD intervals for the iteration number N
in the heuristics comparison.

100 iteration increase. For example, the average ARPD difference between N = 1800 and528

N = 3000 is less than 0.4%. It seems that there are few variations N ≥ 2800. Therefore we529

take N = 2900 for the proposed IG in the following experiments. The other heuristics are530

one-pass methods. For the benchmark instances, the results of the compared heuristics are531

shown in Table 2.532

Table 2 shows that the proposed IG has the smallest ARPD among the compared533

algorithms on the different instance sets, i.e., the proposed IG outperforms the other compared534

heuristics. The average ARPD of the proposed IG is 0. For the considered problem, BIH535

is the second best heuristic. QUARTS is slightly better than TRIPS_M. TRIPS is always536

the worst in ARPD and QUARTS is the most time-consuming. TRIPS_M and TRIPS have537

similar computation times for all instances, which are much less than that of QUARTS but538

much more than those of BIH and the proposed IG. Though BIH needs less computation539

time than the proposed IG when n ≤ 200, it requires more CPU time than the proposed IG540

when n = 500. For example, QUARTS takes 11548.84s, TRIPS_M 1584.32s, TRIPS 1573.00s,541

BIH 165.64s, and the proposed IG only 91.90s for the 500× 20 group of SDST10. Table 2542

also shows that the ratio of the setup times to the processing times exerts little influence543

on both ARPD and CPU times for the compared methods, i.e., each of the methods have a544

similar average ARPD and CPU time on every instance set.545

Again, the ANOVA technique is used to analyze the ARPD of all the methods on the546

benchmark instances and the ARPD of the methods on each group of the instance set547

SDST50. The means and interaction plots of ARPD with 95% Tukey HSD intervals are548

shown in Figures 13 and 14.549

From Figure 13, it can be concluded that there are statistically significant differences550

among the compared methods, which is in accordance with Table 2. The proposed IG has the551

smallest ARPD. Figure 14 shows the interaction between the type of instances and algorithms552

on SDST50. It can be observed that the proposed IG is the most robust among the compared553

methods. Furthermore, the ARPDs of the other heuristics fluctuate with different instance554

groups though there are no statistically significant differences in most cases.555

All experimental results are available on the website: www.seu.edu.cn/lxp/75/5b556

23

Table 2: ARPD and CPU times (in seconds) for the proposed IG and the tested heuristics
on SDST10, SDST50, SDST100 and SDST125 instances (best values in bold).

Set n × m

BIH TRIPS TRIPS_M QUARTS IG

ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time

20×5 2.00 0.00 14.38 0.00 9.77 0.00 6.91 0.03 0.00 0.09
20×10 2.42 0.00 9.50 0.00 6.14 0.00 5.07 0.01 0.00 0.04
20×20 1.76 0.00 7.84 0.00 6.11 0.00 2.90 0.01 0.00 0.04
50×5 3.48 0.01 15.29 0.06 12.45 0.06 10.07 0.49 0.00 0.21
50×10 3.47 0.01 9.03 0.06 7.03 0.06 7.09 0.52 0.00 0.19

SDST10 50×20 3.06 0.01 7.69 0.06 6.21 0.06 5.29 0.56 0.00 0.19
100×5 3.91 0.06 14.21 1.19 12.07 1.24 10.83 8.06 0.00 0.92
100×10 3.98 0.06 12.17 1.28 11.17 1.23 7.80 7.83 0.00 1.15
100×20 3.22 0.06 8.62 1.17 7.49 1.23 5.97 7.94 0.00 1.21
200×10 3.51 1.24 10.43 15.65 9.75 14.94 8.73 151.99 0.00 5.24
200×20 3.04 1.14 7.50 13.25 7.05 13.75 6.12 144.79 0.00 4.56
500×20 2.41 165.64 7.41 1573.00 7.14 1584.32 6.81 11548.84 0.00 91.90

Average 3.02 14.02 10.34 133.81 8.53 134.74 6.96 989.26 0.00 8.81

20×5 3.06 0.00 11.96 0.00 8.22 0.00 5.47 0.03 0.00 0.08
20×10 1.82 0.00 8.12 0.00 5.41 0.00 4.11 0.01 0.00 0.05
20×20 1.80 0.00 6.56 0.00 4.52 0.00 3.28 0.01 0.00 0.06
50×5 3.19 0.00 12.69 0.07 10.70 0.06 9.55 0.50 0.00 0.22
50×10 3.05 0.00 8.40 0.07 7.20 0.07 8.20 0.60 0.00 0.18

