Document downloaded from:

http://hdl.handle.net/10251/142037

This paper must be cited as:

Ballester-Bolinches, A.; Pedraza Aguilera, MC. (02-2). On a theorem of Kang and Liu on factorised groups. Bulletin of the Australian Mathematical Society. 97(1):54-56. https://doi.org/10.1017/S0004972717000363

The final publication is available at https://doi.org/10.1017/S0004972717000363

Copyright Cambridge University Press

Additional Information

On a theorem of Kang and Liu on factorised groups

A. Ballester-Bolinches and M.C. Pedraza-Aguilera

Abstract

Kang and Liu ['On supersolvability of factorized finite groups', Bull. Math. Sci. 3 (2013), 205-210] investigate the structure of finite groups that are products of two supersoluble groups. The goal of this note is to give a correct proof of their main theorem.

Mathematics Subject Classification (2010): 20D10, 20D20, 20D40

Keywords: finite group, factorisations, supersolubility.

1 Introduction

All groups considered in this paper are finite.

We recall that two subgroups A and B of a group G are said to permute if AB is a subgroup of G. Further, A and B are called mutually permutable if every subgroup of A permutes with B and every subgroup of B permutes with A.

Products of mutually permutable subgroups have been widely studied in the last twenty-five years and receive a full discussion in [3]. The emphasis is on how the structure of the factors A and B affects the structure of the factorised group G = AB and vice versa.

The goal of the present paper is to give a correct proof of the main result of the paper [5]. Therefore this paper had best be read in conjunction with [5].

First we recall the main theorem of that paper.

Theorem A ([5, Theorem C]). Let the group G = HK be the product of the subgroups H and K. Assume that H permutes with every maximal subgroup of K and K permutes with every maximal subgroup of H. If H is supersoluble, K is nilpotent and K is δ -permutable in H, where δ is a complete set of Sylow subgroups of H, then G is supersoluble.

The statement of the Theorem A resembles that of a theorem of Cossey and the authors [2, Theorem 3], which asserts the same conclusion under the stronger assumption that K permutes with every Sylow subgroup of H. The proof of Theorem A presented in [5] is not new, but it is an exact copy of the proof of [2, Theorem 3]. However, it is abundantly clear that this proof does not hold if K is δ -permutable in H. In fact, in the last paragraph of the proof (as in [2, Theorem 3]), the authors wrote:

"By hypothesis, K is δ -permutable in H, where δ is a complete set of Sylow subgroups of H. Hence we can easily deduce that K permutes with every Hall p'-subgroup of H".

There are many examples showing that this claim is false in general (consider, for example, the symmetric group of degree four which is a product of the alternating group and a transposition). We need K to be permutable with all Sylow subgroups of H to ensure that K permutes with every Hall p'-subgroup of H.

2 Proof of Theorem A

Proof. Assume the result is false and let G be a counterexample of minimal order. By [2, Theorem 1], G is soluble. Let $1 \neq N$ be a normal subgroup of G. It is clear that the hypotheses of the theorem hold in G/N. By minimality of G, G/N is supersoluble. Consequently, G has a unique minimal normal subgroup N which is abelian and complemented in G by a core-free maximal subgroup G of G. Let G be the prime dividing G and let G be the largest prime dividing G.

Assume that $p \neq q$. Let H_q be a Sylow q-subgroup of H. Then H_q is a normal subgroup of H because H is supersoluble. Moreover K has a unique Sylow q-subgroup because K is nilpotent. Applying [1, Lemma 2.4.2], we see that H_q permutes with K_q^g for each $g \in G$. Since $O_q(G) = 1$, it follows that $[H_q^G, K_q^G] = 1$ by [1, Lemma 2.5.1]. It is quite clear that we can assume that either $H_q^G \neq 1$ or $K_q^G \neq 1$ because, otherwise, G would be a g'-group.

