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Abstract

Complex workflow applications are widely used in scientific computing and economic

analysis, which commonly include both preemptive and non-preemptive tasks. Cloud

computing provides a convenient way for users to access different resources based on

the “pay-as-you-go” model. However, different resource renting manners (reserved,

on-demand or spot) are usually provided by the service provider. The spot instances

provide a dynamic and cheaper manner comparing to the on-demand one. Howev-

er, failures often occur due to the fluctuations of the price of the instance. It is a big

challenge to determine the appropriate amount of spot and on-demand resources for

workflow applications with both preemptive and non-preemptive tasks. In this paper,

the workflow scheduling problem with both spot and on-demand instances is consid-

ered. The objective is to minimize the total renting cost under deadline constrains. An

idle time block-based method is proposed for the considered problem. Different idle

time block-based searing and improving strategies are developed to construct sched-

ules for workflow applications. Schedules are improved by a forward and backward

moving mechanism. Experimental and statistical results demonstrate the effectiveness

of the proposed algorithm over a lot of tests with different sizes.
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1. Introduction

Cloud computing is a new market-oriented resource provisioning and sharing paradig-

m, which enable users to access resources from anywhere and at anytime. In cloud

computing, resources (server, network, storage, platform, software, etc.) are virtual-

ized as services. Users need not to possess and manage large amounts of services,5

users just rent and pay the service providers when they require such services. These

paradigms spare users from expensive purchases effectively and no less expensive run

and maintenance costs. Cloud computing makes it convenient for users to access re-

sources from anywhere based on the pay-as-you-go model which reduces the cost sig-

nificantly. Therefore, allocating appropriate resources to users is one of the crucial10

problems in cloud computing.

In cloud computing, workflow applications are commonly used to represent users’

requests, which could describe a wide range of complex scientific and economic ap-

plications [1], e.g., astronomy application (Montage), bio-informatics project (SIPHT)

and astrophysical application (LIGO). The workflow application commonly contains15

two types of tasks: non-preemptive tasks and preemptive tasks. Non-preemptive tasks

are continuous tasks and cannot be terminated during their execution, such as batch

processing, encoding and rendering, and continuous integration. If the resources of

non-preemptive tasks are crashed, these tasks must be redone from the beginning. The

preemptive tasks are interruptible tasks and can be terminated during their execution,20

e.g., web crawler application. If the resources of preemptive tasks are crashed, these

tasks must be reallocated to other resources just from the crashed point.

Three types of resource renting manners are usually provided by the service provider-

s, e.g., Amazon EC2 [2] provides three type of instances: reserved, on-demand or spot.

Google Compute Engine cloud has also announced the preemptive virtual machines as25

the supplements of common reserved and on-demand virtual machines. The reserved

manner enables users to pay for required resources at one-time for a long period. Thus,

a significant discount could be received and the average cost is decreased. However, the

resource utilization rate of reserved resources is usually lower as the resources could

not be fully used during the renting period. The on-demand manner enables users to30
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rent and pay resources by hours according to their demands. Though the on-demand

instance is expensive, the resource utilization of on-demand instances is usually high.

The spot manner enables users to bid for the resource capacity. The price of spot in-

stances fluctuates according to the resource supply and demand capacities. If the users’

bid price is higher than the spot price, users’ requests are fulfilled. Instances are kept35

by the current user until new higher prices are bid. Spot instances provide a dynamic

and cheaper manner for renting resources from the cloud.

In this paper, the cloud workflow scheduling problem with both non-preemptive

and preemptive tasks is considered. The objective is to minimize the total resource

renting cost. As the scientific workflow application is a short term compute-intensive40

application, the long term reserved instances are not included. If only the on-demand

instances are included, the high unit cost makes the total resource renting cost high. If

the general spot instances are considered, the out-of-bid failure may occur and make

it improper for the non-preemptive tasks (the redoing process will occupy more re-

sources). Thus, the spot block instances are considered in this paper. The spot block45

instance is an extension of the spot instance, which will not be terminated with a spec-

ified duration of 1, 2, 3, 4, 5, or 6 hours [2]. The price of a spot block instance de-

pends on the specified duration. When a request with a duration is fulfilled, the price

for the spot block instance is fixed, and this price remains in effect until the instance

terminates. The spot block instance runs until the task is terminated or the duration50

period ends. These advantages make them ideal for non-preemptive tasks that cannot

be interrupted during the execution. If a non-preemptive task is allocated to a spot

block instance, its execution time must be less than the spot block time. Otherwise,

the on-demand instance must be rented to ensure the non-preemptive task will not be

interrupted. A preemptive task can be executed on any possible instances. It can be55

interrupted and wait to be reallocated to other available instances.

The problem under study considers a new cloud workflow scheduling problem. S-

ince workflow and DAG scheduling problems are well known NP-hard problem [3],

it is natural that the much complex considered problem is NP-hard. Resource renting

and task scheduling are the two main challenges for the problem. During the resource60

renting process, it is hard to determine the type and the renting manners (spot block and
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the block period or on-demand) of instances. During the task scheduling process, it is

hard to segment the preemptive tasks and find available idle blocks for both preemptive

and non-preemptive tasks. The considered complex workflow scheduling problems are

mathematically modeled. The idle time block-based method (ITB) is proposed for the65

problem under study which is composed of five components: deadline division (DD),

sequences initialization (ASI), idle-time block searching (IBS), idle time block-based

schedule construction (ISC) and schedule improvement (SI). Parameters and compo-

nents of the proposed algorithm are calibrated and analyzed over a number of instances

using the multi-factor analysis of variance technique. The proposal is compared with70

existing algorithms for similar problems.

