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Universitat Politècnica de València, Camino de vera s.n. (Building 7F),

ES-46022 Valencia, Spain.

(Dated: 14 November 2017)

A multiple scattering theory is applied to study the properties of flexural waves prop-

agating in a plate with periodically structured N -beam resonators. Each resonator

consists of a circular hole containing an inner disk connected to background plate with

N rectangular beams. The Bloch theorem is employed to obtain the band structure

of a two-dimensional lattice containing a single resonator per unit cell. Also, a numer-

ical algorithm has been developed to get the transmittance through resonators slabs

infinitely long in the direction perpendicular to the incident wave. For the numerical

validation, a square lattice of 2-beam resonators has been comprehensively analyzed.

Its band structure exhibits several flat bands, indicating the existence of local reso-

nances embedded in the structure. Particularly, the one featured as the fundamental

mode of the inner disk opens a bandgap at low frequencies. This mode has been

fully described in terms of a simple spring-mass model. As a practical application

of the results obtained, a homogenization approach has been employed to design a

focusing lens for flexural waves, where the index gradient is obtained by adjusting

the orientation of the resonators beams. Numerical experiments performed within

the framework of a three-dimensional finite element method have been employed to

discuss the accuracy of the models here described.
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I. INTRODUCTION

As a kind of lightweight elastic structure, plates are of great significance in engineer-

ing. Many studies have been performed for elastic waves propagating in thin plates with

periodically arranged microstructures owing to the novel wave propagation behaviors, like

bandgaps, waveguiding and negative refraction.1,2 Additionally, the periodically structured

plates provide a route to construct elastic materials with adjustable parameters which are

not available in nature materials.3–6 At low frequencies, the wavelength is much larger than

the lattice constant and, consequently, the plates with microstructures can be treated as

if they were homogeneous. Homogenization theories have been developed to extract the

effective parameters of these structured materials, usually called metamaterials.3,4 Gradi-

ent index lens7–10 and negative index lens4,5,11–13 are typical examples showing the bright

future of phononic crystals and metamaterials. Focusing and negative refraction have at-

tracted considerable attention in recent years because the former is of practical interest in

signal detection and energy harvesting,14,15 while the latter has potential applications in

super-resolution imaging.16

Bandgaps are one of the most intriguing features of periodic structures and they have

led to a variety of applications, such as filtering, waveguiding and vibration control.1,2

Bragg scattering and local resonance are the two mechanisms usually employed to open

bandgaps.17 In the former case, the underlying mechanism lies in the destructive interfer-

ence among the multiple scattered waves so that the bandgaps fall into the frequency regions

where the wavelength is comparable to the lattice constant. Quite differently, owing to the

tunability of local resonances, the bandgaps in the latter case can be extended to low fre-

quency regions, indicating a promising route to control noise and vibration in extremely low

frequencies.18 Numerous works have been implemented to open resonance-type bandgaps

for flexural waves by embedding spring-mass like resonators vibrating in the out-of-plane

direction, such as binary locally resonant structures,19,20 pillars,21–23 spring-masses24 and

holes with inner structures.13,25 Among these resonant structures, the last one, also named

as N -beam resonator in Ref. 26, deserves more attention because it is of easy manufacturing

by using laser or waterjet cutting machines, which is crucial in practical applications.

In the past decades, several well-developed theories, such as the plane-wave expansion

method, finite-difference time domain method, multiple scattering theory and finite ele-
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ment method, have been widely used to study the wave propagation behaviors for periodic

lattices.17 Among these methods, finite element method dominates owing to its high effi-

ciency in dealing with periodic structures with complex unit cells, which is the common case

for resonant structures. In fact, among the aforementioned works concerning resonance-

type bandgaps, only a few of them were carried out theoretically with plane-wave expansion

method.19,20,24 The other works13,21–23,25 were performed with the help of the finite element

method. Fortunately, the scattering of flexural waves from a single N -beam resonator has

been solved analytically by Climente et al.26 with the impedance matrix method, which

makes it possible to study the N -beam resonator-based platonic crystals theoretically with

the multiple scattering theory.27,28

This paper aims to investigate the properties of flexural waves propagating in a platonic

crystal consisting on a thin plate containing a periodic lattice of N -beam resonators. It

is organized as follows. After this introduction, Sec. II shows the model developed for

calculating band structures and transmission spectrum by employing the multiple scattering

theory, some useful but tedious developments are given in the Appendices. In Sec. III, some

numerical simulations are shown to validate the present theory and to reveal the propagation

characteristics of Bloch waves, especially the resonance-type bandgaps. Afterwards, we

design a gradient index focusing lens by tuning the orientation of beams in the 2-beam

resonators. Finally, the work is summarized in Sec. IV, which also gives an outlook of

potential applications of the model here introduced.

II. FLEXURAL WAVE SCATTERING BY PERIODICAL ARRAY OF

N-BEAM RESONATORS

This section presents the formulation of the multiple scattering theory applied to flexural

waves propagating in a perforated thin plate. It begins with a preliminary knowledge about

plates and beams, then the multiple scattering theory is applied to an array of N -beam

resonators with arbitrary and periodic distributions.
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A. Modeling of plates and beams

If a plate is thin enough to meet Kirchhoff’s assumptions, under a harmonic excitation,

the transverse (out-of-plane) displacement W is governed by the biharmonic equation as

follows:29

∇4W − k4
pW = 0, (1)

where kp = (ρhω2/D)1/4 is the wave number with ω being the angular frequency; D =

Eh3/12 (1− ν2) is the rigidity with E, ν and ρ being the Young’s modulus, Poisson’s ratio

and density of the plate, respectively. Moreover, h is the thickness of the plate. The time

harmonic factor e−iωt is implicit in all the formulation but will be omitted throughout the

paper for simplicity. The solution of Eq. (1) is expressed in polar coordinates as

W (r, θ) =
∞
∑

q=−∞

[

AJ
q Jq(kpr) + AI

qIq(kpr) + BH
q Hq(kpr) + BK

q Kq(kpr)
]

eiqθ, (2)

where Jq(·) is the Bessel function, Hq(·) is the Hankel function of first kind, and Iq(·), Kq(·)
are the modified Bessel functions. The column matrices Aq = [AJ

q AI
q ]

t and Bq = [BH
q BK

q ]t

contain the expansion coefficients for the incoming and scattered waves, respectively.

The scatterers here considered are N -beam resonators, consisting of a circular hole (with

radius R2) containing a smaller concentric circular plate (with radius R1) connected to the

background plate with N uniformly distributed rectangular beams (with width b). As an

example, resonators with 2 beams are plotted in Figure 1, where labels I and II are used to

denote the regions inside the inner plate and in the background plate, respectively. In this

work, it is assumed that the resonators are fabricated by a waterjet cutting machine and all

parts are made of the same material as the background plate.

From the physical point of view, the field in region II,W = W inc+W scat, can be separated

into two parts, in which the incoming field is

W inc(r, θ) =
∞
∑

q=−∞
F JI
q (kpr, θ)Aq, (3)

and the scattered field is

W scat(r, θ) =
∞
∑

q=−∞
FHK
q (kpr, θ)Bq, (4)

where the matrix FΥΦ
q (ξ, η) = [Υq(ξ) Φq(ξ)]e

iqη is defined for simplicity. Notice that Hq(·)
and Kq(·) get infinite values at the origin point, therefore they have to be discarded and the
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FIG. 1. (color on line) Definition of the systems of coordinates and variables employed in the

expressions of the multiple scattering theory. (a) Schematic diagram of a cluster of resonant

scatterers located at arbitrary positions. Each scatterer is numbered by a Greek letter. The inset

shows the parameters corresponding to a single scatterer. A 2-beam resonator is illustrated as a

typical example. (b) Scheme of a slab with a thickness of three layers but infinite along the y-

direction. The scatterers are arranged in a square lattice. Each scatterer is numbered by a couple

of letters defining the row and column. On both figures, a plane wave impinges the structures with

an angle of incidence θ0.

field inside the inner plate is

W I(r, θ) =
∞
∑

q=−∞
F JI
q (kpr, θ)Cq, (5)

where the superscript I is used to distinguishing the out-of-plane displacements in the re-

gion I, W I , from their counterparts defined in region II, and Cq = [CJ
q CI

q ]
t contains the

expansion coefficients for flexural waves inside the region I. In numerical calculations, the

series have to be truncated and the summations run from −Nq to Nq, where the value Nq

giving adequate accuracy is determined through the convergence study.26

For the beams in one resonator, the transverse (out-of-plane) displacement of the n-th

beam V n(x) is controlled by the following equation29

∂4V n

∂x4
− k4

bV
n = 0, (6)

where the beam is defined for x ∈ [R1, R2] with an inclination angle of θn (n = 1 to N). The

wave number in the beam is kb = (mω2/EI)1/4, with I= bh3/12 being the second moment
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of area and m = ρbh being the mass per unit length. The solution of Eq. (6) is

V n(x) = Dn
1 e

ikbx +Dn
2 e

−ikbx +Dn
3 e

kbx +Dn
4 e

−kbx, (7)

where coefficients Dn
i (i = 1 to 4) define the contributions of the different waves inside the

beams.