SDST50 50×20 2.71 0.01 6.77 0.07 5.51 0.07 5.19 0.59 0.00 0.18
100×5 3.88 0.07 12.94 1.31 11.47 1.40 9.35 10.23 0.00 0.97
100×10 2.93 0.07 9.73 1.35 8.98 1.40 7.10 9.93 0.00 2.04
100×20 2.72 0.06 7.53 1.26 6.68 1.35 5.17 10.17 0.00 1.39
200×10 3.33 1.37 8.74 22.62 8.18 21.65 7.10 216.85 0.00 4.93
200×20 2.99 1.04 6.56 15.12 6.09 15.72 5.40 162.75 0.00 4.27
500×20 2.25 179.93 6.84 1638.26 6.64 1647.90 6.00 12318.98 0.00 92.96

Average 2.81 15.21 8.90 140.01 7.47 140.80 6.33 1060.89 0.00 8.94

20×5 3.14 0.00 12.83 0.01 8.57 0.00 6.52 0.03 0.00 0.11
20×10 2.31 0.00 7.81 0.00 5.04 0.01 4.04 0.01 0.00 0.08
20×20 1.68 0.00 5.38 0.00 3.58 0.00 3.13 0.01 0.00 0.11
50×5 5.51 0.00 12.72 0.06 11.37 0.06 8.50 0.43 0.00 0.48
50×10 3.51 0.00 8.19 0.07 6.95 0.07 6.16 0.56 0.00 0.54

SDST100 50×20 2.64 0.01 5.86 0.07 4.97 0.07 4.30 0.54 0.00 0.64
100×5 5.73 0.06 14.67 1.28 13.41 1.31 10.75 9.89 0.00 2.25
100×10 4.13 0.06 9.74 1.28 8.88 1.37 7.41 9.86 0.00 2.13
100×20 3.13 0.06 6.72 1.23 6.13 1.32 4.99 9.61 0.00 1.78
200×10 4.33 1.04 9.66 14.43 9.23 14.75 8.15 148.02 0.00 4.44
200×20 2.99 1.06 6.30 13.73 5.93 14.90 5.59 156.48 0.00 4.23
500×20 2.38 149.61 6.15 1576.40 5.99 1579.15 5.71 12130.56 0.00 99.91

Average 3.46 12.66 8.84 134.05 7.50 134.42 6.27 1038.83 0.00 9.73

20×5 3.41 0.00 10.35 0.00 7.38 0.00 4.81 0.03 0.00 0.08
20×10 2.68 0.00 8.16 0.00 6.04 0.00 3.74 0.01 0.00 0.10
20×20 1.88 0.00 5.03 0.00 3.69 0.00 2.91 0.01 0.00 0.11
50×5 5.62 0.00 13.07 0.05 11.28 0.05 9.69 0.34 0.00 0.31
50×10 3.73 0.00 8.55 0.04 7.41 0.04 6.88 0.28 0.00 0.48

SDST125 50×20 3.16 0.00 5.85 0.04 4.91 0.05 5.63 0.33 0.00 0.46
100×5 5.60 0.05 14.92 0.86 13.67 0.86 10.07 7.58 0.00 2.00
100×10 4.08 0.05 9.15 0.83 8.33 0.97 7.11 7.50 0.00 1.88
100×20 3.36 0.04 6.64 0.76 6.03 0.81 5.39 7.06 0.00 1.70
200×10 4.13 1.15 9.59 17.19 9.11 15.62 7.66 180.99 0.00 5.19
200×20 3.36 1.19 6.10 16.75 5.78 15.58 5.37 187.64 0.00 4.36
500×20 2.36 166.17 6.07 1652.67 5.91 1658.24 5.68 12587.16 0.00 82.97

Average 3.61 14.06 8.62 140.77 7.46 141.02 6.24 1081.58 0.00 8.30

24

IG BIH QUARTS TRIPS_M TRIPS

Means and 95.0 Percent Tukey HSD Intervals

Algorithm

-1

1

3

5

7

9

11

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Figure 13: Means plot of ARPD and 95%
Tukey HSD intervals of the five methods on
the instance set SDST50.