The rest of the paper is organized as follows. Section 2 establishes the related

works. The mathematical model are described in Section 3. The proposed ITB method

is established in Section 4. Computational results are shown in Section 5, followed by

conclusions in Section 6.75

2. Related Works

Workflow scheduling is a hot topic in recent years. It can be supervised and exe-

cuted in many distributed or cloud systems, such as Pegasus [4], Askalon [5], Google

MapReduce [6] and Amazon EC2 [7].

In the traditional utility grids environment, resources were usually geographically80

dispersed and encapsulated as services and provided to the users. There are two main

objectives: cost optimization under deadline constraints and execution time optimiza-

tion under budget constraints [8]. Methods for time optimization include list scheduling

algorithm [9], cluster based algorithm [10], duplication based algorithm [11], greedy

randomized adaptive search [12] and ant colony optimization approach [13]. Com-85

mon methods for cost optimization include the deadline-MDP algorithm [14], DET

(Deadline Early Tree) algorithm [15], PCP (Partial Critical Paths) algorithm [16] and

the CPI (Critical Path-based Iterative) heuristic [17]. Other related works on allocat-

ing resources to workflow applications include improving QoS in computational grids

[18], workflow applications with security constraints [19] and workflow scheduling90
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with multiple objectives [20][21].

In cloud computing environment, resources were usually geographically concen-

trated, which were virtulized as a virtual machine and provided to the users. Different

resource renting manners were adopted by different papers. Chen et al. [22] pro-

posed a Precedence Tree based Heuristic (PTH) for the long period periodical work-95

flow scheduling with reserved resources. In a follow up work [23], they developed an

Adaptive Probabilistic Algorithm (APA) for cloud workflow scheduling with both re-

served and on-demand resources. A Balanced Time Scheduling (BTS) algorithm was

proposed by Byun et al. [24] for scheduling homogeneous resources to a workflow with

deadline constrained. In a follow up work of Byun et al. [25], a Partitioned Balanced100

Time Scheduling (PBTS) algorithm was proposed for scheduling the On-demand ho-

mogeneous resources to workflow applications. PBTS considers time partitions in the

algorithm and minimizes the amount of resources for each time partition. Abrishami

et al. [16] proposed a QoS-based Partial Critical Paths (PCP) workflow scheduling

algorithm on utility Grids, and the PCP algorithm was modified for On-demand cas-105

es [26] in Cloud computing. Two algorithms, IC-PCP and IC-PCPD2, were proposed

which are different from PCP in three aspects: On-demand resource provisioning, ho-

mogeneous networks, and the pay-as-you-go pricing model. Cai et al. [27] divided the

workflow scheduling problem with On-demand resource provisioning into two sub-

problems: service mapping and task tabling on sharable resources. Two heuristics110

CPIS (Critical Path based Iterative heuristic with Shortest services) and LHCM (List

based Heuristic considering Cost minimization and Mach degree maximization) were

developed for the sub-problems, respectively.

There are only a few studies on workflow scheduling with spot instances. Poola et

al. [28] proposed a fault tolerant algorithm which schedules tasks on Cloud with spot115

and on-demand instances. The objective was to reduce the total renting cost with the

workflow deadline constrained. In their following up work [29], an adaptive just-in-

time scheduling algorithm was proposed for scientific workflows. This algorithm used

both spot and on-demand instances to reduce cost and provide fault tolerance. Jung et

al. [30] considered task balanced workflow scheduling scheme to reduce the out-of-bid120

situation and the total task completion time. In another work of Jung et al. [31], a
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Genetic Algorithm (GA)-based workflow scheduling scheme was proposed to find the

optimal task size in a spot instance-based cloud environment without increasing users’

budgets.

To the best of our knowledge, there is no existing work considering workflow125

scheduling both non-preemptive and preemptive tasks. However, these two types of

tasks are commonly exists in scientific workflows. The short-term on-demand manner

is usually considered for workflow scheduling in the existing literature. A few studies

have also considered the spot manner. However, the high unit cost and out-of-bid fail-

ure make these two resource renting manner more expensive. Therefore, scheduling130

workflow applications with both non-preemptive and preemptive tasks on on-demand

and spot block instances is considered in this paper.

3. Problem Description and Formulation

3.1. Framework of the Problem

Figure 1 shows the framework of cloud workflow scheduling with preemptive and135

non-preemptive tasks. Users send their requests to the cloud service providers (CSP).

The CSP mainly includes three modules: workflow scheduling module, resource rent-

ing module and the virtual cloud center. The workflow scheduling module decomposes

users’ workflow applications into a set of non-preemptive and preemptive tasks and

submit the tasks to the resource renting module. According to the tasks, the resources140

renting module rent proper virtual machine instances from the virtual cloud center.

The workflow scheduling module allocate the tasks to each available rented instance.

During the whole process, the Qos (deadlines, start times, etc.) of each user must be

satisfied.

3.2. Mathematical model145

The workflow application is represented by a task-on-node Directed Acyclic Graph

(DAG) G(V,E), in which V = {v0, . . . , vn} are the tasks and E = {(vi, vj)|vi ∈

V, vj ∈ V, i < j} are the edges in G. Each edge E = {(vi, vj)} denotes the depen-

dencies between task vi and vi. Two dummy nodes v0 and vn are denoted, which are
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Figure 1: Cloud workflow scheduling with preemptive and non-preemptive tasks.

used to describe the dummy start and end tasks of the workflow. The two task sets150

M and R are used to denote the preemptive and non-preemptive tasks, respectively.