B. Multiple scattering theory for arbitrarily located scatterers

Consider a cluster of scatterers arbitrarily located on the plate, as shown in Fig. 1(a), Rα

(α=1 to Nsc) defines the position of the center of the α scatterer in the global coordinates

system (R, Θ). If an external wave W 0 impinges on the cluster, the total scattered field is

obtained by adding all the scattered fields by each scatterer

W scat(R,Θ) =
Nsc
∑

α=1

∞
∑

q=−∞
FHK
q (kprα, θα)(Bα)q, (8)

where the column matrix (Bα)q contains the expansion coefficients for waves scattered by

the α scatterer. The polar coordinates (rα, θα) are measured in a local system centered at

Rα. In order to avoid any confusion, the uppercase and lowercase letters are adopted to

distinguish the polar coordinates used in the global and local systems. As shown in Fig.

1(a), the field point P can be expressed in the global and local systems throughR = Rα+rα.

Multiple scattering theory is a self-consistent theory in which the incoming wave of an

arbitrary scatterer α is made of a combination of the external waves and scattered waves

caused by all the remaining scatterers

W inc
α (rα, θα) =

∞
∑

s=−∞
F JI
s (kprα, θα)(Aα)s

=
∞
∑

s=−∞
F JI
s (kpR,Θ)A0

s +
Nsc
∑

β=1

∞
∑

s=−∞
(1− δαβ)F

HK
s (kprβ, θβ)(Bβ)s, (9)

where (Aα)s includes the total incoming coefficients for α scatterer and A0
s contains the

coefficients for external waves expanded in the global system. For a plane wave, W 0 = eikp·R,

the expansion coefficients are A0
s = [ise−isθ0 0]t with θ0 being the propagation angle. After

introducing the Graf’s addition theorem,28,30 the total incoming coefficients (Aα)s can be

expressed in the α frame as

(Aα)s = A0
se

ikp·Rα +
Nsc
∑

β=1

∞
∑

r=−∞
(1− δαβ)Gsr(kpRαβ,Θαβ)(Bβ)r, (10)
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where the matrix Gsr is related with the frame change from β scatterer to α scatterer

Gsr(kpRαβ,Θαβ) =





Hs−r(kpRαβ) 0

0 (−1)rKr−s(kpRαβ)



 ei(r−s)Θαβ . (11)

The coefficients of the incoming and scattered waves for the α scatterer are linked through

the transfer matrix

(Bα)q =
∞
∑

s=−∞
(T α)qs(Aα)s, (12)

where T α is the transfer matrix of the α resonator and its specific form can be found in Ref.

26. Substituting Eq. (10) into Eq. (12), we have

(Bα)q =
∞
∑

s=−∞
(T α)qsA

0
se

ikp·Rα +
Nsc
∑

β=1

∞
∑

r,s=−∞
(1− δαβ)(T α)qsGsr(kpRαβ,Θαβ)(Bβ)r. (13)

After a few operations, the linear system of equations can be expressed as

Ns
∑

β=1

∞
∑

r=−∞
(Mαβ)qr(Bβ)r = (Nα)q, (14)

with notations

(Mαβ)qr = δαβδqrI −
∞
∑

s=−∞
(1− δαβ)(T α)qsGsr(kpRαβ,Θαβ), (15)

(Nα)q =
∞
∑

s=−∞
(T α)qsA

0
se

ikp·Rα (16)

where δ is the Kronecker symbol and I is the unit matrix with dimension 2×2.

The coefficients for all scatterers can be solved from Eq. (14), then the total field is easily

available by adding external waves to the total scattered waves, namely

W (R,Θ) = eikp·R +
Nsc
∑

α=1

∞
∑

q=−∞
FHK
q (kprα, θα)(Bα)q. (17)

Alternatively, the total field can be expressed in a local frame by considering the scattering

process for one particular scatterer, take α scatterer as an example, we have

W (rα, θα) =
∞
∑

q=−∞

[

F JI
q (kprα, θα)(Aα)q + FHK

q (kprα, θα)(Bα)q
]

, (18)

The second form expressed in the above equation will be employed to solve the coefficients

for waves in the inner plates and beams.
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For N -beam resonators, the fields in the inner plates are determined by the following

procedures:26

W I
α(rα, θα) =

∞
∑

q=−∞
F JI
q (kprα, θα)(Cα)q, (19)

where

(Cα)q =
∞
∑

s=−∞
(T̂ α)qs





W

∂W
∂rα





s

. (20)

The matrix T̂ α is closely related with the geometric parameters of the α resonator and

the reader is recommended to the original paper for more information. The column matrix

appearing in the right hand side of Eq. (20) is rewritten, according to Eq. (18), as




W

∂W
∂rα





s

= MJI
ss (kp, R2)(Aα)s +MHK

ss (kp, R2)(Bα)s, (21)

where the additional matrices appearing are defined as

MΥΦ
ss (ki, r) =





Υs(kir) Φs(kir)

kiΥ
′
s(kir) kiΦ

′
s(kir)



 . (22)

Finally, the multiple scattering problem is fully solved by giving the coefficients determining

the flexural waves in the n-th beam of the α scatterer, it is















(Dn
α)1

(Dn
α)2

(Dn
α)3

(Dn
α)4















= H−1
∞
∑

q=−∞





0 0

MJI
qq (kp, R2) MHK

qq (kp, R2)



















(AJ
α)q

(AI
α)q

(BH
α )q

(BK
α )q















eiqθ
n
α

+H−1
∞
∑

q=−∞





MJI
qq (kp, R1) 0

0 0



















(CJ
α)q

(CI
α)q

0

0















eiqθ
n
α , (23)

where H is an auxiliary matrix employed in expressing the beam stiffness matrix and the

explicit expression can be found in the original paper.26

C. Scattering by a slab with a finite number of layers

Here an infinite slab is considered to analyze the reflectance and transmittance when a

plane wave is impinging on it. The slab consists of L layers in the x-direction and is infinite
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in the y-direction. The distances between the two nearest scatterers in each row and column

are denoted as dx and dy, respectively. For simplicity, it is assumed that all the resonators

are identical and the position of a given scatterer is defined by a pair of indices with the

numbers of each row and column denoted by a Greek letter and a Latin letter, respectively.

The column index runs from 1 to L and the row index runs from −∞ to ∞. As shown in Fig.

1(b), the quantities involved in the previous derivation are renamed with the new notations

defined here. For example, Rl
α is the position vector measured in the global system for the

scatterer located in l column and α row, particularly, Rl
0 defines the center of this column.

The field point P , which is defined as (R, Θ) in the global system, is measured as (rlα, θ
l
α)

in a local frame centered at Rl
α.

The procedures explained in Sec. IIB can be easily applied to the present case by updating

the labels of each scatterer, subsequently, Eq. (13) is rewritten as

(Bl
α)q =

∞
∑

s=−∞
T qsA

0
se

ikp·Rl
0eiαkpdy sin θ0

+
L
∑

m=1

∞
∑

β=−∞

∞
∑

r,s=−∞
(1− δlmδαβ)T qsGsr(kpR

lm
αβ,Θ

lm
αβ)(B

m
β )r, (24)

where the phase factor eiαkpdy sin θ0 is introduced by substituting the geometric relation Rl
α =

Rl
0+Rll

0α. Notice that this equation still takes into account the infinite number of cylinders

and the problem can be simplified by considering the symmetry of the geometry model here

studied. Multiplying Eq. (24) by e−iαkpdy sin θ0 , then we have

[

(Bl
α)qe

−iαkpdy sin θ0
]

=
∞
∑

s=−∞
T qsA

0
se

ikp·Rl
0

+
L
∑

m=1

∞
∑

β=−∞

∞
∑

r,s=−∞
(1− δlmδαβ)T qsGsr(kpR

lm
αβ,Θ

lm
αβ)e

i(β−α)kpdy sin θ0
[

(Bm
β )re

−iβkpdy sin θ0
]

.