Interactions and 95.0 Percent Tukey HSD Intervals

Type of Instance

-2

2

6

10

14

18

22

1 2 3 4 5 6 7 8 9 10 11 12

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

) Algorithm

IG

BIH
QUARTS

TRIPS_M

TRIPS

Figure 14: Interaction plot of ARPD and 95%
Tukey HSD intervals of the five methods on
the instance set SDST50.

/c12114a161115/page.psp.557

7. Conclusions and Future work558

In this paper, a learning and forgetting effects model is constructed for the sequence559

dependent setup time no-wait flowshop to minimize the total flowtime. To speed up the560

search process, objective incremental properties are deduced which are different from the561

traditional properties for no-wait flowshops without learning and forgetting effects. In terms562

of objective incremental properties, an initial solution construction method is developed563

which is shown to be more effective than existing methods. To enhance the intensification564

of the proposed algorithm, variable neighborhood descent (VND) methods are investigated,565

among which V ND6 is verified to be the most effective through comprehensive statistical566

experimentations. A modified destruction & reconstruction procedure is presented to improve567

diversification. An iterated greedy algorithm IG is proposed. This IG is compared with568

existing heuristics (BIH, TRIPS, TRIPS_M, QUARTS) and non-deterministic metaheuristic569

algorithms (IG_RSLS and IGX) on four instance sets with different termination criteria.570

Experimental and statistical results show that the ARPD of the proposed IG is 0 most of571

the time which is much less than those of IG_RSLS and IGX using the same CPU time.572

The proposed IG outperforms BIH, TRIPS, TRIPS_M, QUARTS in terms of effectiveness.573

TRIPS, TRIPS_M and QUARTS use much more computational time than the proposed IG.574

The running time of the proposed IG is less than 6 seconds for n ≤ 200, which is desirable in575

practice.576

Future avenues of research include other objectives in no-wait flowshops (e.g., total577

tardiness) which are common in some practical industries and more learning and forgetting578

factors for real-time applications. Other generalized problems with applications in industry579

as those shown by Pan et al. [PWM+13] or Li et al. [LP16] could be extended with the580

consideration of learning and forgetting effects. Applying learning and forgetting effects to581

the setup times themselves is also a very interesting problem that has been, to the best of582

our knowledge, ignored in the scheduling literature. It has to be stressed that setup times583

25

are operations carried out in machines usually by trained personnel subject to learning and584

forgetting effects. Studying other metaheuristic approaches is always a worthwhile effort as585

more refined methods might be able to reach even better solutions.586

Acknowledgments587

This work is supported by the National Natural Science Foundation of China (Nos.588

61572127, 61272377), the Key Research & Development program in Jiangsu Province (No.589

BE2015728), the Collaborative Innovation Center of Wireless Communications Technology590

and the Key Natural Science Fund for Colleges and Universities in Jiangsu Province (No.591

12KJA630001). Rubén Ruiz is partially supported by the Spanish Ministry of Economy and592

Competitiveness, under the project “SCHEYARD - Optimization of Scheduling Problems in593

Container Yards” with reference DPI2015-65895-R.594

[AJRA14] H Asefi, F Jolai, M Rabiee, and ME Tayebi Araghi. A hybrid nsga-ii and vns for solving a595

bi-objective no-wait flexible flowshop scheduling problem. The International Journal of Advanced596

Manufacturing Technology, 75(5-8):1017–1033, 2014.597

[AS13] Sedighe Arabameri and Nasser Salmasi. Minimization of weighted earliness and tardiness for598

no-wait sequence-dependent setup times flowshop scheduling problem. Computers & Industrial599

Engineering, 64(4):902–916, 2013.600

[Bis99] Dirk Biskup. Single-machine scheduling with learning considerations. European Journal of601

Operational Research, 115(1):173–178, 1999.602

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and603

conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003.604

[BZ13] J. Behnamian and M. Zandieh. Earliness and tardiness minimizing on a realistic hybrid flowshop605

scheduling with learning effect by advanced metaheuristic. Arabian Journal for Science and606

Engineering, 38(5):1229–1242, 2013.607

[CT12] Yu-Hsiang Chung and Lee-Ing Tong. Bi-criteria minimization for the permutation flowshop608

scheduling problem with machine-based learning effects. Computers & Industrial Engineering,609