The task vi can be processed on one or several rented instances. Only homogeneous

virtual machine instances are considered in this paper (virtual machines with the same

capacity). Different physical machines are virtualized to the virtual machine with the

same configuration. Each task can be executed on each idle virtual machine instance.155

Let the processing time of task vi on a single virtual machine be Pi. For a preemptive

task vi ∈ M, the task can be separated and allocated on the currently available virtual

machines during the scheduling process. However, for a non-preemptive task vi ∈ R,

it can only be processed on a single on-demand or spot block instance. Let Co be the

unit cost of the on-demand instance, Cs
tk, k ∈ {1, 2, 3, 4, 5, 6} be the unit cost of the160

spot block instance at time t with the block time k. The deadline of the entire workflow

is given byD. During the scheduling process, Let si and fi be the start and finish times

of task vi, the total number of rented resources be H .

Then, the objective of the considered problem is denoted as follows. Co× yh×Th

7



is the cost of on-demand virtual machines. Cs
EhTh

× (1− yh)× Th calculates the cost165

of spot block virtual machines, in which Eh is the start time of a spot block instance

and Th is the block time.

min
{ H∑

h=1

(Co × yh × Th + Cs
EhTh

× (1− yh)× Th)
}

(1)

Two types of binary variables are denoted. The binary variable xiht in Equation (2)

takes 1 if and only if task vi is executed on VM h at time t. The binary variable yh in

Equation (3) takes 1 if and only if the VM h is an on-demand instance and takes 0 if

and only if the VM h is an spot instance.

xiht =


1 vi is processed on VM h at time t, ∀i ∈ {0,

. . . , n}, ∀h ∈ {1, . . . ,H}, ∀t ∈ {0, . . . , D}

0 others

(2)

yh =

1 h is on-demand instance, ∀h ∈ {1, . . . ,H}

0 h is spot instance, ∀h ∈ {1, . . . ,H}
(3)

Th =

n∑
i=0

D∑
t=0

xiht, ∀h ∈ {1, . . . ,H} (4)

Eh =

n∑
i=0

D∑
t=0

xiht × t, ∀h ∈ {1, . . . ,H} (5)

si = min
t∈{0,...,D}

(

H∑
h=1

t× xiht), ∀i ∈ {0, . . . , n} (6)

fi = max
t∈{0,...,D}

(

H∑
h=1

t× xiht), ∀i ∈ {0, . . . , n} (7)

mi =


∑H

h=1

∑D
t=0 xiht, ∀vi ∈M

1, ∀vi ∈ R
(8)

pi = dPi/mie (9)

si + pi 6 sj , ∀(i, j) ∈ E (10)
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fn 6 D (11)

H∑
h=1

xiht = 1, ∀t ∈ {0, . . . , D}, ∀vi ∈ R (12)

H∑
h=1

n∑
i=0

xiht = 1, ∀t ∈ {0, . . . , D} (13)

The renting period of on-demand instances and spot block instances are calculated

by Equation (4) The start time of the spot block instance are calculated in Equation (5).

(6) and (7) calculate the start time and the finish time of task vi respectively. Equation170

(8) calculates the virtual machines instances required for a task vi. Equation (9) cal-

culates the related processing time of a task vi. Precedence and deadline constraints

of the workflow are specified by formula (10) and (11). Equation (12) ensures that all

the non-preemptive task can only be executed on one single virtual machine during the

whole scheduling process. Equations (13) ensures each virtual machine only execute175

one task at a time.

4. Idle time block-based method

Rule-based heuristics are common methods for workflow scheduling problems [9].

An idle time block-based method (ITB) is proposed for the problem under study in this

paper. ITB is composed of five components: allocation sequences initialization (ASI),180

deadline division (DD), idle-time block searching (IBS), task and block mapping (TB-

M), schedule improvement (SI). In the procedure DD, workflow deadlines are divided

into task deadlines to balance the idle time block between tasks. In the SI, an initial

task allocation sequence is determined according to the priorities of each task. In the

IBS, idle-time blocks are searched and calculated. The procedure ISC schedules tasks185

sequentially based on the idle time block. The schedule is improved by adjusting pre-

emptive tasks using the SI procedure. Details of the idle time block-based method is

shown in Algorithm 1

4.1. Allocation sequences initialization (ASI)

The idle time block-based method (ITB) is a list based workflow scheduling algo-190

rithm [9]. First, The allocation sequences of tasks are determined by the ASI procedure.
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Algorithm 1: Idle Time Block-based method (ITB)

1 begin

2 allocation sequences initialization (ASI);

3 deadline division (DD);

4 idle-time block searching (IBS);

5 task and block mapping (TBM);

6 schedule improvement (SI);

7 return;

Each allocation sequence is a topological order of the workflow. Different topological

orders are obtained based on different priorities of the tasks. Let the task allocation

sequence be s̄. Details of the SI are shown in Algorithm 2. The algorithm starts from

the dummy start node v0, the tasks with no predecessors are added to the eligible set195

ES. Each time the task with the highest priority is selected from ES and added to

s̄ and the complete set CS. Four different rules are used to calculate the priorities of

tasks, which are listed as below.