(25)

It is clear that the first term in the right hand side is independent on α, and we make it a

priori for the other terms in a similar way. Then a new set of coefficients is defined as

(Bm
0 )r = (Bm

β )re
−iβkpdy sin θ0 , (26)

where the newly defined matrix contains the scattering coefficients of the central scatterer
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in each column. Finally, the counterparts of Eqs. (14), (15) and (16) are

L
∑

m=1

∞
∑

r=−∞
(M lm)qr(B

m
0 )r = (N l

0)q, (27)

where

(M lm)qr = δlmδqrI −
∞
∑

β=−∞

∞
∑

s=−∞
(1− δlmδ0β)T qsGsr(kpR

lm
0β ,Θ

lm
0β )e

iβkpdy sin θ0 , (28)

(N l
0)q =

∞
∑

s=−∞
T qsA

0
se

ikp·Rl
0 . (29)

For solving efficiently the infinite sum in β, we express the matrix as a combination of

complete sums and incomplete sums. The reader is addressed to Appendices A and B for

more details regarding the calculations of lattice sums and matrix M .

Through the system defined in Eqs. (27), (28) and (29), we get the scattering coefficients

for the central scatterers (β = 0) of each column and, subsequently, the coefficients for the

remaining scatterers (β 6= 0) are obtained through the relationship defined in Eq. (26).

Finally, the total displacement field expressed in Eq. (17) is rewritten as

W (R,Θ) = eikp·R +
∞
∑

q=−∞

L
∑

l=1

[ ∞
∑

α=−∞
eiαkpdy sin θ0FHK

q (kpr
l
α, θ

l
α)

]

(Bl
0)q, (30)

where the position vector rl
α (rlα, θ

l
α) is defined in the local frame as

rl
α = R−Rl

0 −Rll
0α. (31)

Introducing the lattice sums defined in Appendix A, Eq. (30) can be rewritten as series

summation with physical meaning. Then, the total field is

W (R,Θ) = eikp·R +
∞
∑

σ=−∞

(

ζHσ eiκσ ·R + ζKσ e−γσ ·R
)

, (32)

where

ζHσ =
∞
∑

q=−∞

L
∑

l=1

2i−q

kpdy

eiqτ1(σ)

| cos τ1(σ)|
e−iκσ ·Rl

0(Bl
0)

H
q , (33)

ζKσ =
∞
∑

q=−∞

L
∑

l=1

π

kpdy

eiqτ2(σ)

| cos τ2(σ)|
eγσ ·Rl

0(Bl
0)

K
q . (34)
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The meaning of each quantity in the previous equations can be found in Appendix A. Once

the total field is determined, we can obtain the displacements of the inner plates and beams

following the formulas listed in Eqs. (19)-(23).

To better understand the physical meaning of the previous results, the energy flux flowing

through the vertical segment [y, y + dy] is analytically calculated. The time averaged flux

〈F±〉 is defined as31

〈F±〉 = ±ωD

2

∫ y+dy

y

Im

[

W
∂

∂x
(△W ∗)− (△W ∗)

∂W

∂x

]

dy, (35)

where ‘△’ and ‘∗’ represent the Laplace operator and complex conjugate, respectively. The

subscript ‘±’ is used to distinguish the flux flowing along and opposite to the positive

x-direction. The energy flux of the incoming plane wave, W 0 = eikp·R, is calculated as

〈F0〉 = ωdyDk3
p cos θ0, and the energy flux of the total field under study is derived as (see

Appendix C)

〈F±〉 = ±ωdyDk3
p







cos θ0 + (1± 1)Re[ζH0 ] cos θ0 ±
∑

cos τ1(σ)∈R

|ζHσ |2| cos τ1(σ)|







. (36)

Dividing the flux of the total field by the incoming one, the reflectance and the transmittance

are calculated as

R = 1 +
〈F−〉
〈F0〉

=
∑

cos τ1(σ)∈R

|ζHσ |2 | cos τ1(σ)|
cos θ0

, (37)

T =
〈F+〉
〈F0〉

= 1 + 2Re[ζH0 ] +
∑

cos τ1(σ)∈R

|ζHσ |2 | cos τ1(σ)|
cos θ0

. (38)

For an infinite slab without dissipation, the sum of reflectance and transmittance equals

to one as a result of energy conservation. This condition has been employed to check the

accuracy of the numerical results.

From the results in Eqs. (32) and (36), we can conclude that the total field is composed of

the incident plane wave and a series of scattered waves containing propagating waves (with

real κσ) and evanescent waves (with complex κσ). Only the propagating waves transport

energy. The evanescent waves are responsible only for the surface effects. If real κσ is

achieved with more than one values of σ, the incoming energy is distributed among these

different order of diffracted waves. Particularly, it is worth mentioning the critical mode in

which the x-component of diffracted wave vector κσ is vanishing. In this case, the order of

scattered wave is under a transition from propagating to evanescent and, consequently, the

Rayleigh anomalies occurring.32,33
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D. Band structure calculation

Let us consider any of the 2D Bravais lattices containing a scatterer per unit cell. The

lattice constant is d and we assume that a scatterer is placed at the origin of the global

system of coordinates. Each scatterer is labeled by a pair of indices as explained in Sec.

IIC, but now the column index runs from −∞ to ∞. According to Bloch’s theorem, the

total field can be expressed as a plane wave modulated by the periodicity of the lattice

W (R+Rm
β ) = eiK·Rm

β W (R), (39)

where K is the Bloch vector. The solutions of interest are the eigenmodes of the periodic

system, in other words, no incident field is considered, as a consequence, we obtain the

following relationship linking the scattering coefficients of resonators located at the origin

and Rm
β

(Bm
β )q = eiK·Rm

β Bq. (40)

With this relation and reminding that the external wave is null, we have after updating

the indices in Eq. (14)
∞
∑

r=−∞
M qrBr = 0, (41)

where the M matrix is

M qr = δqrI −
∞
∑

s=−∞

∞
∑

m,β=−∞

(1− δ0βδ0m)T qsGsr(kpR
m
β ,Θ

m
β )e

iK·Rm
β . (42)

Notice that the double summations in m and β converge very slowly when computing the

M matrix, hence the lattice sums are employed to improve the computing efficiency.34 In

order to obtain non-trivial solutions, the determinant of M must be zero. This defines the

secular equation of the periodic system and the band structure can be obtained by running

the Bloch vector K along the edges of the irreducible Brillouin zone. For each Bloch vector,

a series of trial frequencies are employed in computing M and the ones that make the

matrix tend to be singular are considered as the approximate solutions. This algorithm

needs many trial frequencies to get solutions enough accurate. Therefore, it is less efficient

in computing the whole band structures when compared with the well-developed commercial

finite element packages. Nevertheless, the utility of the method here developed cannot be

neglected in certain situations. For example, the method shows its advantages in computing
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the refractive index at low frequencies (see Fig. 8), where only one value on the first band

is needed in each calculation.

III. RESULTS AND DISCUSSION

The algorithms introduced above can be used as a powerful tool to predict the prop-

agation properties of flexural waves in thin plates with N -beam resonators. As a typical

example of application, in what follows we comprehensively study the properties of 2-beam

resonators arranged in a square lattice with lattice constant d. In fact, this type of structure

has been experimentally analyzed showing directional propagation.25 Therefore, for compar-

ison purposes, the relevant physical and geometric parameters employed for the numerical

calculation are taken directly from Ref. 25: E = 69GPa, ν = 0.33, ρ = 2.7 × 103 kg/m3,

R1 = 5mm, R2 = 10 mm, b = 2 mm, h = 1 mm and d =25 mm. The truncation order is

set as Nq = 18, which is chosen according to the results of the convergence study performed

for a single resonator.26

A. Band structure for a square lattice of 2-beam resonators

The procedure explained in Sec. IID has been applied to obtain the band structure of

a square lattice of 2-beam resonators with parameters as described above. Figure 2 shows

the calculated band structure (solid circles). In brief, the Bloch vector K is scanned along

the edges of the irreducible Brillouin zone, which is shown in the inset. The OA and OC

directions represent the situations where the beams are aligned along the x- and y-axis,

respectively. For the sake of comparison, the hollow circles represent the band structure

obtained with a 3D full elastic model; i.e., using the commercial software COMSOL which

is based on the finite element method. On the other hand, the numerical results reported

in Ref. 25, which were obtained by using Mindlin plate elements, will be also discussed in

what follows.