 $[H_q{}^G, K_q{}^G] = 1$ by [1, Lemma 2.5.1]. It is quite clear that we can assume that either $H_q{}^G \neq 1$ or $K_q{}^G \neq 1$ because, otherwise, G would be a q'-group. Suppose that $H_q{}^G \neq 1$ (the case $K_q{}^G \neq 1$ is analogous). Then N is contained in $H_q{}^G$. Therefore $[N, K_q{}^G] = 1$ and $K_q{}^G \leq C_G(N) = N$. Hence $K_q{}^G = 1$ and K is a q'-group. Since every Sylow q-subgroup of M is a Sylow q-subgroup of G, we may assume that H_q is contained in M. Since M is supersoluble, it follows that H_q is normalised by M. If $G = N_G(H_q)$, then N is contained in H_q , which is a contradiction. Thus $M = N_G(H_q)$. This implies that H is contained in M. Therefore $M = H(M \cap K)$. Hence $M \cap K$ is a maximal subgroup of K. Applying [4, Lemma 2.3], we deduce that K is a Sylow q-subgroup of G with |K| = q. Moreover H = M and |G: H| = q.

Then $N \leq M$, which is a contradiction.

Suppose now that p is the largest prime dividing |G|. Since M is supersoluble and $O_p(M)=1$, we see that M is a p'-group and so N is a Sylow p-subgroup of G. In particular G is a Sylow tower group of supersoluble type. Let $K_{p'}$ be the Hall p'-subgroup of K. Assume that $(H\cap K)K_{p'}$ is a proper subgroup of K and let K_0 be a maximal subgroup of K containing $(H\cap K)K_{p'}$. Then HK_0 is a proper subgroup of G. Write $S=HK_0$. If $\mathrm{Core}_G(S)=1$, then $S\cap N=1$ and G=SN. Hence $|N|=|G:S|=|HK:HK_0|=|K:K_0|=p$, which is a contradiction. Suppose that $\mathrm{Core}_G(S)\neq 1$. Then N is contained in HK_0 and so N is a Sylow p-subgroup of HK_0 . Since $H\cap K=H\cap K_0$, it follows that K_0 contains a Sylow p-subgroup of K. This contradiction shows that $K=(H\cap K)K_{p'}$ and so N is contained in H. In particular, $H=N(H\cap M)$.

Let $q \neq p$ be a prime and let H_q be a Sylow q-subgroup of H permuting with K. Then $X = KH_q = (H \cap K)K_{p'}H_q$ is a subgroup of G. Since X is a Sylow tower group of supersoluble type, it follows that the Sylow p-subgroup A of $H \cap K$ is normal in X. Hence A is normalised by H_q . This implies that A is a normal subgroup of H and so A is normal in G. Consequently A = N or A = 1. Assume that A = N so that $K = NK_{p'}$. Let N_1 denote a minimal normal subgroup of H with $N_1 \leq N$. Then $|N_1| = p$ and K normalises N_1 . Therefore $N = N_1$, which is a contradiction. Thus we may assume that A = 1. In this case, K is contained in M, $M = K(M \cap H)$ and $M \cap H$ is a maximal subgroup of H. Therefore $p = |H: M \cap H| = |N|$, which is the final contradiction.

References

[1] B. Amberg, S. Franciosi and F. De Giovanni, *Products of Groups*, Oxford Mathematical Monographs, Clarendon Press, Oxford 1992.

- [2] A. Ballester-Bolinches, John Cossey and M.C. Pedraza-Aguilera, On products of finite supersoluble groups, Comm. in Algebra, 29(7), 3145-3152, 2001.
- [3] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, *Products of finite groups*, vol. 53 of the Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin 2010.
- [4] L. M. Ezquerro and X. Soler-Escrivà, On mutually m-permutable products of finite groups, Comm. in Algebra, 31(4), 1949-1960, 2003.

[5] Ping Kang and Qingfeng Liu, On supersolvability of factorized finite groups, Bull. Math. Sci., 3, 205-210, 2013.

A. Ballester-Bolinches

Departament de Matemàtiques, Universitat de València Dr. Moliner 50, 46100 Burjassot, València (Spain) e-mail: Adolfo.Ballester@uv.es

M.C. Pedraza-Aguilera

Instituto Universitario de Matemática Pura y Aplicada Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain) e-mail: mpedraza@mat.upv.es