Algorithm 2: Allocation sequences initialization (ASI)

1 begin

2 CS ← ∅, ES ← ∅ s̄← ∅;

3 repeat

4 CS ← CS
⋃
{vj};

5 s̄← s̄
⋃
{vj} ;

6 for each (vj , vk) ∈ E do

7 if ∀(vi, vk) ∈ E, vi ∈ CS then

8 ES ← ES
⋃
{vk};

9 Using rules to select an task vj from the Eligible set ES;

10 until (vn ∈ CS);

11 return s̄;
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• maximum upward rank value: The upward-rank value based priority considers

both the structure of the workflow and the characteristics of the tasks. All the200

tasks are considered as the same and can be executed on each available instance.

Details of the upward rank value calculation are shown in [32]. Tasks on the

critical path will get a higher priority and will be processed first.

• minimal processing time: In this rule, only the characteristics of the task are

considered. The tasks’ priorities are determined by the processing time. The205

minimal processing time has the highest priority.

• maximum number of successors: In this rule, only the structures of the workflow

are considered. The priorities of the tasks are determined by the number of

successors.

• minimal slack time: In this rule, both the structure of the workflow and the210

characteristics of the tasks are considered. The slack time of a task vi is denoted

as sli = lsti−esti. The task with the smallest slack time has the highest priority.

• maximum upward rank value with preemptive tasks: Preemptive tasks are sup-

posed to use the maximum amount of available resources and they would have

the lowest upward rank value.215

4.2. Deadline division

Deadline division is crucial for the deadline constrained workflow scheduling prob-

lem [16, 26, 33] in cloud computing. There are two main steps to divide the workflow

deadline to the tasks: critical path searching and free time slots distributing. During the

critical path searching procedure, the suitable virtual machine and the corresponding220

execution time for the task should be determined first. Based on the estimated execu-

tion time of each task, the critical path and partial critical path are calculated. For each

partial critical path, there are some free time slots between the earliest finish time and

the deadline of the workflow. These free time slots should be distributed to the tasks on

the partial critical path. Thus, each task obtains a sub-deadline based on the free time225

slots distributing procedures.
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4.2.1. Critical path searching

To search the critical path for the workflow, the estimated task execution time ETi

for each task vi should be calculated first. The virtual machine instances with the min-

imum execution time are commonly adopted in existing works [26]. However, these230

virtual machine instances usually have a high unit cost, which leads to high total re-

source renting cost. Yuan et al. [15] (DET) and Abrishami et al. [16] (PCP) consider

a balance between the performance and cost. Li can Cai [33] modeled the virtual ma-

chine instance selection problem with Integer Programming, and solve the problem

with the IBM ILOGCPLEX solver. The virtual machine instances with proper per-235

formance and cost are selected. However, these algorithms are not suitable for the

problem under study in this paper because spot block instances and preemptive tasks

are considered.

In this paper, a new virtual machine selection strategy is developed for workflow

applications with preemptive and non-preemptive tasks. Since only homogeneous vir-240

tual machine instances (the same configuration) are considered, the tasks can select

any type of virtual machine instances. No matter the instance is an on-demand or spot

block instance, the estimated task execution time is the same. For the preemptive task,

it can be interrupted during execution, the task can be divided into several parts and

select different virtual machine instances. Details of the VM selection are shown in245

Algorithm 3. The virtual machine selection is based on the topological order obtained

in SI. For each task vi in the sequence s̄, the estimated execution time is calculated. If

the task is vi a non-preemptive task, the estimated task execution time ETi equals to

the the processing time of task vi on a single virtual machine, i.e., ETi = Pi. If the

task is vi a preemptive task, the task is divided averagely on all the available virtual250

machines, i.e., ETi = Pi/|ES|.

After calculating the estimated execution time of each task, the critical and partial

critical path is determined using the traversing method [16]. The earliest start time esti,

the earliest finish time efti, the latest start time lsti and the latest finish time lsti of

each task vi are calculated with the critical path based method. [34]. For each partial255

critical path, there are some free time slots between the estimated finish time and the
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Algorithm 3: Virtual machine instances selection (VMS)

1 Input: the task allocation sequence s̄.

2 Output: the estimated execution time of all the tasks in s̄.

3 begin

4 repeat

5 CS ← ∅, ES ← ∅;

6 vi ← the first task of s̄;

7 CS ← CS
⋃
{vi};

8 for each (vi, vk) ∈ E do

9 if ∀(vj , vk) ∈ E, vj ∈ CS then

10 ES ← ES
⋃
{vk};

11 if vi ∈M then

12 ETi = Pi/|ES|;

13 else

14 ETi = Pi;

15 s̄ = s̄− {vi};

16 until (s̄ = ∅);

17 return;

latest finish time the tasks. These free time slots are distributed to each task suitably

and the deadline of each task are calculated.

4.2.2. Free time slots distributing

Traditionally, three different methods are adopted to distribute the free time slots260

to tasks. Abrishami et al. [16] proposed a PCP algorithm for the free time slots

distribution in grid computing. The time slots are allocated to the tasks in the partial

critical path proportionally according to the estimated execution times. However, they

only consider the free time slots between the estimated finish time of the last task and

the latest finish time of the partial critical path. The free time slots between the tasks265

inside the partial critical path are not considered. In the next work of Abrishami et al.
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[26], the algorithm IC −PCPD2 was proposed to allocate the free time slots. All the

free time slots between the tasks in the partial critical path are considered. However, the

free time slots distribution methods do not consider the relationship between different

partial critical path. Li can Cai [33] proposed a float free time slot based distribution270

method MRH , which considered the influence of the distributed partial critical path.