The full elastic equations are employed in solving the 3D model so that both the in-

plane and out-of-plane motions are taken into consideration. It is observed from Fig. 2

that additional bands appear in the 3D calculation when compared with our theoretical

results. Except for the flat band labeled as b, in the low frequency region, the additional
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FIG. 2. (color on line) Band structure of a square lattice of 2-beam resonators. The dispersion

relation obtained with the 2D model here introduced (red solid circles) is compared with that

obtained using a 3D finite element method (hollow circles). The inset shows a scheme of the lattice

in real space together with the definitions of the high symmetry directions in K-space, where the

irreducible Brillouin zone is depicted in gray. Bands of interest are marked out at selected points

a-f.

bands correspond to in-plane motions. Then, regarding the flexural modes, we can conclude

that our 2D modeling is in good agreement with the 3D full elastic model for frequencies

below 25 kHz, or in reduced units kpR2 ≤ π. For frequencies above 25 kHz, however, large

discrepancies start to appear. It is reasonable to attribute the discrepancies to convergence
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issues due to truncation in the series summations. In other words, more terms should

be employed when computing the series. This calculation has been omitted due to the

computational time.

The flat bands appearing in the band structure indicate the occurrence of some kinds of

local resonances. Figure 3 displays the eigenmodes at selected points (see labels a-f in Fig.

2) within these flat bands. Figures 3(a)-3(f) are obtained with the finite element commercial

software and they show a 3D representation of eigenmodes at points a-f, respectively. It

is observed in Figs. 3(a)-3(d) that some resonances are associated with movements inside

the hole while the background plate remains almost motionless. The inner plate experiences

strong deformations, representing flexural, torsional, translational and rotational displace-

ments, respectively.

For the flexural mode represented in Fig. 3(a) we observe that the inner plate vibrates

as a whole and the beams behave like extension springs providing the restoring force for

the mass in a spring-mass resonator. A simple spring-mass resonator model (see Appendix

D) gives that the frequency of this fundamental mode is 5891 Hz. This frequency matches

quite well with the eigenfrequency at point a in Fig. 2, which is 6078 Hz. In fact, this

resonance represents the fundamental mode for N -beam resonators and has been studied in

a previous work by analyzing the scattering cross-section.26 We found that the fundamental

resonance of the 2-beam resonator with same geometry appears at 6175 Hz, which is in good

agreement with the aforementioned frequencies.

For the torsional mode shown in Fig. 3(b), the beams experience torsional deformation,

behaving like torsion springs. Moreover, the inner plate rotates as a whole in the out-of-

plane direction, the axis of rotation being the beams. The beam theory fails in this case

and the flat band associated with this kind of resonance is missing in the band structure

obtained by our 2D model. However, Mindlin plate theory doesn’t have this limitation, so

the flat band was perfectly reproduced in Andreassen and coworkers’ work.25

The eigenmodes represented in Figs. 3(c) and 3(d) correspond to in-plane motions, which

are out of the scope of the present work. However, it is worth mentioning that they have

interesting properties for designing elastic metamaterials; for example, these two resonances

have been employed to design negative refraction lens for longitudinal waves in solids.4 Quite

differently, the eigenmodes displayed in Figs. 3(e) and 3(f) show antiresonance features

because the inner plate is motionless. Meanwhile, it is observed that the edges of the unit
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FIG. 3. (color on line) Eigenmodes at selected points within the flat bands (see labels a-f in Fig. 2).

The eigenmodes in (a)-(f) are 3D representations and correspond to the eigenmodes at the points

a-f in Fig. 2. They are obtained with a commercial software using a 3D finite elements method.

The 2D displacement maps shown in (g)-(i) represent the eigenmodes obtained with our multiple

scattering approach and they reproduce fairly well the modes at points a, e and f, respectively.

cell are almost stationary. This characteristic is similar to the nodes of standing waves

propagating in a string and indicates that no energy can pass the nodal lines, which is the

underlying mechanism for the flat dispersion relation. The last row of graphs, corresponding

to Figs. 3(g)-3(i), represent 2D displacement maps of the flexural eigenmodes at points a,

e and f, respectively. They are obtained with the 2D multiple scattering model developed

above. From their comparison with the corresponding 3D representations we can conclude

that our 2D model is enough accurate to predict the propagation behavior of flexural waves

in perforated plates.

From Fig. 2 we observe that the structure under study does not contain complete

bandgaps. Nevertheless, partial bandgaps or pseudogaps are observed along specific di-

rections as a result of Bragg scattering and local resonances. Now, attention is paid to the

band structure along the OA direction, which is shown in the left panel of Fig. 4. For

comparison purposes, the band structure for a square lattice of empty holes (hollow circles)
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is also plotted. It is noticeable that, in the low frequency region, the dispersion relation

corresponding to the lattice of 2-beam resonators shows an additional band in comparison

with the lattice of empty holes. This band is strictly associated to the lowest resonant

mode embedded in the scattering unit. This fundamental mode creates a narrow resonant

bandgap due to its interaction with flexural waves propagating in the plate. The bandgap

defined at points a-b corresponds to that situation. On the other hand, the bandgap at high

frequencies, with edges at the points e-f, represents a regular bandgap associated to Bragg

scattering. Finally, the pseudogap defined by the anticrossing bands at points c-d is not of

interest here and will not be further discussed. It is originated by the interaction of modes

with similar symmetry but belonging to different bands.
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FIG. 4. (color on line) Left panel: Dispersion relation of flexural waves propagating in a thin plate

containing a square lattice of 2-beam resonators (solid circles). The hollow circles represent the

dispersion corresponding to a square lattice of empty holes with same radii R2. For frequencies

below 5 kHz both dispersion relations are almost identical. Right panel: Transmittance spectra

obtained for slabs made of three (dashed line) and five (solid line) layers. The inset shows that

resonators are oriented in the same direction as the propagating wave, the x-direction. The slabs

are infinite along the y-direction.

In order to demonstrate the existence of the pseudogaps observed in the band structure,

we have studied the transmission through finite crystal structures orientated along the OA
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FIG. 5. (color on line) Eigenmodes calculated at the edges of two bandgaps appearing in the band

structure shown in Fig. 4. The 3D plots are obtained using a 3D finite element method (left

panels) while the 2D maps are obtained using the 2D multiple scattering method here reported

(right panels). (a)-(b) Eigenmodes at points a and b in Fig. 4. (c)-(d) Eigenmodes at points e

and f in Fig. 4.

direction. The right panel in Fig. 4 shows the transmittance spectra calculated using the

numerical algorithm described in Sec. II C. The spectra corresponding to slabs made of three

and five layers are depicted as dashed and solid lines, respectively. As expected, it is shown

that bandgaps correspond to minimums in the transmittance spectra. It is also observed

that bandgaps are better defined with increasing number of layers of the crystal slab. For

example, five layers are needed in order to forbid completely the propagation of flexural

waves in the region between 30.2 kHz and 36.7 kHz, corresponding to a Bragg bandgap.

However, for the low frequency bandgap, corresponding to a resonant bandgap, three layers

are enough to stop the propagation between 5.9 kHz and 7.0 kHz.

Figure 5 displays the eigenmodes associated with the edges of the two partial gaps of

interest here; see points a-b and e-f, respectively, in Fig. 4. The 3D and 2D representations

correspond to results obtained from a 3D finite element model and our 2D analytical model,

respectively. For the low frequency gap [see Figs. 5(a) and 5(b)], the fundamental mode

of the 2-beam resonator interacts with flexural waves propagating in the plate, producing

the bandgap opening. Notice that this behavior is specific for this type of scattering unit,

not appearing for the case of empty holes scatterers [see Fig. 4]. Conversely, if a local

resonance doesn’t interact with propagating waves in the plate, the energy remains in the

resonators and no gap can be opened. This behavior is observed for the flat band labeled

as b in Fig. 2; it corresponds to a torsional resonance [see Fig. 3(b)] not interacting with
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flexural waves. The modes associated with the high frequency bandgap [see Figs. 5(c) and

5(d)] show different features as the dynamic deformation is no longer localized in the inner

structure, but occurs over the whole unit cell, which is the typical feature of Bragg-type

bandgaps.
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FIG. 6. (color on line) Left panel: Dispersion relation of the flexural waves propagating along the

OC direction in a thin plate containing a square lattice of 2-beam resonators (solid circles). The

hollow circles represent the dispersion corresponding to a square lattice of empty holes with same

radii R2. Right panel: Transmittance spectra obtained for slabs made of three (dashed line) and

five (solid line) layers. The inset shows that the resonators are orientated perpendicularly to the

propagating wave. The slabs are infinite along the y-direction.