63(1):302–312, 2012.610

[CW00] T.C.Edwin Cheng and Guoqing Wang. Single machine scheduling with learning effect considera-611

tions. Annals of Operations Research, 98(1-4):273–290, 2000.612

[GPSL13] Kaizhou Gao, Quanke Pan, P.N. Suganthan, and Junqing Li. Effective heuristics for the no-wait613

flow shop scheduling problem with total flow time minimization. International Journal of614

Advanced Manufacturing Technology, 66(9-12):1563–1572, 2013.615

[GS88] SK Goyal and C Sriskandarajah. No-wait shop scheduling: computational complexity and616

approximate algorithms. Opsearch, 25(4):220–244, 1988.617

[HS96] N. G. Hall and C. Sriskandarajah. A Survey of Machine Scheduling Problems with Blocking618

and No-Wait in Process. Operations Research, 44(3):510–525, 1996.619

[LC09] Dipak Laha and UdayK. Chakraborty. A constructive heuristic for minimizing makespan in620

no-wait flow shop scheduling. The International Journal of Advanced Manufacturing Technology,621

41(1-2):97–109, 2009.622

[LC13] Wen-Chiung Lee and Yu-Hsiang Chung. Permutation flowshop scheduling to minimize the total623

tardiness with learning effects. International Journal of Production Economics, 141(1):327–334,624

2013.625

[Lee04] Wen-Chiung Lee. A note on deteriorating jobs and learning in single-machine scheduling626

problems. International Journal of Business and Economics, 3(1):83–89, 2004.627

[LP16] J.-Q. Li and K. Pan, Quan-Ke Mao. A hybrid fruit fly optimization algorithm for the realistic628

hybrid flowshop rescheduling problem in steelmaking systems. IEEE Transactions on Automation629

Science and Engineering, 13(2):932–949, 2016.630

26

[LPS99] L.Bianco, P.Dell’Olmo, and S.Giordani. Flow shop no-wait scheduling with sequence-dependent631

setup times and release dates. INFOR, 37(1):3–19, 1999.632

[LWS04] WC Lee, CC Wu, and HJ Sung. A bi-criterion single-machine scheduling problem with learning633

considerations. ACTA INFORMATICA, 20(4):303–315, 2004.634

[LWW08] Xiaoping Li, Qian Wang, and Cheng Wu. Heuristic for no-wait flow shops with makespan635

minimization. International Journal of Production Research, 46(9):2519–2530, 2008.636

[Mos01] Gur Mosheiov. Scheduling problems with a learning effect. European Journal of Operational637

Research, 132(3):687–693, 2001.638

[NA14] Marcelo Seido Nagano and Daniella Castro Araújo. New heuristics for the no-wait flowshop639

with sequence-dependent setup times problem. Journal of the Brazilian Society of Mechanical640

Sciences and Engineering, 36(1):139–151, 2014.641

[NEH83] Muhammad Nawaz, E Emory Enscore, and Inyong Ham. A heuristic algorithm for the m-machine642

n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983.643

[NM16] Marcelo Seido Nagano and Hugo Hissashi Miyata. Review and classification of constructive644

heuristics mechanisms for no-wait flow shop problem. The International Journal of Advanced645

Manufacturing Technology, 86(5-8):2161–2174, Jan 2016.646

[NMA15] Marcelo Seido Nagano, Hugo Hissashi Miyata, and Daniella Castro Araújo. A constructive647

heuristic for total flowtime minimization in a no-wait flowshop with sequence-dependent setup648

times. Journal of Manufacturing Systems, 36:224–230, 2015.649

[NZ14] B. Naderi and M. Zandieh. Modeling and scheduling no-wait open shop problems. International650

Journal of Production Economics, 158:256–266, 2014.651

[PR12] Quan-Ke Pan and Rubén Ruiz. Local search methods for the flowshop scheduling problem with652

flowtime minimization. European Journal of Operational Research, 222(1):31–43, 2012.653

[PR13] Quan-Ke Pan and Rubén Ruiz. A comprehensive review and evaluation of permutation flowshop654

heuristics to minimize flowtime. Computers & Operations Research, 40(1):117–128, 2013.655