The free time slots are allocated to different partial critical path iteratively.

In this paper, we adapted MRH to DDP to make it available for both preemp-

tive and non-preemptive tasks. If the task vi is a non-preemptive task, the total float

free time slots of a critical path T float
CP and the allocated float free time slots T dis

vi are275

calculated the same as MRH . If the task vi is a preemptive task, the estimated exe-

cution time are dynamic changed with the current available number of virtual machine

instances. So T float
CP is dynamic changed with the changing of esti and efti. There

are also no necessary to consider allocating float free time slots to preemptive tasks

when calculating T dis
vi for they can easily be terminated and executed on other virtual280

machine instances.

4.3. Idle-time block searching (IBS)

After the deadline of each task are calculate in the procedure DD, the procedure

idle-time block searching is adopted to calculated the available time slot for each task.

The matrix R = (rij)D×Hr are used to denote the availability of resources, in which285

the row represents time slots and the column represents the virtual machines. i.e.,

rij = 1 means the virtual machine j at the time slot i is occupied. The idle time block

is sub-matrix R[i
′
, . . . , i

′′
; j

′
, . . . , j

′′
] of R, in which all the elements are 0.

In the procedure IBS, free VMs are searched first. For each task vi, from the system

current timeCTi to the deadlineDi of the task, different idle time blocks are calculated.290

Different types of instances have different pricing intervals. Let the current pricing

interval of the on-demand or spot block instance rj be CPj . Busy VMs are searched

next. If the task running on the VM is a preemptive task, the preemption is allowed to

occur. It means that if the running task on the current VM is a preemptive task, it can be

preempted and then the VM becomes free and can be used as the free VM. Otherwise,295

if the task running on the VM is a non-preemptive task, it cannot be preempted. The
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estimated release time is calculated based on the estimated task runtime on this VM. If

available idle blocks are obtained for the task vi, they are added to the idle block list

idleList. If no available idle block is found and vi is a non-preemptive task, new virtual

machine must be rented (the preemptive task can be divided and easily find available300

idle blocks). For the on-demand instance rl, three methods are used to determine the

renting period.

• minimal renting period, the renting period equals to the estimated task runtime

ETi, i.e., CPl = CTi + ETi.

• maximal renting period, the renting period equals to the latest finish time lfti.305

• deadline based renting period, the renting period equals to the deadline.

For the spot block instance rl, three options are used to determine the block time (range

from 1 to 6).

• minimal block time, the block time equals to the estimated task runtime ETi.

• maximal block time, the block time equals to 6.310

• deadline based block time, the block time equals to the minimum number be-

tween the deadline and 6.

Details of the Idle-time block searching (IBS) are shown in Algorithm 4. Line 5-12

searches the idle time block for free VMs. Lines 13-25 searches idle time block for
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busy VMs. Line 26-34 applies new VMs for non-preemptive tasks.315

Algorithm 4: Idle-time block searching (IBS)
Input: vi: task to be scheduled;

1 begin

2 idleList← ∅;

3 VMfree ← Set of free VMs among rented VMs;

4 VMbusy ← Set of busy VMs among rented VMs;

5 foreach rj ∈ VMfree do

6 ETi ← Estimate task runtime of vi;

7 Di ← deadline of vi;

8 CPj ← current pricing interval of rj ;

9 ATi ← min{Di, CPj} ;

10 if CTi + ETi < ATi then

11 Compute idle time ITj for rj ;

12 Add rj to idleList;

13 foreach rj ∈ VMbusy do

14 ETi ← Estimate task runtime of vi;

15 Di ← deadline of vi;

16 CPj ← current pricing interval of rj ;

17 ATi ← min{Di, CPj} ;

18 k ← running task on rj ;

19 if vk is a non-preemptive task then

20 RTj ← estimated release time for rj ;

21 else

22 RTj ← 0;

23 if CTi + ETi +RTj < ATi then

24 Compute idle time ITj for rj ;

25 Add rj to idleList;

26 if idleList = ∅ then

27 if vi ∈ R then

28 ETi ← Estimate task runtime of vi;

29 if ETi > 6 then

30 Applying a new on-demand virtual machine l;

31 Calculate idle time ITl for rl;

32 else

33 Applying a spot block virtual machine l;

34 Calculate idle time ITl for rl;

35 Add rl to idleList;

36 return idleList; 16



4.4. Task and block mapping (TBM)

In the procedure task and block mapping (TBM), the tasks are mapped to the idle

time block obtained in IBS. Algorithm 5 shows the steps of mapping a task to the

suitable idle-time block. If the task is a preemptive task, the task can be terminated320

during its execution. So the task can be divided into several parts and mapping each

part to a suitable idle-time block separately. Two rules are used to divide and map

preemptive task.

• Longest mapping rule, sorting the length of all the available idle time block. The

mapping rule starts from the longest idle time block. If the task’s execution time325

is less than the block, the task is allocated to this block. If the task’s execution

time is more than the block, the task is divided into two parts, one part is allo-

cated to the current block with the longest execution time and the other part is

rescheduled to find the next longest idle time block.

• Average mapping rule, finding the entire available idle time block, dividing the330

task averagely on the entire idle time block.

If the task is a non-preemptive task, the task can only be allocated to exactly one idle-

time block. Similarly, four rules are used for mapping a non-preemptive task to the

suitable idle-time block.

• Shortest mapping rule, sorting the length of the entire available idle time block.335

vi is mapped to the idle time block with the shortest length.