For its interest, let us discuss the band structure along the OC direction, which is shown

in Fig. 6. Compared with the previous case, additional bandgaps appear along this direction

and their existence is proved again by the transmittance dips observed in the spectra. A

bandgap appears at low frequencies but now is much broader than its counterpart along the

OA direction [see Fig. 4]. The frequencies at the lower and upper edges are 6.1 kHz and

9.6 kHz, respectively. This bandgap enhancement is attributed to the stronger interaction

between the local resonance with the propagating flexural waves; now the beams are excited

in phase because they are arranged in parallel with the wavefronts of the incident wave.

Regarding high frequency bandgaps, it is observed that minimums in the transmittance
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FIG. 7. (color on line) (a)-(b) Eigenmodes at the edges of the resonance-type bandgap [see points

a and b in Fig. 6]. (c)-(d) Eigenmodes at selected points within the deaf bands [see points c and

d in Fig. 6]. The 3D representations obtained with a 3D finite element method (left panels) are

compared with the 2D maps obtained with our 2D multiple scattering model (right panels).

are broader than that predicted by the band structure calculation. This effect can be

explained in terms of the existence in the dispersion relation of deaf bands,35 labeled as c

and d in Fig. 6, located near the bandgaps. Therefore, since the modes in these bands

are antisymmetric with respect to the incident wave, they cannot be excited and create

additional non-propagating frequency regions in the transmittance spectra.

The eigenmodes calculated at selected points in the band structure [see labels a to d in

Fig. 6] are depicted in Fig. 7. On the one hand, Figs. 7(a) and 7(b) depict the eigenmodes

at the edges of the resonance-type bandgap, showing the excitation of the fundamental mode

of scattering unit. On the other hand, the eigenmodes in Figs. 7(c) and 7(d) belong to deaf

bands. Notice that they are antisymmetric with respect to the direction of the impinging

wave.35,36 The deaf bands cannot be excited by the external wave and, consequently, they

produce additional minimums in the transmission spectra.

B. Gradient index lens made of 2-beam resonators arrays

The first bands in Fig. 4 and Fig. 6 follow a parabolic dispersion relation; i.e., ω = βk2.

However, the β coefficient depends on the relative orientation of the 2-beam resonator with

respect to the propagation direction in the plate. In other words, the dispersion relation

is anisotropic and a homogenization procedure can be applied to design gradient index

materials by tuning the orientation of 2-beam resonators.
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FIG. 8. (color on line) Effective refractive index as a function of the angle between the beams

and the incident direction. The insets show the two limiting cases: 0o and 900. The stars symbols

define the discrete values employed in designing the gradient index lens.

Based on the Snell’s law, the refractive index for flexural waves with frequencies in the

first band can be defined as

n =

√

βi

βt

, (43)

where βi and βt are the coefficients for materials in the incident side and transmitted side,

respectively. Within the first band, these coefficients are easily obtained and then the

refractive index. In brief, for each angle of tilting (i.e., the angle between the beams and

the incoming waves), only one point in the first band is needed to get its corresponding

β. Thus, for the case of 2-beam resonators, the continuous line in Fig. 8 represents the

dependence of n with the tilted angle. The refractive indices nx and ny are defined when the

wave is incoming from the x- and y- directions, respectively. Therefore, they are identical

since the angle in Fig. 8 represents the tilted angle between the beams and the incoming

waves. A symmetric profile is obtained owing to the geometric symmetry. We can conclude

that the minimum and maximum values of n are obtained when the beams are parallel and

perpendicularly, respectively, to the incident direction [see the insets of Fig. 8]. Between

the two limiting cases (0 and 90 degrees), the refractive index n increases with the angle of

tilting.

In what follows, the homogenization described above is applied to design a gradient index

lens. In previous works,7–9 the hyperbolic secant profile has been chosen to obtain focusing

with less aberration

n(y) = n(0)sech(αy), (44)
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FIG. 9. (color on line) 2D maps of the (out-of-plane) displacement amplitude for the x-dominated

lens (top panel) and y-dominated lens (bottom panel). The frequency of the incident Gaussian

beam is 1.6 kHz.

where the gradient index is

α =
1

ℓ
cosh−1

[

n(0)

n(±ℓ)

]

, (45)

where ℓ is the half-height of the lens, n(0) is the refractive index on the x-axis (y = 0) and

n(±ℓ) is that at the ends of the lens (y = ±ℓ).

In principle, we would like to get the profile described in Eq. (44) by changing the

orientation of beams. The profile should be isotropic theoretically, but this limitation has to

be discarded here because the anisotropy is the underlying mechanism employed to achieve

the gradient index. Then, the profile is obtained by changing the x and y components of
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refractive index, nx(y) and ny(y), individually. For the sake of simplicity, the two kinds of

lenses are called as x-dominated lens and y-dominated lens, respectively. Both are designed

with profiles as closer as possible to that of Eq. (44) with n(0) = 1.223 and n(±ℓ) = 1.115.

The designed devices consist of 9 column layers and each layer contains 21 resonators. All

the resonators are arranged in a square lattice with lattice constant d = 25mm. The tilted

angles in each column are marked out with stars symbols in Fig. 8. Then, the values from

the left to the right in Fig. 8 correspond to the resonators from the top to the bottom in

Fig. 9. Let us remark that, for nx (ny), the horizontal axis in Fig. 8 represents the angle

between the beams and the x-axis (y-axis).

The performance of the proposed devices has been studied using the multiple scattering

algorithm reported in Sec. II B. A Gaussian beam with amplitude unity along its central

axis is employed in the calculation. Figure 9 reports the 2D maps corresponding to the

displacement amplitude of the x-dominated lens (top panel) and y-dominated lens (bottom

panel) for the common frequency of 1.6 kHz. In both figures, the coordinates are normalized

to the lattice constant. It is noticed that the focusing behavior is observed in both cases

and the amplitude amplification at the focal points are 1.5 (x-dominated lens) and 1.3 (y-

dominated lens). Larger amplitude amplification is obtained from the x-dominated lens and

the focal region of the y-dominated lens is much broader.

The anisotropy presents two main aspects: on one hand, it enables to tune the refractive

index by changing the orientation of beams and thus achieving focusing by gradient index

lenses; on the other hand, it results in an unavoidable aberration, the position of the focal

point being frequency dependent. To better illustrate this effect, Fig. 10 shows the amplitude

distribution for several frequencies for the the x-dominated lens (a) and y-dominated lens

(b), respectively. The displacement amplitudes are normalized to the maximum amplitude

of the Gaussian beam. The shadowed regions bound the positions of the focal points for

the frequencies studied. It is observed that the calculated profiles match well with the

experimental profiles obtained with acoustic convergent lens.37 All in all, the x-dominated

lens performs better than the y-dominated lens. First, the aberration of the y-dominated

lens is far greater than that of x-dominated lens. Besides, for the x-dominated lens, the

positions of the focal points shift within two times the lattice constant for the frequencies

studied. The shifting is almost eight times for the y-dominated lens. Based on this analysis,

it is concluded that the x-dominated lens is a good alternative to be used in energy harvesting
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FIG. 10. (color on line) Left panels: The normalized amplitude distribution along the x-axis for

the x-dominated lens (a) and y-dominated lens (b), respectively. The arrows indicate the positions

of the focal points. The shadowed regions define the band where the focal points are found for the

frequencies studied. Right panels: The normalized amplitude distribution in the y-direction at the

focal points.

for flexural waves even though the scheme here proposed should be improved.14,15

IV. SUMMARY

In summary, within the framework on the multiple scattering theory, this work has the-

oretically investigated the behavior of flexural wave propagating in thin perforated plates

containing N -beam resonators. We have developed a numerical algorithm allowing the com-

putation of the flexural band structures in lattices containing a resonator per unit cell. Also,

a semi-analytical method allowing the calculation of the transmittance spectrum through

several layers of resonators has been reported. Both algorithms have been successfully em-
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ployed to comprehensively study, as an example, a square lattice of 2-beam resonators. The

resulting band structures and eigenmodes are in agreement with 3D full elastic model as

long as the truncation order Nq of the series summation is large enough to meet the required

accuracy. Of course, our modeling is subjected to the limitations of the Kirchhoff-Love and

the Euler-Bernoulli theories and, therefore, torsional modes and in-plane propagation are

features not covered by our algorithms.