[PWM+13] Quan-Ke Pan, L. Wang, K. Mao, J.-H. Zhao, and M. Zhang. An effective artificial bee colony656

algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE Transactions657

on Automation Science and Engineering, 10(2):307–322, 2013.658

[PWS+13] Quan-Ke Pan, L. Wang, H.-Y. Shang, J.-Q. Li, and M. Liu. A high performing memetic algorithm659

for the flowshop scheduling problem with blocking. IEEE Transactions on Automation Science660

and Engineering, 10(3):741–756, 2013.661

[PWZ08] Quan-Ke Pan, L. Wang, and B.-H. Zhao. An improved iterated greedy algorithm for the no-wait662

flow shop scheduling problem with makespan criterion. International Journal of Advanced663

Manufacturing Technology, 38(7-8):778–786, 2008.664

[PZ12] F. Pargar and M. Zandieh. Bi-criteria SDST hybrid flow shop scheduling with learning effect of665

setup times:water flow-like algorithm approach. International Journal of Production Research,666

50(10):2609–2623, 2012.667

[Raj93] Chandrasekharan Rajendran. Heuristic algorithm for scheduling in a flowshop to minimize total668

flowtime. International Journal of Production Economics, 29(1):65–73, 1993.669

[RCTM11] I. Ribas, R. Companys, and X. Tort-Martorell. An iterated greedy algorithm for the flowshop670

scheduling problem with blocking. Omega, 39(3):293–301, 2011.671

[RS07] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy algorithm for the permu-672

tation flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049,673

2007.674

[RS08] Rubén Ruiz and Thomas Stützle. An iterated greedy heuristic for the sequence dependent setup675

times flowshop problem with makespan and weighted tardiness objectives. European Journal of676

Operational Research, 187(3):1143–1159, 2008.677

[RZ97] Chandrasekharan Rajendran and Hans Ziegler. An efficient heuristic for scheduling in a flowshop678

to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1):129–679

138, 1997.680

[TCW11] Sunantha Teyarachakul, Suresh Chand, and James Ward. Effect of learning and forgetting on681

27

batch sizes. Production and Operations Management, 20(1):116–128, 2011.682

[VNFR13] Behdin Vahedi Nouri, Parviz Fattahi, and Reza Ramezanian. Hybrid firefly-simulated annealing683

algorithm for the flow shop problem with learning effects and flexible maintenance activities.684

International Journal of Production Research, 51(12):3501–3515, 2013.685

[Wan06] J.-B. Wang. A note on scheduling problems with learning effect and deteriorating jobs. Interna-686

tional Journal of Systems Science, 37(12):827–833, 2006.687

[WC07a] Ji-Bo Wang and TC Edwin Cheng. Scheduling problems with the effects of deterioration and688

learning. Asia-Pacific Journal of Operational Research, 24(2):245–261, 2007.689

[WC07b] Xiuli Wang and T.C. Edwin Cheng. Single-machine scheduling with deteriorating jobs and690

learning effects to minimize the makespan. European Journal of Operational Research, 178(1):57–691

70, 2007.692

[WJCW12] Ji-Bo Wang, P. Ji, T.C.E. Cheng, and Dan Wang. Minimizing makespan in a two-machine flow693

shop with effects of deterioration and learning. Optimization Letters, 6(7):1393–1409, 2012.694

[Wri36] T. P Wright. Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences,695

3(4):122–128, 1936.696

[WW14] Ji-Bo Wang and Jian-Jun Wang. Flowshop scheduling with a general exponential learning effect.697

Computers & Operations Research, 43(1):292–308, 2014.698

[WZZ+13] Xiao-Yuan Wang, Zhili Zhou, Xi Zhang, Ping Ji, and Ji-Bo Wang. Several flow shop scheduling699

problems with truncated position-based learning effect. Computers & Operations Research,700

40(12):2906–2929, 2013.701

[XZL12] Tao Xu, Xia Zhu, and Xiaoping Li. Efficient iterated greedy algorithm to minimize makespan for702

the no-wait flowshop with sequence dependent setup times. In Computer Supported Cooperative703

Work in Design (CSCWD), 2012 IEEE 16th International Conference on, pages 780–785, May704

2012.705

[YC08] Wen-Hua Yang and Suresh Chand. Learning and forgetting effects on a group scheduling problem.706

European Journal of Operational Research, 187(3):1033–1044, 2008.707

[YLHZ12] Yunqiang Yin, Min Liu, Jinghua Hao, and MengChu Zhou. Single-machine scheduling with job-708

position-dependent learning and time-dependent deterioration. Systems, Man and Cybernetics,709

Part A: Systems and Humans, IEEE Transactions on, 42(1):192–200, Jan 2012.710

28