• Longest mapping rule, sorting the length of the entire available idle time block.

vi is mapped to the idle time block with the longest length.

• Random mapping rule, vi is mapped to the idle time block randomly.

• Minimal cost rule, sorting the unit price of the idle time block, vi is mapped to340

the idle time block with the minimal extra cost.
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Algorithm 5: Task and block mapping (TBM)

1 Input: the task allocation sequence s̄, the idle-time block list idleList.

2 Output: the current schedule π.

3 begin

4 repeat

5 vi ← the first task of s̄;

6 if vi ∈M then

7 for (j = 0;j < |idleList|;j ← j + 1) do

8 Divide task vi into a series of subtasks. Mapping subtasks

suitable idle-time blocks;

9 if vi ∈ R then

10 for (j = 0;j < |idleList|;j ← j + 1) do

11 Using rules to determine the suitable idle-time block for vi;

12 Update idleList;

13 Remove the task of s̄;

14 until (s̄ = ∅);

15 return π;

4.5. Schedule improvement

After the schedule of the problem is constructed, the procedure schedule improve-

ment SI is adopted to reduce the still available idle time blocks. SI reduces the available345

idle time blocks mainly by two procedures: backward and froward moving to concen-

trate the idle time blocks, reduce the amount of spot block instances for preemptive

tasks. The two moving procedures are carried out cooperatively. First, all tasks are

moving backward according to the non-increasing order of the finish times of the cur-

rent schedule. The schedule is kept in the priority list LB . The head task L[1]
B is350

removed from LB . All successors of v[1] have been calculated before the calculation

of v[1] and precedence constraints are not checked. The start time t of v[1] is decreased

one by one from lst[1] to s[1] If task v[1] is a preemptive task, the amount of on-demand

resources is also decreased one by one. The corresponding resource renting costs are

18



calculated for all possible schedules. The start time and the resource amount with the355

minimum costs of v[1] are updated with the new ones. v[1] is removed from LB . The

procedure is repeated until LB is empty. Then all tasks are moving forward according

to the non-decreasing order of start times of the current schedule. The decreasing strat-

egy of start times is similar to the increasing strategy in the backward moving process.

The new start time t is increased one by one from s[1] to est[1]. Algorithm 6 shows the360
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details of the SI procure with backward moving.

Algorithm 6: Schedule improvement with backward moving (SI)

1 begin

2 LB ← Sort tasks in π by non-increasing order of finish times, πc ← π;

3 repeat

4 v[1] ← L
[1]
B , π′ ← π, s′[1] ← lst[1], t′ ← s[1];

5 repeat

6 if v[1] ∈M then

7 h← on-demand resources of v[1];

8 repeat

9 Calculate estn;

10 if estn > D then

11 break;

12 h← h− 1;

13 until h = 0;

14 Calculate C(π′);

15 if C(π′) ≤ C(π) then

16 C(π)← C(π′), t′ ← s′[1];

17 s′[1] ← s′[1] − 1;

18 until s′[1] < s[1];

19 s[1] ← t′;

20 Remove L[1]
B from LB ;

21 until Lenth(LB) = 0;

22 if C(πc) < C(π) then

23 C(πc)← C(π), πc ← π;

24 else

25 return πbest;
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5. Experimental results

5.1. Parameter calibration

There are seven parameters or components in the proposed ITB methods which365

need calibration. In the deadline division (DD) procedure, four different strategies are

used to divide the workflow deadline to tasks: PCP (0), IC-PCPD2 (1), MRH (2) and

DDP (3). Five tasks priority calculation rules are described in the sequence initializa-

tion (SI) procedure: maximum upward-rank value (0), minimal processing time (1),

maximum number of successors (2), minimal slack time (3) and maximum upward370

rank value with preemptive tasks (4). In the idle-time block searching (IBS) phrase,

three strategies are used to determine the renting period of on-demand instance: min-

imal renting period (0), maximal renting period (1) and deadline based renting period

(2). Three strategies are proposed to determine the block time of spot-block instance:

minimal block time (0), maximal block time (1) and deadline based block time (2).375

The task and block mapping (TBM) include two components need to be calibrated: the

mapping of preemptive tasks and the mapping of non-preemptive tasks. For the pre-

emptive tasks, two alternatives are considered: longest mapping rule (0) and average

mapping rule (1). For the non-preemptive tasks, four alternatives are considered: short-

est mapping rule (0), longest mapping rule (1), random mapping rule (2) and minimal380

cost rule (3). Finally, in the procedure schedule improvement (SI), the ITB method can

consider with SI (0) or without SI (1). In total, there are 4×5×3×3×2×4×2 = 2880

different combinations of algorithms. All algorithms are coded in Java and run on a

computer with an Intel i5-3470 CPU (4 cores, 3.1GHz) and 6GBytes of RAM memory.

5.1.1. Design of experiment385

We use random workflow instances for the parameter calibration. The workflow

generator Rangen [35] is used to generate different random workflow instances. Dead-

line of the workflow is supposed to be D = Estn × θ, in which θ is a deadline factor

and takes a value randomly from {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0} accord-

ing to [36]. These values make the deadline from tight to loose. The number of tasks390

n is set as {10, 20, 50, 100, 200}. For each size n, 20 different workflow instances are
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generated. The network complexity of the workflow is set at 1.8 according to [35].

The processing time of each task takes a value randomly from a uniform distribution

U(1, 100). Preemptive and non-preemptive tasks are assigned randomly.