We have also demonstrated that the fundamental mode of the 2-beam resonator can be

modeled by simple spring-mass oscillator. It has been shown that a low frequency bandgap

appears as a consequence of the the interaction between this fundamental mode and the

propagating flexural waves. In addition, as an application of our modeling we have designed

gradient index lenses for flexural waves in which the local refractive index is obtained by

changing the orientation of the resonator with respect to the direction of the impinging

wave. In summary, we can conclude that the theoretical tools here developed can be used to

tackle a variety of problems within the field of elastic metamaterials based on the N -beam

resonators. The demonstration of negative refraction based on them is one goal of to be

tackled in the near future.
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Appendix A: Lattice sums

Several complex quantities containing infinite series summations are involved in the

derivation. The complete sums and incomplete sums appear when studying the transmission

and reflection of flexural waves scattered by an infinite slab. They are defined, respectively,

25



as

ScH
q (kpdy, sin θ0,R,Rl

0) =
∞
∑

α=−∞
eiαkpdy sin θ0Hq(kpr

l
α)e

iqθlα , (A.1)

ScK
q (kpdy, sin θ0,R,Rl

0) =
∞
∑

α=−∞
eiαkpdy sin θ0Kq(kpr

l
α)e

iqθlα , (A.2)

and

SiH
q (kpdy, sin θ0) =

∞
∑

α=1

eiαkpdy sin θ0Hq(αkpdy), (A.3)

SiK
q (kpdy, sin θ0) =

∞
∑

α=1

eiαkpdy sin θ0Kq(αkpdy). (A.4)

Notice that the complete sums ScH
q and ScK

q are position dependent and the geometric

quantities involved are related through the relationship defined in Eq. (31). Moreover, the

lattice sums are introduced when computing band structures for an infinite lattice, they are

defined for Hankel function and modified Bessel function, respectively, as

SH
q (kp,K) =

∞
∑

m=−∞

∞
∑

β=−∞

(1− δ0mδ0β)Hq(kpR
m
β )e

iqΘm
β eiK·Rm

β , (A.5)

and

SK
q (kp,K) =

∞
∑

m=−∞

∞
∑

β=−∞

(1− δ0mδ0β)Kq(kpR
m
β )e

iqΘm
β eiK·Rm

β . (A.6)

Because the modified Bessel function is exponentially decaying with the increasing of

argument αkpdy, the summation defined in Eq. (A.4) converges rapidly and therefore can

be evaluated by direct summation. Except this, other summation series defined in the

previous equations converge very slowly so that some other expressions have to be found for

practical calculation.

For Eqs. (A.1) and (A.3), an alternative form has been provided by Torrent38 when

dealing with the homogenization problem of a cluster of cylinders for acoustic waves. The

result corresponding to Eq. (A.1) is

ScH
q =

2i−q

kpdy

∞
∑

σ=−∞

eiqτ1(σ)

| cos τ1(σ)|
eiκσ ·(R−Rl

0
), (A.7)

where the quantities involved are defined as

κσ = kp[cos τ1(σ), sin τ1(σ)], (A.8)
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eiqτ1(σ) = [cos τ1(σ) + i sin τ1(σ)]
q , (A.9)

sin τ1(σ) = sin θ0 − σ
2π

kpdy
, (A.10)

cos τ1(σ) = ±
√

1− sin2 τ1(σ). (A.11)

The alternative expression of Eq. (A.3) is

SiH
q =

i−qe−
π
4
i

π

∫ ∞

−∞

eikpdy sin θ0eikpdy
√
1+iτ2

1− eikpdy sin θ0eikpdy
√
1+iτ2

(√
1 + iτ 2 + iτe−

π
4
i
)q

√
1 + iτ 2

dτ. (A.12)

It is suggested that the integral should be managed cautiously in the numerical calculation

because the integrand involved is an intensively oscillating function. The simplified version

of lattice sums defined in Eqs. (A.5) and (A.6) has been reported as well when studying

Bloch-Floquet bending waves in perforated thin plates.34 They are clearly explained and the

reader is recommended to the original paper for more information in details.

Concerning the last quantity defined in Eq. (A.2), let us begin with the integral definition

of modified Bessel function K39

Kq(x) =
1

2
lim
ǫ→∞

∫ ǫ

−ǫ

e−x cosh teqtdt, (A.13)

where the integration path is from −∞ to ∞. We change the variable with relation t = iτ ,

and the integral is rewritten as

Kq(x) = − i

2
lim
ǫ→∞

∫ iǫ

−iǫ

e−x cos τeiqτdτ. (A.14)

To obtain the general functions needed, we introduce the variable changes τ = τ2 − θlα and

x = kpr
l
α, consequently, we obtain the following form

Kq(kpr
l
α)e

iqθlα = − i

2
lim
ǫ→∞

∫ iǫ+θlα

−iǫ+θlα

e−γ·rl
αeiqτ2dτ2, (A.15)

where γ = kp(cos τ2, sin τ2). According to Cauchy’s theorem, the integration limits can be

replaced by taken a different path of integration, the path C is from z1 = −i∞ to z2 = i∞
when cos θlα ≥ 0 and from z1 = π − i∞ to z2 = π + i∞ when cos θlα ≤ 0. Multiplying Eq.

(A.15) by eiαkpdy sin θ0 and adding the terms for all α, finally, we obtain the desired form of

Eq. (A.2) as

ScK
q =

∞
∑

α=−∞
− i

2

∫

C

e−γ·rl
αeiαkpdy sin θ0eiqτ2dτ2. (A.16)
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Taking the geometric relations into consideration

γ · rl
α = γ · (R−Rl

0)− αkpdy sin τ2, (A.17)

then we have the following equation

ScK
q = − i

2

∫

C

e−γ·(R−Rl
0
)eiqτ2

∞
∑

α=−∞
eiαkpdy(sin θ0−i sin τ2)dτ2. (A.18)

The series summation in the integrand can be expressed as a Dirac comb

∞
∑

α=−∞
eiαkpdy(sin θ0−i sin τ2) =

2π

kpdy

∞
∑

σ=−∞
δ(sin θ0 − i sin τ2 −

2πσ

kpdy
). (A.19)

In order to use the properties of Dirac function, it is necessary to convert the integration

path from the complex plane to the real axis. The variables are changed through the relation

t2 = i sin τ2, correspondingly, the integration limits are changed from ∞ (−∞) to −∞ (∞)

when cos θlα ≥ 0 (cos θlα ≤ 0). Then the new form of Eq. (A.18) is

ScK
q =

π

kpdy

∞
∑

σ=−∞

∫ ∞

−∞
e−γ·(R−Rl

0
)eiqτ2(t2)δ(sin θ0 − t2 −

2πσ

kpdy
)

dt2
√

1 + t22
. (A.20)

Evaluating the Dirac function at t2 = sin θ0 − 2πσ
kpdy

, we eventually obtain the new form of

the complete sum as

ScK
q =

π

kpdy

∞
∑

σ=−∞

eiqτ2(σ)

| cos τ2(σ)|
e−γσ ·(R−Rl

0
), (A.21)

where the quantities involved are defined as

γσ = kp[cos τ2(σ), sin τ2(σ)], (A.22)

eiqτ2(σ) = [cos τ2(σ) + i sin τ2(σ)]
q , (A.23)

sin τ2(σ) = −i(sin θ0 − σ
2π

kpdy
), (A.24)

cos τ2(σ) = ±
√

1− sin2 τ2(σ). (A.25)

The sign of cos τ2(σ) is positive (negative) when x−xl
0 is positive (negative), where x comes

from R = xx̂+ yŷ and xl
0 comes from Rl

0 = xl
0x̂+ yl0ŷ.
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Appendix B: Simplification for M matrix