Only homogeneous virtual machines (the same configuration) are considered, as395

computing hosts with different configurations (CPU cores, memory and bandwidth)

can be virtualized to the same. To simulate the virtual machine resource in real clouds,

The CloudSim toolkit [37] is used. The toolkit is extended to support on-demand

and spot-block resources. We take the VM instances (m4.large Amazon EC2 [2]) as

the simulation example, the price of the instance is set according to Amazon (Table400

1). The processor speed of the cores of the VM instance is set to 2000 MIPS. Each

VM requires 1GByte of RAM and 10 GBytes of storage while the bandwidth is set at

500 Mbps. The times required for starting a host and creating a VM are as they are

negligible in comparison to the execution time of a task.

Table 1: Unit cost of spot and on-demand instances

Instance Type vCPU On-demand Hourly
Spot Block Hourly

1 hour 6 hours

m4.large 2 $0.120 $0.069 $0.088

The Relative Percentage Deviation (RPD) is used to evaluate the effectiveness

of the compared algorithms. For an instance i, let the final schedule obtained by the

current algorithm be πi and its corresponding cost C(πi). If π∗i is the best schedule

for instance i among the compared algorithms, the RPD of the current algorithm for

instance i is calculated as follows:

RPDi =
C(πi)− C(π∗i )

C(π∗i )
× 100% (14)

We use the multi-factor analysis of variance (ANOVA) technique to calibrate the405

values of the different parameters. ANOVA takes RPD as the response variable. First,

the three main hypotheses (normality, homoscedasticity, and independence of the resid-

uals) are checked from the residuals of the ANOVA. All three hypotheses are accept-

able within the usual margins. Since all the p-values in the experiments are very close
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to zero, they are not reported in this paper due to space considerations. Instead, we410

directly report the means plots resulting from the multiple pairwise tests in order to

check which levels or variants of the studied factors are statistically better than the

others. Interactions between (or among) any two (or more than two) factors are not

considered as the observed F -Ratios are small in comparison with single factors.

5.1.2. Parameter calibration results415

Figure 2 shows the means plot with 95% Tukey HSD confidence intervals for the

deadline division, the sequence initialization and the schedule improvement methods.

The difference between different deadline division is statistically significant. The pro-

posed preemptive task based deadline division (DDP) is the best one with the average

RPD value about 8%. For the five sequence initialization methods, the difference is420

also statistically significant. We observe that the rule maximum upward rank value with

preemptive tasks is the best one. It is a little better than the rule maximum upward-rank

value and much better than the other three compared rules. For the schedule improve-

ment methods, ITB with improvement method is much better than that of ITB without

improvement. The average difference is a significant 30%. Therefore, in the following425

algorithm comparisons, we use the DDP strategy as the deadline division methods, the

rule maximum upward rank value with preemptive tasks as the sequence initialization

methods and improve the proposed ITB with schedule improvement methods.
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Figure 2: Means plot with 95% Tukey HSD confidence intervals for the deadline division, the sequence

initialization and the schedule improvement methods.

The means plots with 95% Tukey HSD confidence intervals for the on-demand

instance duration calculation, the spot instance block time determination, preemptive430
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tasks mapping rules and non-preemptive tasks mapping rules are shown in Figure 3.

For the on-demand instance duration calculation, it can be observed that the differences

are statistically significant. The methods with the minimal renting period is the best

with the average RPD value 41%. It is better than the methods with the maximal

renting period and deadline based renting period. For the spot instance block time435

determination, the difference is also statistically significant. The methods with the

deadline based block time is the best with the average RPD value 43%. The methods

with the maximal block time is the worst with the average RPD value 50%. For

the two preemptive tasks mapping rules, the interval is overlapped. The difference

between the two rules is not significant. The longest mapping rule is a little better than440

the average mapping rule. For the non-preemptive task mapping rules, the differences

between the four rules are also not significant. The minimal cost rule is a little better

than the other three rules with the average RPD value 42%. Therefore, we use the

minimal renting period for the on-demand instance duration calculation, the deadline

based block time for the spot instance block time determination, the longest mapping445

rule for the preemptive task mapping and the minimal cost rule for the non-preemptive

task mapping in the following algorithm comparisons.
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Figure 3: Means plot with 95% Tukey HSD confidence intervals for for the on-demand instance duration

calculation, the spot instance block time determination, preemptive tasks mapping rules and non-preemptive

tasks mapping rules.

5.2. Comparison with existing methods

5.2.1. Design of experiment

Since the problem of scheduling non-preemptive and preemptive tasks with on-450

demand and spot block instances in a workflow has not been studied yet, the just-in-
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time algorithm (JIT) proposed by Poola et al. [29] is adapted for the considered prob-

lem. The ITB and JIT methods are also adapted to consider only on-demand resources.

ITBo is the proposed ITB with only on-demand resources. JITo is the just-in-time

algorithm with only on-demand resources. In total, four algorithms ITB, ITBo, JIT ,455

JITo are compared. The ANOVA technique is also used to analyze the results in a

sound and statistical way where RPD is the response variable.

The two scientific workflow instances Montage and LIGO [1] are adopted to ana-

lyze the effectiveness of the proposed MEFT in real environments. Montage has been

created by NASA/IPAC [1] as an open source toolkit that can be used to stitch multiple460

input images together to create custom mosaics of the sky. The Laser Interferometer

Gravitational Wave Observatory (LIGO) [1] is used to generate and analyze gravita-

tional waveforms from data collected during the coalescing of compact binary star

systems. Figure 4 and Figure 5 show an example of Montage and LIGO workflow

applications. The nodes mProjectPP, mDiffFit and mJpEG in Figure 4 are regarded as465

the preemptive tasks while other nodes are non-preemptive tasks. The nodes TrigBank

in Figure 5 are non-preemptive tasks and other nodes are preemptive tasks.