The matrix provided in Eq. (28) is of complex form containing an infinite sum in β, we

are going to simplify it by dividing it into two different cases. Let us begin by rewriting the

equation as

(M lm)qr = δlmδqrI −
∞
∑

s=−∞
T qsGsr, (B.1)

where the 2× 2 matrix Gsr is

Gsr =
∞
∑

β=−∞

(1− δlmδ0β)Gsr(kpR
lm
0β ,Θ

lm
0β )e

iβkpdy sin θ0 . (B.2)

In the first case, l = m, the pervious equation can be expressed in an explicit form after

using the definition of Gsr from Eq. (11)

Gsr =
∞
∑

β=−∞





Hs−r(kpR
ll
0β) 0

0 (−1)rKr−s(kpR
ll
0β)



 (1− δ0β)e
i(r−s)Θll

0βeiβkpdy sin θ0 . (B.3)

Note that Rll
0β = |β|dy and Θll

0β = π/2 (Θll
0β = −π/2) when β > 0 (β < 0), after some

operations and then using the definitions of incomplete sums, finally, we obtain

(M lm)qr = δqrI −
∞
∑

s=−∞
T qs





GiH
sr 0

0 GiK
sr



 , (B.4)

where

GiH
sr = (−i)r−sSiH

r−s(kpdy, sin θ0) + ir−sSiH
r−s(kpdy,− sin θ0), (B.5)

GiK
sr = (−1)s

[

(−i)r−sSiK
r−s(kpdy, sin θ0) + ir−sSiK

r−s(kpdy,− sin θ0)
]

. (B.6)

The other case is l 6= m, then Eq. (B.2) can be simplified by using the complete sums

defined in Appendix A. Before this, it is necessary to find the correspondences between the

quantities involved. From Fig. 1(b), we can easily obtain the following relationships

R− rl
α = Rl

0 +Rll
0α, (B.7)

Rl
0 +Rlm

0β = Rm
0 +Rmm

0β . (B.8)

These geometric relations define a change of variables:

[

R,Rl
0,R

ll
0α, r

l
α

]

⇋

[

Rl
0,R

m
0 ,R

mm
0β ,−Rlm

0β

]

. (B.9)
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Notice that Θlm
0β = Θml

β0 + π, finally, we have

(M lm)qr = −
∞
∑

s=−∞
T qs





GcH
sr 0

0 GcK
sr



 , (B.10)

where

GcH
sr = ScH

r−s(kpdy, sin θ0,R
l
0,R

m
0 ), (B.11)

GcK
sr = (−1)sScK

r−s(kpdy, sin θ0,R
l
0,R

m
0 ). (B.12)

The relationships listed in Eqs. (B.7) and (B.8) can also be treated from another perspective,

and the change of variables is given below:

[

R,Rl
0,R

ll
0α, r

l
α

]

⇋

[

Rm
0 ,R

l
0,−Rmm

0β ,Rlm
0β

]

. (B.13)

After some algebraic operations, the results listed in Eqs. (B.11) and (B.12) are given in an

equivalent form

GcH
sr = (−1)r−sScH

r−s(kpdy, sin θ0,R
m
0 ,R

l
0), (B.14)

GcK
sr = (−1)rScK

r−s(kpdy, sin θ0,R
m
0 ,R

l
0). (B.15)

In a similar way, the M matrix for a periodic lattice [see Eq. (42)] can be simplified by

employing the lattice sums defined in Eqs. (A.5) and (A.6). The final form is

M qr = δqrI −
∞
∑

s=−∞
T qs





(−1)r−sSH
r−s(kp,K) 0

0 (−1)rSK
r−s(kp,K)



 . (B.16)

Appendix C: Energy flux calculation

For simplicity, the energy flux defined in Eq. (35) is rewritten as

〈F±〉 = ±ωD

2
Im

[
∫ y+dy

y

(η1 − η2)dy

]

, (C.1)

where η1 and η2 are quantities with differential operations for total field W . As listed in Eq.

(32), the total field is

W = ei(kpxx+kpyy) +
∞
∑

σ=−∞
ζHσ ei[κx(σ)x+κy(σ)y] +

∞
∑

σ=−∞
ζKσ e−[γx(σ)x+γy(σ)y]. (C.2)
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Remember that κσ = kp[cos τ1(σ), sin τ1(σ)] and γσ = kp[cos τ2(σ), sin τ2(σ)]. Differentiate

W with respect to the coordinate x, then we have

∂W

∂x
= ikpxe

i(kpxx+kpyy)+
∞
∑

σ=−∞
ζHσ iκx(σ)e

i[κx(σ)x+κy(σ)y]−
∞
∑

σ=−∞
ζKσ γx(σ)e

−[γx(σ)x+γy(σ)y]. (C.3)

Another term is

△W ∗ = −k2
pe

−i(kpxx+kpyy)−k2
p

∞
∑

σ=−∞
ζH∗
σ e−i[κ∗

x(σ)x+κ∗

y(σ)y]+k2
p

∞
∑

σ=−∞
ζK∗
σ e−[γ∗

x(σ)x+γ∗

y (σ)y], (C.4)

and finally, the last term is

∂

∂x
(△W ∗) = ik2

pkpxe
−i(kpxx+kpyy) + ik2

p

∞
∑

σ=−∞
ζH∗
σ κ∗

x(σ)e
−i[κ∗

x(σ)x+κ∗

y(σ)y]

− k2
p

∞
∑

σ=−∞
ζK∗
σ γ∗

x(σ)e
−[γ∗

x(σ)x+γ∗

y(σ)y]. (C.5)

Let us proceed with the multiplication, after grouping we have

η1 = ik2
pkpx + ik2

p

∞
∑

σ=−∞
ζH∗
σ κ∗

x(σ)e
i[kpx−κ∗

x(σ)]xei[kpy−κ∗

y(σ)]y

− k2
p

∞
∑

σ=−∞
ζK∗
σ γ∗

x(σ)e
i[kpx+iγ∗

x(σ)]xei[kpy+iγ∗

y (σ)]y

+ ik2
pkpx

∞
∑

σ=−∞
ζHσ e−i[kpx−κx(σ)]xe−i[kpy−κy(σ)]y

+ ik2
pkpx

∞
∑

σ=−∞
ζKσ e−i[kpx−iγx(σ)]xe−i[kpy−iγy(σ)]y

+ ik2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζHσ1

ζH∗
σ2

κ∗
x(σ2)e

i[κx(σ1)−κ∗

x(σ2)]xei[κy(σ1)−κ∗

y(σ2)]y

− k2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζHσ1

ζK∗
σ2

γ∗
x(σ2)e

i[κx(σ1)+iγ∗

x(σ2)]xei[κy(σ1)+iγ∗

y (σ2)]y

+ ik2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζKσ1

ζH∗
σ2

κ∗
x(σ2)e

i[iγx(σ1)−κ∗

x(σ2)]xei[iγy(σ1)−κ∗

y(σ2)]y

− k2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζKσ1

ζK∗
σ2

γ∗
x(σ2)e

−[γx(σ1)+γ∗

x(σ2)]xe−[γy(σ1)+γ∗

y (σ2)]y,

(C.6)
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and

η2 = −ik2
pkpx − ik2

p

∞
∑

σ=−∞
ζHσ κx(σ)e

−i[kpx−κx(σ)]xe−i[kpy−κy(σ)]y

+ k2
p

∞
∑

σ=−∞
ζKσ γx(σ)e

−i[kpx−iγx(σ)]xe−i[kpy−iγy(σ)]y

− ik2
pkpx

∞
∑

σ=−∞
ζH∗
σ ei[kpx−κ∗

x(σ)]xei[kpy−κ∗

y(σ)]y

+ ik2
pkpx

∞
∑

σ=−∞
ζK∗
σ ei[kpx+iγ∗

x(σ)]xei[kpy+iγ∗

y (σ)]y

− ik2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζH∗
σ1

ζHσ2
κx(σ2)e

−i[κ∗

x(σ1)−κx(σ2)]xe−i[κ∗

y(σ1)−κy(σ2)]y

+ k2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζH∗
σ1

ζKσ2
γx(σ2)e

−i[κ∗

x(σ1)−iγx(σ2)]xe−i[κ∗

y(σ1)−iγy(σ2)]y

+ ik2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζK∗
σ1

ζHσ2
κx(σ2)e

i[iγ∗

x(σ1)+κx(σ2)]xei[iγ
∗

y (σ1)+κy(σ2)]y

− k2
p

∞
∑

σ1=−∞

∞
∑

σ2=−∞
ζK∗
σ1

ζKσ2
γx(σ2)e

−[γ∗

x(σ1)+γx(σ2)]xe−[γ∗

y (σ1)+γy(σ2)]y.