Data Aggregation

Data Partitioning

Data Aggregation

Pipeline

mProjectPP mDiffFit mConcatFit mBgModel

mBackgroud mImgTbl mAdd mShrink

mJPEG

Figure 4: An example of Montage workflow application.

The instance size of each type of workflow application is set as n ∈ {50, 100, 200, 300, 400}.
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TmpltBank Inspiral Thinca TrigBank

Figure 5: An example of LIGO workflow application.

The deadline factor takes a value from {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}.

For each size and discount value 10 instances are generated. In total, there are 5×10×470

10 = 500 instances for performance comparisons.

5.2.2. Comparison results of Montage instances

For Montage instances, the interaction plot between n and the compared algorithms

with 95% Tukey HSD confidence intervals is shown in Figure 6. ITB is the best one

among the compared algorithms. ITB outperforms JIT and ITBo outperforms JITo475

for all the instances with different size. Comparing with JIT, ITB saves 10% cost

on average. Comparing with ITBo, ITB saves 20% cost on average than the ITB

algorithm considering only on-demand instances. With the increase of n, the costs of

ITB and JIT increase with the same gradient, e.g., n = 400, the RPD of ITB and JIT

are about 65% and 55%, while those of ITB and JIT are about 25% and 32% when480

n = 50. This implies that the proposed ITB is much more suitable for the Montage

applications with both smaller and bigger size.

The interaction plot between the deadline factors and the compared algorithms for

Montage instances is shown in Figure 7. When the deadline factor is small, JIT is better

than the proposed algorithm ITB, e.g., when df = 1.1, the RPD value of JIT is about485

30%, while that for ITB is about 40%. With an increase in the deadline factor, the RPD

value of JIT increases fast while that of ITB increases slowly. When df > 1.2, the
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Figure 6: Comparison results of the algorithms on Montage applications with different n values.

proposed ITB performs better than JIT, e.g., when df = 2.0, the RPD value of JIT is

about 72%, while that for ITB is about 48%. Comparing with ITBo, ITB also saves

about 20% cost on average. This implies that the deadline factor has little influence on490

the performance of the proposed ITB method but has a big influence on the compared

JIT method.
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Figure 7: Comparison results of the algorithms on Montage applications with deadline factors.
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5.2.3. Comparison results of LIGO instances

For LIGO instances, the comparison results are shown in Figure 8. We can observe

that ITB also outperforms ITBo, JIT and JITo for all the instances with different495

size. When n is small, the RPDs of ITB and JIT are overlapped. The performance

differences between are not so significant, e.g., when n = 50, the RPD value of JIT

about is 68%, while that for ITB is about 64%. With the increase of the instance size,

the RPD decreases whereas that of JIT increases, e.g., when n = 400, ITB performs

significantly better than JIT, the RPD values of JIT and ITB are about 70% and 60%.500

Comparing with ITBo, ITB saves 20% cost on average. The RPD value of ITBo also

decreases while the instance size n increases. ITB is much more suitable for LIGO

application with bigger size.
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Figure 8: Comparison results of the algorithms on LIGO applications with different n values.

The comparison results with different deadline factors for LIGO instances are shown

in Figure 9. We can observe that ITB performs better than other three algorithms for the505

entire deadline factor with different values. The proposed ITB saves about 10% cost

than the JIT method and saves about 15% cost than than the ITBo method. With an

increase in the deadline factor, the RPDs of ITB, JIT and ITBo keep almost the same.

They have no monotone increase or decrease trend. However, the RPD of JITo in-

creases while the deadline factor increases. The deadline factor also has little influence510

on the performance of the proposed ITB methods.
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Figure 9: Comparison results of the algorithms on LIGO applications with different deadline factors.

The above comparisons of Montage and LIGO instances both show that the pro-

posed ITB algorithm is much better than the JIT algorithm. The main reason lies in

that the JIT algorithm uses task replication to enhance the reliability of workflow ex-

ecution. The replication of tasks increase the total renting cost of resources. The ITB515

algorithm considered in this paper uses spot block instances to enhance the reliability

of workflow execution. In fact, it will increase some resource renting cost. However,

comparing to the replication of tasks, it saves a lot of cost.

6. Conclusion and Future Work

In this paper, a more realistic workflow scheduling problem with both spot block520

and on-demand instances was considered. A mathematic model with preemptive and

non-preemptive tasks was established according to the two resource renting manners.

We proposed a new idle time block based algorithm and compared it with the adapted

JIT algorithm. The proposed ITB algorithm can easily be adapted to other workflow

scheduling algorithms. The experiment results reveal that ITB got a better performance525

for all the instances with different size. For Montage instances, ITB is much more suit-

able for both bigger and smaller size and saves 25% cost on average for scheduling with

only on-demand instances. For LIGO instances, ITB is much more suitable for bigger

size and saves 30% cost on average for scheduling with only on-demand instances.
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We would like to consider workflow scheduling with heterogeneous virtual ma-530

chines and hybrid provisioning manners in future. Divide and allocate the preemptive

tasks to heterogeneous virtual machines are much more complex than homogeneous

virtual machines. The validations of the proposed algorithms in a real cloud environ-

ment (e.g., amazon EC2) are also promising topics.
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