(C.7)

From Appendix A, we know that

kpy = kp sin θ0, (C.8)

κy(σ) = κ∗
y(σ) = kp(sin θ0 − σ

2π

kpdy
), (C.9)

γy(σ) = −γ∗
y(σ) = −iκy(σ), (C.10)

also

kpx = kp cos θ0, (C.11)

κx(0) = κ∗
x(0) = ±kpx, (C.12)

γx(0) = γ∗
x(0) = ±kp

√

1 + sin2 θ0, (C.13)

where the positive and negative signs are used, respectively, in computing energy flux flow-

ing along and opposite to the positive x-direction. With these relations, we obtain some

vanishing integrals along the segment from y to y+ dy and these identities are listed below:

∫ y+dy

y

e−i[kpy−κy(σ)]ydy =

∫ y+dy

y

e
−iσ 2π

dy
y
dy = 0, σ 6= 0 (C.14)
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∫ y+dy

y

ei[kpy−κ∗

y(σ)]ydy =

∫ y+dy

y

ei[kpy−κy(σ)]ydy = 0, σ 6= 0 (C.15)

∫ y+dy

y

e−i[kpy−iγy(σ)]ydy =

∫ y+dy

y

e−i[kpy−κy(σ)]ydy = 0, σ 6= 0 (C.16)

∫ y+dy

y

ei[kpy+iγ∗

y (σ)]ydy =

∫ y+dy

y

ei[kpy−κy(σ)]ydy = 0, σ 6= 0 (C.17)

∫ y+dy

y

ei[κy(σ1)−κ∗

y(σ2)]ydy =

∫ y+dy

y

e
i[(σ1−σ2)

2π
dy

]y
dy = 0, σ1 6= σ2 (C.18)

∫ y+dy

y

e−i[κ∗

y(σ1)−κy(σ2)]ydy =

∫ y+dy

y

e−i[κy(σ1)−κy(σ2)]ydy = 0, σ1 6= σ2 (C.19)

∫ y+dy

y

ei[κy(σ1)+iγ∗

y (σ2)]ydy =

∫ y+dy

y

ei[κy(σ1)−κ∗

y(σ2)]ydy = 0, σ1 6= σ2 (C.20)

∫ y+dy

y

e−i[κ∗

y(σ1)−iγy(σ2)]ydy =

∫ y+dy

y

e−i[κy(σ1)−κy(σ2)]ydy = 0, σ1 6= σ2 (C.21)

∫ y+dy

y

ei[iγy(σ1)−κ∗

y(σ2)]ydy =

∫ y+dy

y

ei[κy(σ1)−κ∗

y(σ2)]ydy = 0, σ1 6= σ2 (C.22)

∫ y+dy

y

ei[iγ
∗

y (σ1)+κy(σ2)]ydy =

∫ y+dy

y

ei[−κy(σ1)+κy(σ2)]ydy = 0, σ1 6= σ2 (C.23)

∫ y+dy

y

e−[γy(σ1)+γ∗

y (σ2)]ydy =

∫ y+dy

y

ei[κy(σ1)−κ∗

y(σ2)]ydy = 0, σ1 6= σ2 (C.24)

∫ y+dy

y

e−[γ∗

y (σ1)+γy(σ2)]ydy =

∫ y+dy

y

e−i[−κy(σ1)+κy(σ2)]ydy = 0, σ1 6= σ2 (C.25)

Combining the previous equations, we have the following formulas after tedious algebraic

operations

1

dy

∫ y+dy

y

η1dy = ik2
pkpx + ik2

pkpxζ
H
0 + ik2

pκ
∗
x(0)ζ

H∗
0

− k2
pγ

∗
x(0)ζ

K∗
0 ei[kpx+iγ∗

x(0)]x + ik2
pkpxζ

K
0 e−i[kpx−iγx(0)]x

+ ik2
p

∞
∑

σ=−∞
κ∗
x(σ)ζ

H
σ ζH∗

σ − k2
p

∞
∑

σ=−∞
γ∗
x(σ)ζ

H
σ ζK∗

σ ei[κx(σ)+iγ∗

x(σ)]x

+ ik2
p

∞
∑

σ=−∞
κ∗
x(σ)ζ

K
σ ζH∗

σ ei[iγx(σ)−κ∗

x(σ)]x − k2
p

∞
∑

σ=−∞
γ∗
x(σ)ζ

K
σ ζK∗

σ e−[γx(σ)+γ∗

x(σ)]x,

(C.26)
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and

1

dy

∫ y+dy

y

η2dy =− ik2
pkpx − ik2

pkpxζ
H∗
0 − ik2

pκx(0)ζ
H
0

+ k2
pγx(0)ζ

K
0 e−i[kpx−iγx(0)]x + ik2

pkpxζ
K∗
0 ei[kpx+iγ∗

x(0)]x

− ik2
p

∞
∑

σ=−∞
κx(σ)ζ

H∗
σ ζHσ + k2

p

∞
∑

σ=−∞
γx(σ)ζ

H∗
σ ζKσ e−i[κ∗

x(σ)−iγx(σ)]x

+ ik2
p

∞
∑

σ=−∞
κx(σ)ζ

K∗
σ ζHσ ei[iγ

∗

x(σ)+κx(σ)]x − k2
p

∞
∑

σ=−∞
γx(σ)ζ

K∗
σ ζKσ e−[γ∗

x(σ)+γx(σ)]x.

(C.27)

Substituting Eqs. (C.26) and (C.27) into Eq. (C.1) and using the properties of complex

operation, finally, we obtain the following result

〈F±〉 = ±ωdyDk3
p







cos θ0 + (1± 1)Re[ζH0 ] cos θ0 ±
∑

cos τ1(σ)∈R

|ζHσ |2| cos τ1(σ)|







. (C.28)

Appendix D: Modeling 2-beam resonators as spring-mass oscillator

As observed in Fig. 3, the 2-beam resonators show several resonance modes in the

frequency range of interest and a low frequency band gap is opened by the flexural resonance.

The aim of this appendix is to study the resonant frequency by means of the spring-mass

model, as shown in Figure D.1. When the flexural resonance occurs, the bridges behave like

an extension spring with effective stiffness Ke and the inner plate serves as the mass M .

The resonant frequency is determined by the following formula

f =
1

2π

√

Ke

M
. (D.1)

The main task of the following paragraph is to determine the effective stiffness of the beams.

For convenience, a Cartesian coordinates system O-xyz is built at the center of the resonator.

The x- and y-axis determine the plane of the thin plate and the z-axis points to the out-of-

plane direction.

It is assumed that a harmonic force with amplitude F is exerted at the center of the

inner plate. Both the bridges and inner plate are considered as beams under the action of

bending moments resulting from the force. According to the beam theory,29 we obtain the

equations of motion for the bridges and inner plate, respectively, as

EI
d2wb

dx2
=

F

2
(x−R1), x ∈ [R1, R2] (D.2)
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FIG. D.1. (color on line) (a) Scheme of a typical spring-mass resonator. (b) Scheme of a 2-beam

resonator, its analogue in a thin plate.

and

EI
d2wp

dx2
= −FR1

2
, x ∈ [0, R1]. (D.3)

where wb and wp are the out-of-plane displacements for the bridges and inner plate, respec-

tively. Notice that the inner plate is treated as a beam of variable cross-section and the

second moment of area should be replaced by I= h3
√

R2
1 − x2/6. The previous equations

can be solved by considering the boundary conditions; the end of the bridge connected to

the background plate is considered as clamped, while at the other end, the displacement

and slope on both sides should be continuous. The expressions are here listed:

wb

∣

∣

x=R2

= 0 and
dwb

dx

∣

∣

∣

∣

x=R2

= 0, (D.4)

wb

∣

∣

x=R1

= wp

∣

∣

x=R1

and
dwb

dx

∣

∣

∣

∣

x=R1

=
dwp

dx

∣

∣

∣

∣

x=R1

. (D.5)

Combining Eqs. (D.2)-(D.5), the maximum displacement of the inner plate is obtained as

w0 =
F (R2 −R1)

2(R1 + 2R2)

Ebh3
− 3FR2

1

Eh3
. (D.6)

Finally, the resonant frequency is available by substituting the following effective parameters

into Eq. (D.1)

Ke =
F

w0

and M = πρhR2
1. (D.7)
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